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Abstract

Purpose — The purpose of this technical paper is to investigate the friction and wear behavior of inexpensive and durable cutting tools, developed
for wood machining using duplex treatment.

Design/methodology/approach — Cr—(WC—Co) coatings were deposited onto carburized low-alloy steel substrate by a reactive magnetron
sputtering. The total coating thickness was approximately 2 uwm. Unlubricated wear tests have been performed using a disc sample sliding against
an alumina ball (Al,05) and a wood (beech) pin.

Findings — The paper provides information about the effect of duplex treatment on the surface properties of low-alloy steel against wood and offers
practical help for the researchers in coating topic.

Originality/value — Experimental results showed that sliding wear properties of the selected coatings are strongly dependent on the counter-face
material. When tested against alumina balls, the wear mechanisms are oxidative wear followed by a combination of adhesive and abrasive wear,

while a combination of an oxidative and adhesive wear was the main wear mechanism observed against a wood pin.

Keywords Coatings, Wear, Friction, Wood, Cutting tool, Duplex-treatment

Paper type Research paper

Introduction

Nowadays, a combination of several and sometimes
conflicting mechanical properties of steels exists. A promising
way to cope with these requirements is to apply a duplex
treatment. It consists in the combination of thermo chemically
treated bulk steel, and then covered with thin hard coatings.
Low-carbon steels are potential candidates for such
performances because they exhibit good ductility and form but
also low yield strength and low resistance to surface
degradation processes. Thermochemical treatments such as
nitriding, carburizing, boriding, carbonitriding, etc., have
been used to improve the surface properties, i.e. mechanical
strength as well as moderate wear and corrosion resistance. At
the same time, the steel properties (resilience, ductility) were
kept unchanged at its core. In the case of steel carburizing
technique (Stickels ez al., 1991), the chemical composition of
the surface changed by increasing the surface concentration of
carbon. As a result, the microstructure of the surface is
modified. The samples are exposed in an atmosphere rich in
carbon under high temperature above 910°C during a

relatively long duration. Then, the carbon atoms diffuse into
the core to produce a carbon-enriched layer. Following
carburizing, the steel is quenched to low temperature to
increase the hardness of the carbon-enriched surface layer.
As mentioned above, to further improve the surface steel
performances, they must be covered with an appropriate
coating. A wide range of metal transition-based coatings (Cr,
Ti, Al), deposited as thin layers (few micrometers thick), of
different compounds (carbides, nitrides, oxides) are proposed
in the literature. However, to improve the coating
functionality, the adhesion between the heat-treated steel
substrate and the coating is a main property. Here, the
deposition method is a key factor to choose, because it can
provide either a high- or a low-quality coating. For example,
when a high wear resistance is required, in contrast to most
other coatings, tungsten-carbide-based coatings can be an
appropriate choice. Indeed, because of their high mechanical
properties, they are useful in a wide variety of industrial
applications. This is due to the presence of the hard WC grains
in the coatings that lead to high coating hardness, while the
metal binder (Co, Ni or Co—Cr) supplies the necessary coating
toughness (Zhao ez al., 2004). Besides, PVD processes are also
recommended for the eco-friendly aspect to avoid
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environment damages. Usually a WC—Co—Cr cermet coating
is synthesized by high-velocity oxygen fuel thermal spraying
method (Ping Wu er al, 2012). On the other hand,
considerable research studies have been previously conducted
to understand the mechanism of wear of uncoated and coating
tools (Findik, 2014). However, a few works on WC-Cr
coatings elaborated by radio frequency (RF) magnetron
sputtering are reported in the literature (Walock ez al., 2012).

The second part of this study is focused on the friction and
wear properties of the treated samples and especially concerns
the wood-tools interaction. Indeed, because of a good
machinability allowing high cutting speed and few wastes,
wood allows a good productivity. Timber is a heterogeneous
material; thus, tools used in the timber industry must exhibit
high resistance to abrasion and mechanical strokes. Besides,
most of the carbide tools used in the metal cutting industry are
coated, which causes an extra cost (Yigit ez al, 2008).
Cemented carbides are common materials used in this field.
However, a lot of coated tools are proposed as substitutes in
the literature on this topic (Eblagon er al., 2007; Benlatreche
et al., 2009; Gilewicz et al., 2010, 2013; Settineri and Faga,
20006).

In previous studies (Beliardouh er al, 2014a, 2014b),
mechanical and physical properties of low-alloy steel
substrates duplex-treated were reported. The duplex
treatment consists of carburizing followed by RF magnetron
sputtering deposition of Cr—(WC-Co) coatings. The wear
performances of samples sliding against alumina and WC balls
were analyzed. The main conclusion was a change in wear
mechanisms due to microstructural difference between
coatings (Cr:W ratio). On another hand, when wood (beech)
was a static partner (Beliardouh ez al., 2014a, 2014b), the
effect of a duplex treatment was clearly demonstrated to
improve the wear resistance of the substrate.

In this work, the wear performances of duplex-treated
low-alloy steel substrates were conducted, in dry conditions,
when wood and alumina are the counter-face materials under
applied load (F) equal to 5 N. All tribological parameters were
kept constant and similar to our previous works. In addition,
the obtained results of coated and uncoated samples are
compared. These studies were conducted in view to apply
them in wood machining (Nouveau ez al., 2005, 2011).

Materials

Sample preparation
Carburized low-alloy steel (Commercial DIN18CrMo4) was
used as substrate (Beliardouh ez al, 2014a, 2014b).
Thermochemical treatments were conducted to create a
hardness profile between the surface and the core of the steel
substrate. Then, the substrates were coated with a single layer
by co-sputtering of a WC—Co and a Cr target in a non-reactive
atmosphere RF magnetron system. The system has been
described in previous works (Beliardouh ez al., 2014a, 2014b).
A Cr under-layer of 0.5 um thickness was realized to
improve the adhesion at the interface with the steel substrates.
The total thickness of the coatings is about 2.3 um,
including the Cr under-layer. The hardness (H) and Young’s
modulus (E) of the layers are 26.4 GPa and 324.1 GPa,
respectively. Their critical load (Lo) was 32.5 N and their
chemical composition (at. per cent) obtained by EDS

microanalysis was: C = 22.3; Cr = 41.6; Co = 8.3; W = 27.1
and O ~ 0.7.

Using a 3D optical profilometer (VEECO, Wyko
NT-1100), the roughness (um) of the uncoated steel was
determined [Arithmetic average R, (= 0.03) = 0.06; and the
root mean square (RMS) = 0.11 * 0.02]. The roughness of
the Cr—(WC—-Co) coatings was R, = 0.05 = 0.03 um and the
RMS = 0.07 = 0.02 um.

The characteristics of the wood specimen used as static
partners are as follows:

Scientific designation: Fagus sylvatica (fagaceae family); UK
appellation: beech; density = 0.71; Monnin hardness (NF B
51-013) = 4.1.

Roughness (um): [Ra (£ 3.5) = 11.7; RMS (x 2.1) =
15.07].

Methods

Tribological tests
Tribological tests were conducted with a CSM rotative
tribometer, using a ball-on-disc configuration in which the
specimen acts as the disc that turns in contact with a static
partner (alumina ball or cylinder wood pin) without
lubrication. Before each test, the samples were carefully
polished and ultrasonically cleaned in acetone. During the
tests, the following parameters were kept constant: sliding
speed (v = 2cm/s), normal load (F = 5 N) and track radius
(r = 4 mm). The sliding distance was long enough to produce
a breakdown of the coating (200 m). The tests were conducted
at room temperature (~25°C) and 40 per cent humidity.
Three (03) wear tests were performed per sample.

To compare the wear resistance of the coatings, specific
wear rates were calculated according to equation (1):

K=V/L-F

Where K is the specific wear rate [mm>/Nm], V is the wear
volume [mm?], F is the normal load [N] and L is the sliding
distance [m].

Surface analysis

A 3D optical profilometer was used to measure the average
wear volume and consequently to calculate the coatings’ wear
rate. Due to the variation of the depth along the length of the
wear track, numerous depth measurements (perpendicular to
the length of the track) were measured. Commercial alumina
balls were used as counterparts (hardness H = 16.14 GPa; R,
and RMS surface roughness were 0.178 * 0.03 um and
0.256 = 0.03 wm, respectively). The wear rate of the ball was
estimated by calculating the volume of its spherical crown loss
with an optical microscope.

To analyze the wear process and consequently the wear
mechanisms, the worn surfaces and wear debris generated
during these tests were observed by SEM (Jeol 5900LV)
and analyzed by EDS/WDS. All measurements and
evaluation procedures for material volume loss were
conducted according to ASTM G99-95a standards (ASTM
Designation G99-95a, 2010).



Results

Optimization of the interface was adopted to create a

properties gradient that will ensure good adhesion of the

subsequently deposited hard coatings. Figure 1(a and b)

shows a cross-sectional view of the thermo chemically and

coated samples. Two regions are clearly distinguished:

1 Cr—(WC-Co) coating as top layer; and

2 the steel matrix which exhibits an hardness profile
corresponding to microstructural changes due to
thermochemical treatment, i.e. after quenching, carbon-
rich layer at the steel surface transforms into tempered
martensite, fine carbides (Fe, Cr);C and some retained
austenite.

Coefficient of friction evolution

Friction test results conducted on the surface of uncoated and
Cr—(WC—-Co)-coated samples (disc) versus both alumina balls
and beech wood pins as a function of sliding distance/cycles
under a 5 N load are illustrated in Figure 2(a and b). In
coupling carburized surfaces versus static partners, both
curves in Figure 2(a) show the typical running-in period
characterized by an initial transient state of ~250 cycles,
followed by a friction coefficient increase and a final
gradual-steady state of >2000 cycles. The initial transient
state corresponds to the contact with high asperities between
surfaces of antagonists. The coefficient of friction (COF)
value at the steady state was relatively higher (1.1 £ 0.05) for
the steel/wood contact than for the steel/alumina contact
(0.75 * 0.05).

When sliding against alumina, Figure 2(b), the Cr—(WC-
Co) coating showed a short period of running-in friction
followed by a stabilized friction at steady state (0.6 * 0.02)
until 3,000 cycles and, finally, the friction coefficient increases
to a constant value of 0.7 *+ 0.03. The latest state corresponds
to the delamination of the film. Thus, the ball-on-disc tests
showed that the coatings are completely worn prior to the end
of the test.

The friction coefficient evolution registered in tests against
wood pins shows two steps. An initial running-in period,
afterwards it becomes constant (stable) at very low values (0.2 *+
0.01) and presents a long stabilized steady state until the end of
the test.

Figure 1 Optical cross-sectional microstructure of samples

(a)

Consequently, it is clearly shown that the counterpart material
has a main influence on the tribological behavior of the
coating. The wear of coatings against alumina was obviously
higher than the wear of coatings against beech wood. In
contrast, the Cr—(WC-Co) coatings presented a very low
COF against the wood pin, which is very promising for wood
machining applications of these layers.

Wear mechanism analyses

To study the wear mechanisms of the tribological couples, the
worn surfaces were observed by SEM and analyzed by EDS.
When the surface of the uncoated sample rubs against an
alumina ball, SEM/EDS analysis of the wear track reveals
different regions: dark and light regions, as shown in Figure 3.

When the surface of the uncoated sample rubs against a
wood pin, SEM/EDS analysis of the wear track reveals
different regions: dark and light regions, as shown in Figure 4.
However, all regions contain oxygen, substrate elements (Fe,
Cr) and wood element (C, Ca, Na, Cl, Si). Grooves and a low
quantity of wear debris are also shown on wear track of steel
samples. Wear scar of wood pin indicates the presence of
debris containing Fe, Cr and O in addition to chemical
elements of wood. Adhesion of very small wood fibers spilling
from the pin, in form of tiny “wood chips” on worn steel
surface, do not affect wear process because after compressed
air cleaning of steel surface, none of the wood elements was
detected inside the wear track. Only oxidized wear debris
trapped in the sliding contact caused abrasive wear of the
metallic surface. So, the wear mechanism in this case seems to
be an oxidative wear followed by an abrasive wear. Figure 5
shows results of SEM observations/EDS analyses of coated
samples in contact with wood pins and alumina balls. Finally,
no sign of adhesive wear was observed on the carburized
surfaces. The main wear mechanisms are oxidization and
abrasion.

When sliding against wood as a static partner, a large
wear track was revealed and no wear debris was observed
(Figure 5(a)). Three distinctive regions “rings” can be shown
on the wear track. In the first one (point 1; Figure 5(a)), only
elements of the coating could be detected, so the coating was not
entirely removed from the substrate. Substrate elements (Fe, Cr)
as wood elements (Na, C) and oxygen O were detected in the

(1) CrwC-Co coating

(2)Thermochemical treated zone

10 E

(b)

Notes: (a) Steel substrate showing variation in hardness from the outer layer to the bulk;
(b) SEM image of a Cr—(WC-Co) coating on steel substrate
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Figure 2 Friction coefficients (COF) as a function of the number of
sliding cycles for (a) the uncoated and (b) coated substrates sliding
against alumina and wood counterparts
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Figure 3 SEM image of the wear track after a wear test of a
carburized sample in contact with an alumina ball. White arrows
indicate grooves parallel to sliding direction (SD)

Figure 4 SEM images of (a) the wear track after a wear test of a
carburized sample (b) wear scar of wood pin

Figure 5 SEM images of the wear tracks of Cr—(WC—Co)-coated
samples after sliding against wood pin (a) and alumina ball (b)
(black arrows: grooves parallel to sliding direction [SD] and white
arrows: coating peeling off); (c)-(d) corresponding cross-sectional 2D
profiles of the wear track; (e)-(f): wear scars of wood pin and
alumina ball, respectively

Cr-(WC-Co) Coating /Alumina ball

Cr-(WC-Co) Coating /Beech wood

second “ring” (point 2; Figure 5(a)), while elements of substrate
and oxygen were found in the third area indicated by point 3 in
Figure 5(a).

Consequently, the coating was destroyed and removed
along this area as indicated in the 2D wear profile (point 2;
Figure 5(c)). SEM observation/EDS analysis of the wood pin
wear scar (Figure 5(e)) indicates that oxidization occurred
during the sliding contact. Besides, the WC—Co coating’s
material was transferred to the wood pin surface as debris and
participated in the friction process. The wear mechanism was
a combination of an oxidative and adhesive wear.

When alumina balls are static partners, as shown in
Figure 5(b), grooves and scratches parallel to sliding
direction are observed as well as wear debris accumulated on
the edge of the wear track. Inside the wear track, no trace of
coating can be found. This result was confirmed by the 2D
wear profile (Figure 5(d)) that shows the difference between
the effect of both wood pin (Figure 5(c)) and alumina ball
(Figure 5(d)) on wear damage of the duplex-treated samples.
It was confirmed here that the coating presenting the lowest
COF (against wood pins) is more efficient during sliding tests
and not completely delaminated.

In Figure 5(b), the delamination of the coating is obvious
thanks to the presence of wear debris that led to increase the
friction forces between the surfaces in contact. Moreover, the
ball wear scars were completely covered by adhesive wear
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debris (as shown in Figure 5(f)). In addition, scratches are
clearly visible, as revealed by optical microscopy.

Figure 6(a) gave more details on damaged surface after wear
tests with alumina as the counterpart. SEM observations/EDS
analysis indicated that there is no area free of oxides in the
entire wear track and a third-body appeared, as observed in
Figure 6(b).

Then, it was observed that under a load of 5N, there was a
higher contact pressure responsible for the formation of wear
debris, increasing the frictional force and, therefore, the
friction coefficient.

Consequently, the main wear mechanisms are oxidation
followed by a combination of adhesive and abrasive wear for
the Cr—(WC-Co) coatings/alumina balls couple.

From 2D profiles of the wear track, we calculated the volume
loss to determine the wear rates (K). It is known that lower the
specific wear rate is, more wear resistant the coating is. Then, it
was obvious that the alumina ball couples led to the highest wear.
For the (uncoated steel/alumina ball) coupling, the wear rate of
disc is Ky = 2.15 X 10~ ° mm3/N.m, while K, .. = 1.024 X
10~ °*mm>/N.m in Cr—(WC—-Co)/alumina ball contact. However,
the wear rate of disk for the (uncoated steel/wood pin) coupling
is Kyje = 0.648 X 107 ° mm’/N.m. The lowest K values are
obtained in the case of Cr—(WC-Co)-coated samples sliding
against wood pin (K. = 0.19 X 10~° mm?/N.m).

The wear rate of alumina ball is K,,,;; = 0.154 X 10~ °mm?/
N.m in (uncoated steel/alumina ball) coupling and K, ., =
2.95 X 10 °mm?*N.m in (Cr—(WC-Co/alumina ball)
contact. The maximum wear rate was obtained in (Cr—(WC-
Co)/wood) pin contact: K;, = 16.68 X 10~ °mm?>/N.m, while
K, = 11.84 X 10" °mm?>/N.m in (uncoated steel/wood pin)
coupling.

Discussion

Comparative studies between untreated substrate (H ~ 7.8 GPa)
and duplex-treated samples (H ~ 26 GPa) can be summarized as
follows: the wear rate of disc is reduced byh approximately 52
and 70 per cent when the duplex-treated samples rub against
alumina ball and wood pin, respectively. On the other hand, the
wear rate of the static partners varies from about 91 and 41 per
cent in the case of alumina ball and wood pin, respectively. The
abovementioned results are consistent with earlier works (Dogan
et al., 2002a, 2002b, 2003), who noted that increase of the
hardness led to decrease in the volumetric wear (or the wear
rate). According to these authors, a lower volumetric wear of the
discs can be due to the microstructure modifications in the
substrate after surface treatment. Those microstructural

Figure 6 (a) SEM images of the wear track after wear test of
Cr—(WC—Co)/alumina balls and (b) details of area “A”: all areas are
rich in oxygen
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modifications led to an increase of the mechanical properties,

especially a higher hardness, i.e. internal residual stresses and

dislocation density. As a consequence, one can suppose a

decrease of the adhesive forces and then of the volumetric wear of

the treated samples.

According to the obtained results:

e it is obvious that the friction and wear of the discs depend
largely on the materials type;

e in comparison to previous work (Beliardouh ez al., 2014a,
2014b), the increase of the applied normal load from 1 to
5 N had no influence on the wear mechanisms; and

¢ finally, in agreement with Dogan ez al. (2002a, 2002b,
2004), the working environment and the friction type are
two main parameters influencing the strength of materials
in friction conditions.

Conclusions

The friction tests conducted on the surface of coated steel

substrates were analyzed and compared to those of uncoated

steel-base samples. The conclusions are as follows:

¢ when sliding against a wood pin, uncoated sample surface
suffered an oxidative wear followed by an abrasive wear while
protected with a Cr—(WC—Co) coating; the wear mechanism
was a combination of an oxidative and adhesive wear; and

¢ when sliding against alumina balls, analysis of the worn
surfaces and wear debris of the duplex-treated samples
reveals that the main wear mechanisms are oxidative wear
followed by a combination of adhesive and abrasive wear,
while uncoated samples undergo a mixture of oxidative and
abrasive wear.
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