
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract—Traditional assessment of programming ability, as

well as more recent automated assessment systems, consider only
the completed program submitted by the student. We present a
system which automatically monitors and assesses the code-
production process as well as the final product, allowing adaptive
feedback and assessment of programming competency. Our
assessment system is based on open-source components which
provide a full online programming environment and allows for a
flexible scripting interface to the assessment process, which can
monitor student actions during the programming task. The
system was implemented for an introductory programming class
of nearly 400 students, and an example of the automated
assessment is presented.

Index Terms—Computer Science Education, Learning
Management System (LMS), Online Assessment, Open-Source

I. INTRODUCTION

OMPUTER programming is frequently a hurdle to
engineering and computer science students, particularly

those who do not have substantial personal experience with
computers. Programming is one of the more practically-
focused subjects in an engineering curriculum. Students
usually learn how to program rather than about programming,
and learning is achieved through practice almost from the first
day (e.g., the “Hello, World!” program). Many introductory
programming courses and books present the material in a
tutorial format, encouraging students to work through
examples and experiment with structures. This format
familiarizes the student with the development environment,
and (at least initially) encourages a trial-and-error approach to
exploring the capabilities of the language and structures with
feedback from the programming environment. The same
model of practice persists into a professional programming
setting: experienced programmers usually create and interact
with code in an interactive manner (though the experienced
programmer should not need or use the same amount of trial-
and-error as the new learner).

Manuscript received July 22, 2016.
P. Robinson is with the Department of Electrical and Electronic

Engineering Science, University of Johannesburg, Auckland Park, South
Africa, 2006 (email: philipr@uj.ac.za).

J. Carroll is with the Faculty of Engineering and the Built Environment,
University of Johannesburg, Auckland Park, South Africa, 2006 (email:
jcarroll@uj.ac.za).

In this paper, we demonstrate a system which can

automatically monitor and assess both the student-generated
code as well as the students’ code-production process. The
assessment and evaluation occur in real-time as the students
program, mirroring the interactive programming activity, and
allow for dynamic and adaptive assessment of programming
ability.

A. Assessment of Programming Ability

Traditional assessment (via written tests and exams) in
higher education encourage study methods that are not
practice-centered [1]. Given that programming is a practical
activity introduced through practice, it follows that authentic
and valid assessment of programming ability would take the
form of programming exercises; such a conclusion is firmly
supported by the theory of constructive alignment [2]. Further,
assessment of programming should incorporate instant
feedback, iterative submissions, and an inherently trial-and-
error approach (within reason) that reflects both training and
practice. Yet many programming classes are assessed via
written exams despite general discomfiture with that format
[3-4]. We note the distinction raised by some programming
instructors between the ability to program and the
understanding of programming concepts [4]: other assessment
formats may certainly be more accurate and valid measures of
student understanding, but ability is best assessed through
demonstration of that ability.

Demonstration-based assessment of programming is
frequently avoided because of the significant logistical effort
required or limited to assignments for which authorship
cannot be guaranteed [5]. When one attempts to assess not
only the product (submitted code) but the process that students
follow when programming, the logistical effort is even more
immense. One documented implementation by Bennedsen and
Caspersen [6] utilized five teaching assistants, a lecturer, and
an examiner to test 20 students at a time.

B. Automated Programming Assessment and Monitoring

When student numbers are large, programming instructors
(who are often quite adept at programming) frequently devise
methods of automated programming assessment (APA). There
have been many efforts over the years to assess programming
assignments automatically, and numerous studies have
documented the benefits and drawbacks of automated
assessment systems (surveys are presented in [7] and [8]). A

An Online System for Monitoring and
Assessing the Programming Process

Philip E. Robinson, Member, IEEE and Johnson Carroll, Member, IEEE

C

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

significant and frequently highlighted benefit is the scalability
and consistency of assessment, which is increasingly
important in the modern online education context [9].

Various sources, including [7] and [8] classify approaches
to APA according to whether they require execution of the
submitted code (dynamic) or not (static). Static APA is
concerned with code length and structure, while dynamic
APA is generally based on whether a submitted program
correctly handles a number of carefully chosen test cases [10].
Others have sought to further classify student programs
according to efficiency, complexity, and other measures [11].
Much of the literature on APA systems concerns the selection
of appropriate test cases for increasingly complex
programming assignments [10], or for testing structure and
sub-functionality of the submitted program [12].

All of the APA systems and implementations we could find
are not live, in the sense that the student works on the
problem, submits her code, and then the code is assessed.
Even those systems which incorporate automated feedback
provide that feedback only post-submission, though may
allow repeated submissions [13, 14]. By contrast, our system
monitors and can adapt or assess based on the student actions
throughout the testing and debugging phase of the students’
code production process. This provides insight into the
students’ approach to a programming problem, and allows the
system and/or instructor to adapt the presentation based on
process students follow.

In the rest of the paper, we identify aspects of the
programming process that can be monitored, describe
structure and implementation of our online monitoring and
assessment system, give an example of a practical
implementation in a class of nearly 400 students, and indicate
some of the unique ways in which it can be used to assess
student programming.

II. MONITORING & ASSESSING THE PROGRAMMING PROCESS

As one is introduced to programming and develops into a
more capable and experienced programmer, the approach to
solving a programming problem becomes increasingly
important. One’s proficiency in a programming language and
problem solving skills are revealed not simply through the
code that one produces, but through efficiency and agility
demonstrated while producing that code. Traditional
assessment of programming, even when automated, can

evaluate efficiency through time limits, but provides little
insight into the process followed by a student. Such insight is
doubly important during introductory classes and formative
assessment, where a poor approach to problems may
encourage habits that significantly hamper performance later
in the curriculum.

In Table I, we identify several competency areas that can be
difficult to isolate from student-produced programs but are
immediately evident from observing the programming
process. For example, a student may submit a working
program, but the pattern and frequency of successful and
unsuccessful compilation attempts will indicate whether a
student is resorting to exhaustive trial-and-error searches for a
correct solution. The system we present here allows the
instructor to choose which indicators to monitor and how to
respond to student behavior. When a competency area is
deemed essential, the appropriate process indicator can be
incorporated into the assessment rubric (e.g., limiting the
number of attempts to compile). Otherwise, the indicator can
be monitored to provide tailored advice or feedback to a
student who may be pursuing inefficient or misguided
solutions.

III. THE ONLINE MONITORING AND ASSESSMENT TOOL

The online learning management system (LMS) employed
in the teaching and assessment of the course described in this
work is built on the open-source Moodle learning platform,
which has a thriving development community actively
producing and maintaining of a large library of plug-ins.
Moodle is written in PHP, so can be deployed on a wide
variety of operating systems, web servers and database
systems. Rodríguez-del-Pino, et al., created the Virtual
Programming Lab (VPL) plug-in for the purpose of enabling
automated and guided assessment of programming
assignments [15]. The VPL system consists of a plug-in
module that runs on the Moodle platform and a jail server
which is used to execute student code submissions. The
Moodle module provides the facilities for instructors to build
and present programming assignments to the students.

For the students, the system provides a capable in-browser
source code editor and console which facilitates the running of
27 different programming languages. When a student wants to

TABLE I
SIGNIFICANT ASPECTS OF THE PROGRAMMING PROCESS

Competency area Process indicator
Language proficiency,

debugging method (trial-and-
error vs reflection)

Compilation attempt
pattern

Language structures
Types of compiler errors

(syntax, data type)
Algorithmic methods and

structures
Types of logical errors

Understanding the problem,
mapping to algorithmic

structures

Types of functional
errors

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

execute their code the system sends the submission to a
separate jail server which executes the code in the appropriate
execution environment, using either compilers or interpreters,
in a chroot jail which protects the jail server from badly
written and malicious code.

A. VPL for Assessment

The VPL system allows instructors to build programming
assignments that are assessed using test cases by specifying
the data that will be input into the program and what the
expected output is. In addition to the rigid test case system
VPL provides the ability to use custom scripts to automatic
more complex assessment tasks. The initial scripts VPL
employs to assess a submission are BASH scripts and no
examples or documentation is provided on how to use this
interface for novel assessment schemes. However, it is
possible to call a variety of scripting environments from
within these scripts. Thiébaut provides a number of examples
of scripted grading using Python in VPL [16]. In this work,
we take this idea a step further and use the scripting interface
to implement both static and dynamic assessment with live
contextual guidance.

Assessment scripts examine the students code and the
behavior of their programs for grading purposes and provide
contextual feedback to the students, to help guide them to the
correct solution. This is achieved by writing scripts that
prepare the student submission for execution in the relevant

environment, executes the submitted code, provides it with
inputs and assesses the output of the code. It is also possible to
use scripts to examine the submitted source code directly to
enforce certain requirements or detect common mistakes.
These scripts can then automatically provide a grade to the
student along with comments about common mistakes
detected in the submission. The scripted feedback is provided
along with the feedback from the relevant execution system,
allowing students to iteratively improve their code to find and
fix bugs until they meet the requirements for the assignment.

While setting a scripted activity in VPL requires more time
from the instructor than setting a question for a written
assessment, the required effort does not scale with class size
as with manual grading. Once the assessment and the scripts
are in place they can be administered to a class of any size.
Problems are also very easy to reuse, and problems set for
tests can become practice problems after the test.

IV. CASE STUDY

The system was used to administer an introductory
programming class consisting of 400 students in 2016. The
system was used for homework assignments, tutorials and
exams. Examinations, conducted in a computer lab, required
the same amount of human resources to administer as the
traditional written assessments and it required far less time to
set up the scripted questions as to manually mark exam
papers.

Student reads
question

Student edits his
source code in

editor

Assessment
scripts compile
and run student
submission

Does submission
compile/run?

Student sends
source code for
evaluation

Return the compiler/
interpreter error

messages and hints
about detected issues

Parse source
code for

common errors

Provide hint for
detected logical errors

in code
Code errors founds?

Test submission
by running it and
providing test
input data

Is Feature 1 working?

Give student 0%
of grade and

provide a hint for
common errors

Is Feature 2 working?
Common Error A or
B for Feature 2

Give student 60%
credit for
completed
Feature 1

Give student hint
for Common

Error A

Give student hint
for Common Error

B

Give student
100% of grade

Question completed

Student receives
current grade

Does the student
continue?

No

Yes

No

Yes

Yes No

Yes

No

Yes

Error A

Error B

No

Assess error type
for Feature 2

Fig. 1. Illustration of live monitoring and assessment procedure. This figure is based on the case study of a real question administered to the class in 2016.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Figure 1 shows the logical flow of the assessment and
feedback process for a single problem administered by the
system. The problem required students to write a function that
accepts an array of values approximating a curve and, by
approximating the derivative and finding roots, return the
points nearest the extrema of the curve. Finding the
approximate derivative via the specified method is referred to
as Feature 1 in Figure 1 and was worth 60% of the grade,
while finding and returning the extrema is referred to as
Feature 2, worth the remaining 40% of the grade. (In this case
the programming language, Octave, made examining the state
of particular variables during execution trivial; for a compiled
language, diagnostic code can be automatically inserted into
the submitted source code to export the state of important
variables during execution.) For this problem, Feature 2
cannot be completed without first completing Feature 1,
though in general it is possible to assess multiple independent
features.

After reading the problem, the student composes source
code in the editor inside the browser. When ready, the student
clicks “Evaluate” and the code is transmitted to the execution
servers. The assessment scripts will firstly parse the code itself
to look for common logical errors in the source code, static
assessment. Next, the VPL module compiles or interprets and
attempts to run the submitted code. If there is a problem with
the code that causes it not to run, the error output from the
compiler/interpreter is presented to the student along with any
hints about detected common issues. In this example, a
common problem was a buffer overflow when indexing the
array. The student now has the opportunity to modify his code
using this feedback and resubmitting.

When the code compiles and runs, the next step is to check
for any further common structural errors in the code itself. In
this case, the code is checked to confirm that the function is
present and utilizes the correct input and output parameters. If
a problem exists, a hint is provided as feedback and the
student can adapt the code. Once the code is running and
complies with the structural specification, the system runs
number of test cases ala dynamic automated assessment. First,
the array that contains the calculated samples of the derivative
estimate is examined for correctness (Feature 1). If the values
contained in the array are incorrect then the student is
informed that their mark is currently 0% and, if relevant, a
hint is provided. A common problem, in this case, was that the
array should contain one sample less than the input data. If
Feature 1 works correctly, then various test cases are run for
the whole program. If the program fails Feature 2 tests, then
the student is informed of the 60% grade. For this problem,
there are two possible common errors that could be reported:
incorrect number of extrema or incorrect extrema positions.
Depending on which error is present, the student receives a
relevant hint. The student can iterate through this process until
he gets both features working and receive a grade of 100% or
he can decide that Feature 2 is taking up too much time and
give up. He will then receive the 60% grade for only
completing Feature 1.

This example demonstrates how the system is used to
monitor the various aspects of the programming process listed
in Table I while the student engages with completing the
problem. Though this example only assesses the two key
functions of the program, compilation/interpretation attempts
and program structure are monitored throughout program
development. As the student works iteratively toward a
complete solution, the system is able to provide contextual
feedback.

V. CONCLUSION

The automated programming monitoring and assessment
system presented here is novel in that it is able to monitor both
the student programming process and final functionality of
student submissions. The information gleaned from this
process can be used to automatically provide guidance to the
student, evaluate the process being followed, and assess the
submission for grading purposes. The system is built to allow
for live and iterative interactions with the student which is a
far more authentic context for assessing programming skills
than a traditional exam. A case study is presented of a real
question as administered to a 400-student class, demonstrating
one instance of the logical flow of the assessment and
feedback process that the system is capable of.

The system we have demonstrated produces an incredibly
rich trove of data about student activity while studying and
during the assessments. This data can be mined to answer
numerous questions about the student’s behavior and the
administration of the course, and to quantifiably examine the
detailed programming process followed by both successful
and unsuccessful students. Further analysis of this type of data
is a rich field for future work.

REFERENCES
[1] L.B. Nilson, Specifications Grading: Restoring Rigor, Motivating

Students and Saving Faculty Time, Virginia: Stylus Publishing, 2014.
[2] J.B. Biggs, C. Tang, Teaching for quality learning at university: What

the student does. McGraw-Hill Education (UK), 2011.
[3] S. Shuhidan, M. Hamilton, and D. D'Souza, “Instructor perspectives of

multiple-choice questions in summative assessment for novice
programmers,” Computer Science Education, 20:3, 2010, pp. 229-259.

[4] J. Sheard, Simon, A. Carbone, D. D'Souza, and M. Hamilton.
“Assessment of programming: pedagogical foundations of exams.” Proc.
of the 18th ACM conference on Innovation and Technology in
Computer Science Education (ITiCSE ‘13), 2013, pp. 141-146.

[5] M. Kaya and S. A. Özel, “Integrating an online compiler and a
plagiarism detection tool into the Moodle distance education system for
easy assessment of programming assignments” Computer Applications
in Engineering Education, 23, 2015, pp. 363-373.

[6] J. Bennedsen and M. E. Caspersen, "Assessing Process and Product - A
Practical Lab Exam for an Introductory Programming Course," Proc.
Frontiers in Education. 36th Annual Conference, San Diego, CA, 2006,
pp. 16-21.

[7] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. “Review of
recent systems for automatic assessment of programming assignments.”
Proc. of the 10th Koli Calling International Conference on Computing
Education Research (Koli Calling ’10), 2010, pp. 86-93.

[8] T. Staubitz, H. Klement, J. Renz, R. Teusner and C. Meinel, "Towards
practical programming exercises and automated assessment in Massive
Open Online Courses," Teaching, Assessment, and Learning for
Engineering (TALE), 2015 IEEE International Conference on, Zhuhai,
2015, pp. 23-30.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

[9] V. Pieterse. “Automated Assessment of Programming Assignments.”
Proc. of the 3rd Computer Science Education Research Conference
(CSERC '13), Open Univ., Heerlen, The Netherlands, 2013, pp. 45-56.

[10] T. Tang, R. Smith, S. Rixner, and J. Warren. “Data-Driven Test Case
Generation for Automated Programming Assessment.” Proc. of the 2016
ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’16), 2016, pp. 260-265.

[11] X. Liu, “A new automated grading approach for computer
programming.” Computer Applications in Engineering Education, 21,
2013, pp. 484-490.

[12] M. Vujošević-Janičić, M. Nikolić, D. Tošić, and V. Kuncak. “Software
verification and graph similarity for automated evaluation of students'
assignments.” Inf. Softw. Technol. 55:6, 2013, pp. 1004-1016.

[13] K. Buffardi and S. H. Edwards. “A formative study of influences on
student testing behaviors.” Proc. of the 45th ACM technical symposium
on Computer science education (SIGCSE '14), 2014, pp. 597-602.

[14] T. Wang, X. Su, P. Ma, Y. Wang, K. Wang, “Ability-training-oriented
automated assessment in introductory programming course,” Computers
& Education, 56:1, 2011, pp. 220-226.

[15] J.C. Rodríguez-del-Pino, R-R. Enrique, and H-F. Zenón, “A Virtual
Programming Lab for Moodle with automatic assessment and anti-
plagiarism features,” Proc. of the Intl. Conference on e-Learning, e-
Business, Enterprise Information Systems, & e-Government, 2012.

[16] D. Thiébaut, "Automatic evaluation of computer programs using
Moodle's virtual programming lab (VPL) plug-in." Journal of Computing
Sciences in Colleges, Vol. 20, Issue 6, 2015.

