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ABSTRACT 

 We theoretically discuss here the relationship between the structure of a set of halogenated and cyanated 

molecules containing the rubicene moiety, and a set of relevant electronic properties related to the opto-electronic 

and semiconductor character of these systems, namely: frontier molecular orbital shape and energy levels, electron 

affinity, ionization potential, reorganization energy, and electronic coupling between neighboring dimers, calculated 

over experimental (x-ray) or simulated crystal structures. To do it, we always employ accurate and validated Density 

Functional Theory methods. The obtained results will be compared with some reference organic semiconductor 

systems, in order to determine the potential use of the studied compounds in the fabrication of opto-electronic 

devices.  
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1. INTRODUCTION 

One of the main challenges in the field of Nanoelectronics is the development of new materials to be 

efficiently used in opto-electronic devices such as organic field-effect transistors (OFETs), organic light-emitting 

diodes (OLEDs) or solar cells, and, more recently, in organic radiofrequency identification (RFID) tags, biosensor or 

integrated circuits.1-3 They are aimed at providing cost-effective production of flexible electronic components; i. e., the 

fabrication of devices over large areas and lightweight flexible substrates with a high charge-carrier mobility of the 

semiconductor materials used within the active layer. In the last years, intense and worldwide efforts are focused on 

the use of carbon-based materials, such as acenes,4 fullerenes,5,6 graphene nanoribbons,7,8 nanorings,8 etc., acting 

as organic semiconductors able to compete with inorganic materials. In that sense, the set of molecules known as 

polycyclic aromatic hydrocarbons (PAHs) have been widely used, due to their high charge mobility (µ > 1 cm2 V-1 s-1) 

mainly attributed to a favored π-π stacking between adjacent molecules, thus resulting in strong electronic coupling 

between them. An interesting example of PAH, not yet fully explored, is provided by rubicene (C26H14) (figure 1a) 

whose backbone consists of five rings with three linearly fused rings and one benzene ring at each diagonal side, 

thus keeping a planar π-orbital surface. Note that this molecule has been used as a p-type semiconductor in bilayer 

organic solar cells10 and also constitutes a nanofragment of fullerenes. Moreover, dibenzo[a,m]rubicene (C34H18) has 

also been synthesized as a cyclo-penta-fused PAH, resulting of the fusion of two benzene rings to rubicene (figure 

1b).11  

However, as far as we know, no systematic studies about rubicene or its derivatives have been carried out. 

We have thus studied in this work, from a theoretical point of view: i) the structural and electronic changes (see figure 

1) induced by the systematic introduction of substituents or fused-benzene rings at selected positions; ii) the 

semiconductor properties of all the pristine and the newly derived systems, attempting to set up their promising role 

in the fabrication of devices, acting possibly as ambipolar semiconductors, and trying thus to establish structure-

properties relationships from isolated to crystalline samples.  

 

a)  

 

b) 

 

R = X = H → Rubicene  

R = X = F, Cl, Br, CN → per-substituted derivatives 

R= H ; X = F, Cl, Br, CN → [8]- substituted derivatives 

R = F, Cl, Br, CN; X = H → [6]- substituted derivatives 

Dibenzo[a,m]rubicene 

Fig. 1. Chemical structure of rubicene and its derivatives (left) and dibenzorubicene (right) 

 

2. THEORETICAL CONSIDERATONS 

In typical π-conjugated organic crystals with small bandwidths (< 1eV) and at room temperature, the charge 

motion generally occurs by a hopping mechanism, which can be described as a self-exchange charge-transfer (CT) 
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reaction between two identical molecules in the absence of an external electric field. This self-exchange CT process 

is generally described within the framework of the Marcus-Levich-Jortner (MLJ)12,13 model, which expresses the rate 

constant for charge transfer (kCT) as:  

��� =			 ���ħ 
��� �
�������∑ �����−����� � ×  !""#

�! × 	��� %&���'�ħ(!""')*ѳ��
��,��� -./�01  (1) 

where kB and ħ are the Boltzmann’s and Planck’s constants, respectively; T is the temperature, fixed here at 298.15 

K; Vif and λo stand for, respectively, the charge transfer integral and the classical contribution (mostly the external) to 

the reorganization energy, fixed the latter here at 0.1 eV according to previous estimates,14,15 and ∆Gө is the energy 

difference between the electronic states involved in the charge transfer process (equal to zero in the self-exchange 

process). In the MLJ formalism, a single effective mode with an energy ℏωeff, which represents all the intramolecular 

modes, is treated at the quantum-mechanical level via the effective Huang−Rhys factor Seff = λi/ℏωeff (ℏωeff was 

set here equal to 0.2 eV, which is the typical energy of C−C stretching modes).16-18 In contrast, the intermolecular 

modes are treated classically through the λo parameter. Generally speaking, in organic crystals, the outer 

contribution is of the order of a tenth of an electronvolt or, even, lower, contrary to charge transfer processes in 

solution wherein the external part dominates.19-22 Different values for λo, ranging between 0.01 and 0.2 eV, have been 

proposed and employed in the literature.23-26. In that sense, as we commented above, λo has been fixed at 0.1 eV in 

order to facilitate the comparison with previous rate constants.14,15 

 Despite some limitations imposed by the approximations used to derive equation (1), such as Vif << λ, or 

single promoting frequency and high temperature limit, it becomes clear how two key magnitudes govern semi-

quantitatively the charge transport in organic crystals. The first one is the reorganization energy, divided in two 

contributions: internal (which includes only the reorganization energy of the molecules involved in charge transfer) 

and external (which accounts for any environmental relaxation and changes upon charge hopping) reorganization 

energy. As we commented above, the external reorganization energy is fixed at 0.1 eV, while the internal, λi, is 

calculated using density functional theory (DFT). Thus, λi can be determined, for self-exchange process, as a sum of 

two terms which corresponds to the geometry relaxation energies upon going from the neutral-state geometry to the 

charged-state one and vice versa (Nelsen four-point method)27,28 

λi = λ1 + λ2      (2) 

λ1 = E0(G*) – E0(G0)     (3) 

λ2 = E*(G0) – E*(G*)     (4) 

where E0(G0) and E*(G*) are the ground-state energies of the neutral and ionic states, respectively. E0(G*) is the 

energy of the neutral molecule at the optimal ionic geometry, and E*(G0) is the energy of the charged state at the 

optimal geometry of the neutral molecule.20-22 

The second magnitude is the charge transfer integral, Vif, which describes the strength of the electronic 

interactions between neighboring molecules, and it thus critically depends on their relative spatial arrangement. The 

electronic coupling is defined by the matrix element  

    Vif = <ψi|H|ψf>     (5) 

where Ĥ is the electronic Hamiltonian of the whole system and ψi and ψf are the wave-functions of two initial and final 

charge-localized states,22,29,30 in the hypothetical absence of any coupling between the molecular units.31-33 However, 

we have determined Vif values as one-half of the energy difference between the adiabatic potential energies at the 

geometry (Gc) where the diabatic (localized) potential energy surfaces cross each other34,35 
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�� = �
 	34'567 −	4&	5678*0	*9    (8) 

This two-state model involves the solution of the equation 

: ;�� − 4 ;�< − 4���;�� − 4��� ;�� − 4 : = 0    (9) 

From which one obtains 

    
��	 =	 �
�&	 ="� 	 >;�� −	 ="	5?=='	?""7

 @    (10) 

with Sif = < Ψi|Ψf>, Hif = <Ψi|Ĥ|Ψf>, Hii = <Ψi|Ĥ|Ψi> and similarly Hff. We have used the unrestricted Hartree-Fock 

(UHF) wave function to describe the excess charge (both, hole and electron) localized on the initial and final states 

for a hole or electron transfer reaction. Note that this excess charge has been checked to remain completely 

localized on one (and only one) of the molecules during the set of calculations performed. 

 For an n-dimensional and spatially isotropic system, in which homogeneous charge diffusion can be 

assumed, the diffusion coefficient for charge-carriers (D) can be evaluated as29 

   A = 	 �� 	 limE	→	/ 〈3H5E7&H5178�〉
E 	≈ �

� 	 limE	→	/	 〈H
�〉
E 	≈ 	 �� 	∑ K�� ���� 

 (6) 

where n = 3 and i runs over all nearest adjacent molecules while ri, ki are, respectively, the corresponding center-to-

center hopping distance and the electron transfer rate constant (obtained from eqn. (1)), and pi (=��/∑ ��� ) is the 

hopping probability.29 In the low (zero) field limit, the charge carrier mobility (µhop) can be described by the Einstein-

Smoluchowsky relation 

   LMNO	 = 	 �P���      (8) 

where T is the temperature, kB is the Boltzmann constant, e is the electron charge and D is the diffusion coefficient. 

The frontier MOs and the work-function (Φm) of the electrode must have close values for an efficient charge 

injection. An ohmic contact is produced when the energy difference between the frontier MO and Φm is equal or lower 

than 0.3 eV. In the case of p-type semiconductors, the HOMO must be energetically aligned with the Fermi levels of 

environmentally stable anodes, such as ITO36 to obtain an efficient hole injection. By contrast, in the case of n-type 

semiconductors, the LUMO should match the Fermi level of the electrodes with low work function, such as Na, Cs, 

Ca, Mg, Ba or Al.37 Note that interface dipole effects between electrode and semiconductor have not been taken into 

account,38 but the comparison of Φm with HOMO/LUMO energy levels of the semiconductor may help to determine 

whether charge injection is likely or, on the contrary, if a high contact resistance should be expected. Additionally, the 

values of the HOMO and LUMO orbitals must range between -4.8 and -5.5 eV, and -3.6 and -4.5 eV, respectively, to 

improve the stability of the opto-electronic device.21 There might be possible a limit value for LUMO energy in -4.0 

eV, due to the fact that negative charges can react with atmospheric oxidants such as water or oxygen.39,40 

On the other hand, the ionization potential (IP), electron affinity (EA) and quasiparticle gap (QEG, 

calculated as the difference between the corresponding adiabatic, AIP and AEA, values) are also key parameters 

that determine the efficiency of the charge injection from the electrodes ant their susceptibility to be reduced or 

oxidized upon air exposure.41 Thus, the EA of a semiconductor must be ≥ 3.0 eV for an easy electron injection, but 

not much greater than 4.0 eV to avoid destabilization under ambient conditions.42 Low IPs facilitate hole injection but 

too low values can produce unintentional doping. 

All these associated energy magnitudes will be also calculated here for the compounds under investigation.  
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3. COMPUTATIONAL DETAILS 

The Gaussian09 package (Release D.01)43 has been employed for the computation of the structural and 

electronic properties of the studied systems, employing for that the hybrid functional B3LYP44,45 together with Pople’s 

(6-31+G*) basis sets. The gas-phase HOMO/LUMO eigenvalues (EHOMO/ELUMO), IP/EA and λi values were extracted 

from the optimized (and verified) geometrical minima of the isolated systems. Closed-shell calculations for singlets 

and open-shell calculations for doublets (cationic and anionic species) have been carried out for the different 

structures. We have chosen the B3LYP model since it yields reasonable conjugated-polymer ground-state 

structures,46,47 and, in general, is appropriate for the prediction of electronic structures of polycyclic aromatic 

hydrocarbons.48 In addition, that method provides theoretical λi energies in good quantitative agreement with the 

corresponding experimental values from gas phase ultraviolet photoelectron spectroscopy,49 as well as satisfactory 

linear relationships between calculated EHOMO/ELUMO and experimental IPs / EAs in such a way that the calculated 

EHOMO/ELUMO can be used to semi quantitatively estimate EAs/IPs50-52 and orbital energies.53 

The unknown crystal structures for some rubicene derivatives were modeled with the PBE54 exchange-

correlation functional and a numerical double-ζ+ polarization atomic orbital basis set, where the ions are described 

with norm-conserving Troullier−Martins pseudopotentials, as well as with PBE using a Grimme’s dipersion correction 

term55 with a DZP basis set, i.e., PBE-D/DZP, using the SIESTA code.56 All of the atomic positions and lattice 

parameters were relaxed using the conjugated gradient minimization method. The theoretical solid-state structures 

obtained in this study were modeled departing from the one experimentally obtained for the rubicene crystal, which 

was indeed previously employed as a benchmark to validate the methodology. Afterwards, the transfer integral 

parameters Vif were calculated for the different pairs of molecules extracted from both the X-ray structures and 

modeled crystals. Vif calculations were carried out using the electron transfer module implemented in NWChem 6.5 

package57 over each dimer and by using the UHF/cc-pVDZ level of theory. 

 

4. RESULTS AND DISCUSSION 

4.1. Molecular structures 

We have first checked how the introduction of substituents in rubicene and dibenzorubicene might change 

the relevant dihedral angles (see figure 2), which could be related with the stacking and solid-state packing of 

dimers.10,11 Moreover, we have also analyzed the dibenzorubicene structure and compared it with the experimental 

results.10,11 Table 1 shows the calculated values (at the B3LYP/6-31+G* level) for the dihedral angles.   

 

Fig. 2. Sketch of relevant dihedral angles of rubicene and its derivatives (left) and dibenzorubicene (right) 
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Table 1. Dihedral angles (in degrees) of rubicene structure and its derivatives, calculated at B3LYP/6-31+G* level of theory. A 

positive (negative) value for τ implies a clockwise (anti-clockwise) orientation in the measurement of the angles.  

Compounds τ1 τ2  τ3 τ4 
Rubicene 0.00 0.00  0.01 0.00 
      
6F-Rubicene 0.00 0.00  0.00 0.00 
6Cl-Rubicene 5.18 -10.08  5.16 -10.08 
6Br-Rubicene 5.10 -9.69  5.08 -9.72 
6CN-Rubicene 3.99 -8.74  3.99 -8.73 
      
8F-Rubicene 0.00 0.00  0.00 0.00 
8Cl-Rubicene -14.65 7.22  14.67 -7.23 
8Br-Rubicene -3.52 28.44  -3.52 28.44 
8CN-Rubicene -1.99 15.53  -1.99 15.53 
      
pF-Rubicene 6.56 -18.69  6.56 -18.70 
pCl-Rubicene 31.55 -27.45  31.56 -29.28 
pBr-Rubicene 36.67 -30.03  36.66 30.03 
pCN-Rubicene 23.99 -25.21  23.99 -25.21 
      
Dibenzorubicene 17.43 17.44    

 

 As we initially expected, the rubicene molecule remains planar, agreeing with the experimental structure 

previously published,10 in which the crystal structure shows, apparently, a planar and conjugated system. However, 

we have observed that the introduction of some substituents disrupts this planarity. Actually, the introduction of Cl, Br 

or CN substituents greatly distorts the unsubstituted structure (see figure 3), independently of the number of 

introduced substituents (see table 1), in order to reduce the steric hindrance. In the case of fluorine atoms as 

substituents, some changes have been only observed for pF-rubicene, obtaining dihedral angles close to zero for the 

set of systems considered. With respect to the dibenzorubicene molecule, the dihedral angles between both planes 

are similar (around 17°) while the experimental structure shows values of 13.9º and 16.2º, and thus losing the 

symmetry, due probably to packing effects.10 In fact, dibenzorubicene is known to have two different conformers, 

showing the most stable equal values for the dihedral angles, in agreement with our gas-phase estimates.10 

 

a)  

 

b)  

 

c)  

 

d)  

 

Fig. 3. Selected view of a) rubicene, b) 6Cl-rubicene, c) 8Cl-rubicene and d) pCl-rubicene, respectively, clearly showing the 

changes in dihedral angles upon substitution.   

 

 On the other hand, we have further modelled some unknown crystal structures taking as starting point the 

X-ray data of rubicene,10 after carefully assessing the methodology first. Due to the large geometrical differences 

between rubicene and their substituted derivatives (see figure 3 and table 1), we have only tackled the 6-fluorinated 
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derivative. Table 2 shows the correspondingly calculated lattice parameters for rubicene and its fluorinated 

derivatives. As we observe, no large differences between experimental and theoretical structures (in the case of 

rubicene) have been found, which validates the methodology employed so far. Therefore, we have correspondingly 

simulated the crystal structure of 6F-rubicene (see figure 4) whose arrangements are expected to be similar to 

rubicene. Figure 4 displays the 3D view of rubicene and 6F-rubicene structures, both showing a herringbone 

disposition although 6F-rubicene also features some T-shaped stacking. These results resemble those reported 

before for pentacene crystals, where a change in the crystal configuration is observed on going from pentacene to 

perfluorinated pentacene.58-60 Interestingly, a more pronunciated cofacial stacking (see figure 4) is obtained after 

fluorination which, in turn, may improve the electronic coupling (vide infra). A similar behavior has been previously 

observed in other systems such as diphenyltetrazine derivatives14 or dibenzodifuranione-based oligo(p-

phenylenevinylene) (BDOPV) derivatives.61 

 

a)  

 

 

 

b)  

 

 

 

Figure 4. Molecular arrangements from the X-ray crystal structure of rubicene (top) and simulated crystal structure of 6F-rubicene 

(bottom).  
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Table 2. Crystallographic lattice parameters (a, b, c, α, β and γ) for the studied compounds.  

 Rubicene 6F-Rubicene 

Lattice parameters Expa  Theory Theory 

a / Å 16.29 16.59 19.10 

b / Å 5.14 5.33 4.58 

c / Å 19.06 19.63 20.05 

α / degrees 90.00 90.00 91.63 

β / degrees 97.02 96.36 91.70 

γ / degrees 90.00 90.00 86.73 

    a Values taken from Ref. [10] 

 

4.2. Charge Injection. 

The charge injection relies on the energy difference between the energy of the frontier orbitals (HOMO and 

LUMO) and the work function (Φm) of the metal injecting the charge (hole or electron) into the organic layers; and on 

the ionization potential (IP) / electron affinity (EA), depending on the nature of the semiconductor (p- or n-type 

semiconductor), corrected by the interfacial dipoles.23,38 The dipoles derived from either partial charge-transfer metal-

semiconductor, the reduction of the metal work function by the organic layer, or the occupation of the metal-induced 

density of states in the gap of the organic material, have not been taken into account.62,63 Although a complete 

description of the metal/organic interface should account for those specific interactions, the comparison between the 

free metal work function and the (gas-phase) HOMO/LUMO levels will not give exact information but, nonetheless, 

give us a qualitative guide for the electron/hole barrier injection, and thus to establish trends within a set of related 

compounds.38 In that sense, we have checked the omhic contact between semiconductor and electrode, from the 

expression |EHOMO/LUMO - Φm| ≤ 0.3 eV.42 

Table 3 shows the energy values for HOMO and LUMO orbitals and the corresponding energy difference 

∆ELUMO-HOMO. The values calculated here are close to those previously calculated for rubicene10 and 

dibenzorubicene,11 which are between -2.54 eV and -2.68 (for LUMO orbital) and -5.29 eV and -5.67 (for HOMO 

orbital), respectively. The values of the rest of compounds differ from those obtained before for other state-of-the-art 

molecules such as tetracene (-2.09 and -4.87 eV), pentacene (-2.40 and -4.61 eV) or rubrene (-2.09 and -4.69 eV), 

calculated at the B3LYP/6-31G** level, and other fused-PAH (such as corannulene, circumtrindene, hemifullerene or 

circobiphenyl) whose LUMO energy (calculated at B3LYP/6-31G* level) are lower than the values calculated in this 

work.64 Moreover, the halogenation exhibits the well-known effect of decreasing the energy of the orbitals, normally, 

leading to a more favored charge injection. In that sense, as we stated before, a low LUMO energy facilitates the 

electron injection, and could also help to enhance the environmental stability of the material, although there is not still 

a general guideline for prediction of the air stability for n-type semiconductors. On the other hand, a high HOMO 

energy eases the hole injection, for which a good ohmic contact is predicted for almost all systems, except for pCN-

Rubicene structure, with a large variety of metal oxides such as WO3 (Φm = -6.8 eV), MoO3 (Φm = −6.8 eV), NiO (Φm 

= −6.3), CuO (Φm = −5.9 eV), and MoO2 (Φm = −5.9 eV);65,66 while the most useful electrodes, such as Ca (Φm = −2.9 

eV), Mg (Φm = −3.7 eV), and Al (Φm = −4.3 eV)37 could be used to produce ohmic electron-injection contact with the 

majority of the studied molecules. Again, pCN-Rubicene does not produce ohmic contact with any electrodes, and its 

use is thus not recommended. 
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Indium tin oxide (ITO) (Φm = −4.7 eV)36 and gold electrodes (Au) (Φm = −5.1 eV)37,67 are usually employed 

as electrodes for ambipolar semiconductors, but their Φm values are not low enough to ensure ohmic hole-injection 

contact or electron injection with the majority of the herein studied molecules. This drawback can be overcome by 

employing electrodes with lower Φm values such as chlorinated ITO (Cl-ITO) (Φm  = −6.1 eV) or gold electrodes with 

self-assembled monolayers of alkanethiols or polythiols (Φm = −5.5 – -5.8 eV)68 which may make easier the hole 

injection into the semiconductor,69 but it conversely could hinder electron injection due to the increase of the Φm – 

ELUMO gap. Hence, molecules with narrow band gaps are more suited to be employed as ambipolar semiconductors 

with the same electrode. In general, the calculated ∆ELUMO-HOMO are not narrow enough to ensure that both ohmic 

hole- and electron injection contacts are produced with the same type of electrode. Only in the case of cyanated 

derivatives is possible to predict an ambipolar character. However, as we commented above, the pCN-rubicene 

compound has very high orbital energy values, which is expected to preclude an efficient charge injection.  

Observing the energy of the LUMO orbitals, and contrary to other studied structures,19,31 the introduction of 

halogenated or cyanated substituents does not produce changes in the orbital energy values, in order to improve (or 

increase) the n-type semiconductor character of the derivative systems. In these structures, the introduction of 

halogenated or cyanated substituents yields a stabilization effect of the electronic structure, increasing the p-type 

semiconductor character of the systems. In that sense, we have observed that the introduction of halogenated or 

cyanated groups yields a stabilization of the LUMO orbital, with a decrease in the LUMO energy. This effect is more 

pronounced in the case of cyanated-rubicene derivatives, which could be due to changes in the shape of LUMO and 

(L+1)UMO orbitals (see Figure 1S in the Supporting Information). Note that the orbitals are not totally delocalized 

over all the molecules, as opposed to the rest of the studied molecules, which could generate a stabilization of the 

LUMO orbitals.    

 

Table 3. Energy values for HOMO and LUMO orbitals, and ∆ELUMO-HOMO (eV) for rubicene and its derivatives, as calculated at 
B3LYP/6-31+G* level 

Compounds HOMO (eV) LUMO (eV) ∆ELUMO – HOMO (eV) 

Rubicene -5.559 -2.847 2.712 
    
6F-Rubicene -6.116 -3.420 2.696 
6Cl-Rubicene -6.079 -3.522 2.557 
6Br-Rubicene -6.031 -3.510 2.521 
6CN-Rubicene -7.108 -4.911 2.197 
    
8F-Rubicene -6.236 -3.545 2.690 
8Cl-Rubicene -6.200 -3.552 2.648 
8Br-Rubicene -6.139 -3.522 2.616 
8CN-Rubicene -7.536 -4.964 2.572 
    
pF-Rubicene -6.696 -4.102 2.593 
pCl-Rubicene -6.464 -4.032 2.432 
pBr-Rubicene -6.326 -3.935 2.391 
pCN-Rubicene -8.652 -6.364 2.288 
    
Dibenzorubicene -5.608 -2.612 2.995 

 

Table 4 shows the vertical (VEA and VIP), adiabatic (AEA and AIP) and the quasiparticle energy gap 

(QEG) values estimated for rubicene (and its substituted derivatives) as well as for dibenzorubicene. As we know, to 

ensure the air stability of the material, its EA must be ranged between 3.4 and 4.0 eV, condition that it is only 

satisfied by all per-substituted derivatives, except pCN-rubicene. On the other hand, the IP must be low enough to 
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allow an easy hole injection into the HOMO orbital, with the lowest value obtained for cyanated derivatives. With 

respect to the QEG (the gap between these two values), the calculations show that the narrower gap corresponds to 

per-substituted rubicene (with the exception of pF-Rubicene) and the 6CN-derivative, which could indicate that these 

compounds may undergo an ambipolar behavior.  

 

Table 4. Calculated electron affinity (AEA and VEA), ionization potential (AIP and VIP), quasiparticule energy gap (QEG) and 

reorganization energy (λi+ and λi−) values for rubicene and its derivatives, as calculated at B3LYP/6-31+G* level. 

Compounds AIP (eV) VIP (eV) AEA (eV) VEA (eV) QEG / eV λi+ (eV) λi−(eV) 
Rubicene 6.760 6.831 1.681 1.581 5.079 0.146 0.198 
        
6F-Rubicene 7.294 7.383 2.269 2.140 5.025 0.184 0.256 
6Cl-Rubicene 7.157 7.215 2.458 2.353 4.699 0.193 0.207 
6Br-Rubicene 7.068 7.160 2.485 2.392 4.583 0.188 0.183 
6CN-Rubicene 8.164 8.269 3.837 3.776 4.327 0.217 0.122 
        
8F-Rubicene 7.420 7.509 2.395 2.268 5.025 0.179 0.253 
8Cl-Rubicene 7.268 7.340 2.514 2.392 4.754 0.147 0.243 
8Br-Rubicene 7.155 7.227 2.528 2.408 4.627 0.146 0.240 
8CN-Rubicene 8.612 8.661 3.971 3.858 4.641 0.098 0.225 
        
pF-Rubicene 7.846 7.954 2.976 2.823 4.870 0.219 0.305 
pCl-Rubicene 7.439 7.521 3.083 2.955 4.356 0.166 0.254 
pBr-Rubicene 7.241 7.316 3.053 2.930 4.188 0.147 0.235 
pCN-Rubicene 9.607 9.663 5.421 5.333 4.186 0.114 0.172 
        
Dibenzorubicene 6.671 6.765 1.561 1.475 5.110 0.196 0.172 

 

4.3. Charge transport 

The calculated λi values are also shown in table 4. All the values are comprised between 0.098 to 0.219 eV 

for holes and from 0.122 to 0.305 eV for electrons, obtaining the lowest (highest) values for hole injection for pCN-

rubicene (pF-rubicene), respectively; while the lowest (highest) values for electron injection have been obtained for 

6CN-rubicene (pF-rubicene), respectively. This behavior, i.e. the increase of λi values with the introduction of 

fluorinated substituents, has been previously observed in other acenes such as anthracene, tetracenes, pentacene, 

pyrenes or cincumacenes70 and some tri-isopropilsililpentacene derivatives.71 Note that the halogenation does not 

generally reduce the λi values obtained for rubicene, unless for hole transport in some derivative structures (i. e., for 

8CN-rubicene derivative). In spite of it, these calculated λi are in the range of other acene derivatives typically used 

as n-type semiconductor such as perfluorpentacene (0.24 eV)72 and some diimides (0.24 – 0.35 eV)73 calculated at 

the B3LYP/6-31++G** level, and much lower than for some trifluoromethylated PAH (0.35 – 0.55 eV)74 calculated at 

the B3LYP/6-1G** level; and similar to other organic compounds used as p-type semiconductors such as 

halogenated tri-isopropilpentacene derivatives (0.134 – 0.168 eV)71 calculated at the B3LYP/6-311++G**//B3LYP/6-

31G** level of theory, and lower than some trifluoromethylated PAH (0.30 – 0.50 eV)74 calculated at the B3LYP/6-

1G**. 

Table 5 shows the calculated values of Vij, the charge transport rates (kCT ) and the associated mobilities 

(µ). Incorporating the calculated values of reorganization energy and electronic coupling to the corresponding 

equations, we have also estimated the charge transport rate (eq. 1) and the mobility (eq. 8) for both charge carriers 

(hole and electron). As we expected, the dimer in coplanar dispositions, i. e. dimer 1, 7 and 1 for the (experimental or 

simulated) crystal of rubicene, dibenzorubicene and 6F-rubicene, respectively (see figures 5 - 7), yields the lowest 

distance between center-to-center dimers. Logically, these lowest distances are correlated with the highest electron 
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coupling, and them, with the most favorable charge transport rates for hole charge carriers. As we observed above, 

and unlikely expected, the introduction of halogenated substituents increases the p-type character of the studied 

structures. In that sense, for the pristine rubicene, the hole character is 9-fold factor higher than electron character, 

which increase until 30-fold factor when some hydrogen atoms are substituted for fluorine atoms.  

 

Table 5. Calculated Vij (meV) values for Rubicene, its 6F-derivative and Dibenzorubicene, along with the center-to-

center distance between dimers (r, Å) and the estimated values for kCT (s-1), µ (V-1 cm2 s-1) and the ratio µ+/µ- 

 
  Hole Electron  

Dimer r / Å Vif / meV kCT / s-1 
µ / V-1 cm2 
s-1 

Vif / meV kCT / s-1 
µ / V-1 cm2 
s-1 

µ+ / µ- 

Rubicene 
1 5.14 177.8 3.07 ×1014 

5.2 
67.0 2.67 ×1013 

0.6 9.1 2 8.81 22.9 1.79 ×1011 8.0 3.26 ×1011 
3 8.81 22.9 1.79 ×1011 7.7 3.26 ×1011 

          

Dibenzo 
Rubicene 

1 11.15 51.5 2.26 ×1013 

2.9 

0.4 9.74 ×108 

0.6 4.6 

2 10.95 13.3 1.51 ×1012 22.9 3.67 ×1012 
3 11.85 6.7 3.85 ×1011 44.3 1.48 ×1013 
4 15.12 12.1 1.24 ×1013 33.9 8.70 ×1012 
5 11.85 6.2 3.32 ×1011 10.6 8.53 ×1011 
6 12.40 5.2 2.32 ×1011 0.2 4.35 ×108 
7 3.92 190.5 3.09 ×1014 66.7 3.37 ×1013 
8 10.95 12.2 1.26 ×1012 28.8 6.28 ×1012 

          

6F-Rubicene 

1 4.55 229.3 4.48 ×1014 

5.8 

44.6 1.50 ×1013 

0.2 30.5 

2 11.72 1.6 2.29 ×1010 4.7 1.70 ×1011 
3 10.80 55.9 2.66 ×1013 12.7 1.23 ×1012 
4 11.25 0.1 6.30 ×1007 5.4 2.22 ×1011 
5 11.19 0.8 4.88 ×1009 1.1 8.46 ×1009 
6 9.68 3.7 1.18 ×1011 6.8 3.54 ×1011 

          
 

 

Figure 5. Sketch of the different dimers extracted from the experimental (X-Ray) data for rubicene.  
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Figure 6. Sketch of the different dimers extracted from the experimental (X-Ray) data for dibenzorubicene 

 

 

Figure 7. Sketch of the different dimers extracted from the simulated crystal data for 6F-rubicene.  

 

 

CONCLUSION 

 In this work, we have studied the influence of partial or total peripherical substitution of hydrogen atoms by 

halogen atoms and cyano grups in rubicene. This study focused first on the structural changes of isolated molecules 

upon substitution, and the subsequent implications for the solid-state packing of the samples.   

We have systematically compared some selected dihedral angles, observing that the introduction of some 

substituents disrupts the planarity of rubicene, in order to reduce the steric hindrance. The crystallographic 

parameters of rubicene have been accurately reproduced by our calculations, with the purpose to simulate the solid-

state structure of 6F-rubicene to disclose then structure-property relationships.   

For the study of the semiconductor behavior, and in the case of charge injection properties, we have 

compared the energy of the frontier (HOMO and LUMO) orbitals with the most commonly used electrodes, observing 

that only an ohmic contact is possible when some metal oxides are employed. On the other hand, the quasiparticle 

energy gap values indicate that the per-substituted compounds and 6CN-rubicene could act as ambipolar 

semiconductors. However, unexpectedly, the introduction of halogenated or cyanated substituents increases the p-
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type semiconductor character, as deduced from energy orbital values and from calculated (reorganization energy 

and electronic coupling) and simulated (charge transport rate and mobility) parameters. In that sense, the 

introduction of halogenated substituents yields an increase in the hole motilities by a 3-fold factor from the initial 

(rubicene) structure to the halogenated (6F-rubicene) one. For the case of dibenzorubicene, where multiple paths for 

charge-carries hopping are found upon crystallization, we found the lowest ratio between hole and electron 

mobilities, together with reasonably high individual values.  
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