Comparative Study on Energy Consumption at the University of Johannesburg Residences

Olusola O. Ayeleru, Joshua A. Adeniran, Sula Ntsaluba and J. J. de Koker

Abstract—This study evaluates the pattern of energy usage at the twenty-eight residences of the University of Johannesburg during the 2016 academic year. The study investigates the trend of energy consumption based on total energy usage per residence in terms of the number of students at each of the residences on a monthly and daily basis. The data employed in this study were collected over a period of eleven months which is the overall effective academic calendar. The results obtained showed a contrast between the total energy usage per residence and energy usage per student. Sophia town residence recorded the highest total annual energy usage of 149286 kWh while Takalani residence recorded the least which was 97093 kWh of all the residences considered in this study. However, when energy consumption was measured as a function of number of students in each residence, Goudstad residence recorded the highest monthly energy usage per student (450.69 kWh), followed by YMCA (389.09 kWh) while the least monthly energy usage of 51.30 kWh was recorded in Maqhawe residence. Similarly, results obtained from the study on daily energy usage per student in the last five months of the 2016 academic year showed Goudstad residence (23.32 kWh) and YMCA (20.34) as the two residences with the highest daily energy usage per student respectively. However, the energy usage does not follow a regular pattern within the period under consideration.

Index Terms—Energy usage, University of Johannesburg, Residences, South Africa

1 INTRODUCTION

The increasing pressure on energy has become an issue of global concern [1]. This necessitates a reduction in energy consumption from all sectors of the economy, if sustainability would be achieved [2]. A sustainable energy system is that in which energy needs is provided for the present generation without compromising the ability of future generations to satisfy their own energy needs [3]. The sectors of the economy where reduction in energy consumption become very paramount include the residential, commercial, industrial, electric power and transportation [4],[5]. A study has shown that buildings contribute about 33% of GHG emissions across the globe when fossil fuels are used [6]. Recent study has also shown that the residential and commercial sectors which comprise of homes and buildings accounted for about 12% of the energy consumption somewhere around the world [5]. Energy consumption at the residential sector is grouped into four and this comprises of lighting, heating, cooling and other household appliances [7]. The crucial parameters that are needed to evaluate the changes in electricity consumption are the economic drivers, demand side management and technologies [8].

In many nations of the world, governments are continuously aware of the need to utilize energy efficiently. Energy efficiency is the amount of useful energy obtained from a system [9]. It is also the most cost-effective means to improve energy security and reduce emission of greenhouse gases (GHGs) to the environment [10],[11]. Energy efficiency is a core of a low-carbon economy [12]. When energy usage is reduced, energy bills also reduce, thus making energy system more sustainable and emission of GHGs reduce drastically [13],[14]. High energy usage poses environmental challenge which results to emission of gases which comprise of carbon dioxide (CO₂), methane (CH₄) and nitrogen oxide (NO) [15]. Emissions of carbon dioxide (CO₂) to the environment contribute greatly to global climate change [16]. Climate change reduces the quality of air in the urban areas and it also impact the marine environment negatively [17],[18]. Climate change and global warming are interdependent [19]. Global warming is the rise in the average temperature on the surface of the earth. As the temperature of the earth increases, various disasters also increase. Global warming is the cause of these disasters and climate change is the effect it poses on the earth surface [20]. Global warming may also aggravate the negative impacts on the growth of plants through the spreading of pests and diseases [21].

All over the world, energy is crucial to economic development [22],[23]. Energy is taken for granted in South Africa. The reason for this is because people are not educated on the impacts that result from the misused of energy resources and also the benefits that ensue from energy efficiency. Energy efficiency can only be achieved when people are properly educated [24]. Oftentimes, energy usage is not visible to the user, hence people do not

(e-mail: sulan@uj.ac.za).

O.O. Ayeleru, Department of Chemical Engineering, Doornfontein Campus, University of Johannesburg, P O Box 254, Johannesburg 2094, South Africa (e-mail: olusolaolt@gmail.com).

J. A. Adeniran is with Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Campus 2006, South Africa (e-mail: nikjocrown2000@yahoo.com).

N. Sula, Project Manager (University of Johannesburg Sustainability Program), Faculty of Engineering and Built Environment

J.J. de Koker, Director Sustainable Energy Technology and Research Centre (SeTAR), Faculty of Engineering and the Built Environment University of Johannesburg, South Africa (e-mail:johandk@uj.ac.za).

really realize the impact that their actions are making on the environment and how their activities can affect the future generation from meeting their own energy needs. Therefore, it becomes very imperative that energy usage be made visible to users so that there can be attitudinal changes [25].

A detailed study on the pattern of energy consumption is very crucial in order to assist the policy makers and other stakeholders in the energy sectors on how to devise various intervention mechanisms to ensure responsible usage of energy resources. Energy consumption data may be available on a broader scale, for example; in the municipalities, cities or counties. It is also very pertinent to make energy consumption data available at the institutional levels. A careful study on energy usage pattern on a smaller or fragmented scale will provide better insights on the trend of energy consumption within an institution. Also, this will provide a sustainable approach to energy reduction plans. Additionally, this will ensure that energy efficiency is achieved at both the residential and commercial sectors [26],[27].

Furthermore, in South Africa, the bulk of the energy generation is obtained from coal fire power plants, which is known to be a high emitter of greenhouse gases [28].

This paper aims to compare the amount of energy consumptions among the University of Johannesburg Students' Residences.

2 DESCRIPTION OF THE STUDY AREA

Johannesburg is one of the cities across the globe that is not situated on coast and not on any major river. It is often referred to as the City of Johannesburg (CoJ). It is located in Gauteng province (GP) in the eastern plateau of South Africa (SA). It occupied a height of approximately 1,753 m. Johannesburg was formerly decentralized into 11 regions but currently, it has been merged and the results of the merger has reduced it into 7 regions. The regions consist of Regions A to G.

The current population of Johannesburg is about 4.4 million which is about 36% of the population of Gauteng and approximately about 8% of the total population of SA. The University of Johannesburg is located in Johannesburg and it is one of the residential universities in SA. It was founded in 2005 following the merger that took place among the Rand Afrikaans University (RAU), the Technikon Witwatersrand (TWR) and the Soweto and East Rand campuses of Vista University. It comprises of four campuses. All of these four campuses are widely spread across the city. The campuses are Auckland Park Kingsway which is the main campus followed by Auckland Park Bunting Road, Doornfontein and Soweto. The staff and students of the university came from more than 50 nations of the African continent and also from other nations across the globe [29], [30], [31].

3 METHODOLOGY

Remote data loggers (RDLs) were connected to the meters situated at the student residences. The RDL records data of energy usage at each of these residences. Data were collected and uploaded into software known as Metering Online. With the aid of the Metering Online, data for the energy consumptions were generated for each of the residences. The name of the company that owns the software is known as Power Meter Technique. The data for the number of the students who resided at each of the residences were obtained from the management of the University of Johannesburg Student Accommodation and Residence Life. These data were analysed and the results obtained were represented both in tabular forms and graphically.

4 RESULTS AND DISCUSSIONS

The results of the data obtained from the analysis carried out using Metering Online are represented in tabular and graphical forms as follows;

4.1 Daily energy usage per student

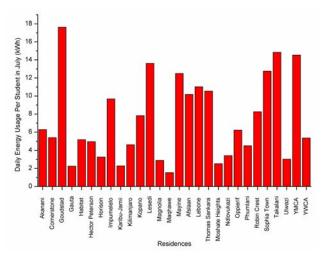
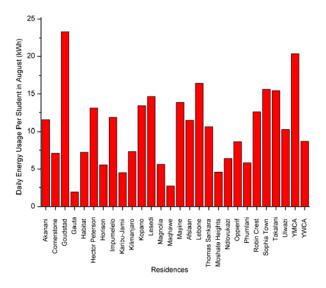
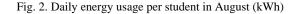




Fig. 1. Daily energy usage per student in July (kWh)

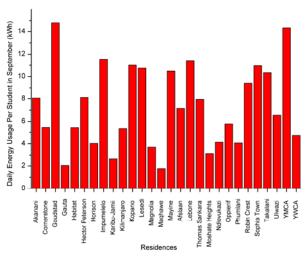


Fig. 3. Daily energy usage per student in September (kWh)

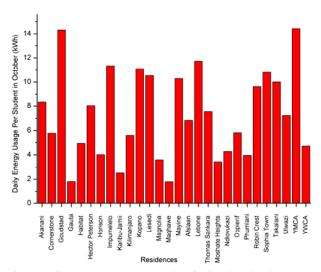


Fig. 4. Daily energy usage per student in October (kWh)

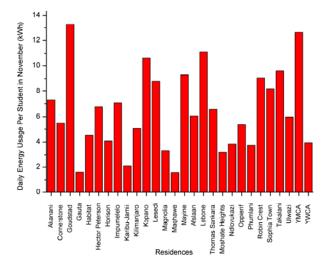


Fig. 5. Daily energy usage per student in November (kWh)

The last five months of the academic session were chosen being the winter period. Winter season normally starts around June every year but it is always at the peak around July and some periods in August. Additionally, it is also the second semester period of an academic calendar when students will be very busy period with various activities. Thus, energy consumptions by the students will be very high at this period since more electricity will be consumed.

Figure 1 to Figure 5 showed the daily energy usage per student in the month of July to November 2016 from all the residences. During the month of July (Figure 1), it was observed that Goudstad accounted for the highest energy consumption of 17.63 kWh while Maghawe occupied the least energy consumption of 1.54 kWh. Furthermore, during the month of August (Figure 2), Goudstad occupied the highest energy consumption of 23.32 kWh while Gauta accounted for the least energy consumption of 1.90 kWh. Figure 3 showed the energy consumption during the month of September. It was observed that Goudstad maintained the highest energy consumption of 14.82 kWh while Maqhawe also occupied the least energy consumption of 1.76 kWh. During the month of October (Figure 4), Goudstad still maintained the highest position in the amount of energy consumption of 14.32 kWh and Maqhawe accounted for the least with 1.79 kWh. Finally, for the month of November (Figure 5), Goudstad accounted for the energy usage of 13.28 kWh while Maqhawe maintained the lowest energy usage of 1.56 kWh.

It was observed that the total number of 62 students who resided at Goudstad did not correspond to the amount of energy usage at that residence since Maqhawe where 244 students resided used less energy. Gauta accommodated 233 students and less energy was used compared to Goudstad. This clearly shows that there was energy wastage in Goudstad and some other residences. It therefore calls for proper educating the students on the need to reduce their energy consumptions.

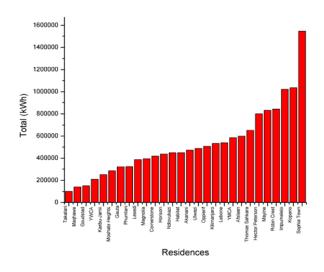


Fig. 6. Year to date residences energy usage (kWh)

Figure 6 showed the overall energy usage for the whole year. Sophia Town occupied the highest with 149286 kWh while Takalani residence recorded the least of 97093 kWh.

4.2 Energy Usage Per Quarter

Table I. Energy Usage in First Quarter of 2016

Residences	Energy Usage (1st Quarter), kwh			
	January	February	March	Quarterly
				Average
Akanani	11 855.000	26 814.000	34 359.000	24342.67
Cornerstone	12 983.000	25 199.000	31 378.000	23186.67
Goudstad	7 793.000	16 807.000	22 649.000	15749.67
Gauta	6 458.000	7 705.000	10 534.000	8232.33
Habitat	4 773.000	4 741.000	19 115.000	9543.00
Hector Peterson	11 044.000	47 366.000	57 143.000	38517.67
Horison	12 504.000	26 052.000	32 690.000	23748.67
Impumelelo	51 509.000	72 648.000	85 394.000	69850.33
Karibu-Jamii	1 686.000	12 326.000	16 817.000	10276.33
Kilimanjaro Transformer	17 576.000	35 126.000	41 351.000	31351.00
Kopano	31 591.000	59 505.000	82 063.000	57719.67
Lesedi	12 707.000	22 093.000	27 206.000	20668.67
Magnolia	6 986.000	30 347.000	40 872.000	26068.33
Maqhawe	1 843.000	7 985.000	10 451.000	6759.67
Mayine	31 507.000	49 933.000	62 289.000	47909.67
Afslaan	12 826.000	30 514.000	39 442.000	27594.00
Lebone	17 739.000	32 835.000	42 627.000	31067.00
Thomas Sankara	28 802.000	38 995.000	49 066.000	38954.33
Moshate Heights	6 354.000	16 312.000	22 540.000	15068.67
Ndlovukazi	10 059.000	27 135.000	33 462.000	23552.00
Oppierif	20 396.000	33 868.000	41 704.000	31989.33
Phumlani	13 816.000	20 463.000	24 581.000	19620.00
Robin Crest	23 214.000	48 557.000	60 784.000	44185.00
Sophia Town	57 793.000	95 805.000	119 528.000	91042.00
Takalani	3 204.000	4 831.000	6 972.030	5002.34
Ulwazi Residence	35 370.000	35 370.000	35 370.000	35370.00
YMCA	16 561.000	28 038.000	43 458.000	29352.33
YWCA	6 733.000	11 519.000	13 471.000	10574.33

Table II. Energy Usage in Second Quarter of 2016

Residences	Energy Usage (2nd Quarter), kwh			
	April	May	June	Quarterly
				Average
Akanani	42 451.000	65 819.000	49 371.000	52547.0
Cornerstone	36 370.000	56 669.000	40 280.000	44439.6
Goudstad	26 529.000	42 028.000	36 511.000	35022.6
Gauta	12 917.000	19 432.000	22 095.000	18148.0
Habitat	18 948.000	52 406.000	55 123.000	42159.0
Hector Peterson	74 107.000	123 331.000	77 590.000	91676.0
Horison	38 673.000	62 101.000	43 570.000	48114.6
Impumelelo	96 298.000	134 055.000	110 601.000	113651.3
Karibu-Jamii	23 541.000	42 179.000	25 398.000	30372.6
Kilimanjaro Transformer 1	44 645.000	64 903.000	49 529.000	53025.6
Kopano	93 414.000	123 603.000	96 566.000	104527.6
Lesedi	31 168.000	45 224.000	43 960.000	40117.3
Magnolia	48 452.000	74 326.000	29 545.000	50774.3
Maqhawe	12 810.000	21 938.000	14 261.000	16336.3
Mayine	69 903.000	97 698.000	88 342.000	85314.3
Afslaan	46 224.000	81 111.000	76 945.000	68093.3
Lebone	48 072.000	66 505.000	51 991.000	55522.6
Thomas Sankara	52 420.000	76 250.000	74 775.000	67815.0
Moshate Heights	24 653.000	42 662.000	25 707.000	31007.3
Ndlovukazi	39 212.000	64 981.000	41 104.000	48432.3
Oppierif	47 591.000	70 893.000	50 711.000	56398.3
Phumlani	27 870.000	39 728.000	34 179.000	33925.6
Robin Crest	71 969.000	104 460.000	90 246.000	88891.6
Sophia Town	140 550.000	196 967.000	153 669.000	163728.6
Takalani	8 109.000	12 182.000	11 199.000	10496.6
Ulwazi Residence	35 370.000	35 370.000	545.000	23761.6
YMCA	50 193.000	70 311.000	62 438.000	60980.6
YWCA	17 246.000	31 405.000	25 256.000	24635.6

Table III. Energy Usage in Third Quarter of 2016

Residences	Energy Usage (3rd Quarter), kwh			
_	July	August	September	Quarterly
				Average
Akanani	34 648.000	63 651.000	44 467.320	142 766.320
Cornerstone	37 056.000	48 446.000	37 204.250	122 706.250
Goudstad	32 791.000	43 368.000	27 554.100	103 713.100
Gauta	15 781.000	13 279.000	14 229.620	43 289.620
Habitat	51 720.000	71 673.000	53 976.000	177 369.000
Hector Peterson	46 699.000	123 402.000	76 230.300	246 331.300
Horison	32 386.000	54 943.000	39 895.120	127 224.120
Impumelelo	82 070.000	100 656.000	98 058.040	280 784.040
Karibu-Jamii	20 226.000	39 766.000	23 110.750	83 102.750
Kilimanjaro Transformer 1	43 104.000	68 032.000	49 551.520	160 687.520
Kopano	73 390.000	126 296.000	103 413.900	303 099.900
Lesedi	42 862.000	46 258.000	33 824.880	122 944.880
Magnolia	23 792.000	46 275.000	30 432.730	100 499.730
Maqhawe	11 281.000	19 753.000	12 898.280	43 932.280
Mayine	89 175.000	97 777.000	74 857.950	261 809.950
Afslaan	72 368.000	81 572.000	50 844.160	204 784.160
Lebone	47 592.000	70 953.000	49 159.360	167 704.360
Thomas Sankara	75 859.000	76 365.000	57 211.200	209 435.200
Moshate Heights	20 715.000	37 470.000	25 613.040	83 798.040
Ndlovukazi	33 905.000	63 071.000	40 976.720	137 952.720
Oppierif	42 187.000	58 689.000	39 318.000	140 194.000
Phumlani	31 181.000	40 205.000	28 158.700	99 544.700
Robin Crest	70 801.000	108 009.000	80 766.600	259 576.600
Sophia Town	159 247.000	194 898.000	136 770.240	490 915.240
Takalani	12 468.000	12 972.000	8 688.930	34 128.930
Ulwazi Residence	26 383.000	89 650.000	56 993.420	173 026.420
YMCA	54 962.000	76 883.000	54 263.880	186 108.880
YWCA	18 714.000	30 354.000	16 473.360	65 541.360

the entire academic year of eleven months. The quarterly average for each residence was computed. During the first quarter (Table I), Sophia Town accounted for the highest energy usage of 91,042 kWh followed by Impumelelo with 69,850.33 kWh while Takalani occupied the least energy consumption 5,002.34 kWh. Table II showed the data for the energy consumption during the second quarter. From Table II, it was observed that Sophia Town maintained the highest of 163,728.67 kWh followed by Impumelelo with 113,651.33 kWh while Takalani occupied the least of 10,496.67 kWh. Furthermore, Table III showed the energy usage for the third quarter. Here, Sophia Town still maintained the highest energy usage with 490,915.24 kWh followed by Kopano which accounted for 303,099.90 kWh while Takalani maintained the least energy consumption of 34,128.93 kWh. Finally, during the fourth quarter which comprised of only October and November (Table IV), Sophia Town was still the highest in terms of energy consumption with 118,628.50 kWh followed by Impumelelo with 78,229.50 kWh while Gauta accounted for the least energy usage with 11,873.00 kWh.

Table V. Total Number of Students in each Residence

Table IV. Energy Usage in Fourth Quarter of 2016

Residences	Energy Usage (4th	Quarter), kwh	
	October	November	Quarterly
			Average
Akanani	45 965.000	40 302.000	43133.5
Cornerstone	39 537.000	37 589.000	38563
Goudstad	26 635.000	24 704.000	25669.5
Gauta	12 623.000	11 123.000	11873
Habitat	49 151.000	45 030.000	47090.5
Hector Peterson	75 378.000	63 575.000	69476.5
Horison	39 835.000	40 440.000	40137.5
Impumelelo	96 394.000	60 065.000	78229.5
Karibu-Jamii	22 262.000	18 442.000	20352
Kilimanjaro Transformer 1	51 804.000	47 033.000	49418.5
Kopano	104 204.000	99 482.000	101843
Lesedi	33 204.000	27 733.000	30468.5
Magnolia	29 602.000	27 341.000	28471.5
Maqhawe	13 078.000	11 389.000	12233.5
Mayine	73 476.000	66 339.000	69907.5
Afslaan	48 647.000	43 061.000	45854
Lebone	50 683.000	47 974.000	49328.5
Thomas Sankara	54 337.000	47 438.000	50887.5
Moshate Heights	28 243.000	26 274.000	27258.5
Ndlovukazi	42 421.000	38 157.000	40289
Oppierif	39 489.000	36 367.000	37928
Phumlani	27 420.000	25 871.000	26645.5
Robin Crest	82 597.000	77 651.000	80124
Sophia Town	134 896.000	102 361.000	118628.5
Takalani	8 411.000	8 055.000	8233
Ulwazi Residence	62 972.000	51 991.000	57481.5
YMCA	54 548.000	47 742.000	51145
YWCA	16 437.000	13 745.000	15091

Table I to Table IV presented the amount of energy consumptions per quarter at each of the residences during

Residences	Number of students
Akanani	184
Cornerstone	228
Goudstad	62
Gauta	233
Habitat	332
Hector Peterson	313
Horison	330
Impumelelo	283
Karibu-Jamii	294
Kilimanjaro Transformer 1	310
Kopano	313
Lesedi	105
Magnolia	274
Maqhawe	244
Mayine	238
Afslaan	237
Lebone	144
Thomas Sankara	240
Moshate Heights	273
Ndlovukazi	330
Oppierif	226
Phumlani	230
Robin Crest	286
Sophia Town	416
Takalani	28
Ulwazi	290
YMCA	126
YWCA	116

Table V showed the total number of students who resided in each of the twenty-eight residences owned by the University of Johannesburg.

It was observed that throughout the four quarters of 2016, Sophia Town accounted for the highest energy usage, followed by Impumelelo while Takalani occupied the least. However, it was observed that it was not all the residences that their patterns of energy consumption are directly proportional to the number of student occupants in those residences. For instance, Goudstad had only 62 student occupants but it energy usage was always high.

5 CONCLUSION

It was concluded that cases of ineffective energy usage might have taken place in some of the residences. A number factors could be responsible for these; among which might be education. The University needs to increase its ongoing education on energy usage by the students in the residences and the effect that high energy usage poses on the environment. It was also observed that the buildings of the residences are different in design and construction. This can also contribute to high energy consumption. When efficient building is taken into consideration during the design and construction of a building, the amount of energy consumption would be reduced, thus, cost would be saved and emissions to the environment would also be minimized. It was also discovered that the residents of the various UJ residences studied different subjects. This may also serve as contributing factors to energy consumption since those who are running programs like Somatology, Sport and Movement Studies, Law etc. spent more time in their residences than those who are studying engineering and sciences. The science and engineering students often spend most of their time in the laboratory conducting experiments. Finally, there are also socio-economic differences among the students who resided at the different residences since these students came from differences places. Hence, it is possible that some came from hot regions, therefore during winter they may not be able to cope with too much cold and this can also contribute to more energy usage.

6 **RECOMMENDATION**

It is recommended that the University of Johannesburg put an incentive model in place in such a way that any residence that uses less energy will be rewarded. Also, the actual energy consumption data for all the residences can be presented to students through a web (U-link) as this will be go a long way to bring about changes in attitudes most especially when students from one residence notice their counterparts from other residences are consuming less energy and they are being rewarded for it. Additionally, an energy representative can be appointed in each of the hall of residences who will be educating and motivating students on the need to achieve energy efficiency so as to have a sustainable university.

ACKNOWLEDGEMENTS

The authors wish to appreciate the Sustainable Energy Technology and Research Centre (SeTAR) of the University of Johannesburg for the resources provided to complete this project.

REFERENCES

- L. Pérez-Lombard, J. Ortiz, and C. Pout, "A review on buildings energy consumption information," *Energy* and buildings, vol. 40, pp. 394-398, 2008.
- [2] S. Sorrell, "Reducing energy demand: A review of issues, challenges and approaches," *Renewable and Sustainable Energy Reviews*, vol. 47, pp. 74-82, 2015.
- [3] O. D., H. W., A. K., G. P., J. N., D. S., *et al.*, "Energy policies for sustainable development in South Africa: Options for the future," South Africa2006.
- [4] The NEED Project, "Introduction to Energy," ed. Manassas: The NEED Project 2011.
- [5] The NEED Project, "Energy Consumption," ed. Manassas: The NEED Project 2016.
- [6] UNEP SBCI, "Buildings and climate change: Summary for decision-makers," France2009.
- [7] E. Hittinger, K. A. Mullins, and I. L. Azevedo, "Electricity consumption and energy savings potential of video game consoles in the United States," *Energy Efficiency*, vol. 5, pp. 531-545, 2012.

- [8] L. M. Platchkov and M. G. Pollitt, "The economics of energy (and electricity) demand," *The Future of Electricity Demand: Customers, Citizens and Loads*, vol. 69, p. 17, 2011.
- [9] Kentucky Department of Education College and Career Readiness, Frankfort, KY2011.
- [10] The International Energy Agency (IEA), "Worldwide Trends in Energy Use and Efficiency: Key Insights from IEA Indicator Analysis," France2008.
- [11] L. Ryan, S. Moarif, E. Levina, and R. Baron, "Energy Efficiency Policy and Carbon Pricing ", France2011.
- [12] W. Prindle, "Energy efficiency as a low-cost resource for achieving carbon emissions reductions," *National Action Plan for Energy Efficiency*, 2009.
- [13] Department of Energy and Climate Change, "The energy efficiency strategy: the energy effciency opportunity in the UK," London 2012.
- [14] S. Fankhauser, "A practitioner's guide to a low-carbon economy: lessons from the UK," *Climate Policy*, vol. 13, pp. 345-362, 2013.
- [15] J. Di Stefano, "Energy efficiency and the environment: the potential for energy efficient lighting to save energy and reduce carbon dioxide emissions at Melbourne University, Australia," *Energy*, vol. 25, pp. 823-839, 2000.
- [16] N. J. Pedersen, S. Rosenbloom, and R. E. Skinner, "Policy options for reducing energy use and greenhouse gas emissions from US transportation," *Transportation Research Board Special Report*, *Transportation Research Board*, vol. 307, 2011.
- [17] D. J. Jacob and D. A. Winner, "Effect of climate change on air quality," *Atmospheric environment*, vol. 43, pp. 51-63, 2009.
- [18] A. S. Brierley and M. J. Kingsford, "Impacts of climate change on marine organisms and ecosystems," *Current biology*, vol. 19, pp. R602-R614, 2009.
- [19] T. P. Hughes, A. H. Baird, D. R. Bellwood, M. Card, S. R. Connolly, C. Folke, *et al.*, "Climate change, human impacts, and the resilience of coral reefs," *science*, vol. 301, pp. 929-933, 2003.
- [20] M. Venkataramanan, "Causes and effects of global warming," *Indian Journal of Science and Technology*, vol. 4, pp. 226-229, 2011.
- [21] United Nations Environment Programme, "How will global warming affect my world? A simplified guide to the IPCC's "Climate Change 2001: Impacts, Adaptation and Vulnerability"," Switzerland 2003.
- [22] S. Ghosh, "Electricity consumption and economic growth in India," *Energy policy*, vol. 30, pp. 125-129, 2002.
- [23] World Energy Council, "World Energy Resources: 2013 Survey," London2013.
- [24] P. Mlambo-Ngcuka, "Energy Efficiency Strategy of the Republic of South Africa," *Department of Minerals and Energy, South Africa*, p. 1, 2005.
- [25] S. Darby, "The effectiveness of feedback on energy consumption," A Review for DEFRA of the Literature on Metering, Billing and direct Displays, vol. 486, p. 2006, 2006.
- [26] N. Elsawaf, T. Abdel-Salam, and H. Abaza, "Economic evaluation and calculations of energy savings by upgrading the heating systems in pre manufactured homes," *Energy and Buildings*, vol. 59, pp. 187-193, 2013.
- [27] A. Al-Ghandoor, J. Jaber, I. Al-Hinti, and I. Mansour, "Residential past and future energy consumption: potential savings and environmental impact," *Renewable and Sustainable Energy Reviews*, vol. 13, pp. 1262-1274, 2009.

- [28] K. Menyah and Y. Wolde-Rufael, "Energy consumption, pollutant emissions and economic growth in South Africa," *Energy Economics*, vol. 32, pp. 1374-1382, 2010.
- [29] O. O. Ayeleru, F. Ntuli, and C. Mbohwa, "Municipal Solid Waste Composition Determination in the City of Johannesburg," in *Proceedings of the World Congress* on Engineering and Computer Science, 2016.
- [30] University of Johannesburg, "I care for my community, therefore I choose the University of Johannesburg: 2011 Community Engagement Report," Johannesburg2011.
- [31] O. O. Ayeleru, F. Ntuli, and C. Mbohwa, "Characterisation of Fruits and Vegetables Wastes in the City of Johannesburg," in *Proceedings of the World Congress on Engineering and Computer Science*, 2016.

AUTHORS BIOS AND PHOTOGRAPHS

Olusola O. Ayeleru received BEng (Hons) in Chemical Engineering from the Federal University of Technology, Yola, Adamawa State, Nigeria in 2007 and completed MTech Chemical Engineering from the University of Johannesburg, South Africa in 2017. He worked as a Research Assistant at the University of Johannesburg in the last two years. His research areas include waste sociology,

process economics, plastic waste management, municipal solid waste management, zero waste and waste to energy, nanotechnology and self-healing properties of asphalt pavement. He is a member of Nigeria Institute of Management (NIM), South African Institute of Safety and Health (Saiosh) and International Association of Engineers (IAENG).

Joshua A. Adeniran obtained the degree of BTech (Hons) in Agricultural Engineering from Ladoke Akintola University of Technology, Nigeria in 2008 and Master's degree in Civil Engineering in 2015 from the University of Johannesburg. Currently, he is a doctoral candidate in the department of Mechanical Engineering Science at the

University of Johannesburg. His research focuses on hydrogen generation, microbial fuel cells and bioenergy generation, water and wastewater engineering. Joshua is a member of the Young Water Professional (YWP), Water Institute of South Africa (WISA) and International Association of Engineers (IAENG).

Sula B. K. Ntsaluba obtained B.Eng (Electronic), B.Eng (Hons) Electrical, M.Eng (Electrical) at the University of Pretoria, South Africa. He is currently a lecturer at the Department of Electrical and Electronic Engineering Technology at the University of Johannesburg. He also manages the Sustainability Project at the University of Johannesburg, South Africa. He is a Certified Energy Manager

(Association of Energy Engineers).

Johan de Koker had a successful career in railway research and development. He became Head of Department of Civil Engineering Technology at the University of Johannesburg in 2007. He was the Director of the Sustainable Energy Technology and Research Centre from 2015 to 2016. He has presented more than fifty papers at local and International conferences and he

specializes in various aspects of railway rails like wear, profiles, lubrication, corrosion, rail joints and rail maintenance. He holds a Masters in Civil Engineering (Structural) from the University of Johannesburg awarded in 1991 (then Witwatersrand Technikon). He is an honorary fellow and past president of both the South African Institution of Civil Engineering and the Institute of Professional Engineering Technologists

Presenting author: The paper will be presented by Sula B.K. Ntsaluba