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ABSTRACT: Posidonia oceanica is one of the few seagrasses that can colonize hard and soft 17 

substrates. To test whether substrate could affect root development of the seedlings, with a legacy 18 

effect upon transplantation to sand, we germinated seeds on hard (glass slide) vs. soft (sand) 19 

substrates in microcosms. We found that sand favored root system development, with a 20 

compensatory slowing of leaf development, while glass had the opposite effect. After four months, 21 

we transplanted all seedlings to sand and tested for a legacy effect of initial substrate type.  Leaves 22 

of seedlings germinated on sand and glass slides reached approximately the same length, but roots 23 

from seedlings germinated on glass did not develop fully. Seed-burial (0 – 1.5 cm) did not affect 24 

seedling development. These results suggest that the culture of P. oceanica on sand prior to 25 

transplantation could enhance seedlings survival in restoration programs. 26 

KEY WORDS: Seedling, root, leaf, development, seagrass. 27 
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IMPLICATIONS:  28 

• The culture of P. oceanica seedlings on sand promotes the development of the root system. 29 

• The initial substrate has a legacy effect on the subsequent development of seedling 30 

transplants. 31 

• Shallow seed-burial (0.5 -1.5 cm) does not affect the development of five-month-old 32 

seedlings. 33 

MAIN TEXT: 34 

INTRODUCTION 35 

Posidonia oceanica (L.) Delile is one of the most important habitat-forming species in the 36 

Mediterranean Sea (Duarte & Chiscano 1999; Pergent et al. 1997). It has been selected as an 37 

indicator species to assess the ecological status of Mediterranean coastal water bodies (WFD, 38 

2000/60/EC; Lopez y Royo et al. 2011) because it supports high biodiversity and plays a key role in 39 

several ecosystem functions (e.g. Molinier & Picard 1952, Koch et al. 2009, Duarte et al. 2010, 40 

Valle 2011, Sanz-Lázaro et al. 2012).   41 

P. oceanica meadows are currently declining (Boudouresque et al. 2009; Marbà et al. 2014) 42 

due to pollution (Cancemi et al. 2003; Balestri et al. 2004) and a range of anthropogenic activities 43 

that alter sedimentation rates and consolidation of seabed substrates (Pasqualini et al. 2000; Ruiz & 44 

Romero 2003; Badalamenti et al. 2006, 2011; González-Correa et al. 2005, 2008). To mitigate the 45 

decline of P. oceanica meadows, environmental restoration projects have been undertaken. Recent 46 

projects have used laboratory-cultivated seedlings, which has the advantage of promoting genetic 47 

variability (Balestri et al. 1998; Terrados et al. 2013). However, this type of restoration has 48 

anchorage problems.  Even though seedlings are capable of remaining anchored in different 49 

substrates (Badalamenti et al. 2015; Balestri et al. 2015), their roots are not long enough to adhere 50 

firmly (Balestri & Bertini 2003), so seedlings can be uprooted by waves and currents (Meinesz et al. 51 

1993).  52 
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Some authors argue that P. oceanica seedlings only persist on vegetated rocky substrates, 53 

while those in sand and gravel are unable to grow (Alagna et al. 2013). Nevertheless, other studies 54 

confirm the establishment of seedlings in sandy bottoms (Balestri and Lardicci 2008, Balestri et al. 55 

2015). In general, the seeds of seagrasses germinate within the sediment, which benefits their 56 

growth (Marba & Duarte 1994; Moore et al. 1993; Terrados 1997). The P. oceanica seeds have 57 

photosynthetic activity (Celdrán & Marín, 2011), which contributes to early development after 58 

germination (Celdrán & Marín 2013). It is not known how seed-burial could affect the development 59 

of seedlings. Increasing our knowledge of P. oceanica establishment on different substrates and 60 

effects of seed-burial is key to improving restoration of this plant and, consequently, supporting 61 

management strategies for its conservation. 62 

 The aim of this study was to test the effects of substrate hardness and seed-burial on the 63 

development of P. oceanica. Using microcosm experiments, we tested three interrelated 64 

hypotheses. First, substrate hardness could affect the root system development during the first 65 

months of germination. Second, the substrate where the seedlings germinate could influence their 66 

subsequent development upon transplantation. Third, shallow burial of the seed could decrease 67 

seedling development, possibly by limiting photosynthesis. 68 

MATERIALS AND METHODS 69 

Culture of P. oceanica seedlings 70 

P. oceanica buoyant fruits were collected in May 2013 from beaches in Ibiza island (Spain, 71 

western Mediterranean Sea). Seeds were manually extracted and germinated in aquaria with 72 

artificial seawater prepared with sterilized bi-distilled water and marine salt (Ocean Fish, PRODAC 73 

International, Cittadella, Italy). Seawater had a salinity of 36 psu and a temperature of 21 ± 1 ºC. 74 

The average photosynthetic photon flux density on the surface of seedling leaves was 100 µmol m
-2

 75 

s
-1 

irradiance provided by cool white fluorescent lights, with a 14:10 h light:dark photoperiod. 76 

Effects of substrate hardness on seedling development 77 
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To test the effects of substrate hardness on the early stages of growth of P. oceanica 78 

seedlings, seeds of similar size (1.65 ± 0.2 cm length) were placed into replicate 10 L aquaria in 79 

plastic pots (9 x 9 x 10 cm) containing glass slides or sand (n=30).  80 

The effects of sand were tested using pots filled to 10 cm depth with sand collected from an 81 

unpolluted area close to the marine reserve of Cabo de Palos-Islas Hormigas (Murcia, Spain). The 82 

sediment was composed of 32% coarse-sand, 67% of fine-sand according to the Wentworth (1992) 83 

scale of particle size, 0.75% organic matter and a C:N ratio of 13.9 : 3.67. To simulate hard 84 

substrate, glass microscope slides were placed over the sand in the pots. Glass was chosen as the 85 

hard substrate because it is an inert material of known chemical composition, with a constant 86 

roughness and structure.  87 

The experiment was performed in a culture chamber room under controlled temperature, 88 

salinity and photoperiod conditions. Water level and salinity within aquaria were checked every 89 

three days, and aeration was adjusted to supply dissolved oxygen without disturbing the sediment. 90 

Aquaria were refilled to compensate for evaporation and maintain salinity of 36 psu.  Aquaria were 91 

maintained at 21±1 °C, with a 14:10 h light: dark photoperiod and a light intensity of 100 µmol m
2
 92 

s
−1

. The redox potential of the sand was measured with an Orion ORP 91-80 electrode prior to 93 

calibration with a redox buffer solution (220 mV at 25 ºC). Measurement of the sediment redox was 94 

performed by randomly taking four cores from the sediment-collection area and inserting the 95 

electrode to a depth of ca. 4 cm. The sand used as a unconsolidated substrate had a positive redox 96 

potential in all pots (+84.5 ± 6.9 mV). Aquaria were aerated to avoid changes in redox potential 97 

during the experiment. 98 

The lengths of leaves and roots (principals and laterals) were measured after four months. 99 

Legacy of initial substrate on seedling development and responses to seed-burial  100 

To evaluate the influence of shallow seed-burial and the legacy of substrate hardness, we 101 

simulated a restoration event: 60 four-month-old seedlings from the previous experiment were 102 

transplanted to sand. Seedlings were carefully removed from the initial substrates by hand, to avoid 103 

damaging roots. 104 

Page 4 of 21Restoration Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5 

 

We used a factorial design with two fixed factors, initial substrate (glass vs. sand) and seed-105 

burial level (non-buried, half-buried and full-buried). For the “non-buried” treatment, the seedling 106 

were anchored on the sand only by their roots, so each seed was totally uncovered and exposed to 107 

light. For the “half-buried” treatment, the seed was partially covered (0.5 cm). In the “full-buried” 108 

treatment, the seed was covered by sand (1.5 cm) with only the leaves unburied. The sand over the 109 

seed reduced light intensity to 1.45 ± 0.01 µmol m
2
 s

−1
 (Fig. 1).  110 

Seedlings were planted in plastic pots (9 x 9 x 10 cm) and placed in individual 10 L aquaria 111 

(n= 10), which were maintained in a culture chamber room with the same controlled conditions and 112 

sand characteristics as in the previous experiment. The lengths of seed, leaves and roots (principal 113 

and lateral) of each seedling were measured at the start of the experiment and again after one month 114 

(October 2013) to calculate the net growth of leaves and roots (principal and laterals) per seedling.  115 

Data analysis 116 

Data normality and homogeneity of variance were tested using P-P plots and Levene's test, 117 

respectively. If data did not meet parametric assumptions, they were transformed [ln (x + 1)], and 118 

re-tested. If data still did not meet homogeneity of variances, a significance threshold of p<0.01 119 

was assigned, which is a conservative option considering the high number of total replicates 120 

(Underwood 1997). Otherwise, a significance threshold of p<0.05 was used. 121 

To test the effects of substrate hardness on seedling development, a Student’s t-test was 122 

carried out to evaluate the possible effects of the fixed factor initial substrate on the length of roots 123 

(principal and lateral) and leaves. A two-way factorial analysis of variance (ANOVA) was used to 124 

evaluate the effects of initial substrate and seed-burial level, and their possible interaction, on 125 

growth of leaves and principal and lateral roots. Additionally, linear regression analysis tested 126 

whether seed size influenced the growth of leaves and roots. Data are reported as mean ± standard 127 

error (SE). All statistical analyses were carried out using R (v. 3.1.1). 128 

RESULTS 129 

Effects of substrate on seedling development 130 
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There were significant differences between substrates (p < 0.001) in the total length of 131 

principal roots and in the number and length of lateral roots. The roots of seedlings germinated on 132 

sand (mean = 17.0 ± 5.4 cm) were up to five times longer than those germinated on glass (mean = 133 

3.7 ± 1.7 cm; Fig. 1, 2).  134 

Total leaf growth had the opposite trend: leaves of seedlings cultured on the glass averaged 135 

46.8 ± 7.9 cm per seedling, which was significantly greater than on sand  (35.6 ± 10.6 cm per 136 

seedling; Fig. 2). 137 

Seedlings germinated on glass did not have lateral roots, while on the sand lateral roots were 138 

found on 70% of seedlings. Lateral root length varied, ranging from 0.1 to 3.3 cm (Fig. 3). 139 

Legacy of initial substrate on seedling development and responses to seed-burial  140 

The growth rates of leaves and roots were not influenced by seed size (p-value of the 141 

regression = 0.96 and 0.26, respectively). Shadow seed-burial did not affect leaf or root growth rate 142 

(p = 0.39 and 0.07, respectively; Table S1). However, seedling development appeared to be 143 

influenced by their initial substrate. After the restoration simulation, the growth rates of leaves and 144 

lateral roots were significantly higher (p < 0.01) in seedlings that had originally developed in sand. 145 

In contrast, the growth rate of principal roots was not affected by the initial substrate (p = 0.71; Fig. 146 

4). 147 

Leaves of seedlings germinated on sand grew 2.6 ± 0.9 cm · leaf
-1 

· month
-1

, while those on 148 

glass grew 1.9 ± 0.6 cm · leaf
-1 

· month
-1

. At the end of the experiment, the leaves of the seedlings 149 

that initially developed on glass were as long as those germinated on sand (9.1 ± 1.4 and 9.3 ± 1.9 150 

cm, respectively). The growth rate of lateral roots on seedlings germinated on sand was four times 151 

greater than those germinated on glass (Fig. 4). The production of new lateral roots per seedling was 152 

significantly greater on sand than on glass (p < 0.001). 153 

At the end of both experiments, the sediments in all pots had a positive redox potential. 154 

DISCUSSION  155 

P. oceanica showed a high morphological plasticity to two substrates after germination. 156 

Sand seemed to promote the growth of principal and lateral roots during the initial four months of 157 
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plant development. Moreover, the use of sand in germinating P. oceanica had legacy effects on 158 

subsequent leaf and root development after transplantation to sand. Extensive root growth on sand 159 

appeared to be at the expense of leaf development. A similar leaf-root trade-off was observed in P. 160 

oceanica growing on rubble mounds (Di Carlo et al. 2007). However, when seedling were 161 

transplanted to sand, all reached same length.  162 

These results agree with field studies where sand promoted the formation of lateral roots, 163 

more than on rock (Balestri et al. 2015). The nutrient content and the unconsolidated structure of the 164 

sand could enhance root growth of P. oceanica, while the hard glass limited elongation and nutrient 165 

acquisition. P. oceanica seedlings have adhesive root hairs that facilitate anchorage on rocky 166 

substrates (Badalamenti et al. 2015).  Likewise, roots on glass were fully adhered to the surface in 167 

our experiment. Phyllospadix scouleri Hook. also has root hairs that help anchor plants to substrates 168 

in intertidal zones (Short & Coles 2001; Kuo& Den Hartog 2006).  169 

P. oceanica seeds photosynthesize even after germination (Celdrán & Marín 2011), so it is 170 

possible that shallow seed-burial could negatively affect development. Nevertheless, growth of 171 

four-month-old seedlings was not influenced by seed-burial. It is likely that the leaves of young P. 172 

oceanica soon compensate for any reduced photosynthesis by seeds. 173 

The general procedure for restoration of P. oceanica is to attach transplants to the substrate 174 

using non-biodegradable materials (Augier et al. 1996; Balestri et al. 1998, 2011; Meinesz et al. 175 

1992; Meinesz et al. 1993; Molenaar et al. 1993; Molenaar & Meinesz 1992). A well-developed 176 

root system is expected to maximize anchoring capacity and nutrient acquisition (Balestri & 177 

Lardicci 2005; Schutten et al. 2005; Statton et al. 2014). Infantes et al. (2011) evaluated the 178 

substrate-anchoring capacity of P. oceanica seedlings for the hydrodynamic conditions of the 179 

Mediterranean and estimated the minimal root length needed by seedlings to prevent dislodgement 180 

from sand (0.35 times the square root of the leaf area). Using this equation, 100% of our seedlings 181 

on sand and 13% of those on glass would remain attached to a sandy seabed.  182 

Germination of P. oceanica seedlings on sand enhanced the growth of principal root and had 183 

a legacy of enhanced leaf and lateral root growth after transplantation. However, shallow burial of 184 
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the seed did not slow the development of five-month-old P. oceanica seedlings. Thus, we suggest 185 

culturing seedlings on sand before transplantation, to facilitate anchorage and avoid using non-186 

biodegradable materials in seagrass restoration. Transplantation to sand should be limited to periods 187 

of calm weather and in bays that are protected from strong hydrodynamic events. 188 
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ARTWORK AND TABLES WITH CAPTATION: 309 

Figure 1. P. oceanica seedlings germinated in sand (A) and glass (B). Numbers indicate the shadow 310 

seed-burial level used in the restoration simulation: 1: non-buried; 2: half-buried; 3: full-buried. L: 311 

leaves; S: seed; Rh: rhizome, R1: principal roots; R2: lateral roots. 312 
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 313 

Figure 2. Growth of principal roots and leaves per seedling germinated in sand and glass (mean + 314 

SE; n=30). Letters above the bars indicate significant differences between substrate types (Student's 315 

t - test, p< 0.05).  316 

 317 
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Figure 3. Number of new lateral roots and total length of lateral roots per seedling germinated in 318 

sand and glass (mean + SE; n=30). Letters above the bars indicate significant differences between 319 

treatments (Student's t-test, p< 0.05). 320 

  321 

 322 

Figure 4. Growth of leaves (A), growth of principal roots (B), number of new lateral roots (C) and 323 

growth of lateral roots per seedling (D) after of the restoration simulation for the treatments Seed-324 

burial level (non-buried, half-buried and full-buried) and Initial substrate (sand in empty and glass 325 

in grey; mean + SE; n=10). Letters above the bars indicate significant differences (two-way 326 

ANOVA, p< 0.05). 327 
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P. oceanica seedlings germinated in sand (A) and glass (B). Numbers indicate the shadow seed-burial level 
used in the restoration simulation: 1: non-buried; 2: half-buried; 3: full-buried. L: leaves; S: seed; Rh: 

rhizome, R1: principal roots; R2: lateral roots.  
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Growth of principal roots and leaves per seedling germinated in sand and glass (mean + SE; n=30). Letters 
above the bars indicate significant differences between substrate types (Student's t - test, p< 0.05).  
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Number of new lateral roots and total length of lateral roots per seedling germinated in sand and glass 
(mean + SE; n=30). Letters above the bars indicate significant differences between treatments (Student's t-

test, p< 0.05).  
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Growth of leaves (A), growth of principal roots (B), number of new lateral roots (C) and growth of lateral 
roots per seedling (D) after of the restoration simulation for the treatments Seed-burial level (non-buried, 
half-buried and full-buried) and Initial substrate (sand in empty and glass in grey; mean + SE; n=10). 

Letters above the bars indicate significant differences (two-way ANOVA, p< 0.05).  
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Table S1. Summary of the Levene test and two-way analysis of variance (ANOVA) on the 

fixed factors “Initial substrate” (glass vs. sand) and “Seed-burial level” (non-buried, half-

buried and full-buried). Significant results are in bold. 

Source d.f. MS F  P 

Growth of leaves  

Initial Substrate (S) 1 7.37 10.35 <0.01 

Seed-Burial level (B) 2 0.68 0.96 0.39 

S x B 2 0.16 0.22 0.80 

Residual 54 0.71     

Levene's test: p = 0.36 

Transformation: None 

Growth of principal roots  

Initial Substrate (S) 1 0.03 0.14 0.71 

Seed-Burial level (B) 2 0.65 2.85 0.07 

S x B 2 0.41 1.81 0.17 

Residual 54 0.23     

Levene's test: p = 0.72 

Transformation: Ln (x + 1) 

Growth of lateral roots  

Initial Substrate (S) 1 26.22 50.97 < 0.001 

Seed-Burial level (B) 2 1.29 2.51 0.09 

S x B 2 0.95 1.85 0.17 
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Residual 54 0.51     

Levene's test: p = 0.00 

Transformation: Ln (x + 1) 

New lateral roots per seedling 

Initial Substrate (S) 1 12.14 60.29 < 0.001 

Seed-Burial level (B) 2 0.33 1.64 0.20 

S x B 2 0.08 0.38 0.69 

Residual 54 0.20     

Levene's test: p = 0.00 

Transformation: Ln (x + 1) 
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