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a b s t r a c t

Electro-fusion and casting is used to produce large refractory bricks (∼250 kg) containing a high amount
of ZrO2. These bricks are used in glass-making furnaces where good mechanical performance is required
at very high temperatures (>1500 ◦C). During the manufacturing procedure, they develop large residual
stresses as a result of the cooling conditions and structural phase transformations they underwent. This
leads to stress concentration and crack formation at different length scales. In order to characterize
these phenomena, a ‘multi-scale’ analysis approach is under development, where different internal strain
measurement methods are combined. In this approach we benefit from different gauge volumes provided
by various diffraction methods, ranging from a few hundred nanometres to a few tens of millimetres.
In the present paper, the results of neutron diffraction measurements on large ZrO2 blocks are given.
These results show the level of internal strains at the millimetre scale, based on (3̄11) reflection of the
monoclinic ZrO2. Overall, a range of 0.025% tensile to 0.1% compressive strain was observed. Clear strain
gradients were also visible, as larger values in the interior of the block were encountered.

1. Introduction

Refractory materials containing high amounts of ZrO2 are
widely used as flux blocks for glass-making furnaces owing to the
resistance of ZrO2 to the corrosive effects of molten glass [1,2]. The
size of these blocks is several hundreds of millimetres. In order to
fully benefit from the corrosion resistance, a lower degree of open
porosity is required. Therefore, the large ZrO2 blocks are produced
by electro-fusion followed by casting. However, during the man-
ufacturing process, thermal gradients, successive structural phase
transitions (SPTs), and anisotropic thermal contraction of zirconia
induce the development of significant amounts of internal residual
stresses [3,4].

Under ambient pressure, pure zirconia undergoes three SPT
during cooling from its melt [5]. It solidifies into a cubic crys-
tal structure (c-ZrO2, space group Fm3̄m) at about 2700 ◦C; upon
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cooling to 2300 ◦C it transforms to tetragonal (t-ZrO2, space group
P42/nmc), and finally it becomes monoclinic (m-ZrO2, space group
P21/c) around 1170 ◦C. This last SPT is a first order transition and is
of martensitic type. Moreover, it induces a large volumetric expan-
sion which, in the absence of any stresses, is typically close to
4.5%. Therefore the tetragonal–monoclinic SPT alone creates large
amounts of strain in the material and induces cracking, which
finally leads to breaking the pure bulk zirconia to pieces. In the case
of refractory blocks containing a large volume fraction of zirconia,
an amorphous matrix phase is used between the ZrO2 crystals and
acts as a medium for partial stress relief [1].

Because of the stress effect, the actual temperatures of the
SPTs between tetragonal to monoclinic phases (both forward and
backward transformations) are usually very different from that pre-
dicted for a perfect free single crystal. The transition of a single
crystal from one state to the other occurs when the sign of the
free energy balance between the two phases changes. This depends
mainly on the temperature, the size of the considered crystal, and
the energy associated with the interfacial strain. In a zirconia block
containing a very large number of zirconia crystals (having vari-
ous sizes and crystal orientations), the tetragonal–monoclinic SPTs
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occur thus in a large temperature range, and a hysteresis effect is
observed both during the heating and cooling processes of the sam-
ple. Similar to what is observed in steels, this martensitic transition
generally occurs at a lower temperature during the cooling than
during the heating, and in some cases, residual tetragonal zirconia
can be observed at room temperature.

Substantial efforts on the numerical modelling of these stresses
have been ongoing for two decades [3,4,6]. Nevertheless, since the
causes for the internal stresses are numerous, with each of them
involving different but co-dependent phenomena, these models do
not yet account for all deformation mechanisms and therefore are
not yet predictive. In order to rigorously analyse the stress build-up
within these ZrO2 blocks, an experimental multi-scale approach is
being developed in which we combine neutrons, X-rays and elec-
tron diffraction. The global scale, including the contribution of a
large number of crystals, is explored by both room temperature
neutron diffraction and in-situ high-temperature X-ray diffraction
experiments. The strain state is also probed at the very local scale
through Laue microdiffraction and electron back scatter diffrac-
tion (EBSD). Thus the used diffraction volumes range from a few
hundreds of nanometres to a few tens of millimetres. These differ-
ent diffraction gauge volume sizes enable averaging over different
scales and thus facilitate the analysis of the effects of different
causes of stress on the system.

In this paper, we discuss the results of the first part of this analy-
sis: the residual strains at millimetre scale as measured by neutron
diffraction. Two different blocks of high zirconia content were pre-
pared by Saint-Gobain CREE. These two blocks differ mainly in the
composition of the amorphous matrix phase around the zirconia
crystals.

Neutron diffraction is a widely used technique for the measure-
ment of the residual stress of crystalline matter on larger scales.
Even though hard X-rays from high brilliance synchrotron sources
are emerging as strong alternatives [7], neutrons still perform bet-
ter at high penetration. A good review for the comparison of the
two methods is given in [8]. Since neutron beams are less affected
by intensity loss at greater depths than are X-ray beams, neutron
diffraction is generally the method of choice when it comes to
large engineering pieces. There is a vast literature on strain mea-
surements made by neutron diffraction on large industrial metallic
pieces [9–12]. However, to the best of our knowledge, there seems
to be a clear lack of residual stress–strain studies with diffraction
methods on ceramic materials produced at this scale. The only neu-
tron measurements on refractory blocks with such a high zirconia
content was done for the purpose of texture analysis [13]. There-
fore the significance of the present paper is also that it is among
the first in the field of residual strain analysis of an industrial size
ceramic refractory material.

2. Experimental

2.1. Sample preparation and microstructure

Two blocks of different compositions were prepared and cast by
the company Saint-Gobain CREE. These compositions are exactly
the same as those reported in [13]. They therefore both contain
94 wt.% ZrO2. The remaining content (6 wt.%) is alkalisilicate type
glass for one block (labelled ZS hereafter) and borosilicate glass for
the other (ZB hereafter).

Fig. 1a shows the typical microstructure of these materials
exemplified by a sample of ZB composition which was cut and pol-
ished for SEM imaging after casting. The micrograph reveals large
zirconia areas (in grey) formed during the solidification process
[14], having sizes of a few hundred micrometres. Each of these areas
was initially (i.e. at high temperature) a single crystal with a cubic

Fig. 1. Microstructure of the ZB sample. ZrO2 ‘domains’ (in grey shades) in a glassy
matrix (in black) (a), and a close-up of a single domain, showing the needle- and
plate-like monoclinic ZrO2 crystallites (b). The image is taken from a fused-cast
sample with the same composition as the measured block sample.

structure [15]. These areas are surrounded by the amorphous sili-
cate phases (in black). As seen in Fig. 1b, they contain a large number
of monoclinic ZrO2 crystals which are arranged in specific orienta-
tions with respect to each other. The sizes of these crystals range
from 50 �m down to a few hundreds of nanometres. The EBSD
results on these materials [14] confirm a very well defined local
texture within the mentioned areas of a few hundred micrometres.
This is a result of orientation relationships established by the suc-
cessive SPTs [15]. The texture at the macroscopic scale is, on the
other hand, found to be random [13].

2.2. Neutron diffraction

Using neutron diffraction is the best option when one wants to
scan very thick specimens up to a few centimetres depth. The neu-
tron diffraction measurements were done at the SALSA beamline of
Institute Laue-Langevin (ILL) in Grenoble, France. the ZrO2 blocks
were measured in their entirety, i.e. without slicing or sampling.
The only treatments made to the blocks were removing the riser
(masselotte) and machining the surface to decrease the surface
roughness.

The final dimensions were 437 × 240 × 305 mm3 for the block
of composition ZB and 500 × 102 × 688 mm3 for the block of com-
position ZS along the x-, y- and z-directions of the reference
system in Fig. 2. A schematic view of the ZB block is also given in



Fig. 2. Schematic representation of the ZB block. The block was positioned upside
down with respect to the casting direction, i.e. the riser was at the bottom before its
removal. In the middle of the [CB] segment, a reference system is introduced which
will be used throughout the paper. This reference system is attached to the block,
assigning the following directions: casting direction (C to B) is −�z, towards interior
of the block along the longer edge is +�x, and towards interior of the block along the
shorter edge is +�y. The origin is the midpoint of [CB]. The same convention is used
for the ZS sample. The black lines indicate the measured horizontal lines measured
parallel to the large (ABCD) and small (BFGC) faces. They correspond to the scans
named ‘ZB x-line 6’, ‘ZB x-line 12’, ‘ZB y-line 6’ and ‘ZB y-line 12’ in Table 1. The scans
labelled ‘Corner x-dir’ and ‘Corner y-dir’ in the same table are measured around the
corner where the reference system is centred.

Fig. 2 in its measurement configuration. Each one of the measured
blocks, weighing approximately 250 kg, was mounted on a hexa-
pod which allows rotating and translating the block along all the
spatial directions. The ZB block fixed on the hexapod is shown in
Fig. 3.

The measurements were done at a fixed position of the 2D
detector leading to a range of diffraction angles 2� between 55◦

and 70◦. The gauge volume is defined by the intersection of two
collimators. The primary collimator defines the incoming beam
arriving from the monochromator to the sample and determines
where the diffraction will occur within the sample. The secondary
(radial) collimator leads the diffracted beam to the pixel detec-
tor, thereby determining the exact limits and the 2� range of the
part of the diffracted beam to be considered. This is illustrated in
the inset of Fig. 3. Accordingly, the area of the horizontal cross-
section of the diffraction volume was 4 × 4 × sin2� mm2. The height
of the gauge was 20 mm. The wavelength was set to 1.644 Åfor the
entire experiment (the attenuation length of ZrO2 for neutrons at
1.644 Åis 2000 mm [16]). The counting of the neutrons per given
detector position was done either until 50,000 total neutron counts
were received by the detector or for 1 h, whichever condition was
reached earlier.

The choice of the (hkl) Bragg peak to be measured is not triv-
ial. First of all, due to its monoclinic structure, the powder pattern
of ZrO2 contains a large number of diffraction peaks with pos-
sible overlaps (Fig. 4). Next, based on Eq. (2), the resolution in
strain increases quickly with the Bragg angle, and therefore large
2� values must be favoured. Next, the gauge volume is smaller
and its position better defined for 2� close to 90◦. And lastly, the
modest resolution of neutron diffractometers amplifies the over-
lap of the peaks, which can be an issue for data processing. Based
on these constraints, the experiment was done using the peak
around 2� = 61◦, which contains information on the (3̄11) reflec-
tion with weak contributions from overlapping (310) and (212)
reflections (Fig. 4, see insets (a) and (b)). The theoretical inten-
sity of the (3̄11) reflection is approximately 25 times greater than
that of (310) and 600 times greater than that of (212). Therefore,
the contribution of these two small peaks, (310) and (212), will be

Fig. 3. Main parts of the SALSA instrument. The neutron beam arrives on the sam-
ple through the primary collimator (on the left). The sample is located on top of a
hexapod and can be rotated and translated around multiple axes. The diffraction
volume is defined by the second collimator (on the right-hand side of the image)
which directs the incoming beam to the detector (not shown). Inset: Projection of
the diffraction volume (shaded area) on the horizontal plane, defined by the two
collimators.

neglected, and the peak measured at 2� � 61◦ is attributed solely to
(3̄11).

As for the initial treatment of the measured diffraction images
(image reading out and format conversion), LAMP software writ-
ten by the ILL staff was used [18]. For radial integration of the 2D
diffraction patterns, a software called DataGUInz [19] was used.
After integration, a correction was applied to the data to remove the
possible effects of the radial collimator foils on the diffracted beam
intensity. Flat field images obtained from an amorphous material,
e.g. plexiglass, were used for this purpose.

Fig. 4. Complete simulated powder diffraction pattern of m-ZrO2. Wavelength used
for the simulation is equal to the one used for the experiments (1.644 Å). The cal-
culation was performed by PowderCell software [17]. Inset (a): The reflection used
during the strain measurement, (3̄11), in detail with the overlapping and nearby
reflections. Inset (b): Positions and relative intensities of the reflections in the range
shown in inset (a).



Fig. 5. Comparison of the Gaussian fits of the (3̄11) peaks acquired at a given position
in the ZB block for two different directions of the diffraction vector (thus strain).
These directions are indicated with respect to the reference system introduced in
Fig. 2.

2.3. Peak fitting and strain calculation

In order to obtain the exact 2� positions of the diffraction peaks,
the data were fitted by a Gaussian function

I(2�) = a

s
√

2�
e

− (2�−2̄�)
2

2s2 + B (1)

where 2� is twice the diffraction angle, I(2�) is the intensity value
(in arbitrary units) at a given 2�, 2̄� is the mean value of 2� in
degrees, s is the standard deviation of 2�, B is the constant back-
ground noise intensity and a

s
√

2�
+ B is the intensity (in arbitrary

units) of the maximum. Employing this formula, a single maximum
for each peak area was calculated. The fits were calculated by the
gnuplot [20] software. Examples of fits are shown in Fig. 5.

Scanning deeper into our materials sometimes leads to a severe
loss of diffracted beam intensity and noisy data. As a result, it
becomes difficult to determine the exact positions of the maxima.
Therefore we used criteria for reliable peak identification. For this
purpose, a signal-to-noise ratio was defined as a/B for the parame-
ters of the Gaussian fit function in Eq. (1). In this study, a minimum
signal-to-noise ratio of 2.5 and a maximum value for fitting errors
on 2̄� (denoted by u2̄�) of 0.015◦ were defined for a peak to be
declared reliable.

The reference peak positions were determined by measuring
small cubes of 10 × 10 × 10 mm3 cut from corners of the blocks
during the removal of the riser. The cutting was done for the
purpose of producing a sample which is free of stress at the scale
of interest for this measurement, i.e. at the size of the gauge
volume, as there was no macroscopic stress applied to those
cubes. Two cubes for each block composition were obtained. Two
measurements were taken from each cubic reference, and the
measured peak positions were averaged for each block. These

reference samples yielded 2̄�0 = 60.682(8)◦ for the (3̄11) peak of
ZB composition, and 2̄�0 = 60.705(25)◦ for ZS.

The strain calculation was done according to the following
standard formula, which is obtained by incorporating Bragg’s law
into the definition of strain:

ε = (d − d0)
d0

= −1
2

cot �̄0(�2�) (2)

where �(2�) is the difference between a given reflection measured
at a given (x, y, z) coordinate and the reference value measured from
the cubes and for this reflection, i.e. 2̄� − 2̄�0, d is the measured
mean interplanar spacing for the given reflection at a measurement
point (x, y, z) on the block and d0 is the value of the same mean
interplanar spacing in the stress-free condition obtained from cut
reference samples. The standard measurement errors were calcu-
lated by propagation of errors as discussed in Appendix A.

3. Results

3.1. ZB block

Examples of Gaussian fits of the diffraction patterns are given
in Fig. 5 for the (3̄11) reflections of two different measurements
of the ZB block. A corner of this block close to the middle of the
[CB] edge (as named in Fig. 2) with the coordinates of x = 10 mm,
y = 6 mm, z = 0 mm has been measured with two different directions
of the diffraction vector (�x and �y). This was obtained by rotating
the block 90◦ between two measurements around the centre of
the diffraction volume about an axis parallel to �z (ω-axis). There-
fore the resulting diffraction volumes in these two conditions are
very similar. A direct comparison of the two yields the difference
in strain values along two different principal directions at a given
point. The measured strain at this point is tensile along the x-
direction (0.023% ± 0.015%) and compressive along the y-direction
(−0.039% ± 0.015%). Using the same idea, strain measurements
along the x- and the y-directions were realized for a mesh with
x = 10–40 mm and y = 6–42 mm with step sizes of 10 mm along �x
and 6 mm along �y. The third dimension was kept constant at z = 0.
These scans are labelled ‘Corner x-dir’ and ‘Corner y-dir’ in Table 1
according to their strain measurement direction, i.e. the direction
of the diffraction vector. The 2-dimensional strain maps generated
as a result are given in Fig. 6.

The two horizontal lines parallel to the large face of ZB as shown
in Fig. 2 and detailed in Table 1 under the names ‘ZB x-line 6’ and
‘ZB x-line 12’ were measured as scans along the x-direction. The
results are shown in Fig. 7a. For these scans, the diffraction vector
lies perpendicular to the large surface of the block. We have also
tried doing the same scan but for a diffraction vector parallel to
the surface, i.e. in transmission geometry, but the attenuation of
the beam by the whole block thickness was too strong to obtain
acceptable signal-to-noise ratios.

Another set of two horizontal lines, this time parallel to the
smaller face, were measured with a y-range of 10–230 mm (‘ZB

Table 1
Details of the neutron diffraction scans made of the blocks. Each scan is given a short name in the first column. Columns 3–5 show the fixed values or the ranges of the
coordinates in the given direction, the values in parenthesis are the step sizes within the given range of the scan. The x, y and z coordinates refer to the system given in Fig. 2.

Scan name Block x in mm (mm/step) y in mm (mm/step) z in mm (mm/step) Reflection Diffraction vector In Fig.

Corner x-dir ZB 10–40, (10) 6–42, (6) 0 (3̄11) �x 6a
Corner y-dir ZB 10–40, (10) 6–42, (6) 0 (3̄11) �y 6b
ZB x-line 6 ZB 10–430, (10) 6 0 (3̄11) �y 7a
ZB x-line 12 ZB 10–430, (10) 12 0 (3̄11) �y 7a
ZB y-line 6 ZB 6 10–230, (10) 0 (3̄11) �x 7b
ZB y-line 12 ZB 12 10–230, (10) 0 (3̄11) �x 7b
ZS x-line 6 ZS 12.5–487.5, (25) 6 0 (3̄11) �y 8
ZS x-line 12 ZS 12.5–487.5, (25) 12 0 (3̄11) �y 8



Fig. 6. Strain maps for the measured mesh of x = 10–40 mm, y = 6–42 mm and
z = 0 mm for the strain (a) along the x-direction (‘Corner x-dir’ in Table 1) and (b)
along the y-direction, ‘Corner y-dir’. The measurement was based on the position of
the (3̄11) reflection. *: Skipped point due to excessive acquisition time, **: Measured
but rejected due to bad signal-to-noise ratio and/or large fitting error u2̄� .

y-line 6’ and ‘ZB y-line 12’ in Table 1). Fig. 7b shows the resulting
strain graphs with varying y-positions.

3.2. ZS block

The ZS block (688 × 500 × 102 mm3) was placed in an equivalent
way to the ZB one, i.e. on top of the cut surface where the riser
was once located. In this configuration, lines parallel to the large
face were measured as shown in Table 1 as ‘ZS x-line 6’ and ‘ZS
x-line 12’. The reflection was chosen to be (3̄11) as in the previous
cases. The strain evolutions along these horizontal lines are given in
Fig. 8.

We note that for both ZB and ZS blocks it would have been inter-
esting to observe the evolution of strain in the z-direction. However,
since the acquisition of reliable neutron diffraction data for strain
measurement purposes requires long exposure time, this measure-
ment could not be realized during our allocated experimental time.
Moreover, measuring the stress in 3D would have required either
cutting the specimen or rotating it. Cutting the specimen relaxes
the internal stresses that we aimed to measure, so this possibil-
ity was not considered. On the other hand, for such heavy samples
(250 kg) the use of a hexapod was necessary and therefore sample
rotation was limited.

Fig. 7. Horizontal lines measured in the ZB sample. (a) Results of the ‘ZB x-line 6’
(blue) and ‘ZB x-line 12’ (red) scans in Table 1; (b) ‘ZB y-line 6’ (blue) and ‘ZB y-line
12’ (red) scans in Table 1. Error bars are calculated with the method of propagation
of errors discussed in Appendix A. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of the article.)

Fig. 8. Results of the ‘ZS x-line 6’ (blue) and ‘ZS x-line 12’ (red) scans specified in
Table 1. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of the article.)



4. Discussion

According to the results of the ‘Corner x-dir’ and ‘Corner y-dir’
scans in Fig. 6, the strain along the y-direction in this region is more
compressive than the strain along the x-direction. There seems to
be a slight tendency of increasing strain with depth for both of the
directions.

For both of the ‘ZB x-line 6’ and ‘ZB x-line 12’ scans (Fig. 7a), clear
gradients are observed from the relaxed near-zero level deforma-
tion at the surface to up to 0.1% compressive strain in the interior
parts. The state of deformation looks symmetric with respect to the
centre of the line. One can also see that at a depth of 12 mm, the
compressive stress becomes more pronounced.

For the lines labelled ‘ZB y-line 6’ and ‘ZB y-line 12’, a similar
gradient is observed in one side (y = 0) of the block although this is
not clear for the other end (y = 240). Just as for the earlier set of two
horizontal lines, there is a clear tendency in higher compressive
strain at a depth of 12 mm.

In order to understand the strain results presented, one needs to
look more into the details of the effects of the processing of these
materials. As discussed earlier, there are various reasons for the
build-up of internal stresses. One reason is the thermal gradients
that occur during casting. Stresses due to such gradients are com-
monly encountered in the casting of metallic materials as well [21].
However, in the case of ceramics the gradients are expected to be
much higher, mainly due to the lower thermal conductivity of such
materials. The main principle for this type of stress build-up is that
the different temperatures (and cooling rates) in the interior and
the exterior lead to different thermal expansions at different times
during the casting.

In zirconia based materials, thermal gradients during casting
could play yet another role directly linked to the tetragonal to
monoclinic phase transition. The stress field established before the
martensitic phase transformations determines the transition tem-
perature of a given region within the block. The starting point of
the martensitic tetragonal to monoclinic SPT is then dependent on
some processing parameters but it is generally below 1000 ◦C [14].
At such a temperature, the discrepancy between the internal and
external temperature of the block is typically lower than 100 ◦C (see
fig. 11 in [6]). Such a temperature gap is indeed small but since the
phase transformation of a given individual crystal is also related to
its size and to the stresses applied on it, the thermal gradients might
indirectly affect its final stress state. This complicated mechanism
causes a final stress field that has to be studied in more detail.

The cooling conditions during casting are assumed to be sym-
metric with respect to the centre along the x- and y-directions. This
assumption is used within thermo-mechanical modelling studies
on blocks which simulate the conditions during their production
[6]. The symmetry of the strain gradient seen in Fig. 7a supports
this assumption.

As mentioned earlier, the scale of the predicted residual strain
varies from the sub-micron to the millimetre level. One would
expect to see smaller values of strain from averaging over larger
volumes. However, the current residual strain analysis at the scale
of a few millimetres yields already a significant amount of defor-
mation. This could be a hint that at the sub-micron scale, the strain
values are quite high.

The high deformation values at this millimetre scale persist even
in regions right below the surface (6–12 mm). However, for the rea-
sons given in Section 2.3 (low signal-to-noise ratio and larger fitting
errors), it was not possible to measure the deeper parts of the blocks
to observe the evolution of the strain.

For the ZS block, the ‘ZS x-line 6’ and ‘ZS x-line 12’ scan results in
Fig. 8 indicate the following: The more-or-less symmetrical gradi-
ent from the surface to the inner parts of the block is again clearly
visible and the deformation values are generally within the range

of (−0.1%, +0.02%), similar to ZB. The difference between the two
different depths (y-values) are however, less pronounced.

According to these results, despite the different compositions
and different aspect ratios of the two blocks (ZB and ZS), their
internal stress build-up at this scale seems similar. It is worth men-
tioning that the larger error bars in ZS measurements in general are
due to larger differences in the measurement of the two reference
samples for this composition (u2̄�0

= 0.025◦), as reported earlier in
Section 2.

So far, only the values of the elastic strain have been reported,
as these are the direct outputs of diffraction measurements. These
elastic strain values will allow a quantitative comparison with
thermo-mechanical models, in the future. It can however be of
interest to estimate the level of stress each gauge volume is sub-
jected to. In order to do that, a scale transition approach is required,
for two reasons [22–25]. First, the intersection between the inci-
dent and diffracted beams defines the gauge volume (denoted V),
as depicted in Fig. 3. But within this gauge volume, only grains that
satisfy the Bragg conditions, i.e. with the (3̄11) plane perpendicular
to the diffraction vector, really contribute to the diffracted peak. The
total volume of those grains (called the ‘diffraction volume’, �) is
significantly smaller than V, and does not provide a representative
volume element (RVE) for V. Second, the measured lattice strain
defined in Eq. (2) is a projection of the mean elastic strain tensor
within the diffraction volume, along the direction of the diffrac-
tion vector. Writing ε(x) for the local elastic strain tensor at the
position x within the specimen, �k for the unit vector parallel to the
diffraction vector, 〈 · 〉V for the volume average over V, and ‘.’ for the
contracted (or scalar) product, ε is then expressed by

ε = �k · 〈ε(x)〉� · �k. (3)

The macroscopic stress �̄, i.e. the stress acting at the scale of the
gauge volume, is given by an average over V (and not � as above):

�̄ = 〈�(x)〉V (4)

with ε(x) = S(x) : �(x), and S(x) the local elastic compliance at x.
Therefore, determining the macroscopic stress �̄ for each gauge
volume from our neutron measurements is not directly possible,
as it requires estimating the tensor �̄ from only one scalar value ε
measured on �. Additional assumptions are needed.

On the other hand, the sources of elastic strain are multiple,
as discussed above, and not all of them are associated with the
presence of a macroscopic stress state. One of the sources is the
tetragonal–monoclinic SPT. It induces a significant increase of the
lattice volume. The second one is associated with the strongly
anisotropic coefficients of thermal expansion of ZrO2 at the grain
scale [26], creating internal stresses as the block is cooled down
(the thermal expansion coefficients along lattice directions �b or �c
differ by ∼ one order of magnitude). Write �res(x) for the complex
field of residual stress that develops due to these two phenomena
in a polycrystalline ZrO2 specimen when it is very slowly cooled
from a high temperature, i.e. with no temperature gradient in the
specimen.

Lastly, when an initially stress-free polycrystal made of ran-
domly oriented monoclinic grains is subjected to a mechanical
test for a prescribed stress �̄, a heterogeneous stress field devel-
ops within the different grains, due to the anisotropy of the elastic
behaviour at the grain scale. Indeed, the elastic stiffness S(x) at
the grain level is strongly anisotropic [27], with a Young modu-
lus E ranging from 106 GPa to 328 GPa depending on the direction
of loading with respect to the monoclinic crystal lattice. The local
stress can be linked with the macroscopic one using a stress con-
centration tensor B(x)

�(x) = B(x) : �̄ (5)



that only depends on the specimen’s microstructure. Putting the
above equations all together and adding the field of residual stress
�res due to the SPT and anisotropic dilation coefficients leads to

ε = �k ⊗ �k : [〈S : B〉� : �̄ + 〈S : �res〉�] (6)

with ⊗ the dyadic product. A good estimate of the field of B(x) can
be obtained with the self-consistent scale-transition model [28,29],
which allows estimating the mechanical interactions between
grains in a statistical way. This model assumes a microstructure
made of randomly mixed ZrO2 grains and does not take into account
the glassy phase, which is less stiff than ZrO2 (the Young modulus
of borosilicate glass is ∼64 GPa).

In our experiment, when comparing the 2� position of the Bragg
peaks for the block with the 2� position for the reference small cube,
the second term in Eq. (6), associated with the residual stress �res,
cancels out. This is valid of course only if the internal stress field
�res in the small reference cube and in the large block are similar, an
assumption that should be valid as both have undergone the same
thermal history. The self-consistent scheme allows estimating the
so-called ‘radiocrystallographic elastic constants’ �k ⊗ �k : 〈S : B〉�,
which provide the lattice strain ε for a given applied stress �̄.

As already discussed, the experimental data do not allow esti-
mating the direction of �̄. We make the assumption that the
macroscopic stress state is equibiaxial and parallel to the specimen
surface (i.e. vanishing stress vector on the block surfaces, as for
a free surface) although the measurements have been performed
deeper inside the specimen where more complex stresses proba-
bly develop. To retrieve the elastic strain of ∼−0.1% measured with
neutrons for the (3̄11) plane along the direction of the diffraction
vector, one would need a tensile stress on the order of 500 MPa. This
value, however, should be considered as an upper bound, due to
the presence of a continuous network of a compliant glassy phase
around the ZrO2 crystals, an effect not taken into account in this
calculation. This second phase, which carries less load than the stiff
ZrO2, might lower the effective stress level in a given gauge volume.
Moreover, in these materials a high density of small microcracks is
observed by SEM within (sub)micrometric variants of monoclinic
ZrO2. This might lower significantly the elastic stiffness and lead to
smaller calculated values of the effective stress.

5. Conclusion

ZrO2 based ceramic refractory materials are subject to large
internal stresses owing to their production method, their thermo-
mechanical behaviour, and the structural phase transformations
they undergo during cooling. These stresses can occur at differ-
ent scales, making a multi-scale analysis with different residual
strain measurement methods necessary to fully understand the
phenomena. We have carried out diffraction experiments on the
sub-micron level with Laue microdiffraction, conventional powder
diffraction (0.5–2 mm of diffraction volume), and neutron diffrac-
tion. In this paper, we present the results of the last analysis.

The neutron diffraction experiments were realized on the SALSA
beamline at ILL, Grenoble. With chosen collimator slit openings, an
averaging for strain was done over relatively large gauge volumes
(4 × 4 ×20 × sin2� mm3, where 2� ≈ 61◦). This allowed us to mea-
sure the level of strain at a macroscopic (millimetre) scale, i.e. a
scale much larger than the characteristic size of the microstructure.
Two different compositions of fused-cast blocks were measured
along their (3̄11) planes. Lattice strains ranging between −0.1%
(compressive) and +0.025% (tensile) have been obtained for (3̄11)
planes parallel to the block surface, for the block of composition ZB.
The data do not allow estimating the stress tensor or the stress prin-
cipal directions. Using instead a micromechanical approach and
assuming an equibiaxial stress state parallel to the block surface

yields stress values between ∼+500 MPa and ∼−125 MPa, respec-
tively. The block surface is globally under tension. These values
could be an overestimate and might actually be lower due to the
more compliant glassy matrix around ZrO2 and the existence of
microcracks. The block of composition ZS shows a slightly smaller
range of strain. There is a clear gradient from the surface to the cen-
tre across the large and small faces of both blocks. These gradients
are usually symmetrical with respect to the centre of that partic-
ular face, showing rather isotropic conditions on planes normal to
the casting axis.

The effect of the cooling conditions and the martensitic phase
transformations on the development of the internal stresses were
found to be multifaceted. Thermal gradients forcing volumetric
expansions due to the phase transformations occurring at different
times in different locations within the block should be regarded as a
peculiar case of these materials. This is one of the most prominent
causes of internal deformations at this scale within these blocks
produced by casting. Our results at this point should be especially
helpful for the mechanical modelling of this phenomenon.
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Appendix A. Propagation of errors in the strain calculation
with respect to a reference

According to the strain calculation formula given in Eq. (2), there
are two interdependent variables and their measurement intro-
duces standard errors, �(2�) and �̄0.

In order to obtain two independent variables, we can rewrite
this equation by defining �(2�) = 2̄� − 2̄�0:

ε = −1
2

cot �̄0(�2�) = − cot �̄0(�̄ − �̄0) (A.1)

where �̄ is the position of the given reflection at a given point.
The general formula of error propagation for a function ε(�̄0, �̄)

with independent variables is given by

uε =

√(
∂ε

∂�̄0

)2

u2
�̄0

+
(

∂ε

∂�̄

)2

u2
�̄

(A.2)

where ux represents the standard error of a given variable x. Sub-
stituting Eq. (A.1) and differentiating yields

uε =
√

[csc2 �̄0(�̄ − �̄0) + cot �̄0]
2
u2

�̄0
+ (− cot �̄0)

2
u2

�̄
(A.3)

In this paper, u�̄0
has been obtained by different measurements

of the reference samples and the values of u�̄ are the errors obtained
by a Gaussian fit.
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