

Influence of substrate and burial on the development of Posidonia oceanica: implications for restoration

Journal:	Restoration Ecology
Manuscript ID	REC-16-178.R3
Manuscript Type:	Research Article
Date Submitted by the Author:	04-Aug-2016
Complete List of Authors:	Guerrero-Meseguer, Laura; Universidad de Murcia, Departamento de Ecología e Hidrología Sanz-Lázaro, Carlos; Universitat d\'Alacant, Departamento de Ciencias del Mar y Biología Aplicada Suk-ueng, Krittawit; Universidad de Murcia, Departamento de Ecología e Hidrología Marín, Arnaldo; Universidad de Murcia, Departamento de Ecología e Hidrología
Keywords:	seedling, root, leaf, development, seagrass

Restoration Ecology

- **TITLE:** Influence of substrate and burial on the development of *Posidonia oceanica*: implications
 - 2 for restoration.
 - **RUNNING HEAD:** Substrate effects on *Posidonia oceanica* seedlings
 - **AUTHORS:** Laura Guerrero-Meseguer^{*1}, Carlos Sanz-Lázaro², Krittawit Suk-ueng¹, Arnaldo

 $Marín^1$.

6 AFFILIATION AND ADDRESS OF AUTHORS:

- ¹ Departamento de Ecología e Hidrología. Facultad de Biología. Universidad de Murcia. Campus de
- 8 Espinardo. 30100 Murcia, Spain (corresponding address)
- 9 ² Departamento de Ciencias del Mar y Biología Aplicada, Pabellón 13, Universidad de Alicante,
- 10 P.O. Box 99, E-03080 Alicante, Spain
- **CORRESPONDING AUTHOR:** Laura Guerrero-Meseguer, email address:
- 12 laura.guerrero@um.es, telephone: 00 34 868884977, fax: 00 34 868883963
- 13 AUTHORS CONTRIBUTIONS:
- 14 LGM, CSL, AM conception and design of the study; LGM, CSL, KSU, AM acquisition, analysis
- 15 and interpretation of the data; LGM, CSL drafting of the article; LGM, CSL, KSU, AM revision
- 16 and approval of the version to be submitted.
- 17 ABSTRACT: *Posidonia oceanica* is one of the few seagrasses that can colonize hard and soft
- 18 substrates. To test whether substrate could affect root development of the seedlings, with a legacy
- 19 effect upon transplantation to sand, we germinated seeds on hard (glass slide) vs. soft (sand)
- 20 substrates in microcosms. We found that sand favored root system development, with a
- 21 compensatory slowing of leaf development, while glass had the opposite effect. After four months,
- 22 we transplanted all seedlings to sand and tested for a legacy effect of initial substrate type. Leaves
- 23 of seedlings germinated on sand and glass slides reached approximately the same length, but roots
- from seedlings germinated on glass did not develop fully. Seed-burial (0 1.5 cm) did not affect
- 25 seedling development. These results suggest that the culture of *P. oceanica* on sand prior to
- 26 transplantation could enhance seedlings survival in restoration programs.
- **KEY WORDS:** Seedling, root, leaf, development, seagrass.

29	• The culture of <i>P. oceanica</i> seedlings on sand promotes the development of the root system.
30	• The initial substrate has a legacy effect on the subsequent development of seedling
31	transplants.
32	• Shallow seed-burial (0.5 -1.5 cm) does not affect the development of five-month-old
33	seedlings.
34	MAIN TEXT:
35	INTRODUCTION
36	Posidonia oceanica (L.) Delile is one of the most important habitat-forming species in the
37	Mediterranean Sea (Duarte & Chiscano 1999; Pergent et al. 1997). It has been selected as an
38	indicator species to assess the ecological status of Mediterranean coastal water bodies (WFD,
39	2000/60/EC; Lopez y Royo et al. 2011) because it supports high biodiversity and plays a key role in
40	several ecosystem functions (e.g. Molinier & Picard 1952, Koch et al. 2009, Duarte et al. 2010,
41	Valle 2011, Sanz-Lázaro et al. 2012).
42	<i>P. oceanica</i> meadows are currently declining (Boudouresque et al. 2009; Marbà et al. 2014)
43	due to pollution (Cancemi et al. 2003; Balestri et al. 2004) and a range of anthropogenic activities
44	that alter sedimentation rates and consolidation of seabed substrates (Pasqualini et al. 2000; Ruiz &
45	Romero 2003; Badalamenti et al. 2006, 2011; González-Correa et al. 2005, 2008). To mitigate the
46	decline of <i>P. oceanica</i> meadows, environmental restoration projects have been undertaken. Recent
47	projects have used laboratory-cultivated seedlings, which has the advantage of promoting genetic
48	variability (Balestri et al. 1998; Terrados et al. 2013). However, this type of restoration has
49	anchorage problems. Even though seedlings are capable of remaining anchored in different
50	substrates (Badalamenti et al. 2015; Balestri et al. 2015), their roots are not long enough to adhere
51	firmly (Balestri & Bertini 2003), so seedlings can be uprooted by waves and currents (Meinesz et al.
52	1993).

IMPLICATIONS:

Page 3 of 21

Restoration Ecology

Some authors argue that *P. oceanica* seedlings only persist on vegetated rocky substrates, while those in sand and gravel are unable to grow (Alagna et al. 2013). Nevertheless, other studies confirm the establishment of seedlings in sandy bottoms (Balestri and Lardicci 2008, Balestri et al. 2015). In general, the seeds of seagrasses germinate within the sediment, which benefits their growth (Marba & Duarte 1994; Moore et al. 1993; Terrados 1997). The P. oceanica seeds have photosynthetic activity (Celdrán & Marín, 2011), which contributes to early development after germination (Celdrán & Marín 2013). It is not known how seed-burial could affect the development of seedlings. Increasing our knowledge of P. oceanica establishment on different substrates and effects of seed-burial is key to improving restoration of this plant and, consequently, supporting management strategies for its conservation.

63 The aim of this study was to test the effects of substrate hardness and seed-burial on the 64 development of *P. oceanica*. Using microcosm experiments, we tested three interrelated 65 hypotheses. First, substrate hardness could affect the root system development during the first 66 months of germination. Second, the substrate where the seedlings germinate could influence their 67 subsequent development upon transplantation. Third, shallow burial of the seed could decrease 68 seedling development, possibly by limiting photosynthesis.

- 69 MATERIALS AND METHODS
- 70 Culture of *P. oceanica* seedlings

P. oceanica buoyant fruits were collected in May 2013 from beaches in Ibiza island (Spain,72western Mediterranean Sea). Seeds were manually extracted and germinated in aquaria with73artificial seawater prepared with sterilized bi-distilled water and marine salt (Ocean Fish, PRODAC74International, Cittadella, Italy). Seawater had a salinity of 36 psu and a temperature of 21 ± 1 °C.75The average photosynthetic photon flux density on the surface of seedling leaves was 100 µmol m⁻²76s⁻¹ irradiance provided by cool white fluorescent lights, with a 14:10 h light:dark photoperiod.77Effects of substrate hardness on seedling development

To test the effects of substrate hardness on the early stages of growth of *P. oceanica*

seedlings, seeds of similar size $(1.65 \pm 0.2 \text{ cm length})$ were placed into replicate 10 L aquaria in plastic pots (9 x 9 x 10 cm) containing glass slides or sand (n=30).

81 The effects of sand were tested using pots filled to 10 cm depth with sand collected from an 82 unpolluted area close to the marine reserve of Cabo de Palos-Islas Hormigas (Murcia, Spain). The 83 sediment was composed of 32% coarse-sand, 67% of fine-sand according to the Wentworth (1992) 84 scale of particle size, 0.75% organic matter and a C:N ratio of 13.9 : 3.67. To simulate hard 85 substrate, glass microscope slides were placed over the sand in the pots. Glass was chosen as the 86 hard substrate because it is an inert material of known chemical composition, with a constant 87 roughness and structure.

The experiment was performed in a culture chamber room under controlled temperature, salinity and photoperiod conditions. Water level and salinity within aquaria were checked every three days, and aeration was adjusted to supply dissolved oxygen without disturbing the sediment. Aquaria were refilled to compensate for evaporation and maintain salinity of 36 psu. Aquaria were maintained at 21±1 °C, with a 14:10 h light; dark photoperiod and a light intensity of 100 μ mol m² s^{-1} . The redox potential of the sand was measured with an Orion ORP 91-80 electrode prior to calibration with a redox buffer solution (220 mV at 25 °C). Measurement of the sediment redox was performed by randomly taking four cores from the sediment-collection area and inserting the electrode to a depth of ca. 4 cm. The sand used as a unconsolidated substrate had a positive redox potential in all pots (+84.5 \pm 6.9 mV). Aquaria were aerated to avoid changes in redox potential during the experiment.

99 The lengths of leaves and roots (principals and laterals) were measured after four months.
100 Legacy of initial substrate on seedling development and responses to seed-burial

To evaluate the influence of shallow seed-burial and the legacy of substrate hardness, we
simulated a restoration event: 60 four-month-old seedlings from the previous experiment were
transplanted to sand. Seedlings were carefully removed from the initial substrates by hand, to avoid
damaging roots.

Restoration Ecology

We used a factorial design with two fixed factors, *initial substrate* (glass vs. sand) and *seedburial level* (non-buried, half-buried and full-buried). For the "non-buried" treatment, the seedling were anchored on the sand only by their roots, so each seed was totally uncovered and exposed to light. For the "half-buried" treatment, the seed was partially covered (0.5 cm). In the "full-buried" treatment, the seed was covered by sand (1.5 cm) with only the leaves unburied. The sand over the seed reduced light intensity to $1.45 \pm 0.01 \ \mu mol \ m^2 \ s^{-1}$ (Fig. 1).

Seedlings were planted in plastic pots $(9 \times 9 \times 10 \text{ cm})$ and placed in individual 10 L aquaria (n= 10), which were maintained in a culture chamber room with the same controlled conditions and sand characteristics as in the previous experiment. The lengths of seed, leaves and roots (principal and lateral) of each seedling were measured at the start of the experiment and again after one month (October 2013) to calculate the net growth of leaves and roots (principal and laterals) per seedling.

116 Data analysis

Data normality and homogeneity of variance were tested using *P*-*P* plots and Levene's test, respectively. If data did not meet parametric assumptions, they were transformed [ln (x + 1)], and re-tested. If data still did not meet homogeneity of variances, a significance threshold of p < 0.01was assigned, which is a conservative option considering the high number of total replicates (Underwood 1997). Otherwise, a significance threshold of p < 0.05 was used.

To test the effects of substrate hardness on seedling development, a Student's *t*-test was carried out to evaluate the possible effects of the fixed factor *initial substrate* on the length of roots (principal and lateral) and leaves. A two-way factorial analysis of variance (ANOVA) was used to evaluate the effects of *initial substrate* and *seed-burial level*, and their possible interaction, on growth of leaves and principal and lateral roots. Additionally, linear regression analysis tested whether seed size influenced the growth of leaves and roots. Data are reported as mean \pm standard error (SE). All statistical analyses were carried out using R (v. 3.1.1).

RESULTS

130 Effects of substrate on seedling development

131	There were significant differences between substrates ($p < 0.001$) in the total length of
132	principal roots and in the number and length of lateral roots. The roots of seedlings germinated on
133	sand (mean = 17.0 ± 5.4 cm) were up to five times longer than those germinated on glass (mean =
134	3.7 ± 1.7 cm; Fig. 1, 2).
135	Total leaf growth had the opposite trend: leaves of seedlings cultured on the glass averaged
136	46.8 ± 7.9 cm per seedling, which was significantly greater than on sand $(35.6 \pm 10.6$ cm per
137	seedling; Fig. 2).
138	Seedlings germinated on glass did not have lateral roots, while on the sand lateral roots were
139	found on 70% of seedlings. Lateral root length varied, ranging from 0.1 to 3.3 cm (Fig. 3).
140	Legacy of initial substrate on seedling development and responses to seed-burial
141	The growth rates of leaves and roots were not influenced by seed size (p-value of the
142	regression = 0.96 and 0.26, respectively). Shadow seed-burial did not affect leaf or root growth rate
143	($p = 0.39$ and 0.07, respectively; Table S1). However, seedling development appeared to be
144	influenced by their initial substrate. After the restoration simulation, the growth rates of leaves and
145	lateral roots were significantly higher ($p < 0.01$) in seedlings that had originally developed in sand.
146	In contrast, the growth rate of principal roots was not affected by the initial substrate ($p = 0.71$; Fig.
147	4).
148	Leaves of seedlings germinated on sand grew 2.6 ± 0.9 cm \cdot leaf ¹ \cdot month ⁻¹ , while those on
149	glass grew 1.9 ± 0.6 cm \cdot leaf ¹ \cdot month ⁻¹ . At the end of the experiment, the leaves of the seedlings
150	that initially developed on glass were as long as those germinated on sand $(9.1 \pm 1.4 \text{ and } 9.3 \pm 1.9 \text{ cm})$
151	cm, respectively). The growth rate of lateral roots on seedlings germinated on sand was four times
152	greater than those germinated on glass (Fig. 4). The production of new lateral roots per seedling was
153	significantly greater on sand than on glass ($p < 0.001$).
154	At the end of both experiments, the sediments in all pots had a positive redox potential.
155	DISCUSSION
156	P. oceanica showed a high morphological plasticity to two substrates after germination.

157 Sand seemed to promote the growth of principal and lateral roots during the initial four months of

Page 7 of 21

Restoration Ecology

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

158 plant development. Moreover, the use of sand in germinating P. oceanica had legacy effects on 159 subsequent leaf and root development after transplantation to sand. Extensive root growth on sand 160 appeared to be at the expense of leaf development. A similar leaf-root trade-off was observed in P. 161 oceanica growing on rubble mounds (Di Carlo et al. 2007). However, when seedling were 162 transplanted to sand, all reached same length. 163 These results agree with field studies where sand promoted the formation of lateral roots, 164 more than on rock (Balestri et al. 2015). The nutrient content and the unconsolidated structure of the 165 sand could enhance root growth of *P. oceanica*, while the hard glass limited elongation and nutrient 166 acquisition. P. oceanica seedlings have adhesive root hairs that facilitate anchorage on rocky 167 substrates (Badalamenti et al. 2015). Likewise, roots on glass were fully adhered to the surface in 168 our experiment. Phyllospadix scouleri Hook. also has root hairs that help anchor plants to substrates 169 in intertidal zones (Short & Coles 2001; Kuo& Den Hartog 2006). 170 P. oceanica seeds photosynthesize even after germination (Celdrán & Marín 2011), so it is 171 possible that shallow seed-burial could negatively affect development. Nevertheless, growth of 172 four-month-old seedlings was not influenced by seed-burial. It is likely that the leaves of young P. 173 *oceanica* soon compensate for any reduced photosynthesis by seeds. 174 The general procedure for restoration of *P. oceanica* is to attach transplants to the substrate 175 using non-biodegradable materials (Augier et al. 1996; Balestri et al. 1998, 2011; Meinesz et al. 176 1992; Meinesz et al. 1993; Molenaar et al. 1993; Molenaar & Meinesz 1992). A well-developed 177 root system is expected to maximize anchoring capacity and nutrient acquisition (Balestri & 178 Lardicci 2005; Schutten et al. 2005; Statton et al. 2014). Infantes et al. (2011) evaluated the 179 substrate-anchoring capacity of *P. oceanica* seedlings for the hydrodynamic conditions of the 180 Mediterranean and estimated the minimal root length needed by seedlings to prevent dislodgement 181 from sand (0.35 times the square root of the leaf area). Using this equation, 100% of our seedlings

182 on sand and 13% of those on glass would remain attached to a sandy seabed.

183 Germination of *P. oceanica* seedlings on sand enhanced the growth of principal root and had
184 a legacy of enhanced leaf and lateral root growth after transplantation. However, shallow burial of

18	the seed did not slow the development of five-month-old <i>P. oceanica</i> seedlings. Thus, we suggest
18	culturing seedlings on sand before transplantation, to facilitate anchorage and avoid using non-
18	biodegradable materials in seagrass restoration. Transplantation to sand should be limited to periods
18	of calm weather and in bays that are protected from strong hydrodynamic events.
18	ACKNOWLEDGEMENTS
19	This work was carried out within the research project POSIPLANT (project code: CTM2011-
19	27377), funded by the Ministerio de Ciencia e Innovación from Spain. We are very thankful to Prof.
19	Zedler who kindly helped with the writing and editing of the manuscript.
19	LITERATURE CITED
19	Alagna A, Fernández TV, Terlizzi A, Badalamenti F (2013) Influence of microhabitat on seedling
19	survival and growth of the mediterranean seagrass Posidonia oceanica (L.) Delile. Estuarine,
19	Coastal and Shelf Science 119:119–125
19	Augier H, Eugene C, Harmand-Desforges JM, Sougy A (1996) Posidonia oceanica re-implantation
19	technology of the marine gardeners is now operational on a large scale. Ocean & Coastal
19	Management 30:297–307
20	Badalamenti F, Di Carlo G, D'Anna G, Gristina M, Toccaceli M (2006) Effects of dredging
20	activities on population dynamics of <i>Posidonia oceanica</i> (L.) Delile in the Mediterranean sea:
20	The case study of Capo Feto (SW Sicily, Italy). Hydrobiologia 555:253–261
20	Badalamenti F, Alagna A, D'Anna G, Terlizzi A, Di Carlo G (2011) The impact of dredge-fill on
20	Posidonia oceanica seagrass meadows: regression and patterns of recovery. Marine Pollution
20	Bulletin 62:483–489
20	Badalamenti F, Alagna A, Fici S (2015) Evidences of adaptive traits to rocky substrates undermine
20	paradigm of habitat preference of the Mediterranean seagrass Posidonia oceanica. Scientific
20	Reports 5:8804
20	Balestri E, Piazzi L, Cinelli F (1998) Survival and growth of transplanted and natural seedlings of
21	Posidonia oceanica (L.) Delile in a damaged coastal area. Journal of Experimental Marine
21	Biology and Ecology 228:209–225
	8

Page 9 of 21

Restoration Ecology

1	212	Balestri E, Bertini S (2003) Growth and development of Posidonia oceanica seedlings treated with	h
2 3	213	plant growth regulators: possible implications for meadow restoration. Aquatic Botany	
4 5 6	214	76:291–297	
7 8	215	Balestri E, Benedetti-Cecchi L, Lardicci C (2004) Variability in patterns of growth and morpholog	gу
9 10	216	of Posidonia oceanica exposed to urban and industrial wastes: Contrasts with two reference	
11 12	217	locations. Journal of Experimental Marine Biology and Ecology 308:1-21	
13 14 15	218	Balestri E, Lardicci C (2005) Stimulation of root formation in Posidonia oceanica cuttings by	
15 16 17 18	219	application of auxins (NAA and IBA). Marine Biology 149:393–400	
19 20	220	Balestri E, Lardicci C (2008) First evidence of a massive recruitment event in Posidonia oceanica	!:
21 22	221	Spatial variation in first-year seedling abundance on a heterogeneous substrate. Estuarine,	
23 24 25	222	Coastal and Shelf Science 76:634–641	
25 26			
27 28	223	Balestri E, Vallerini F, Lardicci C (2011) Storm-generated fragments of the seagrass Posidonia	
29 30	224	oceanica from beach wrack – A potential source of transplants for restoration. Biological	
31 32 32	225	Conservation 144:1644–1654	
33 34 35	226	Balestri E, de Battisti D, Vallerini F, Lardicci C (2015) First evidence of root morphological and	
36 37	227	architectural variations in young Posidonia oceanica plants colonizing different substrate	
38 39	228	typologies. Estuarine, Coastal and Shelf Science 154: 205–213	
40 41	229	Boudouresque CF, Bernard G, Pergent G, Shili A, Verlaque M (2009) Regression of Mediterranea	an
42 43	230	seagrasses caused by natural processes and anthropogenic disturbances and stress: A critical	
44 45 46	231	review. Botanica Marina 52:395–418	
47 48	232	Cancemi G, De Falco G, Pergent G (2003) Effects of organic matter input from a fish farming	
49 50	233	facility on a Posidonia oceanica meadow. Estuarine, Coastal and Shelf Science 56:961-968	
51 52	234	Celdrán D, Marín A (2011) Photosynthetic activity of the non-dormant Posidonia oceanica seed.	
53 54	235	Marine Biology 158:853-858	
56 57	236	Celdrán D, Marín A (2013) Seed photosynthesis enhances Posidonia oceanica seedling growth.	
58 59	237	Ecosphere 4:art149.	
60			9

1	238	Di Carlo G, Badalamenti F, Terlizzi A (2007) Recruitment of Posidonia oceanica on rubble
2 3	239	mounds: Substratum effects on biomass partitioning and leaf morphology Aquatic Botany
4 5 6	240	87:97–103
7 8	241	Duarte CM, Chiscano CL (1999) Seagrass biomass and production: A reassessment. Aquatic
9 10	242	Botany 65:159–174
11 12	243	Duarte CM, Marbà N, Gacia E, Fourqurean JW, Beggins J, Barrón C, Apostolaki ET (2010)
13 14 15	244	Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows.
16 17	245	Global Biogeochemical Cycles 42:GB4032
18 19	246	González-Correa JM, Bayle JT, Sánchez-Lizaso JL, Valle C, Sánchez-Jerez P, Ruiz JM (2005)
20 21	247	Recovery of deep Posidonia oceanica meadows degraded by trawling. Journal of Experimental
22 23	248	Marine Biology and Ecology 320:65–76
24 25 26	249	González-Correa JM, Torquemada YF, Sánchez Lizaso JL (2008) Long-term effect of beach
27 28	250	replenishment on natural recovery of shallow Posidonia oceanica meadows. Estuarine, Coastal
29 30	251	and Shelf Science 76:834–844
31 32	252	Infantes E, Orfila A, Bouma TJ, Simarro G, Terrados J (2011) Posidonia oceanica and Cymodocea
33 34 35	253	nodosa seedling tolerance to wave exposure. Limnology and Oceanography 56:2223–2232
36 37	254	Koch EW, Barbier EB, Silliman BR, Reed DJ, Perillo GM, Hacker SD, Wolanski E (2009) Non-
38 39	255	linearity in ecosystem services: temporal and spatial variability in coastal protection. Frontiers
40 41	256	in Ecology and the Environment 7:29–37
42 43	257	Kuo J, Den Hartog C (2006) Seagrass morphology, anatomy, and ultrastructure. Pages 51-87 In:
45 46	258	Seagrasses: Biology, Ecology and Conservation, Springer, Dordrecth, 2006
47 48	259	Lopez y Royo C, Pergent G, Alcoverro T, Buia MC, Casazza G, Martínez-Crego B, Romero J
49 50	260	(2011) The seagrass Posidonia oceanica as indicator of coastal water quality: Experimental
51 52	261	intercalibration of classification systems. Ecological Indicators 11:557-563
53 54 55	262	Marbà N, Duarte C (1994) Growth response of the seagrass Cymodocea nodosa to experimental
56 57	263	burial and erosion. Marine Ecology Progress Series 107:307-311
58 59	264	Marbà N, Díaz-Almela E, Duarte CM (2014) Mediterranean seagrass (Posidonia oceanica) loss
60		10

Page 11 of 21

Restoration Ecology

Meinesz A, Molenaar H, Bellone E, Loques F (1992) Vegetative reproduction in Posidonia				
larine Ecology 13:175–185				
e G, Loquès F, Molenaar H (1993) Polymorphism and development of Posidonia				
insplanted from different parts of the Mediterranean into the National Park of Port-				
ica Marina 36:209–216				
rd J (1952) Recherches sur les herbiers de phanérogames marines du littoral				
én français. Annales de l'Institut Oceánographique 27:157–234				
inesz A (1992) Vegetative reproduction in Posidonia oceanica effects of rhizome				
ransplantation season in orthotropic shoots. Marine Ecology 13:175–185				
inesz A, Caye G (1993) Vegetative reproduction in <i>Posidonia oceanica</i> survival				
oment in different morphological types of transplanted cuttings. Botanica Marina				
RJ, Nowak JF (1993) Environmental regulation of seed germination in Zostera				
eelgrass) in Chesapeake Bay: effects of light, oxygen and sediment burial. Aquatic				
79–91				
abaut P, Pergent G, Benyoussef L, Pergent-Martini C (2000) Contribution of side				
o the management of Mediterranean littoral ecosystems. International Journal of				
using 21:367–378				
Raimondino V, Pergent-Martini C (1997) Fate of primary production in Posidonia				
eadows of the Mediterranean. Aquatic Botany 59:307-321				
o J (2003) Effects of disturbances caused by coastal constructions on spatial				
rowth dynamics and photosynthesis of the seagrass Posidonia oceanica. Marine				
alletin 46:1523–33				
Malea P, Apostolaki ET, Kalantzi I, Marín A, Karakassis I (2012) The role of the				
sidonia oceanica in the cycling of trace elements. Biogeosciences Discussions				
3				

- 292 Schutten J, Dainty J, Davy AJ (2005) Root anchorage and its significance for submerged plants in
- shallow lakes. Journal of Ecology 93:556–571
 - 294 Short FT, Coles RG (2001) Global seagrass research methods. Elsevier, Amsterdam
 - 295 Statton J, Kendrick GA, Dixon KW, Cambridge ML (2014) Inorganic nutrient supplements
- 296 constrain restoration potential of seedlings of the seagrass, *Posidonia australis*. Restoration
- 297 Ecology 22:196–203
 - 298 Terrados J (1997) Is light involved in the vertical growth response of seagrasses when buried by
 - 299 sand? Marine Ecology Progress Series 152:295–299
 - 300 Terrados J, Marín A, Celdrán D (2013) Use of *Posidonia oceanica* seedlings from beach-cast fruits
- 301 for seagrass planting. Botanica Marina 56:185–195
- 302 Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis
- 303 of variance. Cambridge University Press
- 304 Valle C (2011) Estudio multiescalar de la ictiofauna asociada a praderas de *Posidonia oceanica* (L.)
- 305 Delile, 1813 en Alicante (sudeste ibérico). Boletín Instituto Español de Oceanografía 17:49–
- 307 Wentworth CK (1922) A scale of grade and class terms for clastic sediments. The Journal of
- 308 Geology 30:377–392

- 309 ARTWORK AND TABLES WITH CAPTATION:
- 310 Figure 1. *P. oceanica* seedlings germinated in sand (A) and glass (B). Numbers indicate the shadow
- 311 seed-burial level used in the restoration simulation: 1: non-buried; 2: half-buried; 3: full-buried. L:
- 312 leaves; S: seed; Rh: rhizome, R1: principal roots; R2: lateral roots.

32

58

- **Figure 3**. Number of new lateral roots and total length of lateral roots per seedling germinated in
- 319 sand and glass (mean + SE; n=30). Letters above the bars indicate significant differences between

320 treatments (Student's *t*-test, p < 0.05).

P. oceanica seedlings germinated in sand (A) and glass (B). Numbers indicate the shadow seed-burial level used in the restoration simulation: 1: non-buried; 2: half-buried; 3: full-buried. L: leaves; S: seed; Rh: rhizome, R1: principal roots; R2: lateral roots.

289x194mm (300 x 300 DPI)

Growth of principal roots and leaves per seedling germinated in sand and glass (mean + SE; n=30). Letters above the bars indicate significant differences between substrate types (Student's t - test, p< 0.05).

120x104mm (300 x 300 DPI)

Number of new lateral roots and total length of lateral roots per seedling germinated in sand and glass (mean + SE; n=30). Letters above the bars indicate significant differences between treatments (Student's t-test, p < 0.05).

118x116mm (300 x 300 DPI)

Growth of leaves (A), growth of principal roots (B), number of new lateral roots (C) and growth of lateral roots per seedling (D) after of the restoration simulation for the treatments Seed-burial level (non-buried, half-buried and full-buried) and Initial substrate (sand in empty and glass in grey; mean + SE; n=10). Letters above the bars indicate significant differences (two-way ANOVA, p< 0.05).

198x178mm (300 x 300 DPI)

Table S1. Summary of the Levene test and two-way analysis of variance (ANOVA) on the fixed factors "*Initial substrate*" (glass vs. sand) and "*Seed-burial level*" (non-buried, half-buried and full-buried). Significant results are in bold.

Source	d.f.	MS	F	Р
Growth of leaves				
Initial Substrate (S)	1	7.37	10.35	<0.01
Seed-Burial level (B)	2	0.68	0.96	0.39
S x B	2	0.16	0.22	0.80
Residual	54	0.71		
Levene's test: Transformation:	<i>p</i> = 0.36 None			
Growth of principal roots				
Initial Substrate (S)	1	0.03	0.14	0.71
Seed-Burial level (B)	2	0.65	2.85	0.07
S x B	2	0.41	1.81	0.17
Residual	54	0.23		
Levene's test:	<i>p</i> = 0.72			
Transformation:	$\operatorname{Ln}(x+1)$			
Growth of lateral roots				
Initial Substrate (S)	1	26.22	50.97	< 0.001
Seed-Burial level (B)	2	1.29	2.51	0.09
S x B	2	0.95	1.85	0.17

Page 21 of 21

Restoration Ecology

Residual	54 0.:	51
Levene's test:	<i>p</i> = 0.00	
Transformation:	Ln(x + 1)	

Initial Substrate (S)	1	12.14	60.29	< 0.001
Seed-Burial level (B)	2	0.33	1.64	0.20
S x B	2	0.08	0.38	0.69
Residual	54	0.20		

Levene's test:

Transformation:

p = 0.00 Ln (x + 1)