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ABSTRACT 

 

The construction of a model for the prediction of process outputs is a valuable tool in 

the field of engineering. The models play an important role in the simulation and 

optimization of systems leading to the design of efficient and economical processes. 

Since 1943 neural network (NN) techniques have been considered as promising tools 

for use in simulation, prediction and modelling because of their simplicity. 

In this thesis a feed-forward neural network (FFNN) with back-propagation (BP) is 

used to test its effectiveness in modelling the ion-exchange process.  

The ion-exchange process has been widely employed in the removal of heavy metals 

from industrial wastewater. This process is a complex non-linear process involving 

many factors influencing the chemical process which is not well understood (the ions 

uptake mechanisms from the pregnant solution, the subsequent step being the 

elution). In order to improve the performance of the ion-exchange process, 

optimization and analysis of the process should be accomplished. Modelling and 

simulation are tools which can be used to achieve the objectives.  

The experimental design using analysis of variance (ANOVA) was chosen to compare 

to the NN techniques and for optimizing the effective input parameters (pH, 

temperature and initial concentration). The FFNN successfully tracked the non-linear 

behaviour of the ion-exchange process versus the input parameters with a mean 

square error (MSE), correlation coefficient (R) and mean square relative error (MSRE) 

of 0.102, 0.998 and 0.004, respectively. The results showed that the FFNN modelling 

techniques could effectively predict and simulate the highly complex system and non-

linear process such as the ion exchange using activated zeolite. 
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After this validation, the ability of a different type of NN as assessed to predict the 

abrasiveness index (AI) of coal. In this application a generalized regression neural 

network (GRNN) approach was used. Coal characterization techniques allow for the 

mineral inclusions in coal that are responsible for the abrasive nature of the coal to be 

accurately characterized. There is therefore scope to make an improved prediction of 

wear based on detailed knowledge of the mineral matter (MM) in a particular coal. It 

is important to understand the nature and properties of the MM in coal that would 

contribute to abrasive wear. Most of the empirical equations available in literature for 

the AI of coal are based on linear assumptions which may lead to erroneous 

estimations and do not simultaneously take into consideration most of the relevant 

factors. The GRNN technique was employed to assess the AI of coal. The sensitivity 

analysis was conducted to determine the influence of the input variables on the 

performance of the model. For this, four different models were trained and tested by 

applying GRNN techniques using the same training and testing data set. The result 

showed that quartz is the most influential component in coal responsible for wear and 

abrasion. The performance of the GRNN technique for the prediction of abrasiveness 

characteristics of thermal coal was found to be impressive.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

 

This chapter firstly presents the background and motivation to the application of neural 

networks (NN) to the ion-exchange process and to the Abrasiveness Index (AI) of coal, 

secondly the research problems, thirdly the aim and objectives, fourthly the scope and 

limitations of the study and fifty the expected contribution to the present knowledge on 

the subject. The last part of this chapter provides the overview of the thesis. 

 

1.2 Background and motivation 

 

1.2.1 The ion-exchange process 

 

The application of NN) and specifically feed-forward neural networks (FFNNs) with 

back-propagation (BP) has been considered a promising tool for the analysis of ion-

exchange processes because of their simplicity with respect to simulation, prediction 

and modelling. The advantages of NNs are that they require less time for development 

than the traditional mathematical models. In addition, the need for extensive 

experimentation is avoided as limited numbers of experiments are sufficient to predict 

the degree of non-linearity and their ability to learn complex relationships without 

requiring the knowledge of model structure (Aber et al., 2009; Daneshvar et al., 2006; 

Fagundes-Klen et al., 2007; Prakash et al., 2008; Salari et al., 2005; Yetilmezsay & 

Demired, 2008). 
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In recent years, the ion-exchange process has been widely employed for the removal 

of heavy metals from industrial wastewaters (Al-Enozi et al., 2004; Dabrowski et al., 

2004; Thanasiadis & Helmreich, 2005; Kuronen et al., 2006; Mamba et al., 2009). This 

process is complex, non-linear and involves many factors influencing the ions’ uptake 

mechanisms from the pregnant solution, the subsequent step being the elution. In 

order to improve the performance of the ion-exchange process, optimization and 

analysis of the process should be accomplished. Modelling and simulation are tools to 

achieve the objectives. However, the modelling of a process covers a broad spectrum. 

At one extreme lie theoretical models based on fundamental knowledge of the 

process. These models are also called knowledge based models. At the other end lie 

empirical models, which do not rely on the fundamental principles governing the 

process. The majority of models based on the ion-exchange process are theoretical. 

Most of these models are derived from physical descriptions and an understanding of 

the ion-exchange process under certain assumptions. These types of models are very 

useful for scale-up applications. However, as mentioned above, they are 

mathematically complex, computationally expensive and they ideally require a very 

detailed knowledge of the ion-exchange process itself. Therefore, there is a need to 

find an alternative means for predicting process performance which has led to the 

interest by researchers in applying neural network techniques. 

 

1.2.2 The coal abrasiveness index (AI) 

 

The importance and applications of NN techniques increased significantly leading to 

them being successfully used in research studies and in coal engineering applications 

(Raask, 1985; Spero, 1990; Li et al., 2005). The generalized regression neural network 
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(GRNN) was used in this thesis to predict the AI of coal. The GRNN falls in the 

category of probabilistic NNs that can solve any function approximation problem if 

sufficient data are available. The additional knowledge needed to get a satisfactory fit 

is relatively limited and can be done without additional inputs from the user. This 

makes the GRNN a very useful tool to perform predictions of system performance in 

practice (Specht, 1991; Li et al., 2005).  

 

When coal is used for electricity generation it is usually pulverized (ground) to an 

efficient burnable size in a mill and then combusted (burned) in a furnace with a boiler. 

During grinding friction occurs which causes abrasive wear or erosion on the critical 

components and thereby affects the performance of the power plant. It is therefore 

important to assess the relative abrasion characteristics of thermal coal by selecting 

the right type of materials for crushing, grinding and burning of the coal.  

 

Coal characterization techniques allow the mineral inclusions in coal that are 

responsible for the abrasive nature of the coal to be accurately characterized. This 

means there is scope to make improved predictions of wear based on a detailed 

knowledge of the mineral matter (MM) in a particular coal. It is important to understand 

the nature and properties of the MM in a coal that would contribute to abrasive wear. 

Although there are several linear formulas available for predicting the AI, most take 

into consideration only a limited number of the relevant factors, primarily related to 

coal rank, chemical composition and material content (Raask, 1985; Spero, 1990; 

Bandopadhyay, 2010b). These approaches mostly correlate the AI with some 

variables, possibly due to inherent restrictions in the mathematical expressions, 

although the effect of other variables, collectively and implicitly, in lumped empirical 
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factors is well known. Motivated by these considerations, a new approach such as the 

GRNN is suggested here for the prediction of the AI of coal. 

 

1.3 Research problems/questions 

 

Ion exchange is a non-linear process, which is difficult to model and simulate as there 

are many factors influencing the chemical process which are not well understood. In 

the past, empirical isotherm equations were used but there were definite shortcomings 

resulting in unreliable simulations. There is need to find a way to effectively predict 

and simulate the highly complex system and non-linear process of ion exchange. 

Coal characterization techniques allow the mineral inclusions in a coal that are 

responsible for the abrasive nature of the coal to be accurately characterized. Hence, 

there is scope for improved prediction of wear based on a detailed knowledge of the 

MM in a particular coal. It is important, however, to understand the nature and 

properties of the MMs in a coal that would contribute to abrasive wear. Most of the 

empirical equations available in literature for the A of coal are based on linear 

assumptions which may lead to erroneous estimations and do not simultaneously take 

into consideration most of the relevant factors. 

 

1.4  Aim and objectives 

 

1.4.1 Aim 

 

In this thesis, the development and implementation of the FFNNs with BP is 

investigated, in order to test the effectiveness in modelling the ion-exchange process 
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for the removal of heavy metals from industrial wastewaters. The GRNN approach is 

used to assess the AI of coal. 

 

1.4.2  Objectives 

 

The research objectives of this thesis are to: 

 Examine the effectiveness in modelling the removal of dissolved copper and 

cobalt from an aqueous solution through an ion-exchange process using a 

FFNN approach. 

 Investigate the possibility of the prediction of abrasiveness characteristics of 

the thermal coal by the AI using the GRNN. 

 

1.5 Scope and limitations of the study 

 

In this thesis the experimental design using analysis of variance (ANOVA) was chosen 

to compare to FFNN modelling techniques and for optimizing the effective input 

parameters.  

The sensitivity analysis was conducted to determine the influence of the input 

variables on the performance of the model. For this four different models were trained 

and tested with GRNN techniques using the same training and testing data set. 
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1.6 Expected contribution to knowledge 

 

The FFNN modelling techniques are expected to effectively predict and simulate the 

highly complex system and non-linear process such as the ion exchange using 

activated zeolite. 

The GRNN technique is expected to provide results which would make it an effective 

tool to be employed to assess the AI of coal. 

 

1.7 Structure of the thesis 

 

This thesis is structured in five chapters.  

Chapter 1 contains the introduction to the study, explains what has led to the study 

and what the study hopes to achieve. 

Chapter 2 reviews the relevant research in a number of areas crucial to this research. 

First of all the current status of prediction and modelling of the two metallurgical 

processes: The ion-exchange process and determination of coal abrasiveness is 

presented. Then the research literature specific to the application of various NN 

techniques is reviewed. 

Chapter 3 presents the experimental methodology for the ion-exchange process. 

Chapter 4 presents the findings and discussion in the light of the literature on the 

FFNN. 

Chapter 5 presents the findings and discussion in the light of the literature on the 

GRNN. 

Chapter 6 concludes the thesis and makes recommendations for further research. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1  Introduction 

 

This chapter will review the relevant research in a number of areas crucial to this study. 

First the current status of prediction and modelling of the two metallurgical processes 

will be covered and the ion exchange and determination of coal abrasiveness will be 

presented. Thereafter the research literature specific to the application of NN 

techniques will be reviewed. 

 

2.2  Zeolites as the ion-exchange material 

 

Natural zeolites were used as the ion-exchange material for the loading and elution of 

copper and cobalt respectively from an aqueous solution. These zeolites are 

crystalline alumina-silicate minerals with excellent cation exchange and high heavy 

metal selective properties (Dhermendra et al., 2008). The mechanism of adsorption 

by zeolites was found to be via ion-exchange (Dhermendra et al., 2008). In the three 

dimensional structure of the zeolites there are large channels containing negatively 

charged sites resulting from Al3+ replacement of Si4+ in the O4. These are tetrahedrally-

linked by sharing oxygen atoms in rings and cage-cavities occupied by cations which 

are weakly held in the structure to compensate the charge imbalance (Chojnacki et 

al., 2004). Zeolites contain various types of cationic sites (Abusafa & Yucel, 2002). 

The overall negative charge of the anions is balanced by cations that occupy the 

channels within the structure, and can be replaced with heavy metal ions (Chojnacki 

et al., 2004). There are about forty natural zeolite structures that have been identified 
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during the past 200 years; the most common are analcime, chabazite, clinoptilolite, 

erionite, ferrierite, heulandite, laumontite, mordenite and phillipsite (Virta, 1998). As it 

is not the aim of this section to present an exhaustive description of all structures, only 

the clinoptilolite structure, which is the natural zeolite used in this thesis, will be 

described. The typical model structure of clinoptilolite is shown in Figure 2.1. 

 

Figure 2.1: Model structure of clinoptilolite (Gilchrist, 1989) 

Clinoptilolite is the most abundant and cosmopolitan natural zeolite and it has been 

widely exploited for its ion-exchange capabilities, since it can easily exchange its 

interstitial cations for external cations in solution (Gilchrist, 1989). Natural zeolites such 

as clinoptilolite are able to lose and gain water in a reversible manner and to exchange 

their extra framework cations, both without changing the crystal structure. The typical 

formula for natural clinoptilolite is Na6 [(AlO2)6(SiO2)30].24H2O (Breck, 1974). The ion 

exchange is made possible by the presence of extra-framework cations which are 

located in the regular array of channels and cages that constitute the rigid anionic 

framework. Cations are bound to the lattice and to water molecules which normally fill 

the clinoptilolite micropores (Gilchrist, 1989). When the clinoptilolite comes into contact 

with an electrolytic solution, the exchangeable cations in the clinoptilolite can be 

removed from their sites and replaced by ions (cation) in the solution. The substitution 

Exchangeable 

Na+ ion  

Zeolite pore  
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is stoichiometric and depends on the parameters provided during experimental 

procedures (Nyembe, 2010).  

 

2.2.1 Clinoptilolite characterization 

 

The X-ray fluorescence (XRF) and X-ray diffractometry (XRD) characterization done 

by Mamba et al. (2009) showed that clinoptilolite contained exchangeable ions of 

sodium, potassium, calcium and magnesium. This zeolite (clinoptilolite) has a Si/Al 

ratio of 5.96 (mol/mol) and the corresponding ratio of 


 
2

)(

Ca

KNa
was 3.4. XRF also 

confirmed that the zeolite was a high silica clinoptilolite enriched with Mg2+, K+ and 

Na+. Figure 2.2 shows a typical mineralogical diffraction pattern of a crystallite with a 

composition of 70% SiO2, 12% Al2O3, 5% K2O, 2.5% Fe2O3, 2% Na2O, 2% CaO and 

0.2% traces of TiO2. In Figure 2.2, C, D and Q represent calcite, dolomite and quartz 

respectively. The XRF technique revealed the following composition for the original 

clinoptilolite: 74% SiO2, 12.4% Al2O3, 3.8% KO, 1.5% Fe2O3, 1.5% CaO, 1.3% Na2O, 

1.1% MgO and 0.2% TiO2. This composition suggested that the clinoptilolite was a 

silicon based zeolite, when taking into account that its major component was silicon 

dioxide (Mamba et al., 2009). The XRF and XRD determinations to a very large extent 

were thus in agreement particularly with the dominance of the silicon species followed 

by aluminium. Traces of other elements not accounted for in the XRD determinations 

were probably the titanium and magnesium moieties which XRF analysis could not 

detect. Thus the percentage composition detected by XRF did not add up to 100% 

(Mamba et al., 2009). 
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Figure 2.2: Mineralogical diffraction pattern of the natural clinoptilolite (Mamba 

et al., 2009) 

 

2.2.2 Treatment of clinoptilolite for loading 

 

Clinoptilolite was treated with hydrochloric acid (HCl) at different concentrations with 

the aim of using it as an adsorbent for the removal of copper and cobalt from an 

aqueous solution. The Brunauer–Emmett–Teller (BET) analysis done by Mamba et 

al., (2009) shows no significant changes in pore volume and surface area with an 

increase in the HCl activation concentration of the zeolites. The relationship between 

HCl concentrations used for the activation and both the surface area and pore volume 

of clinoptilolite are shown in Table 2.1. 

 

 

 

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

In
te

ns
ity

 (s
-1
)

Bragg angle

C 

Q 

D 

C 

C 

C
o

u
n

ts
 

Bragg angle 2 θ (Cu K 

α) 

 



11 
 

Table 2.1: Results of pore volume measurements of clinoptilolite (Mamba et al., 

2009) 

HCl Conc. (g/mol) Pore volume (cm3/g)  Surface area (m2/g) 

Original clinoptilolite 0.068 20.88 

0.02 0.068 19.80 

0.04 0.064 18.73 

 

Figures 2.3 and 2.4 illustrate the surface texture and porosity of clinoptilolite with holes 

and small openings on the surface which will increase the contact area of the 

adsorbent and consequently lead to the pores’ diffusion during adsorption 

(Swayampakula, 2009). The surface morphology of treated clinoptilolite as shown in 

Figure 2.4 developed more pores and a more softened structure than the original 

clinoptilolite. The adsorption capacity of the treated clinoptilolite was found to be higher 

than the original clinoptilolite. This observation can be attributed to the fact that 

adsorption is a surface phenomenon, i.e. surface area is related to the adsorption 

capacity of the adsorbent. An increase in surface area provides more binding sites for 

the adsorbate to be adsorbed (Taty-costodes et al., 2003). 
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Figure 2.3: Scanning electron microscopy (SEM) image of original clinoptilolite 

(Abdulkareem et al., 2012) 

 

Figure 2.4: SEM image of HCl activated clinoptilolite (Abdulkareem et al., 2012)  
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2.2.3 The Fourier transform infrared spectroscopy (FTIR) analysis 

 

Figure 2.5 shows the FTIR spectra for the original and activated clinoptilolite. This 

figure gives a clear picture of the effect of the treatment of the clinoptilolite. HCl 

treatment is said to remove the non-zeolitic components thus increasing the 

concentration of zeolite minerals (Vanloon & Duffy, 2000). 

 

Figure 2.5: The FTIR spectra for original and HCl-activated clinoptilolite 

(Mamba et al., 2009) 

In Figure 2.5 at the range of 4000 and 3000 cm-1, the original and HCl-activated 

clinoptilolite forms at a concentration of 0.04 M and the 0.02 M HCl-activated forms of 
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clinoptilolite showed distinct stretching at this range which is typical of water absorption 

(Madejova, 2003; Al-Degs et al., 2003). This shows that water adsorption and retention 

by clinoptilolite is increased by HCl activation at 0.02 M concentration. At the range of 

2000 and 1500 cm-1, the 0.02 M HCl-activated clinoptilolite showed two intensive 

peaks, and yet again the original and the 0.04 M activated forms showed none. This 

could be as a result of 0.02 M activation washing out the non-zeolitic impurities present 

in the original clinoptilolite as confirmed by XRD, XRF and SEM. The disappearance 

of these peaks with the 0.04 M HCl-activated form could be due to the strength of the 

acid resulting in the destruction of the active sites observed with the 0.02 M HCl-

activated clinoptilolite. There were peaks observed for all the clinoptilolite forms at 

1558 cm-1, which may be due to the bending vibrations of adsorbed water. This is 

expected, since given its porous structure, desiccation of the zeolite at the high 

temperature of 50oC will increase its hydrophilic (water absorption) properties (Ng & 

Mintova, 2008). Zeolites that have K+ in high amounts have low water absorption 

capacity (Mamba et al., 2009). This could probably explain why the original 

clinoptilolite does not show such peaks. It is also possible that the K+ in the acid-

activated zeolite was leached out by the acid. The intensity of the peak at this range 

is more pronounced with the 0.02 M HCl activation than it is with the 0.04 M HCl 

activation and the original forms. Since this is a water sorption peak, it could be 

possible that water sorption capacity is low with the original clinoptilolite and high with 

0.02 M HCl-activated clinoptilolite. An increase in HCl activation to 0.04 M 

concentration diminishes the water sorption capacity of the zeolite.  

The stretching between 1500 and 1000 cm-1 observed in Figure 2.5 indicates the 

presence of a high content of calcite in the sample as confirmed by SEM-energy 

dispersive spectroscopy (EDS). The strong band at 1341 cm-1 (due to Si–O stretching) 
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is the main characteristic band for quartz (Al-Degs et al., 2003).The peaks observed 

between 1000 and 600 cm-1 are present in all the forms of clinoptilolite. One 

characteristic band appears at 836 cm-1 for all the forms. This is the quartz band. 

Quartz is common in zeolites, especially those of the Heulandite family (Al-Degs et al., 

2003). The peak that appears at 753 cm-1 in the original clinoptilolite form appears at 

759 cm-1 for the activated zeolite. There is a peak that appears at 686 cm-1 in the 

original form while in the acid-activated forms it appears at 635 cm-1. This shift could 

be attributed to the action of the acid. It has been documented that acid treatment of 

natural clinoptilolite improves its sorption properties in ion-exchange applications 

which is due to decatenation, dealumination and the dissolution of amorphous silica 

fragments blocking the channels (Kuronen et al., 2006; Inglezakis & Grigoropoulou, 

2004). A study by Korkunen et al. (2006) also revealed that there is a change in the 

clinoptilolite structure after acid treatment, with dilute acid activations accounting for 

improved heavy metal removal capacity of the clinoptilolite (Kuronen et al., 2006). 

Studies by Hernandez (2000) confirm findings in this study with respect to the effect 

of acid conditioning of natural clinoptilolite (Kuronen et al., 2006; Hernandez, 2000). 

 

2.3 The ion-exchange process 

 

Ion exchange is a reversible chemical reaction in which ions are exchanged between 

a solution and an insoluble solid. The ion-exchange process refers to the interaction 

of ionic species in aqueous solutions with adsorbent solid materials. It is distinguished 

from conventional adsorption by the nature and morphology of the adsorbent material 

which in most cases is either a dynamic polymer matrix or an inorganic structure 

containing exchangeable functional groups (Slater, 1991). The physico-chemical 
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processes that occur during metal ion exchange can be expressed in the following 

reaction: 

  solution

n

zeolite

n

solutionzeolite nYMnZMYnZ               (2.1) 

Where Z represents the zeolite, M represents the cationic group in the solution and n 

is the reaction component that depends on the oxidation state of the metal ions 

(Dabrowski et al., 2004). 

 

2.3.1 Factors influencing the kinetics of the ion-exchange process 

 

There are various factors that may influence the kinetics of the ion-exchange process 

(Helfferich, 1962). Examples of these are the following: 

 Movement of the metal ions from the solution; 

 Diffusion of ions through the laminar film surrounding the material (the ion 

exchanger) 

 Diffusion of ions through the pores of the ion-exchanger material; 

 The physical process of ion exchange; 

 Diffusion of counter-ions outwards through the material; 

 Diffusion of counter-ions through the laminar layer; 

 Movement of counter-ions into the aqueous solution. 

Many researchers have indicated that film and pore diffusions are the two main factors 

that influence the rate of the ion-exchange process (Van Deventer, 1984). 

 

2.3.2 Rate controlling steps in the ion-exchange process 
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An intraparticle diffusion model for metal uptake kinetics is conceptualized according 

to the “two-step mass transport mechanism” (Chen & Wang, 2007). It is assumed that 

the metal ions first transfer through the external liquid film from the aqueous solution, 

then diffuse inside the ion-exchange material before being taken up by the functional 

group. However, the driving force for each of these two steps is different. In the liquid, 

the concentration difference is found between the bulk solution and the liquid at the 

surface of the zeolite (the ion-exchange material), which can never be larger than the 

bulk concentration. In the zeolite, the concentration difference is found between the 

outer surface and the centre of the particle. 

Although much has been documented regarding the sorption of metal ions, a 

comprehensive study on the rate-controlling steps has not yet been documented. 

However, the roles of several relevant factors have become clear. Studies have shown 

that control by liquid-phase mass transfer is favoured by the following: 

 Low liquid-phase concentration (a small driving force in the liquid); 

 High ion-exchange capacity (a large driving force in the exchanger); 

 Small particle size (a short mass transfer distance in the zeolite); 

 Open structure of the exchanger (little obstruction to diffusion in the exchanger); 

 Ineffective agitation of the liquid (low contribution from convection to liquid-

phase mass transfer). 

 With regard to diffusion it can be imagined that the ion exchange depends on 

the wandering of ions within the solution, across the boundary film around the 

zeolite particle and within the zeolite bead to and from the exchange site. Some 

of these effects are probably the controlling factors of the process. However, it 
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has been found that the exchange rate may obey neither model equations for 

diffusion, whether it is film or particle, nor chemically controlled mechanisms 

(Van den Bosch, 2009). 

 

2.3.3 The Ion-exchange isotherms 

 

The ion-exchange isotherm studies are of fundamental importance in the design of 

ion-exchange systems since they indicate how the ions are partitioned between the 

adsorbent and liquid phases when in equilibrium as a function of increasing ion 

concentrations. When an adsorbent and an ion solution are placed in contact, the 

concentration of ions in the adsorbent will increase until a dynamic equilibrium is 

reached. A this point, there is a defined distribution of ions between the solid and liquid 

phases (Peric et al., 2004). The equations which are often used to describe the 

experimental isotherms were developed by Langmuir, Freundlich and Dubini-

Radushkevich (D-R). 

 

2.3.3.1 Langmuir isotherm 

 

The Langmuir isotherm is a commonly applied model for adsorption on a completely 

homogenous surface with negligible interaction between adsorbed molecules. The 

model assumes uniform adsorption energies onto the surface, and maximum 

adsorption depends on the saturation level of the monolayer. Traditionally, the 

Langmuir model is represented as (Santo et al., 2011):    

eL

eL
e

CK

CKQ
q




1

max

                                                                                                               

(2.2)  
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Where qe is the number of ions exchanged per unit weight of clinoptilolite at equilibrium 

(mg/g), Ce (mg/L). The equilibrium concentration of ions in the solution, Qmax (mg/g) is 

the maximum adsorption capacity (mmg/g), and KL (L/mg) is the Langmuir constant 

related to the ion-exchange capacity and energy of the ion exchange. 

 

2.3.3.2 Freundlich isotherm 

 

The Freundlich isotherm is known as the earliest empirical equation and is shown to 

be consistent with an exponential distribution of active centres, characteristic of 

heterogeneous surfaces (Castaldi et al., 2008). This Freundlich isotherm is also a non-

linear model that assumes a heterogeneous energetic distribution as well as 

interaction between the adsorbed molecules. The Freundlich model is expressed 

using the following equation (Demarchi et al., 2013):  

n
eFe CKq

1

                                                                                        (2.3)                                                  

Where KF and n (dimensionless) are the Freundlich isotherm constants determined 

from the non-linear regression. 

 

2.3.3.3 Dubini-Radushkevich (D-R) isotherm 

 

The D-R model is based on the Polanyi adsorption potential theory which defines an 

adsorption potential, ε related to the energy freed from a substance when going from 

the liquid to the zeolite phase. In contrast to the Langmuir and Freundlich models, the 

D-R considers a micropore volume filling adsorption process and is temperature 

dependent. In order to understand the adsorption type and the mechanism, the 

equilibrium data was applied to the (D-R) isotherm model (Chatterjee et al., 2009):  
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2lnln RDm KQQ                                                                                (2.4)  

Where: ε (Polanyi potential) =  )/1(1ln eCRT 
                                                      

(2.5) 

Q is the amount of anion adsorbed per unit weight of adsorbent, Qm is the adsorption 

capacity, Ce the equilibrium concentration of anion in the solution, KD-R is the constant 

related to adsorption energy, R the universal gas constant and T is the temperature. 

 

2.3.4 The cation exchange capacity  

 

The evaluation of the equilibrium data obtained from equilibrium studies with a suitable 

mathematical description is of great importance not only for the design of the ion-

exchange processes, but also for the investigation of the mechanisms involved in 

heavy metal-ion exchanger interactions (Bailey & Esterie, 1996). The ion-exchange 

capacity of zeolites is usually described in terms of equilibrium isotherms. It depends 

on the system’s temperature, the total initial concentration of the solution in contact 

with the exchanger and on the characteristics of the ion-exchange system, such as 

solution composition, mineral type and pH. They are the most widely used methods 

for evaluating the capability of clinoptilolite (zeolite) for the loading of heavy metals. 

The quantity of ions exchangeable by a solid exchanger, depending on its chemical 

and structural features, is called the ion-exchange capacity and is usually expressed 

in milli-equivalents per gram (meq/g) (Petrus & Warchol, 2003). During the ion-

exchange process, two phases are involved and these compete in mutually sharing 

two ions. The ion transfer from one phase to the other is dependent upon electro 

neutrality and is regulated by the ion concentration in both phases as well as by 

selectivity. This parameter is a function of both the energy of ion-lattice interaction and 



21 
 

ion-hydration energy. Many researchers have carried out equilibrium studies with 

various clinoptilolite samples under different initial experimental conditions to 

determine the capabilities of their ion-exchange materials towards heavy metal 

cations. The ion-exchange capability of minerals influences their unique physical 

properties, such as the cation retention and diffusion processes of charged and neutral 

molecules. The numerical value of this property is described by the cation exchange 

capacity (CEC). Methods for determining CEC involve the complete exchange of the 

naturally occurring cations by a cationic species, such as ammonium, K, Na and Cu 

(Petrus & Warchol, 2003). 

 

2.4 Review of modelling the ion-exchange process 

 

The ion-exchange process, both on natural or synthetic materials, is usually carried 

out in a fixed bed apparatus in which the exchanging material is packed in the form of 

granules, and the stream to be purified is allowed to flow through the packing (Pepe 

et al., 2013). Modelling of the ion-exchange process has been studied. Warchol & 

Petrus (2006) considered clinoptilolite-rich tuff from Ukraine, even though they used a 

rather simplified modelling approach named the “Lumped-Kinetic” model for the ion-

exchange equilibrium and column dynamics. A different modelling approach, derived 

from Khosrow Nikkhah (2002), used dynamic simulation in the design of ion-exchange 

systems, and the investigation of equipment based on the consideration of the effect 

of input criteria such as expected ion-loading and elution profiles. The methodology 

for dynamic modelling using IDEASTM in the design of multicolumn ion-exchange trains 

operating in parallel was presented. The IDEAS simulation was best suited for 

modelling ion-exchange systems because it depicts the process material and energy 
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flows as a function of time. For hydrometallurgical plants, where sequential ion 

exchange systems and other continuous operations interact and are interdependent, 

it is necessary to perform dynamic computer modelling of the design process. Loading 

and elution reactions are also dependent on process stream concentrations, 

temperature and the way in which the solution makes contact with the resin. If enough 

information is available from test work, it can be incorporated in a dynamic ion-

exchange model to provide some degree of predictive capability.  

Another modelling approach derived from the work of Ogata and Banks (1961), has 

often been used. According to this approach, equilibrium conditions between solids 

and liquids are assumed, and an adjustable “hydrodynamic dispersion” is used to 

describe the effects of flow non-idealities, diffusional resistances to mass transfer and 

kinetic resistances (Appelo & Postma, 1999). Rahman et al. (2009) recently published 

a series of papers using this approach to describe ion-exchange processes involving 

synthetic zeolites (Rahman et al., 2009). They illustrated the use of hydrodynamic 

dispersion in the forecast of long-term performance of active barriers against 

radionuclides. In contrast, Borba et al. (2011) investigated the ion exchange both on 

synthetic zeolites and synthetic resins using a more detailed model, taking great care 

of the form of the material balance equations. These authors also pointed out the 

crucial role played by an appropriate description of the thermodynamics of the ion 

exchange in modelling the overall process. Cobzaru (2005) used the Table Curve 3D 

programme in order to describe the behaviour of the ion-exchange processes of 

sodium modified clinoptilolite with heavy metal ions (Cr3+, Fe3+, Ni2+, Cd2+ and Pd2+) 

from residual waters. The resulting models showed common characteristics such as a 

very good arrangement of the experimental points on the response surfaces and 

similar correlation coefficients close to unity. Although these models exhibit 
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similarities, they differed with regard to the response surface shape and model 

equation. Despite the good results presented, the author did not compare their 

prediction to experimental data. The model was also unable to accurately predict the 

process as affected by operating parameters. Phongikaroon and Simpson (2006) 

extend the modelling approach originally proposed by Simpson and Gougar (2003) 

from a covalent species to include divalent and trivalent cations, using the same 

fundamental approach. The principal challenge was to derive a model that was 

sufficiently sophisticated to capture a realistic mechanism for ion exchange while still 

being simple enough to apply to available data without having to revert to complicated 

numerical solutions. Previous work on modelling equilibrium ion exchanges between 

zeolite-A and molten chloride salts involved two different types of models that fitted 

well with experimental data for monovalent species. The approach taken by Lexa and 

Johnson (2001) was strictly empirical and based on simple geometrical arguments, 

limited zeolite cage volume versus involved ionic radii. In contrast the approach taken 

by Simpson and Gougar (2003) was based on balancing the adsorption and 

desorption rates from two different types of sites in the zeolite. Neither approach was 

encumbered with the complexity of considering divalent and trivalent species. Each 

such species occupies two or three sites, respectively. Despite the complexity 

described above, Gougar (2004) has provided a model that accounts for divalent and 

trivalent cations while avoiding mathematical complexity. In this research of Gougar, 

cesium and neodymium were studied as surrogate fission species. The model was 

derived from an analogy of probability through reaction kinetics and expressed in a 

one-dimensional domain. The resulting model presented therein revealed a decent fit 

to experimental data. 
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Natural zeolites are often characterized by very complex structures as described in 

Section 2.2, which are not even fully characterized, making modelling of both the 

thermodynamics and kinetics of the ion-exchange process rather problematic. As 

concerns the first aspect, Brigatti et al. (1999) studied the selectivity of a phillipsite and 

chabazite rich tuff towards Co2+, Cu2+, Zn2+, Cd2+ and Pb2+, focusing on the fact that 

phillipsite and chabazite have a complex mixture of different solid phases, with 

different ion-exchange properties. With regard to the kinetics of the process, the use 

of a lumped parameter model such as the Linear Driving Force (LDF) model is in 

practice mandatory (Glueckauf, 1955). According to the LDF model, both liquid-solid 

and intra-particle mass transfer rates depend linearly on their respective driving forces, 

with equilibrium prevailing at the liquid-solid interface, despite the fact that the LDF 

model is rigorously valid only when a linear isotherm exists. Santacesaria et al. (1982) 

and Ruthven (1984) indicate that, even in the presence of non-linear isotherms, the 

LDF model continues to give good results when used to evaluate breakthrough curves. 

Following this suggestion, Pepe et al. (2013) satisfactorily applied the LDF model to 

ion exchange on natural zeolites, describing the kinetics of the Pb2+/Na+ exchange 

process on a phillipsite-rich tuff. Pepe et al. (2013) used the LDF model to interpret 

the experimental data. The model established that both the internal and the external 

mass transfer resistances play a significant role in the kinetics of the ion-exchange 

process. The estimated values of the internal and the external mass transfer 

coefficients did not depend on the composition of the liquid phase, thereby confirming 

the validity of the LDF model approximation.  

Van den Bosch (2009) used the neuro-fuzzy computing technique to test the 

effectiveness in simulating the ion-exchange processes. The primary aim was to test 

neuro-fuzzy reasoning as a modelling technique for complex ion-exchange processes. 
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The obtained results were then compared with conventional ion-exchange techniques. 

The comparison was based on data sets obtained from laboratory scale ion-exchange 

batch experiments. Mass transfer parameters were determined for a film diffusion 

model, which were then used to simulate the ion-exchange profiles for copper and 

cobalt. Before commencing the design of the neuro-fuzzy system, the number rule, 

input and type of membership functions had to be decided upon. Sensible initial values 

for the neuro-fuzzy parameters were chosen and manipulated (or trained) using MS 

EXCEL SOLVER. The programme could model up to five inputs and one output. The 

results obtained from the film diffusion method did not result in the same accuracy as 

the neuro-fuzzy system, indicated by the lower percentage error obtained (4.15% by 

ANFIS 6). It was also noted that an increase in the number of inputs in the neuro-fuzzy 

system did not necessarily generate a better ion-exchange model. It was found that 

the combination of copper and cobalt solution concentrations, the copper and cobalt 

resin loading and the stirring speed resulted in the most accurate model. SOLVER, 

which is based on a Newtonian algorithm, is a relatively good tool to use for ion-

exchange modelling as was shown in the results. There was no need to introduce any 

sophisticated algorithms. Although it is a very useful tool and can be applied in many 

different processes, developing neuro-fuzzy software is time consuming.  

The correct modelling of the ion-exchange process requires all factors to be taken into 

account and combined into one model. The combination of these factors is obviously 

complex, hence the application of the NN. 

 

2.5 Review of the application of the FFNN 
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Much effort has been devoted to develop and improve the environment. To achieve 

optimum control and management in environmental engineering problems, new 

concepts involving efficient operation and design should be developed and 

understood. A high quality representative model can provide a favourable solution in 

the process control. It helps to explain the real process performance and to develop a 

continuous control strategy for these types of technologies. Because of their reliable, 

robust and salient characteristics in capturing the non-linear relationships existing 

between variables in complex systems, it has become apparent that numerous 

applications of NN have been successfully applied (Yetilmezsay & Demired, 2008). 

A NN is an information processing paradigm that is inspired by the way a biological 

nervous system, such as the brain, processes information and learns (Haykin, 1994). 

FFNNs are among the most important and widely used forms of NNs for time series 

modelling (Khashei & Bijari, 2012). FFNNs are flexible computing frameworks and 

universal approximators that can be applied to a wide range of wastewater treatment 

problems with a high degree of accuracy. Several distinguishing features of FFNNs 

make them valuable and attractive for wastewater treatment process tasks. Firstly, 

FFNNs are data-driven self-adaptive methods in that there are few a priori 

assumptions about the models for problems being studied. Secondly, it can 

generalize. Thirdly, FFNNs are universal functional approximators that can 

approximate a large class of functions with a high degree of accuracy. Finally, FFNNs 

are non-linear. Their power comes from the parallel processing of the information from 

the data. No prior assumption of the model form is required in the model building 

process (Khashei & Bijari, 2012). Instead, the network model is largely determined by 

the characteristics of the data. The model is characterized by a network of three layers 

of simple processing units connected by acyclic links (Khashei & Bijari, 2012). The 
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Equation 2.6 represents the relationship between the output (yt) and the input (yt-1, …, 

yt-p). 
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                                                                     (2.6) 

Where, wij (i = 0, 1, 2,..P, j = 1, 2,…,Q) and wj (j =  0, 1, 2,…,Q) are model parameters 

often called connection weights; P is the number of input nodes; Q is the number of 

hidden nodes; et is the residual of model at time t; and g is the transfer function.  

The FFNN model in Equation 2.6, in fact, performs non-linear functional mapping from 

the past observations to the future value (Khashei & Bijari, 2012).  

 

2.5.1 Biological wastewater treatment 

 

Cote et al, (1995) developed a procedure to improve the accuracy of an existing 

mechanistic model of the activated sludge process, previously described by Lessard 

and Beck (1993). As a first step, parameter optimization of the model was performed 

using a least square regression analysis. The optimization procedure did not succeed 

in improving the prediction of the four remaining key variables. In the second step, 

FFNNs were used to successfully simulate the prediction errors of the mechanistic 

model. If no significant improvement is observed, it may suggest that the data are not 

sufficiently rich in information or that important variables are not considered in the 

model. Gontarski et al. (2000) used NN for the simulation of an industrial wastewater 

treatment plant. Pai et al. (2007) in contrast used NN to predict the suspected solids 

and chemical oxygen demand in hospital wastewater treatment plant effluent. 

Luccarini et al. (2002) used NN for soft sensors for the control of nitrogen and 
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phosphorus removal from wastewaters. Hong et al. (2007) used NN for monitoring a 

sequencing batch reactor for nitrogen and phosphorus removal. Sinha et al. (1982) 

applied NN for the simulation of upflow of an anaerobic sludge blanket reactor 

performance and Zeng et al. (2003) used NN for a predictive control system for paper 

mill wastewater treatment. 

Although a number of studies have been successfully conducted on engineering 

problems using back-propagation (BP) NNs for biological wastewater treatment, 

physico-chemical wastewater treatment was used due to their many favourable 

features such as efficiency, generalization and simplicity. 

 

2.5.2 Physico-chemical wastewater treatment 

 

Piron et al. (1997) applied NN for crossflow microfiltration modelling: “black-box” and 

semi-physical approaches. Hamachi et al. (1999) used dynamic modelling of cross-

flow microfiltration of a bentonite suspension using recurrent NNs. Teodosiu et al. 

(2000) used NN models for ultrafiltration and backwashing. Bhattacharjee and Singh 

(2002) studied the applicability of artificial NNs in continuous stirred ultrafiltration. 

Shetty et al. (2003) used NNs for predicting contaminant removal during municipal 

drinking water nanofiltration. Wang et al. (2006) in turn applied radial basis function 

NNs based modelling of the membrane separation process for hydrogen recovery from 

refinery gases. Cinar et al. (2006) applied NNs for modelling the submerged 

membrane bioreactor treating cheese whey wastewater. Sadrzadeh et al. (2009) 

applied NN modelling of Pb2+ removal from wastewater using electro dialysis. NNs 

successfully tracked the non-linear behaviour of separation percentage and the 

current efficiency versus temperature, voltage, concentration and flow rate with a 
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standard deviation of not more than 1%. For almost all experiments, the NN was 

confirmed to be an adequate interpolation tool where good prediction was obtained. 

Numerous applications of NNs have been successfully conducted to solve 

environmental problems, since it is reliable and robust in capturing the non-linear 

relationships existing between variables (input/output) in complex systems (Turan et 

al. 2011). The ion-exchange process was used in this thesis due to its many 

advantages, such as high treatment capacity, high removal efficiency and fast kinetics.  

 

2.6 Determination of the AI of coal  

 

2.6.1 Introduction 

 

Coal is a combustible, sedimentary, organic rock, which is composed mainly of carbon, 

hydrogen and oxygen (Adeleke et al., 2011). Coal consists mainly of organics and 

organic matters which are synonymously known as macerals and minerals, 

respectively (Tlotleng, 2011). The presence of organic constituents in coal has 

rendered coal suitable to be used for power generation. Coal is primarily used as a 

solid fuel to produce electricity and heat through combustion. When coal is used for 

electricity generation, it is usually pulverized (ground) to an efficient burnable size in a 

mill and then combusted (burned) in a furnace with a boiler. During grinding, friction 

occurs, causing abrasive wear or erosion on the critical components and thereby 

affecting the performance of the power plant (Tlotleng, 2011). 

Abrasion is a phenomenon that involves either erosion and/or material wear which 

occurs when a particle is trapped between the mill components and its walls during 

grinding. More precisely, abrasion has a tendency for coal to wear away mill 
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components (Falcon & Falcon, 1987). It is a physical property that is measured using 

the AI tester pot and is reported as the AI (mg/kg). Abrasion always manifests itself 

during the grinding of materials, particularly when hard minerals are ground 

(Hutchings, 1992). 

It is understood that friction occurs during the grinding of hard minerals which causes 

abrasive wear or erosion of the critical components and thereby affects the 

performance of the power plant. The AI gives an indication of the abrasiveness of 

these components. 

The abrasion of coals is studied using the AI tester pot following a method proposed 

by Yancey, Geer and Price (YGP) in 1951. The abrasive nature of coals is determined 

by calculating the AI of ground coals. The AI is a function of the total mass lost by the 

iron blades divided by the load mass of coal (Scieszka, 1985; 1996; Spero, 1990; 

Spero et al., 1991). Raask (1985) has shown how to determine the AI of coals using 

an empirical formula, but recent developments which involve the use of mills and 

grinders for determining the AI of coals have seen the empirical formula being 

discontinued (Tlotleng, 2011). 

The YGP AI tester mill used in testing coals for their AI is shown in Figure 2.6. This 

figure illustrates the impact forces that act on the coal particle during grinding. 

Centrifugal and radial forces lead to particle reduction. In this figure, n represents the 

null vector, which in most cases is a unit vector of such force that the cosine force 

exists. The gyration radius R shown in the Figure 2.6 is important because it is 

normally used to calculate the force and mass moment of inertia which is used to 

calculate the energy of the grinding mill. The square, top-open chamber is a coal 

container used to enclose coal particles during grinding (Spero et al., 1991). 
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Figure 2.6: YGP AI tester pot (Spero et al., 1991) 

 

In general, the abrasiveness of coals is known to be influenced by different coal 

constituents (Spero, 1990; Spero et al., 1991), which can be divided into chemical, 

physical and mechanical properties. The chemical properties that influence 

abrasiveness are moisture; ash content does not influence the AI of coals (Terchick et 

al., 1963). Physical properties of coals that influence abrasion are minerals (excluded 

minerals, quartz, pyrite and clays), microlitho types (carbominerite) and macerals 

(inertinite rich). Abrasion intensity and abrasion factors are two mechanical properties 

on which abrasion is dependent (Spero, 1990). Hardness and grindability of coals may 

also influence abrasion (Scieszka, 1996; Spero et al., 1991; Hutchings, 2002).  

 

2.6.2 Minerals in coals 
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Mineral matter in coal is a very important aspect of coal technology, especially in 

processing and utilization. In coal studies, MM refers to the inorganic materials which 

are free and are disseminated within the coal’s matrix and macerals (Gary et al., 1972; 

Harvey & Ruch, 1986; Creelman & Ward, 1996). Their definitions embrace the 

following three different fundamental constituents of mineral occurrence in coals; (1) 

dissolved salts and other inorganic substances in the coal’s pore water; (2) inorganic 

elements incorporated within the organic compounds of the coal macerals and discrete 

inorganic particles; (3) both crystalline and non-crystalline materials of true mineral 

components (Tlotleng, 2011). 

The difference between these three constituents of minerals is that the first two are 

characterized as apparent in the MM of low rank coals. They are also described as 

non-mineral in organics, which contribute greatly to the formation of ash in the deposit 

of low rank coals (Given & Spackman, 1978; Benson & Holm, 1985). Discrete 

inorganic particles occur in both low rank and high rank coals. Dissolved salts and 

inorganic elements occur in small amounts in high rank coals. Their occurrence in 

small quantities is due to their removal by moisture and chemical structure changes of 

organic matter (Ward, 2002). 

Excluded minerals are defined as discrete minerals or those minerals that are liberated 

from the carbon matrix during grinding, while included minerals are said to be those 

minerals that are associated with organic matter. These definitions are based on the 

computer controlled scanning electron microscope (CCSEM) which paved the way for 

coal particle classification of pulverized coals. South African coal seams are comprised 

mainly of clay, quartz and pyrite minerals (Falcon & Falcon, 1983). Abrasion and 

erosion are amongst many problems that can be related to coal comminution (Tlotleng, 

2011). Abrasive wear is attributed by Wells et al. (2004) and Foster et al. (2004) to the 
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minerals present in the coals, especially those that are harder than steel. This is 

supported by Wigley and Williamson (2005) who say coals that are free of ash (or 

coals that have small amounts of minerals) would not cause significant abrasion or 

erosion in coal plants. However, the most mineral impurities present in coals are the 

main cause of the greatest of wear in the full scale power plants. Meintjes (1965) and 

Terchick et al. (1963) attribute abrasion wear to the ash content of coals, and moisture 

content playing a role in ash content as a contributor to coal’s abrasiveness. Ash 

content in raw coals may be taken as the residue of self-heated or in situ oxidized 

minerals (Tlotleng, 2011). 

During grinding or milling, inorganic minerals can be liberated from the coal’s organic 

matrix. These are excluded and included minerals. Minerals such as quartz and pyrite 

are known to be very abrasive. Quartz in coals occurs as moderately large particles of 

free MM, whereas pyrite occurs as finely dispersed grains in coals and the clay 

sediments (Wigley & Williamson, 2005). It is well established that quartz is more 

abrasive than pyrite on volume percentage (Raask, 1985). This may be attributed to 

the fact that quartz, which is hard, will shatter when milled thereby producing sharp-

edged fragments. The observation that quartz is more abrasive than pyrite was made 

with UK coals; this observation has not been reported on world trade coals (Wells et 

al., 2004). However, Wells et al. (2004) found that angular quartz and pyrite on volume 

percentage are equally abrasive. 

Other hard minerals capable of inducing abrasive wear are orthoclase, kyanite, topaz 

and alumina. This list of minerals may occur in coals in small amounts or may generally 

be present in trace quantities. This might be the reason why they sometimes have a 

minimal effect on the overall reported AI of coals (Wells et al., 2004; Wigley & 

Williamson, 2005). Other mineral groupings such as the clays, carbonates, sulphates 
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and phosphate are relatively soft and do not cause any significant abrasive wear. In 

general, excluded minerals are most abrasive when compared to included minerals, 

but it is highlighted elsewhere in literature that a mineral associated with the organic 

matrix of coal can be abrasive if only a little of it is protruding (Tlotleng, 2011). 

 

2.6.3 Grindability 

 

The grindability of coal is defined as the property for coals to wear down (grind) the 

components of equipment, and the AI gives an indication of the wear of those 

components (Callcott, 1956). The grindability of coal is determined experimentally 

using a grinding machine, following particular standards, and it is reported as the 

Hardgrove grindability index (HGI). The HGI is indicative of the hardness of coals to 

grind (Bagherieh et al., 2008).  

The HGI is important for boiler designs (Tichanek, 2008) and commercial use where 

coals on trade are classed according to their hardness, realizing their HGI values 

(Tichanek, 2008; Chelgani et al., 2008). HGI values are used by mining engineers to 

categorize coals according to their resistance to cutting and grinding (Tiryaki, 2005). 

HGI is an important index as it can be used to indicate the effectiveness of the mill to 

grinding different coals, hence their capacity at full scale power plants (Warren Spring 

Laboratory, 1962; Chelgani et al., 2008; Tichanek, 2008). The Bond work index (WI), 

which is related to the HGI, in particular is used for this purpose. There are empirical 

equations which relate these two indices. The Bond WI is defined as the energy 

required for reducing material of finite size by 80% passing through a 100 micron mesh 

(Tichanek, 2008). The advantages of determining the grinding nature of coals lie 

purely in the fact that, if the grinding nature of coals is known, then a proper mill can 
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be selected for comminution in addition, HGI is indicative of which coals are suitable 

to be utilized for power generation. HGI and WI are used to assess the rate of 

comminution (Scieszka, 1996). The power needed to achieve the specific particle size 

can be determined if the HGI is known, thereby optimizing or simulating the full scale 

plants (Terchick et al., 1963). This emanates from the fact that a revolution of a 

laboratory scale mill is equivalent to a specific energy consumed by a plant mill to 

pulverize a size feed material (Scieszka, 1996). The disadvantage of not knowing the 

grinding nature of coals will lead to poor performance of mills and poor management 

put in place, which will mean more money must be put into maintaining the mills 

(Tlotleng, 2011). 

In the past the grindability nature of the coals was determined empirically using the 

following formula (Raask, 1985):  

 1393.6  WHGI                                                                                                   (2.7)   

Where W is the weight of material passing the target sieve. HGI can be predicted using 

the chemical components of coals (De Kock and & Franzidis, 1973). 

The survey by Van Vuuren (1978) revealed many coal constituents that affect the 

grinding nature of South African coals. From the survey it is known that the ash 

content, volatile matter and moisture content have a great influence on the HGI of 

coals. Low ash and high volatile matter coals appear to have a low HGI, thus indicating 

that the coal is hard. Weathering of coals can alter their organic and inorganic 

constituents (minerals) and can also change their chemical and physical properties. 

Reported results are attributed to the fact that these coals contain low volatile matter, 

are very moist and have a high ash content. Falcon and Falcon (1987) found that the 

inherent moisture content of coals appears to affect grindability of low rank coal, but 

did not influence the HGI of high rank coals. It has to be emphasized that this 
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behaviour is notable only with Southern African coals. This indicates that moisture 

could be one constituent of coals to be ascertained to establish the grind nature of 

coals. The three discussed constituents of coals are what form the proximate analyses 

of coals. 

Proximate results have been used to produce linear relationships with HGI; using 

computer developed programmes like non-linear multivariable regression and 

GRNNs. Petrographic results also form the primary constituents of coals known to 

influence the HGI. Following the work of Li et al. (2005), Bagherieh et al. (2008) 

developed the artificial NN which incorporates petrographic parameters to predict the 

HGI of coals. Minerals are observed to influence the HGI of coals. Note that a separate 

section on petrography is given; it is mentioned here only to indicate how far research 

goes into trying to correlate many coal constituents to their grinding nature (Tlotleng, 

2011). 

 

2.6.4. Grindability and abrasion 

 

Scieszka (1996) was the first to elucidate the relationship between HGI and AI and 

illustrated their mathematical relationship as presented in Equations 2.7 and 2.8. The 

two physical properties (HGI and AI) of coal can exist in close proximity and suggested 

that HGI is sub-group of AI.  Using a series of different coals, it was shown that these 

coal properties exhibit a quadratic relationship when correlated (Terchick et al., 1963). 

If one looked closely, it was obvious that coal of the same origin had an independent 

relationship. Briefly, coals being soft (highest HGI) does not mean they are abrasive, 

and conversely hard coals are not readily abrasive (Tlotleng, 2011). Coals are 

naturally formed fossil fuels with many different characteristics, being mainly made up 
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of organic and inorganic matter. One important quality of coal is its burning 

characteristic, which is induced primarily by its organic matter. Owing to this 

characteristic, coals are used for different purposes, such as gasification, combustion 

and in the metallurgical process in South Africa and elsewhere. Typically, electricity is 

generated from steam turbines in power plants. The turbines are mechanical devices 

which utilize the thermal energy from steam produced through coal combustion. This 

is a process in which mechanical energy is converted into electrical energy according 

to the first law of thermodynamics. Combustion is a chemical reaction in which carbon 

(coal) reacts with excess oxygen (O2) to produce steam (H2O) and carbon dioxide 

(CO2). This reaction is exothermic. For the maximum use of the coals fed into a 

combustion zone, they must be reduced to maximize their surface area. For the boiler 

to efficiently combust coals, coals are reduced from lump size to small pulverized fuel 

size. The maximum surface area in combustion facilitates the burning character of the 

fuel. 

This size reduction is achieved by comminution in grinders or mills. All South African 

power stations use pulverized fuel boilers. Coals therefore have to be pulverized to an 

efficient burnable size, typically 75 µm. This specification therefore makes a mill an 

integral part of any power plant which burns coal. Owing to their characteristics, coals 

are sometimes soft or hard to grind, which then lead to abrasion during comminution. 

Abrasion is known to be caused primarily by the presence of some inorganic matter 

and organic matter, ash content and moisture in coals. 

Comminution is a process of reducing solid material into smaller fragments using a 

mill or grinding machine. A mill is a mechanical device built to grind, cut or shape solid 

materials into their powder form. Comminution therefore can simply be explained as a 

mechanical and physical breaking of material during milling or grinding into smaller 
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fragments. During grinding, mill components, including the grinding elements, suffer 

abrasive wear or erosion. Mills are therefore constructed from harder materials to 

enhance their durability and reduce wear, especially where hard materials like 

minerals and coals are ground. However, some materials are harder than the mill 

materials and will reduce the mill’s longevity through abrasive wear. The mills therefore 

become cost ineffective in terms of maintenance and material replacement. 

Replacement of worn out material and power loss constitutes most of the cost in power 

plants (Spero et al., 1991; Scieszka, 1996). To understand the extent to which material 

wear occurs in mills during comminution, the abrasive character of coals has to be 

established. 

To study the abrasion of coals, an index termed the AI was established using a YGP 

test rig. Currently the AI is measured using different methods, which include the AI 

tester pot which uses four iron blades as cutting elements (Spero, 1990). Mass loss of 

the blades used during grinding is then divided by the charge mass. 

Mathematically this is given as: 

𝐴𝐼 =
𝑀𝐹𝑒

𝐶ℎ𝑎𝑟𝑔𝑒 𝑀𝑎𝑠𝑠
                                                                                                   (2.8)                                                                                               

There are two primary forms of abrasive wear that occur during milling, namely: two-

body abrasive wear and three-body abrasive wear (Misra & Finnie, 1980; Hutchings, 

1992). They are respectively known as sliding and rolling abrasion. For this study, an 

assumption is made that three-body abrasive wear will result when coals are ground 

in an AI tester pot. This assumption was made due to the fact that as coal particles 

are fed into a pot they are loose and become mobile. These particles are then partially 

trapped by the mill surface and its grinding zone in an enclosed system. There is a 

wealth of information on two-body abrasive wear as opposed to three-body abrasive 

wear, but, Scieszka (1996), Misra and Finnie (1980), Rabinowicz et al. (1961) and 
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Toporov (1960) have studied three-body abrasive wear processes; some even going 

as far as designing equipment for studying it. A full study on three-body abrasive wear 

is found in the work by Misra and Finnie (1980). Misra and Finnie (1981, 1983) showed 

that two and three-body abrasive wear was not only concerned with hard material, as 

material of less hardness than the concerned metal blades can still cause material 

wear. Spero (1990) revealed that the effects of particles that are less hard than the 

cutting blades are inconsistent in comparison to harder minerals. Arguably it is known 

that the only way to proportion the effects of mineral hardness in coals is by combining 

all abrasive components of coals. These will primarily be the existing minerals, ash 

contents and organic components in coals. The physical properties of the coals must 

also be included. In general abrasion can either be determined empirically or by 

grinder machines (Raask, 1985; Spero, 1990). It is established from literature that 

abrasion is dependent on some coal properties such as MM (quartz and pyrite), 

moisture, ash content, bulk density and grindability. Abrasion is not the only physical 

property of coal that is of concern during comminution. Other physical properties such 

as coal strength, hardness, friability and grindability are of concern to cutting machines 

in the coal industry. Coal strength refers to the resistance of coal to grinding or 

crushing. Friability refers to the ease at which a coal can be compressed. Hardness 

refers to the resistance of coal to penetration and grindability refers to the resistance 

of coal to grinding. 

Further definitions are given in Falcon and Falcon (1987). Grindability is of importance 

to this study, because this characteristic may enlighten the researcher on the breaking 

ability of a coal, and hence its hardness and ease of grinding. Grindability can also be 

used to establish the power consumed by a mill during comminution, making it 

possible to understand the abrasiveness and hardness of coals. 
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Abrasiveness, friability, hardness, strength and grindability of coals are all studied in 

order to understand their effect on mills and all mechanical equipment used in coal 

processing. These physical properties of coals reduce the life span of mechanical 

machines for cutting, grinding or crushing which results in cost effective operation and 

non-operation during replacement. If known, these characteristics will help with the 

planning of power plant maintenance. The harder the coal, the longer it takes to grind 

and the quicker the mill components are worn. The more friable a coal is, the easier it 

is to grind, the softer and looser it is. The AI and HGI are studied to establish the wear 

in mills.  

 

2.7 Generalized regression neural network  

 

A GRNN is a variation of the radial basis NNs, which is based on Kernel regression 

networks (Cigizoglu & Alp, 2005). A GRNN does not require an iterative training 

procedure such as the BP NN. It approximates any arbitrary function between input 

and output vectors, drawing the function estimate directly from the training data. In 

addition, it is consistent that as the training set size increases, the estimation error 

approaches zero, with only mild restrictions on the function (Cigizoglu & Alp, 2005). A 

GRNN consists of four layers: input layer, pattern layer, summation layer and output 

layer (Firat & Gungar, 2009). The number of input neurons in the input layer depends 

on the total number of observation parameters. The input layer is connected to the 

pattern layer and in the pattern layer each neuron presents a training pattern and its 

output. This layer is connected to the summation layer. This layer has two different 

types of summation, a single division unit and summation units. The summation and 
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output layer together perform a normalization of the output set. Each pattern layer unit 

is connected to the two neurons in the summation layer, which has two different types  

of summation, S and D-summation neurons. The S-summation neuron computes the 

sum of weighted responses of the pattern layer. On the other hand, the D-summation 

neuron is used to calculate the unweighted output of pattern neurons. The output layer 

merely divides the output of each S-summation neuron by that of each D-summation 

neuron, yielding the predicted value Y1’ to an unknown input vector x as (Firat & 

Gungar, 2009): 
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Where yi is the weight connection between the ith neuron in the pattern layer and the 

S-summation neuron, n is the number of the training patterns, D is the Gaussian 

function, m is the number of elements of an input vector, xk and xik are the jth elements 

of x and xi, respectively and σ is the spread of the Gaussian function or also referred 

as the smoothing factor. 

The smoothing factor plays an important role in function approximation (Shuxia et al., 

2010). A smaller smoothing factor will lead to a ‘steeper’ radial basis function, so that 

the neuron with the weight vector closest to the input vector will provide a much larger 

output than other neurons. With an increase in the smoothing factor, the radial basis 

function’s slope becomes smoother and more neurons can respond to an input vector. 

However, a larger smoothing factor will also make the network function less selective. 

Therefore, there is a need to determine the optimal smoothing factor for GRNNs. In 

this study, the optimal smoothing factors were determined by comparing the distances 
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between the prediction and the actual values in the training set. The obtained optimal 

smoothing factor is 32.1. 

 

2.8 Predicting abrasiveness 

 

Many factors contribute to the abrasiveness of coal. Spero (1990) interpreted abrasion 

of coal in terms of the mineralogical and physical properties of the coal. For a limited 

range of coals and their associated relative density fractions he related the AI to the 

percentage, composition and physical properties of the coal MM, and to the grindability 

and bulk density of the coal through Equation 2.11: 

BPC

HW

AI

n

j

jj



1

                                                                                                    
(2.11) 

Where 
jW  and 

jH  are the concentration and hardness, respectively of mineral j in 

the coal, PC  and B are respectively the grindability factor and bulk density of the 

coal. The equation requires many inputs for prediction and suffers from the drawback 

that particle size and shape are not included. However, this equation is the only one 

which has integrated a number of variables for abrasiveness prediction. In South 

African coals the major abradant is quartz. Other hard minerals occur in smaller 

proportions in coal (rutile, pyrite/marcasite etc.), the abundance of which is reflected 

in the ash. Both have been correlated earlier to the AI of coal, and positive correlations 

have been found in the literature (Bandopadhyay, 2010b). 

The abrasiveness of coal has been described earlier by the empirical Equation 2.12 

formulated by Raask (1985): 

AI = Qc + 0.5Pc + 0.2Ac                                                                                                                                     (2.12) 
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Where Qc, Pc and Ac are respectively the mass percentage of quartz, pyrite and ash 

in coal. The equation has been useful in the design of boilers for power stations 

(Tickner & Maier, 2005). When reviewing the information on the analysis of coal as 

presented in standard industry commercial practice, it is rare to find reports covering 

quartz. Pyrite in contrast is frequently identified and specification sheets always 

indicate the quantity of ash. In order to compensate for the lack of data, estimates for 

quartz and pyrite content can be prepared with reasonable accuracy based on 

formulas employing the reported chemical analysis for SiO2, Al2O3 and S. The quantity 

of quartz in coal (Qc) can then be estimated from Equation 2.13: 

Qc = 0.01Ac (SiO2 -1.5Al2O3)                                                                                 (2.13) 

Pyrite in coal (Pc) can be estimated by: 

Pc = 1.3(S - 0.3)                                                                                                    (2.14) 

Equations 2.13 and 2.14 can be used as reasonable substitutes for laboratory data in 

the AI equation (Raask, 1985; Tickner & Maier, 2005). 

Equation 2.12 is applicable to United States of America (US) and United Kingdom (UK) 

coals with low ash content and a relatively high proportion of pyrite, but is not valid for 

South African coals with high ash yields and low quartz contents, but low pyrite. 

Further, Equation 2.12 needs modification for South African coals. Recently 

Bandopadhyay (2010a) amended the equation and compared quartz obtained from 

the modified equation to that from an FTIR determination from Indian coal.  

It appears from the above that the proportions of ash and quartz are the main factors 

responsible for abrasion from South African coals. Given the volume of data generated 

on ash, quartz and the AI for 91 coals studied, simple regression models relating the 

AI with one or more of the independent variables, A and Qc can be proposed.  
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The models proposed by Bandopadhyay (2010a): AI = 23.6 + 3.05Qc (Model 1), AI = 

1.35A (Model 2) and AI = 1.00Ac + 1.35Qc (Model 3) are all statically significant and 

show the degrees to which they satisfy the statistical criteria of ‘goodness of fit’. 

Parameters like the R2 and the adjusted R2 (for multiple regression) are useful for 

assessing the aptness of the models in terms of the strength of the relation between 

the variables, while the standard errors (SE) of the estimate measures the dispersion 

around the estimating line (in the case of two variables) or the multiple-regression 

plane (in the case of two variables). For Models 1 and 2, the values of R2 are 

respectively 0.61 and 0.79, which signify that 61% of the variation in abrasion is 

explained by the variation in quartz content in Model 1, while Model 2 can account for 

79% of the variation by the variation in ash percentage. The SEs of the estimate for 

the two models are respectively 8.2 and 6.0. The overall significance of the regression 

is indicated by the f-test criteria and its p-values, which are satisfied in the case of both 

Models 1 and 2. The role of the individual variables Ac and Qc in predicting AI, as 

indicated by the t-test and p-values, as indicated by Bandopadhyay (2010a), shows 

that both Ac and Qc are good predictor variables for the AI of the coal studied. 

It is worthwhile to add here that investigators (Livingston & Dugdale, 1998; Foster et 

al., 2004) have related the AI with Ac, as the latter is quickly and routinely done in a 

laboratory for characterization. They have derived the following equation from the 

experimental data related to coals from Britain, South Africa and India and a number 

of world-traded coals: 

AI = 3.9 + 1.21Ac (R2 = 0.80)                                                                              (2.15) 

The Equation 2.15 and Model 2 (AI = 1.35; R2 = 0.79) derived for Indian coals, are 

similar and values predicted by both are very close, suggesting both can be used for 

interpreting abrasion of thermal coals from ash percentages. The model can be 
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examined using the data of ash yields and abrasion indices of coals reported by Spero 

(1990). He studied the properties of Walloon coals of Australia vis-a-vis their power 

station performance. For high quartz coals (indicated by a high SiO2/Al2O3 ratio) used 

in power stations, namely, Tarong, Stanwell and Swanbank, predicted values of the 

AI matched with the experiment in the following manner: The linear correlation shown 

by the equations (Model 2 and Equation 2.15) between the AI and ash yield is not 

good enough for predictive purposes and a high R2 value is a prerequisite for such a 

purpose. The investigations made so far have clearly identified that both Qc and Ac are 

the key predictor variables for abrasion. This also emphasizes that, in order to have a 

model with better explanatory power to account for the variation in abrasion shown by 

different coals, both Ac and Qc should be included and the use of multiple linear 

regression has been made to develop a model, Model 3 (AI = 1.00Ac + 1.35Qc), which 

has better explanatory power as anticipated. The adjusted R2 value for the model is 

0.86, indicating that 86% of the variation in the AI can be explained by the variations 

in Ac and Qc. Further, the standard deviation of the regression model, i.e., the SE of 

the estimate, is 4.9, which is less than those for the Models 1 and 2. All these justify 

the superiority of the model and as the value of R2 is greater than 0.80, it is a good 

linear model. Nonetheless, for more accurate predictions the introduction of other 

factors such as particle size and shape, physical properties of coal like grindability and 

bulk density should also be explored to achieve higher a R2 and lower SE than those 

which characterize the existing model. 

Since coal qualities usually vary from seam to seam, it is more difficult and impossible 

to predict the abrasiveness characteristics for any thermal coal on the AI with a single 

NN model without compromising the precision of the prediction. In order to overcome 

this difficulty, we separate the coals into several categories according to the 
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differences in ratios of volatile matter, ratios of ash content, ratios of dry air moisture 

and ratios of lower heating values. The NN is then applied to predict the abrasiveness 

of each type of the coal. 

 

2.9 Review of the application of the GRNN 

 

The GRNN was introduced by Nadaraya (1964) and Watson (1964) and rediscovered 

by Specht (1991). This model is a generalization of both radial basis function networks 

and probabilistic NNs that can perform linear and non-linear regression (Zarada, 

2001). These FFNNs use a basis function between input and output vectors directly 

from training samples, and they can be used for multidimensional interpolation 

(Specht, 1991). Although GRNNs are not as commonly used as radial basis function 

networks (RBFNs) of BP trained networks, they have been applied to solve a variety 

of problems including prediction and control (Rutkowski, 2004). The GRNN is often 

used as a powerful regression tool because it has a high training speed and a strong 

non-linear mapping capability (Shuxia et al., 2010). The network consists of an input 

layer, a radial basis layer and a linear output layer. Each neuron in the hidden layer 

has a radial basis function to perform the non-linear transformation from the input 

space to the hidden space. The Gaussian function is the common choice for the radial 

basis neurons and it is represented in Equation 2.16. 


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
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
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d
dg                                                                                                (2.16) 

Where d  is the distance between two vectors and   is the spread of the Gaussian 

function or also referred to as a smoothing factor. 
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The smoothing factor plays an important role in function approximation (Shuxia et al., 

2010). A smaller smoothing factor will lead to a ‘steeper’ radial basis function, so that 

the neuron with the weight vector closest to the input vector will provide a much larger 

output than other neurons. With an increase in the smoothing factor, the radial basis 

function’s slope becomes smoother and more neurons can respond to an input vector. 

However, a large smoothing factor will also make the network function less selective. 

Therefore, there is a need to determine the optimal smoothing factors for GRNNs 

(Shuxia et al., 2010).  

Spero (1990) assesses and predicts the AI of coal by the following empirical 

equation: 
BPC

HW

AI

n

j

jj
                                                                                     (2.17)                                                      

Where Wj and Hj are the concentration and hardness, respectively, of mineral j in the 

coal, and PC and B are, respectively, the grindability factor and bulk density of the 

coal. Despite the good results presented, this equation requires many inputs for 

prediction and suffers from the drawback that particle size and shape are not included. 

However, this equation is the only one which has integrated many variables for 

abrasiveness prediction. Raask (1985) described the AI with the following equation:  

CCC APQAI 2.05.0                                                                                            (2.18) 

The quantity of quartz in coal (QC) can then be estimated from the Equation 2.19: 

 322 5.101.0 OAlSiOAQ CC                                                                                  (2.19) 

Pyrite in coal (PC) can be estimated by: 

 3.03.1  SPC                                                                                                      (2.20) 



48 
 

Equations 2.19 and 2.20 can be used as reasonable substitutes for laboratory data in 

the AI equation (Raask, 1985; Tickner & Maier, 2005). 

Equation 2.18 is applicable to US and UK coals with low ash and a relatively high 

proportion of pyrite, but is not valid for all Indian and South African coals with high ash 

yields and high quartz contents, but low pyrite. Further, Equation 2.20 needs 

modification (Bandopadhyay, 2010a). 

Bandopadhyay (2010b) has amended the equation and compared quartz obtained 

from the modified equation to that from FTIR determination. It appears from above that 

the proportions of ash and quartz are the main factors responsible for abrasion. Given 

the volume of data generated on ash (A), quartz (Q) and abrasion index (AI) for the 61 

thermal coals studied, three simple regression models relating the AI with one or more 

of the independent variables, A and Q can be proposed:  

QAI 05.36.23  (Model 1),  

AAI 35.1 (Model 2) and  

QAAI 35.100.1  (Model 3);  

which are all statistically significant and show the degree to which they satisfy the 

statistical criteria of ‘goodness of fit’. Parameters like the R2 and the adjusted R2 (from 

multiple regressions) are useful for assessing the aptness of the models in terms of 

the strength of the relation between the variables. The SE of the estimate measures 

the dispersion around the estimating line (in case of two variables) or the multiple-

regression plane (in case of more than two variables). For Models 1 and 2, the values 

of R2, are respectively, 0.61 and 0.79, which signify that 61% of the variation in 

abrasion is explained by the variation in quartz content by Model 1. Model 2 can 
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account for 79% of variation by the variation in ash percentage. The SE of the estimate 

for the two models are respectively 8.2 and 6.0. The overall significance of the 

regression is indicated by the f-test criteria and its p-value, which are satisfied in the 

case of both the Models 1 and 2. A and Q are found to be good predictor variables for 

AI. It is worthwhile to add here that investigators Livingston and Dugdale (1998); 

Foster et al. (2004) have related the AI with A, as the latter is quickly in laboratory 

experimental data related to coals from Britain, India and South Africa and a number 

of world-traded coals: 

AAI 21.19.3  (R2 = 0.80)                                                                                    (2.21)                                       

The linear correlation shown by the equations (Model 2 and Equation 2.21) between 

the AI and ash yield is however, not good enough for predictive purposes, and a high 

R2 value is a prerequisite for such purposes. The investigations made so far have 

clearly identified that both Q and A are the key predictor variables for abrasion. This 

also emphasizes that, in order to have a model with better explanatory power to 

account for the variation in abrasion shown by different coals, both A and Q should be 

included and use of multiple linear regressions has been made to develop such a 

model. Model 3 has better explanatory power. The adjusted R2 value for Model 3 is 

0.86, indicating that 86% of the variation in the AI can be explained by the variations 

in A and Q. Further, the standard deviation of the regression model, i.e., the SE of the 

estimate, is 4.9, which is less than those for Models 1 and 2. All these justify the 

superiority of the model and it is deemed to be a good linear model as the value of R2 

is greater than 0.80. Nevertheless, for more accurate prediction, introducing other 

factors, namely, particle size and shape, physical properties of coal like grindability 

and bulk density should also be explored to achieve a higher R2 value. 
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Bandopadhyay (2010b) checked the application of the model developed by himself 

(Model 1: AAI 21.19.3  ) using the data on coal with different origins. His results 

obtained for predictions agree with the actual values within the prediction range, 

except for the La Loma coal. The discrepancy in this case was ascribed to factors such 

as grindability and bulk density of the coal, particle size and shape, which are known 

to affect the AI but have not been included in the model. As a result accurate 

predictions could not be made. For coals showing an abnormally high abrasion, 

especially the morphology of the abrading particles should be given due consideration. 

Barring this case, it is found that the model is capable of estimating the AI of all coals 

reasonably well and the results obtained are encouraging. 

The regression Model 3 proposed is a simple one and valid for thermal coals 

containing low pyrite. Bandopadhyay (2010b) found that it was easy for the industry to 

adopt as all the inputs needed for reasonably good predictions were available. In the 

absence of experimental data on quartz abundance, however, the empirical equation 

to estimate quartz content developed by Bandopadhyay (2010a) from the ash analysis 

may be utilized for Indian coals,  

)13(01.0 322 OAlSiOAQ C                                                                                   (2.22)                                     

Ngoy and Mulaba-Bafubiandi (2013) proposed an analytical model of the coal AI as a 

function of the mineral composition of coal. They considered the assumption that the 

resulting amount of abrasion is proportional to the resulting relative hardness as 

expressed by the following mathematical equation: 

AI = K x Hr                                                                                                                                                                (2.23) 

b

i

i

i
h

h
XCKAI                                                                                                    (2.24) 
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Where K is a constant of proportionality depending on the test method. Equation 2.22 

provides a model of the AI that can be evaluated as a linear combination of the mass 

percentage of mineral components of the coal particle, where the coefficients of linear 

combination are the respective hardnesses of the mineral components. 

yAI                                                                                                                   (2.25) 

xhC m

m

m                                                                                                           (2.26) 
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b
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 (2.27) 

According to the model, the experimental value of the AI should be equal to Ax . The 

above implies that, if the model is valid the experimental AI is linearly correlated to x, 

inversely if the AI is linearly correlated to x, then the model is valid. Therefore, for 

experimental verification of the model values of x are computed as per Equation 2.25 

and then the linear correlation with respective values of the AI is tested.  

Although this proposed model is consistent with empirical models suggested by 

Bandopadhyay (2010a) and Spero (1990), it does not take into account all the 

determining factors. NNs are powerful tools that have the ability to identify underlying 

highly complex relationships of all factors (Haykin, 1999). Generalized Regression 

Neural Networks (GRNNs have been suggested to predict the AI of the coal. GRNNs 

have the advantage of being easily trained and require only one free parameter (Amiri 

et al., 2010).  

 

2.10 Conclusion 
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The literature review focused firstly on the effort by different authors to accurately 

predict the behaviour of the ion-exchange process and the application of NN 

techniques to different processes. Secondly, published work predicting the AI of coal 

was reviewed. From this literature review it was clear that there is a need to find an 

alternative means for modelling and simulating the ion-exchange process and 

predicting the AI of coal. 
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CHAPTER 3: EXPERIMENTAL MATERIALS AND METHODS 

 

3.1 Introduction 

 

The goal of this chapter is to give a detailed account of the experimental procedures 

followed to attain the objectives of this research regarding the ion-exchange process. 

All experimental and analytical procedures used in this thesis for the ion-exchange 

process were described by Nyembe (2010) and are also presented. The data 

generated for loading and elution were then analysed using a NN technique. Results 

obtained are discussed in Chapters 4 and 5. 

 

3.2 Chemical reagents and materials 

 

All chemicals used in this research with respect to the ion-exchange process, including 

hydrochloric acid, sodium hydroxide and potassium hydrogen, were of analytical 

reagent grade (98-99.5%) and were obtained from Sigma Aldrich and Merck. The 

clinoptilolite (natural zeolite) used was supplied by Pratley South Africa and was 

sourced from the Vulture Creek, KwaZulu-Natal province of South Africa.  

 

3.3 Preparation of clinoptilolite and synthetic solutions 

 

3.3.1 Preparation and treatment of clinoptilolite 

 

The natural zeolite used (as material for the removal of copper and cobalt ions from 

synthetic wastewater) was washed with deionized water prior to the treatment with 
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acid to remove surface adherent particles and soluble materials. It was later dried in 

an oven at 120oC for 12 hours to remove the moisture content. The dried sample was 

then crushed with jaw crushers and sieved through screens to a size range of 1-2 mm. 

The clean sample of zeolite was transferred into a round-bottom flask and a known 

concentration (0.26-5.73 M) of hydrochloric acid was added at 30oC and stirred for 24 

hours. Thereafter, the zeolite was separated from the solution by filtration. The filtrate 

was titrated with 0.1 M NaOH solution to determine the concentrations using Equation 

3.1. A sample was crushed to obtain fine particles (75 µm). There after the solids 

separated from the solution were dried at 90oC and analysed with XRF.  

s

NaOHNaOH
HCl

V

xVC
C 2

                                                                                               (3.1) 

Where: C2HCl is the concentration of HCl after (M), CNaOH is the concentration of NaOH 

(0.1M), VNaOH is the volume of NaOH required for titration of the sample of filtration 

(mL) and Vs is the volume of the sample of filtration for titration (10 mL). 

 

3.3.2 Atomic absorption spectroscopy analysis 

 

In atomic absorption spectroscopy (AAS), the solution is atomized in a flame and 

produces atomic vapour of the element being analysed. Monochromatic light of the 

same wavelength as the element being analysed is then emitted by a hollow cathode 

tube containing the same element and is passed through the vaporized sample. The 

element’s atoms absorb the radiant light from a hollow cathode tube and the degree 

of absorption expresses the amount of the element present in the sample (Skoog et 

al., 1998). 
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AAS was used to determine the concentration of Cu (II) and Co (II) in the solution 

before and after the batch sorption experiments described in detail in a previous 

section. This was to determine the performance of the zeolite in recovering the 

targeted metals. The Atomic Absorption Spectrophotometer (a Varian Spectra (20/20)) 

was used with instrument parameters set at wavelengths for the two metals, Cu (324.7 

nm) and Co (240.7 nm), and a spectral band of 0.2 nm for both metals for all AAS 

analyses. The flame type used was air-acetylene. Standards of 1000 mg/L, 2000 mg/L, 

3000 mg/L were then prepared and a calibration curve was drawn using these 

standards. Dilution was applied stoichiometrically where the concentrations of the 

unknown solutions of Cu and Co exceeded the concentration range of the standards. 

 

3.3.3 Synthetic solution preparation 

 

For AAS analyses, solutions of copper and cobalt were prepared by dissolving 

CoSO4.7H2O and CuSO4.5H2O in deionised water to generate solutions that contained 

Cu2+ and Co2+ concentrations of 0.0020 M, 0.0698 M and 0.2000 M. These 

concentrations were arbitrarily chosen on the basis of generating low, middle and high 

concentration solutions. These synthetic aqueous solutions were stored at room 

temperature (approximately 25°C). The samples were used within 48 hours after 

preparation to minimize errors from precipitation and container plating of the metal 

ions. The pH of the solution was adjusted by adding 0.1 M sulphuric acid or 0.1 M 

sodium hydroxide solution. 
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3.3.3.1 Non-mixed Co2+ and Cu2+ solutions 

 

The non-mixed Cu2+ and Co2+ aqueous solutions of concentrations 0.0020 M, 0.0698 

M and 0.2000 M which corresponded to 0.032 g, 1.109 g and 3.177g of Cu2+ and 0.030 

g, 1.028 g and 2.947 g of Co2+ were prepared by dissolving CoSO4.7H2O and 

CuSO4.5H2O salts in deionised water in a 250 ml volumetric flasks. 

 

3.3.3.2 Co/Cu binary synthetic solutions 

 

The possible effects of one cation on the other’s removal efficiency were studied by 

the variation of the metal ion concentration in the solution. Studies on the Co/Cu binary 

synthetic solutions were done with solutions of copper and cobalt prepared at 

stoichiometric ratios of Co:Cu - 1:1, 1:5, 1:9, 5:1 and 9:1 which corresponded to these 

concentrations of Co:Cu - 0.0020:0.0020 M, 0.0020:0.0698 M, 0.0020:0.2000 M, 

0.0698:0.0020 M and 0.2000:0.0020 M respectively. 

 

3.3.4 Adsorption studies 

 

For the sorption studies, the amount of metal sorption was computed as follows:  

% metal sorption by clinoptilolite = 100


i

fi

C

CC
        (3.2) 

Where Ci is the initial concentration and Cf  is the final solution concentration. 
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3.3.5 Verification of sorption mechanism 

 

The following sorption tests were employed to verify the nature of the sorption 

mechanism. Initially, an exact mass (25 g) of the dried original clinoptilolite was 

brought into contact with 25 ml of metal solution. The initial concentrations of Cu2+ and 

Co2+ were 0.0020 M, 0.0698 M and 0.2000 M. Blank solutions containing no zeolites 

were also included. The concentration of the remaining metal ions was analysed using 

AAS. These concentrations were compared with the initial concentrations. Upon 

comparison of the initial and final concentrations, it was evident that indeed metal 

adsorption did take place since the final concentration was lower than the initial 

concentration. 

 

3.4 Experimental procedure 

 

Batch experiments were conducted to determine the effect of pH, operating 

temperature, initial concentration and contact time on the ion-exchange process of 

clinoptilolite as the ion-exchange material. The effect of pH was carried out in a pH 

range of 2-4 and the effect of various operating temperatures ranging from 30, 45, 60 

and 90oC was investigated. Temperature adjustments were conducted in the same 

orbital shaker. Initial concentrations of synthetic solutions were analysed using AAS 

(Model Varian Spectra (20/20)). The samples were taken at predetermined time 

intervals (10, 20, 30, 40, 50 and 60 minutes) on the percentage of Cu (II) or Co (II) 

uptake by the clinoptilolite. In each case, 10 g of the activated clinoptilolite was mixed 

with one litre of the synthetic solution and held in a closed polyethylene flask at 90oC 

for 24 hours. Each experiment was performed in duplicate to observe the 
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reproducibility and the mean value used for each set of values. The percentage of ions 

removed as the output parameter of the NN model was considered as a measure of 

the uptake or elution percentage. The uptake or elution efficiency (%) was calculated 

according to Equation 3.2. 

 

3.5 Data processing 

 

A database is critical when modelling a NN. In the first part (the ion-exchange process), 

the database was generated by collecting a large number of data points from the ion-

exchange experimental data. After evaluating all the experimental results, the 

collected data were arranged in a set of input vectors as a column in a matrix. Then 

another set of target vectors was arranged (the correct output vectors for each of the 

input vectors) to a second matrix in an MS Excel sheet. The input variables were pH, 

temperature and initial concentration. The corresponding Cu (II) or Co (II) removal or 

elution efficiency (%) was used as a target. To ensure that all variables in the input 

data are important, principal component analysis (PCA) was performed as an effective 

procedure for the determination of input parameters. In this thesis, a multiple-layered 

perceptron (MLP) type FFNN was used to model the ion-exchange process (loading 

and elution). All the steps, which are taken to model the system, can be summarized 

as follows: 

 Step 1: the collected and integrated data is stored in a separate data file. 

 Step 2: data transformation is done before starting the network training. The 

pre-processed data is randomly divided by input vectors and target vectors into 

three different sets: training, testing and validation. 



59 
 

 Step 3; the developed MATLAB programme (NN toolbox V4.0 of MATLAB 

mathematical software) is used for data transformation, network construction, 

network training and selecting the best model. 

The NN model comparison is mainly used to choose the optimum number of neurons 

in the hidden layer and identify the type of transfer functions to use in each layer. The 

performance of the NN during training is measured based on the mean square error.  

 

3.6 Conclusion 

 

In this chapter, the synthetic solutions were prepared in order to load and recover the 

Cu (II) and Co (II) using the activated clinoptilolite. The data generated were used to 

create the network and the use of MATLAB NN toolbox software was explained. 
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CHAPTER 4: FEED-FORWARD NEURAL NETWORK ANALYSIS 

 

4.1 Introduction 

 

This chapter presents the analysis for the ion-exchange process using a FFNN 

technique. A MLP type FFNN was used for the modelling of the ion-exchange process 

(loading and elution). For the loading, only copper was used as a heavy metal. It was 

found in the literature that the removal of copper and cobalt from the aqueous solution 

using the ion-exchange capacity of the zeolite has the same behaviour (Mamba et al., 

2009 and 2010).  

 

4.2 Application of the FFNN technique on loading 

 

Five important aspects that must be determined in the design procedure of NNs are 

as follows: (1) selection of the BP training algorithm, (2) data distribution, (3) selection 

of the NN structure, (4) selection of the initial weight and (5) sensitivity analysis (Toma 

et al., 2004). 

 

4.2.1 Selection of the BP training algorithm 

 

Ten BP training algorithms were compared to select the best suited BP training 

algorithm. For all BP training algorithms, a three-layer NN with a tangent sigmoid 

transfer function (tansig) at the hidden layer and a linear transfer function (purelin) at 

the output layer were used. The Levenberg-Marquardt back-propagation algorithm 
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(LMA) with a minimum mean square error (MSE) was found to be the best of 10 BP 

algorithms as shown in Table 4.1. The benchmark comparison showed a loss on the 

optimality of the estimates/results produced by some BP training algorithms. The 

benchmark comparison study resulted in the LMA being able to provide a smaller MSE 

compared to other BP algorithms such as the resilient back-propagation (RP) 

algorithm and conjugate gradient algorithms, as shown in Table 4.2. The smallest MSE 

of about 0.00039 was obtained for the trainlm function. The LMA was therefore 

considered the acceptable training algorithm in this thesis. 

 

Table 4.1: Comparison of 10 BP algorithms  

BP algorithms Function MSE IN R2 BLE 

1. Batch gradient descent 

2. Batch gradient descent with 

momentum 

3. BFGS quasi-Newton back-

propagation 

4. Fletcher-Reeves conjugate 

gradient back-propagation 

5. Levenberg-Marquardt back-

propagation 

6. One step secant back-

propagation 

7. Polak-Ribiere conjugate 

gradient back-propagation 

8. Powell-Beale conjugate 

gradient back-propagation 

traingd 

traingdm 

 

trainbfg 

 

traincgf 

 

trainlm 

trainoss 

 

traincgp 

 

traincgb 

0.55739 

0.61835 

 

0.07200 

 

0.16533 

 

0.00039 

0.18571 

 

0.14871 

 

0.15984 

100 

100 

 

16 

 

14 

 

24 

20 

 

18 

 

13 

0.864 

0.585 

 

0.879 

 

0.822 

 

0.930 

0.826 

 

0.842 

 

0.812 

y = 0.719x + 23.6 

y = 0.350x + 55.3 

 

y = 0.768x + 19.5 

 

y = 0.742x + 20.8 

 

y = 0946x + 4.05 

y = 0724x + 22.6 

 

y = 0.805x + 15.9 

 

y = 0.698x + 25.0 
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9. Scaled conjugate gradient 

back-propagation 

10. Variable learning rate back-

propagation 

 

trainscg 

traingdx 

 

0.14274 

0.6563 

 

 

19 

38 

 

0.888 

0.499 

 

y = 0.846x + 12.6 

y = 0.265x + 62.8 

MSE: mean squared error, R2: correlation coefficient, BLE: Best linear equation, IN: 

iteration number. 

Another important factor in NN design is the type of transfer function. NNs owe their 

non-linear capability to the use of non-linear transfer functions. Different transfer 

functions can be used for neurons in the different layers. Different transfer functions 

were examined in each layer, separately and with respect to the MSE of testing data 

where after the proper transfer functions were chosen. MSE is calculated as in 

Equation 4.1: 

N

SPSP

MSE N

cal 



2

exp )(

                                                                                                  
(4.1) 

Where subscripts cal and exp denote calculated and experimental values of SP, 

respectively. N is the number of validation and training data. 

The most widely used criteria included MSE, root mean square error (RMSE), 

correlation coefficient (R), coefficient of determination (R2) and mean square relative 

error (MSRE) for training, validation and testing data sets and are given in Table 4.2. 

Table 4.2: Statistical criteria for the evaluation of the NN model 

Criterion Training data Validation 

data 

Testing data Total NN 

MSE 0.018 0.250 0.333 0.102 
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RMSE 

R 

R2 

MSRE 

0.127 

0.988 

0.988 

0.003 

0.409 

0.988 

0.987 

0.001 

0.555 

0.988 

0.987 

0.011 

0.219 

0.988 

0.988 

0.003 

 

In probability theory and statistics, R indicates the strength and direction of a linear 

relationship between two variables. In general statistical usage, R refers to the 

departure of two variables from independence. A number of different coefficients are 

used for different situations. The best known is the Pearson product-moment 

correlation coefficient which is explained as in Equation 4.2. 

 









N N

aveavecalcal

N

aveavecalcal

SPSPSPSP

SPSPSPSP

R

)()(

))((

exp,exp,

exp,exp,

                                                            (4.2) 

R2 can have only positive values ranging from R2 = +1.0 for a perfect correlation 

(positive or negative) down to R2 = 0.0 for a complete absence of correlation. 

The advantage of R is that it provides a measure of the strength of the correlation. It 

can be said that R2 represents the proportion of the data that is the closest to the line 

of best fit (Sadrzadeh et al., 2009). 

Among different transfer functions available in MATLAB, the log sigmoid function was 

selected for all neurons due to its better prediction performance than other transfer 

functions. The log sigmoid function is bounded between 0 and 1. Therefore the input 

and output data should be normalized to the same range as the transfer function used. 

In other words, the logarithmic sigmoid transfer function gives scaled outputs (SP) in 

this range (0-1).  
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4.2.2 Data distribution  

 

A training set of ninety experimental data sets: 70%, 15% and 15% for training, 

validation and testing respectively, was selected to develop the model. The NN model 

based on the BP algorithm for experimental data was applied to train the NN. 

During training, the output matrix is computed by a forward pass in which the input 

matrix is propagated forward through the network to compute the output value of each 

unit. The output matrix is then compared with the desired matrix which results in an 

error signal for each output unit. In order to minimize the error, appropriate 

adjustments were made for each of the weights of the network. The training was 

stopped after 24 iterations for the LMA. This was done to give the desired output for a 

given input matrix because the differences between training errors and validation 

errors started to increase. Figure 4.1 illustrates training, validation and test MSE for 

the LMA. 

 

Figure 4.1: Training, validation and test MSEs for the LMA 
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A regression analysis of the network response between the NN outputs and the 

corresponding target was performed. The graphical output of the network was plotted 

the non-linear dependence of the data, linear regression shows a good agreement 

between the NN outputs, predicted data and the corresponding targets (experimental 

values). The figure contains two lines, one is the perfect fit y = T (predicted data = 

experimental data) and other is the best fit indicated by a solid line with best linear 

equation, correlation coefficient (R2) 0.999 and MSE 0.000365. This agrees well with 

the correlation coefficient reported in the literature with a correlation coefficient of 

0.985 for the prediction of nitrogen oxides removal by TiO2 photo catalysis (Toma et 

al., 2004); 0.998 for the prediction of methyl tert-butyl ether (MTBE) by UV/H2O2 

process (Salari et al., 2005); 0.966 for the prediction of polyvinyl alcohol degradation 

in aqueous solution by the photo-Fenton process (Giroto et al., 2006); 0.995 for the 

removal of humic substances from the aqueous solutions by ozonation (Oguz et al., 

2008); 0.98 for the decoloration of Acid Orange 52 dye by the UV/H2O2 process 

(Guimaraes et al., 2008); and 0.997 for the COD removal from antibiotic aqueous 

solution by the Fenton process (Elmolla et al., 2010). 
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Figure 4.2: Regression analysis of the network response between NN output 

and the corresponding targets 

4.2.3 Selection of the NN structure 

 

The optimum number of neurons was determined based on the minimum value of MSE 

of the training and prediction set. The optimization was done by using LMA as a 

training algorithm and varying the neuron number in the range 1-15. The optimal 

number of hidden layers and the optimal number of nodes in each layer are case 

dependent and there is no straightforward method for determining them. Hornik et al. 

(1989) showed that MLP FFNNs with one hidden layer and sufficiently large neurons 

can map any input to each output to an arbitrary degree of accuracy. However, et al. 

(1994) reported that many functions are difficult to approximate well with one hidden 

layer. They revealed that the use of more than one hidden layer provides greater 

flexibility and enables the approximation of complex functions with fewer neurons. 
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Baughman and Liu (1995) established that adding a second hidden layer improves the 

network prediction capability significantly without having any detrimental effects on the 

generalization of the data testing set. It was observed that adding a third hidden layer 

results in a prediction capability similar to that of a two hidden layer network, but it 

requires longer training times due to its more complex structure. 

The optimal architecture of the NN model and its parameter variation was determined 

based on the minimum value of the MSE of the training and prediction set. In 

optimization of the network, two neurons were used in the hidden layer as an initial 

guess. With an increase in the number of neurons, the network gave several local 

minimum values and different MSE values were obtained for the training set. Figure 

4.3 illustrates the dependence between the neuron number and MSE for the LMA 

selected as the best BP algorithm. Figure 4.3 depicts that the MSE of the network was 

much higher for the 2 (MSE 0.151843) and decreased to the minimum value of 

0.000365 when 11 neurons were used. Increasing the neurons to more than 11 did 

not significantly decrease the MSE.  
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Figure 4.3: Relationships between MSE and number of neurons at the hidden 

layer for the LMA 

 

The increment can be attributed to the characteristics of the MSE performance index 

and the input vector [p] used (Yetilmezsay & Demired, 2008). Hence, 11 neurons were 

selected as the best number of neurons. Figure 4.3 shows the optimized NN structure 

(3-11-1). It has a three-layer NN, with tansig at the hidden layer with 11 neurons and 

purelin at the output layer. 
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Figure 4.4: Structure of the NN for the removal 

 

4.2.4 Selection of initial weight 

 

An important problem encountered when training a NN is the determination of the 

appropriate initial values for the connection weights. Effective weight initiation is 

associated with performance characteristics such as the time needed to successfully 

train the network and the generalization ability of the trained network (Adam et al., 

2014). The wrong choice of initial weights can lead to an increase in the training time 

or can even cause the non-convergence of the training algorithm. In order to prevent 

these phenomena, 25 runs were performed using different random values of initial 

weights and the best training network was then selected. 

 

4.2.5 Sensitivity analysis 
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In order to assess the relative importance of the input variables, two evaluation 

processes were used. The first one was based on the NN weight and Garson equation 

(Aber et al., 2009). Garson proposed an equation (4.3) based on the partitioning of the 

connection weights: 

                                                                       (4.3) 

Where, Ij  is the relative importance of the jth  input variable on the output variable, 

iN  and hN  are the number of input and hidden neurons, respectively and W is the 

connection weight. The superscripts ‘I’ ‘h’ and ‘o’ refer to input, hidden and output 

layers, respectively and subscripts ‘k’, ‘m’ and ‘n’ refer to input, hidden and output 

neurons, respectively. 

Table 4.3 shows the relative importance of the input variables calculated by Equation 

4.3. All variables have a strong effect on Cu (II) or Co (II) removal. The initial 

concentration appears to be the most influential variable and the pH has the low 

relative importance. The second evaluation process is based on the possible 

combination of variables (Salari et al., 2005). The performance of the groups of one, 

two and three variables was tested by the optimal NN structure using the LMA with 11 

hidden neurons. The input variables were defined in this form: P1, pH; P2, initial Cu (II) 

ions or Co (II) concentration; P3, temperature. 
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Table 4.3: Relative importance of input variables 

Input variable Importance 

pH 

Initial ions concentration 

Temperature 

42.6 

36.7 

20.7 

 

Table 4.3 shows the results of the sensitivity analysis for different combinations of 

variables. The sensitivity analysis showed that P1 (pH) was found to be the most 

effective parameter among those considered in the group of one variable. As shown 

in Table 4.4, the MSE value (264.4249) significantly decreased to 0.349342, which is 

the minimum value of the group of two variables when P1 was used in combination 

with P3. The MSE (0.349342) decreased to 0.307253, which is the minimum value of 

the group of three variables when all three variables were combined. It can be 

concluded that pH is the most influential variable. In addition, all variables have a 

strong effect on Cu (II) or Co (II) removal and it agrees well with the sensitivity analysis 

using Equation 4.2.  

Table 4.4: Performance evaluation of combinations of input variables  

CN Combination MSE R2 IN BLE 

1 

2 

3 

P1 

P2 

P3 

368.505 

276.165 

264.4249 

0.375 

0.523 

0.642 

 

10 

8 

12 

 

y = 3.75x+785 

y = 7.59x+746 

y = 8.91x+659 

4 

5 

6 

P1+P2 

P1+P3 

P2+P3 

0.884074 

0.349342 

0.663052 

0.404 

0.642 

0.531 

8 

9 

7 

y = 0.405x+28.7 

y = 0.452x+29.2 

y = 0.412x+27.1 
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7 P1+P2+P3 

 

0.307253 

 

0.862 

 

8 

 

y = 0.767x+17.6 

 

CN, combination number; MSE, mean square error; IN, iteration number; R2, 

correlation coefficient; BLE, best linear equation; P1, pH; P2, initial Cu (II) ions or Co 

(II) ions concentration; P3, temperature. 

 

4.2.6 Effect of pH on removal efficiency 

 

To examine the effect of pH, experiments were conducted by varying the pH in the 

range 2-4 at different initial concentrations of copper in the solution. Figures 4.5 to 4.8 

show a comparison between the predicted and experimental values of the Cu (II) 

removal at pH 2, 2.5, 3 and 4. The results show that pH significantly influences Cu (II) 

removal. A decrease in Cu (II) removal at a pH higher that 3 may be due to the fact 

that a high concentration of H+ ions competes with Cu (II) for active sites at low pH, 

with an apparent preponderance of H+ ions. This results in the suppression of Cu (II) 

adsorption on the surface of clinoptilolite. The uptake capacity of clinoptilolite was 

found to be a maximum at pH 4 and at an initial concentration of 0.361 mg/L. Figures 

4.5 to 4.8 show that predicted values are in good agreement with the experimental 

results.  
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Figure 4.5: Comparisons between NN outputs and experimental data for initial 

pH 2 and temperature 30oC 

 

Figure 4.6: Comparisons between NN outputs and experimental data for initial 

pH 2.5 and temperature 30oC   
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Figure 4.7: Comparisons between NN outputs and experimental data for initial 

pH 3 and temperature 30oC 

 

Figure 4.8: Comparisons between NN outputs and experimental data for initial 

pH 4 and temperature 45oC 

 

4.2.7 Effect of temperature on removal efficiency 
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The effect of the temperature on adsorption of Cu (II) was studied by conducting 

different sets of experiments at initial concentrations of 0.361, 1.099, 1.969 and 2.748 

mg/L at the following temperatures (30, 45, 60, 90oC). An increase in temperature was 

expected to increase the movement of cations since at higher temperature 

electrostatic interaction becomes weaker which causes the ions to become smaller 

promoting the adsorption of the ions onto the surface of the adsorbent. The results 

also indicate that the lower the initial concentration, the better the performance. For 

instance at 30oC, the percentage removal is 74% when initial concentration is 2.748 

mg/L compared with 96.59% at an initial concentration of 0.361mg/L. The effects of 

temperature on the removal can be attributed to the activation of the Cu (II) at a higher 

temperature which enhances the adsorption of Cu (II) onto the coordinating sites of 

the treated clinoptilolite. Figures 4.9 to 4.12 show that predicted values are in good 

agreement with the experimental results. 

 

 

Figure 4.9: Comparisons between NN outputs and experimental data for 

temperature 30oC and pH 4 
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Figure 4.10: Comparisons between NN outputs and experimental data for 

temperature 45oC and pH 4 

 

 

Figure 4.11: Comparisons between NN outputs and experimental data for 

temperature 60oC and pH 4 
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Figure 4.12: Comparisons between NN outputs and experimental data for 

temperature 90oC and pH 4 

 

4.2.8 Effect of initial concentration of Cu (II) ions on loading efficiency 

 

To observe the effect of the initial concentration of Cu (II) ions, experiments were 

conducted by varying the initial concentration of copper in the solution. The 

corresponding concentrations were 0.361, 1.099, 1.969 and 2.748 mg/L The operating 

conditions were pH 4 and temperature 30oC. Figure 4.13 shows a comparison 

between the predicted and experimental values of Cu (II) removal. The results indicate 

a marginal decrease in Cu (II) removal with an increase in concentration. Sensitivity 

analysis also confirmed that the initial concentration is the lowest influential variable. 

In terms of the relationship between the experimental results and the predicted values 

of Cu (II) removal by the model, Figures 4.13 to 4.16 show that the predicted values 

are in good agreement with the experimental results. 
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Figure 4.13: Comparisons between NN outputs and experimental data for initial 

concentration of 0.361mg/L 

 

Figure 4.14: Comparisons between NN outputs and experimental data for initial 

concentration of 1.099 mg/L 
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Figure 4.15: Comparisons between NN outputs and experimental data for initial 

concentration of 1.969 mg/L 

 

 

Figure 4.16: Comparisons between NN outputs and experimental data for initial 

concentration of 2.748 mg/L 
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4.2.9 Testing the NN generalization 

 

The statistical significance of the quadratic model was evaluated with the ANOVA. The 

experiment sequence was randomized to minimize the effects of the uncontrolled 

factors. Each response was used to develop a mathematical model that correlates 

with the loading percentage to the experimental variable through the regression model 

equation: 

Y= 62.9 + 1.3X1 + 8.5X2 - 4.8X3 + 0.01X1
2+ 64.2X2

2 + 0.9X3
2 - 8.9X1X2 + 8.4X1X3 + 

6.1X2X3                                                                                                                 (4.4) 

Where: X1, X2, X3 represent pH, temperature and initial concentration.  

The magnitude of the coefficient in Equation 4.4 denotes the intensity while the sign 

indicates the nature of the influence (positive or negative) of the particular variable on 

the response. A positive effect of a factor means that the response is improved when 

the factor level increases, and a negative effect of the factor reveals that the response 

is inhibited when the factor level decreases. 

         

Table 4.5: ANOVA for the regression model 

Source Sum of 

squares 

Degrees of 

freedom 

Mean of 

squares 

F-test 

Model 201.2 9 300.5 48.4 

X1 10.1 1 100.1 25.9 

X2 120.1 1 1200.1 17.3 

X3 80.9 1 80.9 48.6 

X1
2 34.9 1 34.9 62.2 

X2
2 27.2 1 27.2 41.2 

X3
2 12.3 1 12.3 21.1 

X1X2 12.1 1 13.1 20.7 
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X2X3 14.3 1 14.3 24.2 

X1X3 11.2 1 11.5 22.3 

Residual 11.5 20 0.6 - 

 

Prob > F (0.05) which shows that the second order quadratic model is significant for 

ANOVA. The high value of the determination of the coefficient (R2 = 0.91) indicates 

that 91% of the variability in the response is explained by the model. Table 4.5 

indicates that the regression model is reliable in predicting the copper loading 

percentage. It was observed that among the three individual variables studied, the pH 

(X1) has an enormous effect. The initial concentration (X2) has a similar effect and 

temperature (X3) also has a significant effect on the copper loading percentage. 

 

Figure 4.17: Generalization performances of optimal NN: effect of temperature 

and pH 

 

As one can see in Figure 4.17, a rise in temperature resulted in an increase in the 

loading of the metal as expressed as a percentage. The enhancement of the 

adsorption capacity when temperature is increased could be due to increased mobility 
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and diffusion of ionic species. Since diffusion is an endothermic process, it would be 

expected that an increased solution temperature would result in the enlargement of 

pore size due to activated diffusion causing the micro pore to widen and deepen and 

create a great surface area. The pH on the loading percentage was carried out as per 

the selected model with selected ranges of temperature and pH to investigate their 

combined effects on the system. Figure 4.17 shows that if temperature is increased 

from 42.16 to 77.84oC, keeping the initial concentration (0.361 mg/L) constant, the 

percentage loading increases from 54.73% to 68.52%. This can be attributed to the 

fact that the attraction forces between material surface and metal ions are weakened 

and the removal decreases above a certain temperature threshold. Similarly, Aksu and 

Kutsa (1991) found that the thickness of the boundary layer decreases at relatively 

high temperatures, due to the increased tendency of the metal ion to escape from the 

clinoptilolite material surface to the solution, which results in a decrease in the 

removal. 

 

Figure 4.18: Generalization performances of optimal NN: effect of temperature 

and initial concentration 

 



83 
 

The effect of temperature on adsorption of Cu (II) ions was studied by conducting 

different sets of experiments at initial concentrations 0.84 to 2.22 mg/L at different 

temperatures between 42.16 to 77.84oC, keeping the pH 4 constant, and the results 

obtained are presented in Figure 4.18. The increase in temperature is expected to 

increase the movement of cations, since electrostatic interaction becomes weaker at 

higher temperatures, which causes the ions to become smaller and promotes the 

adsorption of the ions onto the surface of the clinoptilolite. It can be observed from the 

results that adsorption of Cu (II) ions increases with an increase in temperature at 

different initial concentrations of the Cu (II) as shown in Figure 4.18. The results also 

indicate that the lower the initial concentration of Cu (II), the better the performance of 

the clinoptilolite. For instance, at 45oC, the loading percentage of Cu (II) is 53.625% 

when the initial concentration is 2.22 mg/L, compared with 72.125% loading when the 

initial concentration is 0.84 mg/L. The effects of temperature on the removal of Cu (II) 

from the aqueous solution can be attributed to the activation of the Cu (II) at higher 

temperatures which enhanced the adsorption of Cu (II) onto the coordinating sites of 

the treated clinoptilolite. 
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Figure 4.19: Generalization performances of optimal NN: effect of pH and 

concentration 

 

Figure 4.19 illustrates the combined effect of pH and initial concentration while keeping 

the temperature (90oC) constant. The pH value of the solution is an important 

controlling parameter in the adsorption process. The initial pH value of the solution 

has a greater influence than the final pH, which influences both the adsorbent surface 

metal binding sites and the metal chemistry in water (Waranusantigul et al., 2003). 

The pH of the feed solution was examined at different pH levels, covering a range of 

2.41 to 3.59. In the case of Cu (II) the maximum adsorption was obtained at pH 3.59 

for 2.26 mg/L. The removal of Cu (II) onto the activated clinoptilolite is pH dependent, 

as shown in Figure 4.19. At pH < 2.70, H+ ions compete with Cu (II) ions for the surface 

of the adsorbent which would hinder Cu (II) ions from reaching the binding sites of the 

sorbent because of the repulsive forces. At pH > 3.30, the Cu (II) gets precipitated due 

to hydroxide anions forming a lead hydroxide precipitate. For this reason the maximum 

pH value was selected to be 3.59. The highest efficiency was observed with a 70.9 % 

loading level at pH of 3.59 for 0.84 mg/L. Horsfall and Spiff (2002) reported that 

adsorption sites take up available metal more quickly at low concentrations. However, 

at high concentrations metals need to diffuse to the clinoptilolite surface by intraparticle 

diffusion. Greatly hydrolysed ions will diffuse at a slower rate because of the saturation 

of the active site available on the clinoptilolite for interaction with metal ions. It can be 

concluded that the loading efficiency increases with decreasing metal concentration in 

aqueous solutions. 
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Based on the developed NN model, the optimization of process variables was carried 

out in order to establish the optimal conditions that ensure the maximal loading 

efficiency.  

It is usually found necessary to check the fitted model to ensure that it provides an 

adequate approximation to the real system. Unless the model shows an adequate fit, 

proceeding with investigation and optimization of the fitted response surface is likely 

to give poor or misleading results. 

 

4.2.10 Mathematical model (MaMo) 

 

Modelling helps to better understand a process and it is usually a simplified system 

that reflects only selected properties of the process. In order to assess the reliability 

of the mathematical model (MaMo), the calculated results were compared with the 

measured experimental data (Tomczak, 2011). 

The process description is based on the mass balance (mass exchange between fluid 

and clinoptilolite) for differential bed height dx. 
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In the literature Equation 4.5 can be solved analytically or numerically, but simplifying 

assumptions are necessary (Engell & Toumi, 2005). The most difficult problem is to 

define the expression 
t

txq



 ),(
 in Equation 4.5. For instance, if the main mass transfer 

resistance is assumed to be on the liquid side, i.e. the resistance of mass transfer from 
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the liquid to the adsorbent granule determines the rate, then 
t

txq



 ),(
 can be described 

using Equation 4.6. 

)()1( eCCa
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q
s 



                                                                                         (4.6) 

In this thesis, expression (
t

q




) can be approximated from sorption kinetics equations. 

In order to investigate adsorption, various kinetic models have been suggested. In 

recent years, numerous kinetics-based models have described the reaction order of 

adsorption systems based on solution concentrations. These include first-order and 

second-order reversible or irreversible reaction kinetics. Reaction (pseudo-first order 

and pseudo-second order) based on the capacity of the sorbent has also been 

presented in this work, such as Lagergren’s pseudo-first order and pseudo-second 

order equations, Ho’s second-order expression and the Elvovich equation (Tomczak, 

2011). 

If we assume that the sorption kinetics depend mainly on chemisorption, as it was 

proved by Benguella and Benaissa (2002), changes in the sorbate (content in sorbent 

particle) can be described by Equation 4.7. 

2*

2 )( qqk
dt

dq
                                                                                                     (4.7) 

Where q is the adsorption (mg/g), q* is the equilibrium adsorption (mg/g) and k2 is the 

coefficient in the pseudo second-order equation (g/mg min). 
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If the sorption kinetics are determined by physical adsorption, then this equation has 

the following form: 

)( *

1 qqk
dt

dq
                                                                                                       (4.8) 

Where: k1 is the coefficient in the pseudo first-order equation (1/min) 

For two points in the column at different distances from the input, concentrations of 

ions both in liquid and adsorbent are different and changes of the concentration are 

delayed in time. This is the reason why the following equation is proposed: 

ξ = {uot – x  for uot ≥ x; 0 for uo< x}                                                                     (4.9) 

This substitution has been used in the literature in the analysis of multi-component 

adsorption (Tomczak, 2010). Every process could be considered from the Lagrange’s 

point of view or Euler’s point of view (a motionless observed). When the variable in 

form (Equation 4.9) is assumed, the adsorption process can be followed from 

Lagrange’s point of view i.e., electrostatic interaction becomes weaker. 

From Equation 4.9 the following transformations are valid 
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The assumption of the new variable (Equation 4.9) offers a possibility of transforming 

Equation 4.5 to the form of the ordinary second-order differential equation of one 

variable. 

Upon substitution of Equations 4.10, 4.11 and 4.12; Equation 4.5 takes the following 

form: 
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                                                                               (4.13)                                                                          

An analytical or numerical solution of Equation 4.13 is possible provided that the 

expression of component 



d

dq
s is known. 

Assuming that at every site of the column, sorption kinetics can be described by 

Equation 4.7 or 4.8, we can find relation )(fq   after a relevant modification of the 

variable. 
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2 )(                                                                                    (4.14) 

After the separation of variables and integration of Equation 4.14 within the range [ξo, 

ξ] and [q (ξo), q (ξ)] we will have the form: 


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1
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q for  uot  ≥ x            and 0)( q     for    uot  < x                              (4.15) 
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kq 2

*

                                                                                                 (4.16) 
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A similar transformation can be done for Equation 4.8 or for another form which 

described the sorption kinetics.  

The derivative 
d

dq
 can be calculated from Equations 4.14 and 4.15. It has the following 

form: 

2
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 (4.17) 

Equations 4.13 and 4.15 can be used to identify the adsorption column. The 

identification will consist of calculations of the coefficients k, q* and Deff by solving 

Equation 4.13 with the use of input-output data measured in the column in definite time 

intervals (e.g. to time of breakthrough and above). 

The integration of Equation 4.13 in the range from ξo to ξ gives the following result: 
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After relevant transformations we get: 
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For this purpose Equation 4.19 should be used. 
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Taking into account Equations 4.16 and 4.18, the final equation takes the following 

form: 
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For uot  ≥ x 

C = 0 for uot < x 

Equations 4.22 and 4.14 enable the calculation of the concentration distribution along 

the column in both the solution and the adsorbent, depending on time and distance 

from the inlet. A similar analysis can be carried out for a multi-component mixture. In 

such a case, each component will have individual coefficients q*, k and Deff (Tomczac, 

2010). 

Mathematical model values and experimental data are depicted in Figures 4.20 and 

4.21. It should be noted that, although experimental values and MaMo curves do not 

completely coincide with each other (significant deviations are observed in some 

cases), they properly describe the trend of the behaviour. Obviously, it can be said 

that MaMo is of great importance because 
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 it satisfies experimental data to a moderately sufficient degree of correlation 

coefficient; 

 it can be used for different scales;  

 it can be easily used to calculate copper removal at different operational 

conditions; 

 it can be used for scale up. 

 

Figure 4.20: MaMo prediction values compared with experimental data: effect 

of pH on the percentage removal at the different temperatures 
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Figure 4.21: MaMo prediction values compared with experimental data: effect 

of pH on the percentage removal at the different concentrations 

 

4.2.11 Comparing the MaMo and NNs 

 

The MaMo and NN modelling predictions and experimental data are juxtaposed in 

Figures 4.22 to 4.23. As can be seen, the NN can predict copper removal at various 

operational conditions much better than the MaMo.  

Excellent agreement between NN results and experimental data indicates the capacity 

of NN to model the complicated process. Figures 4.22 to 4.24 confirm that MaMo tends 

to describe the non-linear behaviour of the ion-exchange process in an almost linear 

manner. According to Figures 4.22 to 4.24, increasing pH, concentration and 

temperature increases the value of the removal. It is obvious due to the fact that 

increasing temperature and concentration decreases the solution resistance, while 

increasing the pH increases the driving force.  
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Taking a closer look at Figures 4.22 to 4.24, it is found that the differences between 

the removal value regarding medium and high levels of parameters are negligible 

compared to those regarding low and medium levels, i.e. at higher values of 

parameters, almost constant values of removal are achieved. 

 

Figure 4.22: Comparisons between MaMo, NN and experimental data: effect of 

temperature on the removal 
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Figure 4.23: Comparisons between MaMo, NN and experimental data: effect of 

pH on the removal 

 

 

Figure 4.24: Comparisons between MaMo, NN and experimental data: effect of 

initial concentration on the removal 

The better performance of the NN model was confirmed by comparing the MSE, 

RMSE and MSRE of two models in Table 4.6. 

 

Table 4.6: Comparison between the MaMo and the NN 

Error NN MaMo 

MSE 0.9697 0.768 

RMSE 0.9520 0.658 

MSRE 0.9527 0.665 

 

4.2.12 Confirmation of experiments 
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To support the optimized data given by numerical modelling under optimized 

conditions, the confirmatory experiments were conducted with the parameters as 

suggested by the model, and the loading was found to be 80%. The effect of pH, 

temperature and initial concentration were studied to support the results, and the data 

is in accordance with the results obtained from optimized conditions.  

 

4.2.13 Conclusion on the loading 

 

MaMo and NN modelling were employed for the prediction of the ion-exchange 

process in aqueous solutions in terms of Cu (II) removal. A (3-11-1) FFNN model with 

a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons and a 

linear transfer function (purelin) at the output layer was proposed to predict the 

efficiency of copper loading. The developed NN model showed a good prediction of 

the experimental data with a satisfactory result. The NN predicted results are very 

close to the experimental results with R2 = 0.997 and MSE = 0.000376.  

A MaMo was obtained to correlate the experimental variables with the loading 

percentage using multiple regression analysis. The analysis of the response surface 

showed that the experimental variables have a significant effect on the loading 

percentage. The NN successfully tracked the non-linear behaviour of removal versus 

pH, temperature, concentration with MSEs, R and MSREs of 0.102, 0.999 and 0.004, 

respectively. The LMA was found to be the best BP algorithm with a minimum MSEs 

for training at 0.00039. 

The NN modelling technique was found to have many favourable features such as 

efficiency, generalization and simplicity, which make it an attractive choice for the 

modelling of highly complex systems and non-linear processes, such as the ion-
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exchange process. 

 

4.3 Application of the FFNN technique on elution  

 

In this part of the thesis, the effects of acid concentration, contact time and bed volume 

on the recovery of copper from clinoptilolite were investigated.  
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Figure 4.25: The optimized NN structure for elution 

A three layer neural network with a tangent sigmoid transfer function (tansig) at the 

hidden layer, and a linear transfer function (purelin) at the output layer were used. 

Figure 4.25 presents the proposed network structure. Levenberg-Marquardt back-

propagation (trainlm) was selected for training the designed networks. The data 

obtained from the experimental values for Cu/Co recovery were applied for network 

training to construct the network model for the elution prediction of percentage values 
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from the input using the MATLAB NN toolbox software. All experimental data were 

divided randomly into three groups (training, testing and validation). The input 

parameters are bed volume, contact time and acid concentration, while the recovery 

percentage was applied as the output parameter. All the data for NN models were 

normalized between 0 and 1 to avoid numerical overflows due to very large or small 

weights (Ghaedi et al., 2014). The normalization equation applied is as follows: 

y = (xi - xmin/xmax – xmin)                                                                                       (4.23) 

where y is the normalized value of xi, the xmax and xmin are the maximum and the 

minimum values of xi, respectively. 

The optimal number of hidden layers and the optimal number of neurons in each layer 

are case dependent and there is no straightforward method for their determination. In 

this work, one hidden layer is used because a significant improvement in performance 

by increasing the number of hidden layers was not observed. Several iterations were 

conducted with different numbers of epochs and neurons of the hidden layer to 

determine the optimal NN structure. The optimum number of neurons or epochs in the 

hidden layer was iteratively determined by changing the number of neurons or epochs. 

The learning curve for training is given in Figure 4.26. 
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Figure 4.26: Learning curves for training, validation and testing 

 

As can be seen in Figure 4.16, the MSE decreases initially and then it becomes 

constant at epoch 24. Therefore, the least MSE was obtained with 10 neurons and 30 

epochs in the hidden layer. Therefore, the optimal structure of the network with 10 

neurons in the hidden layer and 30 epochs was 3-10-1. The tangent sigmoid transfer 

function (tansig) at the hidden layer with 10 neurons and the linear transfer function 

(purelin) at the output layer were used. During the training process, the values of 

weights between individual neurons were assigned. To determine how a NN is 

performing during iterative training, the value of errors was calculated. 

The trained network was used to estimate the response of 26 experimental points. R2 

between actual and estimated responses was determined as 0.9957 for all (training, 

validation and testing) (Figure 4.26). The optimum condition is obtained by the NN as 

the optimized technique is shown in Table 4.7. As can be seen, there is more than one 
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point with a quantitative recovery. However, the optimum condition with the lowest 

amount of bed volume is selected to obtain the higher concentration factor. The 

summary of the optimum condition which is obtained by three different optimization 

methods, are listed in Table 4.7. 

 

Table 4.7: Effect of the number of neurons on MSE, mean absolute error (MAE) 

and regression coefficient (R) 

Neurons MSE MAE R 

2 61.3410 7.832 0.76 

4 245.2670 15.661 0.56 

6 422.3030 20.550 0.70 

8 0.0635 0.252 0.98 

10 0.0014 0.038 1.00 

12 0.0051 0.072 1.00 

14 0.0074 0.086 1.00 

 

In order to investigate the elution behaviour of Co (II) and Cu (II) from the loaded 

clinoptilolite, elution experiments were conducted in which the acidity of the eluent was 

increased (Lee & Nichol, 2007). The elution of Co (II) and Cu (II) from the loaded 

clinoptilolite was carried out using sulphuric acid and hydrochloric acid.  

 

4.3.1 Effect of H2SO4 and HCl on the elution of Co (II) and Cu (II) 

 

The concentrations of H2SO4 and HCl in the solution were varied from 0.2 M to 2 M. 

Figures 4.27 to 4.28 illustrate the effect of the acid concentrations (H2SO4, HCl) on the 

elution of metals (Co, Cu). Observing the plots one can see that HCl elution is best 

accomplished with a concentration of 2 M which provided the sharpest elution curve. 



100 
 

It was able to extract 40% of Cu and Co at 2 bed volumes. The other eluents were not 

as efficient, presenting a slower elution rate. As shown in Figures 4.27 and 4.28, HCl 

was a very powerful metal-desorbing agent compared to H2SO4 as is seen in Figures 

4.27 and 4.29. An acid concentration higher than 2 M was not tested as it was feared 

that the stability of the clinoptilolite might be affected (Riveros, 2010). Figure 4.27 

shows that the Co is easily eluted when compared to Cu in Figure 4.29 due to its low 

charge density. Low charge density exhibits a high need for hydration. Therefore, the 

high affinity of Co for the aqueous phase leads to a faster elution.  

 

 

Figure 4.27: Effect of the H2SO4 concentration on the elution of Co 
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Figure 4.28: Effect of the HCl concentration on the elution of Co 

 

 

 

Figure 4.29: Effect of the H2SO4 concentration on the elution of Cu 
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Figure 4.30: Effect of the HCl concentration on the elution of Cu 

 

4.3.2 NN model for elution 

 

In a parametric method of equilibrium modelling such as the multi-component 

Freundlich isotherm, it is necessary to know the mathematical form of the expressions 

involved. Only in this way can the empirical parameters be estimated from batch 

equilibrium adsorption/desorption data, or from column data as described earlier 

(Riveros, 2010; Van Deventer et al., 1994). Inherent disadvantages of these 

parametric methods are that the selected mathematical forms of the equilibrium 

expressions are not necessarily valid. All relevant variables are not necessarily 

included in the mathematical expressions, and some related processes are ill-defined 

to such an extent that they defy explicit mathematical representation. For example, the 

pre-soaking step is still poorly understood (Van Deventer et al., 1994), and the change 

in the adsorptive capacity of cobalt and copper due to the possible formation of a 

surface compound cannot be modelled adequately by using explicit expressions (Van 
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der Merwe, 1991). 

Therefore, a non-parametric method such as a NN should be used instead to relate 

the equilibrium loading of a species to all the possible variables such as solution phase 

concentrations, temperature and the loading of the clinoptilolite. The main advantage 

is that no functional form needs to be specified a priori, and even semi-quantitative 

data such as the age of the clinoptilolite or the conditions of acid washing could be 

included as inputs. Especially in multi-component elution, it becomes very difficult to 

estimate independently the dependence of the various metals on process conditions. 

When neural nets are used this step-wise estimation of parameters becomes 

unnecessary. The MATLAB computing environment was chosen to generate the NN 

model from the data using the NN toolbox. The hyperbolic tangent (tansig) (being a 

sigmoid transfer function) was chosen for the input to the hidden layer mapping while 

a purely linear transfer function (purelin) was chosen for the hidden layer to the output 

layer mapping. A number of training runs were performed to identify the best possible 

weights in the error BP framework. 
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Figure 4.31: Comparison of experimental data and NN model for Co using 

H2SO4 

 

 

Figure 4.32: Comparison of experimental data and NN model for Co using HCl 
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Figure 4.33: Comparison of experimental data and NN model for Cu using 

H2SO4 

 

 

Figure 4.34: Comparison of experimental data and NN model for Cu using HCl 

 

4.3.3 Conclusion on the elution 

 

The configuration of the FFNN resulting in the smallest MSE was LMA (3-10-1) with a 
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tangent sigmoid transfer function (tansig) at the hidden layer with 10 neurons and a 

linear transfer function (purelin) at the outer layer. The NN predicted results are very 

close to the experimental results with R2 = 0.997 and MSE = 0.000376.  

The NN successfully tracked the non-linear behaviour of the Co/Cu percentage 

recovery versus bed volume, contact time, acid concentration with an MSE, R and 

MAE of 0.0014, 1.00 and 0.038, respectively. The NN modelling technique was found 

to have many favourable features such as efficiency, generalization and simplicity, 

which make it an attractive choice for the modelling of highly complex systems and 

non-linear processes, such as the ion-exchange process. 

 

4.4 Conclusion  

All the other chapters have a final conclusion for the whole chapter. I suggest you 

summarize what you have established about the FFNN analysis. It is required for the 

sake of consistency. 
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CHAPTER 5: GENERALIZED REGRESSION NEURAL NETWORK 

ANALYSIS 

 

5.1 Application of the GRNN to the coal AI 

 

This chapter presents the analysis of the determination of the coal AI using GRNN 

technique. This technique was employed to investigate the AI of thermal coal. 

 

5.1.1 Experimental data on the coal AI 

 

In this study, the proximate analysis data and AI values of more than 67 coal samples 

obtained from different South African thermal power stations were used. See Appendix 

C for more details (Lombard & Potgieter, 2008). Different types of coal are supplied to 

the power stations. They include large nut, small nut, pea, duff and cobble types. Each 

coal sample has specific percentages of H2O, ash, SiO2, pyrite, CaCO3 and remaining 

MM (unidentified mineral matter). Documented values of the AI were used to develop 

and validate the NN based models. 

 

5.1.2 Minerals influencing the abrasiveness quality of coals 

 

Coal contains a wide range of minerals, but it is generally acknowledged that quartz 

and pyrite are the main components in the coal responsible for the wear and abrasion. 

Quartz was established to be twice as abrasive as pyrite by Raask (1985). Carbonates 

are known to be soft and therefore do not contribute to the abrasive quality of coals. 

Only those minerals that are released from the coal during the grinding process, MM 
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that is termed “excluded” will cause abrasive damage. Minerals that remains within the 

coal particles, known as “included” MM, will not be abrasive, nor will the carbonaceous 

material which acts as a lubricant during the grinding process (Wells et al., 2004). 

Quartz is two times more abrasive than pyrite on a weight percentage basis in coal. 

This factor was attributed to quartz which is generally found as large “excluded” 

particles, whereas the pyrite is often “included” in the soft clays and the coal matrix 

(Raask, 1985). 

Figure 5.1: Effects of quartz on the AI of coal 

 

Figure 5.1 illustrates the effects of quartz on the AI using the data from Lombard and 

Potgieter (2008). Quartz is the hardest common mineral associated with coal 

(Bandopadhyay, 2010a).The relationship between the AI and quartz in the coal is 

represented in Figure 5.1. Although there is a considerable scatter of data and a 

relatively poor correlation (R2= 0.725), Figure 5.1 still shows a positive trend. This 

indicates that the concentration of quartz is not the only factor contributing to abrasion. 
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Such scattering of data has also been reported by Spero (1990), Sliger (1996) and 

Bandopadhyay (2010a). 

Figure 5.2: Effects of pyrite on the AI of coal 

 

Figure 5.2 illustrates the effects of pyrite on AI. The relationship between the AI and 

pyrite in the coal is represented in Figure 5.2. Although there is a considerable scatter 

of data and a relatively poor correlation (R2= 0.776), Figure 5.2 shows a positive trend. 

This indicates that the concentration of pyrite is not the only factor contributing to 

abrasion.  

The correlation between the AI and ash percentage has been reported earlier in 

literature (Livingston & Dugdale, 1998; Foster et al., 2004 ; Bandopadhyay, 2010a). A 

linear relationship was found between the two variables, with R2= 0.805 in Figure 5.3. 

A good deal of scatter in the data was observed, which was ascribed inter alia to 

variations in quartz and pyrite content of the coals.The ash yield essentially reflects 

the non-combustible residues of the different minerals associated with the coal. 
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Figure 5.3: Effects of ash on the AI of coal 

 

Figure 5.4 shows that CaCO3 does not have an effect on the AI of coal indicated by 

the R2 as 0.021. Carbonate (CaCO3) is known to be soft and least abrasive and hence 

it does not add to the abrasive quality of coal (Falcon & Falcon, 1987). 

 

 

Figure 5.4: Effects of CaCO3 on the AI of coal 



111 
 

 

Figure 5.5: Effects of MM on the AI of coal 

 

Figure 5.6 shows the relationship between free moisture and the AI of coal. A linear 

relationship was found between the two variables, with R2= 0.762. Moisture is a typical 

coal constituent that is known to cause abrasive wear (Eswaraiah et al., 2008).  

 

Figure 5.6: Effects of free H2O on the AI of coal 
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High moisture content constituents of coals influenced the AI of coal. Spero (1990), 

using three sets of coals, established the evidence of a linear and exponential increase 

respectively between the AI and total moisture (which includes both free and inherent 

moisture).  

Abrasiveness refers to the capacity of coal to wear away or erode the surfaces with 

which it comes into contact. The factors affecting the wear rate or abrasion rate are 

not well understood. It has been suggested that a high content of MM and the presence 

of hard minerals like quartz and pyrite contribute to the abrasive qualities of coal 

(Snyman & Botha, 1993). Meintjies (1965) suggested that there is only a general 

relationship between abrasion and ash content (this is quite likely when high 

proportions of soft clay comprise the ash forming minerals). It was also suggested that 

the nature of the minerals is the major factor governing abrasiveness. The oxides of 

silicon and aluminium form the major part of the ash of the coal studied and a useful 

estimate of the quartz content of the coals can be deduced from these bulk oxides 

found in the ash analysis. The quartz content of the ash of the coals can be related to 

the major element oxides (SiO2 and Al2O3) through the empirical formula (Raask, 

1985).  

 

5.1.3 Application of the NNs on the AI of coal 

 

The GRNN was used to predict the AI of coal to minerals. In this type of NN, the 

network consists of six input neurons and one output neuron. The six input neurons 

represent H2O, ash, SiO2, pyrite, CaCO3 and MM. The output layers had a single 

neuron to represent the AI. 
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5.1.4 Prediction results of abrasiveness based on GRNN 

 

The data of 67 groups of coals were used to manage the training of the design and 

testing of the model. After training the parameters to the allowable range of error, the 

validity of the model was verified by the remaining 30 groups of data. The 

performances of the GRNN model for training and testing data were evaluated 

according to some statistical parameters such as correlation coefficient (R2) and 

RMSE: 
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Where P is the predicted value, O is the observed value, P is the average of the 

predicted value, and O is the average of the observed value of the abrasiveness 

characteristic of coal. 

The performances of the model are given in Table 5.1. 

 

Table 5.1: The performance of the model 

Testing data set Training data set 

RMSE                 R2 RMSE          R2 

   48.11                 0.903      28.13        0.937 

 

The correlation coefficient (R2) is a commonly used statistic and provides information 

on the strength of the linear relationship between observed and computed values. The 

values of R2 close to 1.0 indicate good model performance (Firat & Gungar, 2009). 
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Theoretically, if RMSE equals zero then the model represents the perfect fit, which is 

not possible at all. 

 

Figure 5.7: AI target of the GRNN in the training process versus output 

 

 

Figure 5.8: AI predicted by GRNN in the testing process versus actual 

measured 

 



115 
 

The results of the GRNN model presented in Figures 5.7 and 5.8 and in Table 5.1 

demonstrate that the GRNN can be successfully applied to establish an accurate and 

reliable AI prediction model. 

 

5.1.5 Estimation of abrasiveness characteristics of thermal coal on the AI using 

NNs 

 

The following inputs were used to train the neural network: H2O%, ash %, free SiO2 

%, pyrite %, CaCO3 %, remaining MM %. The individual network for predicting the 

abrasiveness of coal, K takes the following form: 

K = f (H2O, Ash, SiO2, Pyrite, CaCO3, MM)                                                           (5.3) 

Here, f (.) is the underlying non-linear function defined by the networks. To avoid the 

saturation of the neurons, all the input and output values were normalised to numbers 

between 0 and 1. 

A GRNN was used to develop NN models for the estimation of abrasiveness 

characteristics of thermal coal on the AI. Sixty seven batches of data obtained from 

different collieries were randomly divided into three groups, each containing 30, 17, 

20 batches for training, validation and testing, respectively. The network giving the 

least error on the test data was selected. During network training, the training algorithm 

continuously checks the network error on the test data set. The training was terminated 

at the point where the network error on the test data was at a minimum. Early stopping 

is implicit to implement regularisation, which can improve model robustness (Sjoberg 

et al., 1995). The training strategy implemented has the advantages of speed and not 

over-fitting the noise in the data. 
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5.1.6 Comparing work on empirical equations 

 

In order to set an accurate and reliable comparison and evaluation, the model has also 

been tested by the AI prediction equation proposed by Raask (1985). Snyman, Van 

Vuuren and Barnard (1984) suggested that a high content of MM and the presence of 

hard minerals like quartz and pyrite contributes to the abrasive qualities of coal. Raask 

(1985) generated the following predictive equation for the abrasiveness of coal:  

AI = Qc + 0.5Pc + 0.2Ac                                                                                                                                        (5.4) 

Although there are several newer empirical linear formulas in the literature for 

predicting the AI within narrow rank ranges (Stachowiak & Stachowiak, 2001; 

Bandopadhyay, 2010a), the above-mentioned formula is more compatible with 

variables in the present proposed approach. Therefore, this empirical formula was 

used for the comparison. 

 

Table 5.2: Comparison of performances of the prediction model and Raask 

equation 

 Testing data set 

RMSE                         R2 

GRNN               48.11                         0.937 

Raask equation      92.70                          0.684 
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Figure 5.9: Prediction of the AI based on Equation 5.4 

 

A comparison between the performances of GRNN and the Raask equation are given 

in Table 5.2 and Figure 5.9 which has shown that the value of the RMSE of the GRNN 

is lower than that of the Raask equation.   

The prediction of data sets of networks (training data set and testing data sets) based 

on Equation 5.4 is shown in Figure 5.9. It is clear from Figures 5.9 and 5.10 and the 

comparison of R2 of NN-predicted and regression predicted (Equation 5.4) AIs that the 

latter equation has a significantly lower accuracy compared to NN results. The 

prediction was based on a complex set of coals. 
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Figure 5.10: Target of the GRNN versus the output 

 

The comparison of the training and test results with the data is shown in Figure 5.10, 

which demonstrates that in general the predictions from the GRNN fit reasonably well 

with the data, although there are some discrepancies. 

 

Figure 5.11: Comparison of the training results with experimental values 
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In this study, the neuron transfer function f(x) for calculating the weights is in the form: 

f(x) = log [1/1+exp (-x)]                                                                                          (5.5)                                                                                     

NNs are increasingly being used to construct empirical non-linear models for 

inferential estimation and control (Bhat & McAvoy, 1990; Willis et al., 1991). An 

important requirement of inferential estimators is that they should not only provide 

satisfactory estimation accuracy but also be robust to new data. The accuracy and 

robustness of a GRNN model is strongly influenced by the availability of training data. 

In this case, to build an accurate and robust GRNN, ideally a large amount of training 

data must be obtained from coals. To overcome the problem of limited training data 

available, Breiman (1992) and Wolpert (1992) proposed stacked GRNN to improve 

both the accuracy and robustness of a NN model. Since each GRNN model can 

behave differently in different regions of the input space, model accuracy over the 

entire input space can be improved by combining several GRNN models. This 

combination or aggregation of several GRNN models has been termed stacking. The 

data are randomly re-sampled to form a number of different training and test data sets. 

A number of GRNN models are then developed based on each re-sampled training 

and test data set. Instead of selecting a perceived ‘best’ single GRNN for prediction 

purposes, several networks are combined (aggregated) and the aggregated predictor 

is used as the overall model. Results have shown that improved estimations can be 

achieved by using stacked NNs (Sridhar et al., 1996; Zhang et al., 1997). 

A further criterion to ensure the robustness of a GRNN model is the knowledge of the 

magnitude of the underlying prediction error, especially when predictions are made 

outside the region where suitable training data are available. The standard error of 

predictions can be estimated using bootstrap techniques (Efron & Tibshirani, 1993; 

Tbshirani, 1996). Based on the estimated SE, confidence bounds for GRNN 
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predictions can be calculated. A benefit of using the boot-strap re-sampled data sets 

is that the confidence bounds of the model predictions can be calculated automatically. 

Two approaches to the generation of realistic confidence bounds were described and 

compared by Shao et al. (1997). 

Since good training results do not guarantee reliable predictions on unseen data, 

explicit error bars should be placed on model predictions to provide the user with a 

clearer idea of how confident he can be of the model. GRNN predictions encompassed 

by confidence bounds provide a more robust and credible model of the forecast, and 

provide the users with greater confidence when using such models. 

In industrial applications, the abrasive properties of coal can lead to serious 

operational problems at a power station. Wear of pulverising mills can reduce the size 

control of the pulverised coal particles and may ultimately lead to mechanical failure 

of mill components. Expensive maintenance programmes are required to keep a utility 

operating efficiently (Wells et al., 2004). Understanding the abrasive and erosive 

properties of specific coals is thus very important, allowing the frequency of 

maintenance work to be optimized minimising the risk of failures requiring 

unscheduled outages of the machinery. 

A separate GRNN model based on values of different parameters other than training 

data needs to be developed for predictions of abrasiveness characteristics of thermal 

coal on the AI in industrial applications. 

 

5.1.7 Sensitivity analysis 

 

In this study, the influence of the characteristics of quartz (Qc), ash (Ac), pyrite (Pc) and 

water (Hc) are found to be the main components in the coal responsible for the wear 
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and abrasion. Four different models are constructed to investigate these parameters. 

The first one, called the GRNN 1 model, includes Qc, Pc, Hc and CaCO3 as input 

variables. The second model called GRNN 2, includes Qc, Pc, Ac and Hc as input 

variables. The third model called GRNN 3, includes Pc, Ac, Hc and CaCO3. The last 

model called GRNN 4, includes Qc, Ac, Hc and CaCO3. These models are trained and 

tested by the GRNN. 

 

Table 5.3: Comparison of performances of GRNN models 

Models Testing data set Training data set 

 

GRNN 1 

GRNN 2 

GRNN 3 

GRNN 4 

RMSE               R2 RMSE                 R2 

48.01             0.873 

52.68             0.787 

62.21             0.732 

92.30             0.482 

 28.13               0.924 

 37.28               0.876 

 38.31               0.865 

 50.85               0.667 

 

As can be seen from Table 5.3, the performance of the GRNN 1 model is better than 

the other models. It can be said that Ac is the least influential component in coal 

responsible for the wear and abrasion. It appears that the effect of Qc on model 

performance is significant because the GRNN 3 model, which does not include Qc as 

input variable, is worse than other models. As a result, it can be said that Qc is the 

most influential variable on performance in the AI prediction models. 

 

5.2 Conclusion 

 

An evaluation of the effectiveness of the use of a NN model was made to predict the 
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efficiency of copper and cobalt ions removal from aqueous solutions. The effect of 

operational parameters such as adsorbent dosage, concentration of copper and cobalt 

ions, solution of the pH, operating temperature and contact time were studied to 

optimize the conditions for the maximum removal of copper and cobalt ions. For the 

loading the experimental results showed that a contact time of 45 minutes was 

generally sufficient to achieve equilibrium. After BP training combined with principal 

component analysis, the NN model was able to predict adsorption efficiency with a 

tangent sigmoid transfer function (tansig) at a hidden layer with 11 neurons and a 

linear transfer function (purelin) at the outer layer. The LMA was found as the best of 

11 BP algorithms with a minimum MSE of 0.00069193 at epoch 24. The efficient result 

for the metal adsorption was expressed as an absolute value. 

The elution of Co (II) and Cu (II) from clinoptilolite with HCl and H2SO4 at different 

concentrations was investigated. It was found that HCl at 2M has a high elution rate 

compared to the H2SO4. An effort has been made to model the elution of the Co (II) 

and Cu (II) process using the NN approach. The NN model (3-10-1) developed from 

the limited experimental data scored fairly well on the validation experiments.  

The result of the GRNN model demonstrates that the GRNN can be successfully 

applied for predicting the abrasiveness characteristics of thermal coal. In order to 

evaluate the performance of the GRNN model, the Raask equation taken from 

literature was used. Comparing the results of the methods, it was seen that the 

performance of the GRNN technique is better than other techniques.  

In this study, moreover, sensitivity analysis was conducted to determine the influences 

of the input variables on the performance of the model. For this, four different models 

were trained and tested with GRNN techniques using the same training and testing 

data set. The result showed that quartz is the component in coal with the highest 
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responsibility for wear and abrasion, while ash is found to be the component least 

likely to cause abrasive wear. The performance of the GRNN for the prediction of 

abrasiveness characteristics of thermal coal was found to be impressive. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Introduction 

 

Two objectives were pursued in this thesis. The first was to assess the ability of NNs 

to model the ion-exchange process using the activated clinoptilolite, and the second 

to investigate the possibility of the prediction of abrasiveness characteristics of thermal 

coal expressed in the AI. 

The results of the investigations and recommendations for further research studies are 

summarized in the following paragraphs. 

 

6.2 Conclusions 

 

6.2.1 The ion-exchange process 

 

A three-layer FFNN was optimized to predict the ion-exchange process in aqueous 

solutions in terms of Cu/Co (II) removal. The configuration of the FFNN giving the 

smallest MSE was LMA (3-11-1), with a tangent sigmoid transfer function (tansig) at 

the hidden layer with 11 neurons and a linear transfer function (purelin) at the outer 

layer for loading. The NN predicted results are very close to the experimental results, 

with R2 = 0.997 and MSE = 0.000376. The sensitivity analysis showed that all variables 

studied (initial concentration, pH and temperature) have a marked effect on the 

process. For elution, the configuration of the FFNN giving the smallest MSE was LMA 

(3-10-1), with a tangent sigmoid transfer function (tansig) at the hidden layer with 10 
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neurons and a linear transfer function (purelin) at the outer layer. The NN predicted 

results are very close to the experimental results, with R2 = 0.997 and MSE = 

0.000376. The NN successfully tracked the non-linear behaviour of Co/Cu percentage 

recovery versus bed volume, contact time, acid concentration with an MSE, R and 

MAE of 0.0014, 1.00 and 0.038, respectively. 

The NN results showed that NN techniques could effectively simulate and predict the 

behaviour of the ion-exchange process. 

 

6.2.2 The coal AI 

From the review of published work related to the prediction of coal, we show the need 

to develop NN models for predicting the abrasiveness characteristics of thermal coal. 

The following inputs were used to train the NN: H2O%, ash %, free SiO2 %, pyrite %, 

CaCO3 % and remaining MM %. In the individual network for predicting the 

abrasiveness of coal, k takes the following form: k = f (H2O, Ash, SiO2, Pyrite, CaCO3 

and MM). Here, f (.) is the underlying non-linear function defined by the networks. To 

avoid saturation of the neurons, all the input and output values were normalised to 

numbers between 0 and 1. 

The GRNN was used to develop NN models for the estimation of abrasiveness 

characteristics of thermal coal on the AI. The result of the GRNN model demonstrates 

that the GRNN can be successfully applied for predicting the abrasiveness 

characteristics of thermal coal. In order to evaluate the performance of the GRNN 

model, the Raask equation from literature was used comparing the results of the 

methods. It was seen that the performance of the GRNN technique is better than other 

techniques. In this study, moreover, sensitivity analysis was conducted to determine 

the influences of the input variables on performance of the model. For this, four 
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different models were trained and tested by GRNN techniques using the same training 

and testing data set. The result showed that quartz (Qc) is the most influential 

component in coal responsible for wear and abrasion while ash is found to be the 

component to be the least probable to cause abrasive wear. The performance of the 

GRNN technique for the prediction of abrasiveness characteristics of thermal coal was 

found to be impressive. 

 

6.3 Recommendations 

 

We have shown that the NN can accurately predict the non-linear behaviour of the ion-

exchange process. We recommend this study to be extended to use more input 

parameters. The number of parameters should be increased in order to increase the 

accuracy of prediction. 

We have assessed the ability of the NN to predict the abrasiveness characteristics of 

thermal coal. Since the possibility of NNs to predict the AI of coal has been proven, 

we recommend the use of the parameters such as liptinite, vitrinite and sulphur content 

on the AI which has the potential to improve the accuracy of modelling results.   
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APPENDICES 

 

Appendix A: Physical Properties of Clinoptilolite 

1. Main phase: 80-85% clinoptilolite (XRD, BET & analysis) 

2. Main impurities: Paline Cristobalite, K-Feldspar & trace of Sanidine 

3. Refractive index: 1.484 

4. Density or Specific gravity: 2.2 g/cm3 

5. Bulk density of the ore: 1.92 g/cm3 

6. Packing density: 0.99 kg/m3 

7. Thermal stability: it can be heated to over 700oC before the alumina-silicate 

framework collapses 

8. Acid and alkaline stability: stable from pH 3 to12 

9. Colour: reflection white: 80% [MgO = 85%] 

10. Hardness: hardness is 3.5-4.0 MOH pore size 

11. Pore size: 3.5-6 Angstroms [3.5 Ǻ] 

12. Pore volume: approximated 5-10%, the bulk density of the rock as determined 

by immersion in mercury is 1.92 g/ml3. 
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Appendix B: Atomic Absorption Spectroscopy: Results for Loading and 

Elution 

Loading       

Co        

Co:Cu        

Time 0.5:1 1.5:1 2:1 1:1 1:2 1:1.5 1:2 

0 296.0848 282.4247 282.8222 282.7631 282.1653 281.9453 282.2021 

10 210.7113 234.8125 228.8817 218.5620 193.2690 215.6950 199.2654 

20 210.8552 234.7880 228.7658 218.3260 193.0291 214.6952 199.3650 

30 210.4760 234.6872 228.1005 218.0597 192.3654 214.2365 197.9532 

40 210.4124 234.5613 227.4147 217.8560 192.1321 212.3021 196.5827 

50 209.9958 234.2392 227.0950 216.9650 192.0329 202.0396 196.5640 

60 209.7430 234.0923 226.8572 216.5321 191.9985 200.9653 195.3654 

        

Cu        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0 298.2897 298.5117 298.2748 298.102 297.6214 297.2336 297.1168 

10 201.6660 224.9125 226.5227 208.9375 193.7099 224.5856 209.7291 

20 201.4145 224.7980 226.4298 208.0874 193.2317 224.4529 209.5172 

30 201.3823 224.6888 226.1464 208.4044 193.7141 224.7346 208.1461 

40 201.2865 224.6613 226.1336 208.1581 193.5009 224.2106 207.9765 

50 201.1801 224.3392 226.0881 208.4989 193.4634 201.3865 206.8784 

60 201.1020 224.0911 225.9868 208.1527 193.3649 202.1168 206.2748 
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Elution 2 M (HCl)     

Co        

Co:Cu        

Time 0.5:1 1.5:1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 15.039 14.5538 17.326 15.943 16.159 14.195 21.826 

20 15.383 14.3638 17.312 15.860 16.265 14.177 21.802 

30 11.241 14.3259 17.337 15.854 16.181 14.244 21.745 

40 12.486 14.2827 17.299 16.259 15.117 14.226 21.665 

50 14.614 14.2739 17.001 16.256 15.163 14.252 21.629 

60 14.506 12.5117 16.934 16.233 15.102 14.246 21.612 

        

Cu        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 14.106 15.3488 19.303 17.943 18.100 16.195 23.826 

20 14.080 15.3578 19.312 17.860 18.059 16.177 23.802 

30 14.070 15.3218 19.336 17.854 18.111 16.244 23.786 

40 14.057 15.2927 19.299 18.259 16.117 16.217 23.665 

50 14.070 15.2739 18.001 18.256 16.163 16.252 23.635 

60 14.056 12.5117 17.934 18.233 16.102 16.246 23.659 
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  1M (HCl)      

Co        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 14.039 14.5538 16.326 14.943 14.559 13.195 21.826 

20 14.383 14.3638 16.312 14.860 14.265 12.177 21.702 

30 13.241 13.3259 15.356 14.754 14.181 11.244 21.645 

40 12.486 12.2827 15.299 14.259 13.117 11.226 21.665 

50 12.614 12.2739 15.001 13.256 12.163 11.248 21.629 

60 12.506 11.5117 13.934 13.233 12.102 11.246 21.612 

        

Cu        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 13.106 13.3488 17.783 15.943 16.189 14.195 22.826 

20 12.880 13.5678 17.312 15.860 16.059 14.177 21.802 

30 12.070 13.3218 16.336 15.854 15.111 13.244 21.786 

40 12.057 13.2927 16.299 14.259 14.117 13.217 21.665 

50 12.070 12.2739 15.001 14.256 13.163 12.252 20.635 

60 12.056 11.5117 14.934 14.233 13.102 12.246 19.659 

 

 

        



131 
 

 

        

  0.5M (HCl)      

Co        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 13.039 13.5538 15.326 13.943 13.559 12.195 20.826 

20 13.383 13.3638 15.312 13.860 13.265 12.177 21.702 

30 12.441 12.3259 14.356 13.754 13.181 11.244 21.645 

40 11.486 11.2827 14.299 13.259 13.117 11.226 21.665 

50 10.614 11.2739 14.001 13.256 12.163 11.248 21.629 

60 10.506 11.1117 13.934 13.233 12.102 11.246 21.612 

        

Cu        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 12.106 12.3488 16.783 14.943 15.189 13.195 20.826 

20 11.880 11.5678 16.312 14.860 15.059 12.177 20.802 

30 11.070 11.3218 15.336 13.854 14.111 11.244 19.786 

40 11.057 11.2927 15.299 13.259 13.811 13.217 19.665 

50 10.070 10.8739 15.001 12.256 13.163 12.252 19.635 

60 10.056 10.5117 14.934 12.233 13.102 12.246 18.659 

 

 

        



132 
 

 

 

Elution 2M (H2SO4)     

Co        

Co:Cu        

Time 0.5:1 1.5:1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 14.0391 13.8538 16.9268 15.9565 16.1590 14.1959 21.8265 

20 14.3834 13.3838 16.6528 15.8605 16.2659 14.1779 21.8026 

30 12.2419 13.3289 16.3378 15.8545 16.1810 14.2445 21.7459 

40 12.4869 13.2927 16.2996 14.2599 15.1170 14.2269 21.6659 

50 11.6140 13.2889 16.0019 14.2565 15.1639 14.2523 21.6291 

60 11.5064 12.5117 15.9349 14.2336 15.1020 14.2467 21.6126 

        

Cu        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 13.1062 15.3488 19.3038 17.9435 18.1000 16.1959 23.8265 

20 13.0803 15.3578 19.3128 17.8605 18.0590 16.1779 23.8026 

30 12.0701 15.3218 19.3364 17.8545 18.1110 16.2445 23.7869 

40 12.0574 15.2927 19.2996 18.2599 16.1170 16.2179 23.6659 

50 12.0706 15.2739 18.0019 18.2565 16.1639 16.2523 23.6351 

60 12.0561 12.5117 17.9349 18.2336 16.1020 16.2467 23.6596 
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  1M (H2SO4)     

Co        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 13.0391 14.5538 16.3268 14.9435 14.5590 13.1959 21.8265 

20 13.3834 14.3638 16.3128 14.8605 14.2659 12.1779 21.7026 

30 12.2419 13.3259 15.3568 14.7545 14.1810 11.2445 21.6459 

40 11.4869 12.2827 15.2996 14.2599 13.1170 11.2269 21.6659 

50 10.6140 12.2739 15.0019 13.2565 12.1639 11.2483 21.6291 

60 10.5064 11.5117 13.9349 13.2336 12.1020 11.2467 21.6126 

        

Cu        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 12.1062 13.3488 17.7838 15.9435 16.1890 14.1959 22.8265 

20 11.8803 13.5678 17.3128 15.8605 16.0590 14.1779 21.8026 

30 12.0701 13.3218 16.3364 15.8545 15.1110 13.2445 21.7869 

40 11.0574 13.2927 16.2996 14.2599 14.1170 13.2179 21.6659 

50 11.0706 12.2739 15.0019 14.2565 13.1639 12.2523 20.6351 

60 11.0561 11.5117 14.9349 14.2336 13.1020 12.2467 19.6596 
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  0.5M (H2SO4)     

Co        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 12.0391 13.5538 15.3268 13.9435 13.5590 12.1959 20.8265 

20 12.3834 13.3638 15.3128 13.8605 13.2659 12.1779 21.7026 

30 11.4419 12.3259 14.3568 13.7545 13.1810 11.2445 21.6459 

40 10.9869 11.2827 14.2996 13.2599 13.1170 11.2269 21.6659 

50 10.6140 11.2739 14.0019 13.2565 12.1639 11.2483 21.6291 

60 10.5064 11.1117 13.9349 13.2336 12.1020 11.2467 21.6126 

        

Cu        

Co:Cu        

Time 0.5: 1 1.5 :1 2:1 1:1 1:2 1:1.5 1:2 

0        

10 12.1062 12.3488 16.7838 14.9435 15.1890 13.1959 20.8265 

20 11.8803 11.5678 16.3128 14.8605 15.0590 12.1779 20.8026 

30 11.0701 11.3218 15.3364 13.8545 14.1110 11.2445 19.7869 

40 11.0574 11.2927 15.2996 13.2599 13.8117 13.2179 19.6659 

50 10.0706 10.8739 15.0019 12.2565 13.1639 12.2523 19.6351 

60 10.0561 10.5117 14.9349 12.2336 13.1020 12.2467 18.6596 
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Appendix C: Proximate Analysis of Coal (Lombard & Potgieter, 2008) 

 

No Ash (%) Free SiO2 

(%) 

Pyrite (%) CaCO3 Remain 

MM (%) 

AI 

1 27.1 2.8 1.8 4 23.9 236 

2 29.3 6.6 0.8 4.4 23.3 431 

3 22.4 4.4 1.1 4.9 16.5 190 

4 11.5 0.1 1.1 3.4 9.3 89 

5 11.2 0.1 0.9 2.8 9.7 68 

6 20.9 3.1 1.1 0.6 20.3 86 

7 19.2 3 1.1 0.6 18.4 74 

8 20 2.9 2.8 0.2 18.1 116 

9 18.9 2.6 2.7 0.5 17 127 

10 18.8 3.4 1.1 0.5 17.6 172 

11 16.1 0.8 0.9 3.8 13.8 86 

12 7.1 0.4 0.3 1.5 6.2 61 

13 11.1 2.9 0.4 0.1 9.9 109 

14 13.3 4 0.6 0.1 11.02 152 

15 11 3.9 0.5 0.1 8.7 132 

16 9.5 2.9 0.2 0.1 8.2 138 

17 23.4 4.7 1.1 3.4 18.9 206 

18 18.5 2.1 2.4 5 12.4 142 

19 16.6 1.9 1.5 5 11.6 122 

20 16.2 2 1.4 4.7 11.3 104 
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21 15.2 2.1 1 3.9 11.2 79 

22 15.3 2.2 0.6 3.9 11.7 115 

23 18.2 3.1 1.1 4 13.6 134 

24 20.2 5.9 1.2 0.2 16.9 354 

25 19.2 5.4 0.9 0.5 16.2 350 

26 16.5 4.1 0.8 0.3 14.5 357 

27 17.9 1.6 1.2 4 14.7 187 

28 16.9 1.1 0.7 3.3 14.8 127 

29 18 2.9 0.9 3.2 14.6 229 

30 17.7 3.2 0.7 2.8 14.5 231 

31 14.1 2.2 0.3 35 10.9 180 

32 14.3 1 1.9 4.4 9.9 161 

33 15 1.8 0.9 2.5 12.8 133 

34 13.4 1.5 0.4 2.5 11.8 98 

35 24.9 4.6 1.4 0.7 23.2 340 

36 10.2 0.3 0.8 1.1 10 65 

37 9.5 0.3 0.5 0.7 9.9 49 

38 9.5 0.5 0.2 1.2 9.5 41 

39 9.6 0.6 0.2 1.2 9.5 50 

40 9 0.4 0.3 1.4 8.7 38 

41 16.5 2 1.7 1.6 14.5 112 

42 12.5 0.8 1 3 10.2 106 

43 6.6 0.4 0.5 1.2 5.8 55 

44 14.8 0.3 0.9 3.9 12.7 42 
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45 15.1 0.3 0.7 3.8 13.3 44 

46 17.3 2.1 0.5 3.7 14.4 124 

47 11.4 0.3 0.4 3.6 9.4 58 

48 7.9 0.1 0.4 1.2 7.8 50 

49 12.6 1.2 0.6 3.4 10 132 

50 13.1 0.8 0.8 3.4 10.7 101 

51 6.1 0.3 0.4 1.1 5.4 42 

52 16.1 1.4 1.3 0.2 16.3 147 

53 15.7 1.7 1.9 0.1 15.1 185 

54 15.9 1.5 2.2 0.1 15.3 159 

55 23 3.9 2.4 0.2 21.1 375 

56 14.6 1.8 0.7 2 13 173 

57 9.6 0.2 0.6 2.8 7.9 73 

58 14.9 0.7 0.7 3.3 13.2 79 

59 7.1 0.2 0.4 1 6.9 60 

60 16.9 2.4 3.6 4.4 9.9 203 

61 16.6 2.8 3.3 3.8 10 200 

62 18.2 3.1 2 3.9 12.9 180 

63 24.3 3.1 0.3 0.1 25.6 135 

64 25.2 2.8 0.5 0.2 26.8 133 
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