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Abstract: Novel magnesium oxide-carbon quantum dots have been synthesized and used for the 

formation and stabilization of palladium nanoparticles. This highly water dispersible material, 

Pd@MgO-CQD, has been used as an active catalyst for Suzuki coupling of aryl bromides at 

room temperature and aryl chlorides at 80 °C in water. Using fluorescence emission of the 

material, a new protocol for determine of Pd loading and leaching in catalyst preparation and 

recycling process was developed. 
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1. Introduction 

Environmental problems rose up from chemical progression encouraged chemists for designing 

new methodologies matched with green chemistry objectives [1-7]. For instance industries have 

started employing green chemistry practices such as waste prevention by designing high 

performance heterogeneous catalysts based on naturally available materials and the use of less 

toxic solvents and reagents.8-11 Palladium catalyzed cross-coupling reactions are important 

approaches for the formation of carbon-carbon and carbon-heteroatom bonds [12-18]. In recent 

years, because of high toxicity and price of palladium, growing interest has been paid to 

development of different heterogeneous palladium catalysts [19-22]. Magnesium oxide and clay 

minerals with high surface area can be found widely in nature and have been used as catalysts or 

as supports for stabilization of transition metal catalysts [23-27]. Rao and coworkers prepared 

water dispersible sheets of Mg-phyllo(organo)silicates containing pendant amino ligands and 

used it for stabilization of Au, Ag, Pd, and Pt nanoparticles [28]. Also, very recently we reported 

clay composite carrying phosphinite-functionalized ionic liquid moieties (CCPIL) for palladium 

nanoparticles stabilization and their applications in different coupling reactions [29]. 

Carbon quantum dots (CQD) are nanomaterials with excellent water solubility, strong 

fluorescence emission, high photostability, non-toxicity, and good biocompatibility. In past few 

years, CQD have been used in different applications such as biomedicine delivery systems, 

biosensors, dye-sensitized solar cells, organic solar cells, supercapacitors, light-emitting devices, 

and photocatalysts [30-32]. Recently, CQD have been used for reduction of palladium salt, 

formation of palladium nanoparticles and applied as an efficient catalyst in Suzuki and Heck 

coupling reactions [33]. Very recently, we have also reported modification of Fe3O4 

nanoparticles with CQD and its application for the stabilization of palladium nanoparticles in the 



Suzuki reaction [34]. Despite the high efficiency of our reported catalyst, quenching of 

fluorescence in CQD@Fe3O4 NPs is the drawback of this material. For instance, this problem 

prohibited further application of the material in fluorescence active reactions. Herein, we wish to 

report novel MgO-CQD as a fluorescence active composite for formation and stabilization of 

PdNPs (referred as Pd@MgO-CQD throughout the text of this article) and its application as 

highly dispersible catalyst in very mild Suzuki reaction of aryl bromides and chlorides in water. 

2. Material and methods 

2.1.Synthesis of MgO-CQD 

To a stirring solution of polyethylene glycol 200 (25 mL), was added Mg(NO3)2 (9 g) and the 

mixture was stirred at room temperature until the salt was completely dissolved. To the resulting 

mixture, an aqueous solution of Na2CO3 (1.2 g) and urea (1.2 g) in water (8 mL) was added and 

the resulting mixture was sonicated for 30 min and then was heated in autoclave at 160 °C for 2 

h. Then, the mixture was cold down to room temperature and obtained solid was centrifuged and 

dried in the oven affording 5.2 g fluorescence active MgO-CQD. 

2.2.Synthesis of Pd@MgO-CQD 

MgO-CQD (1 g) was added to a stirring 1:1 mixture of H2O and EtOH (5 mL). Then, sonicated 

solution of PdCl2 (40 mg, 0.22 mmol) in H2O (3 mL) was added under argon atmosphere and 

stirred at 60 °C for 24 h. The resulting suspension was centrifuged and the solid was filtered off. 

After drying in the oven for 24 h at 80 °C, 0.93 g of Pd@MgO-CQD containing 0.148 mmolg-1 

palladium was obtained. 

2.3.General procedure for Suzuki–Miyaura reaction. 



Pd@MgO-CQD catalyst (10 mg, 0.3 mol%), aryl halide (0.5 mmol), arylboronic acid (0.75 

mmol), K2CO3 (103 mg, 1 mmol), and distilled H2O (2 mL) were added to a flask and the 

mixture was stirred at 30 °C for aryl bromides and at 80 °C for aryl chlorides. After completion 

of the reaction, which was monitored by GC, crude products were extracted by EtOAc (2×5 mL) 

and purified using column chromatography. 

2.4.Typical recycling procedure for the reaction between 4-bromobenzonitrile and 

phenylboronic acid. 

After completion of the reaction (monitored by GC), the resulting reaction mixture was extracted 

with ethyl acetate (3×4 mL),  the organic phase was dried and the product was purified using 

column chromatography. Then, the residue was subjected to centrifugation (6000 rpm) for 10 

min and the solid catalyst was separated which was washed with diethyl ether and dried for 

further use in another batch. 

3. Results and discussion  

In a typical preparation, Pd@MgO-CQD was prepared using reaction of Mg(NO3)2, urea and 

PEG 200 in an autoclave at 160 °C and obtained CQD was treated with aqueous solution of 

PdCl2 at room temperature. The as-synthesized Pd@MgO-CQD characterized by fluorescence 

spectroscopy, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), 

transmission electron microscopy (TEM), scanning electron microscopy combined with electron 

dispersive spectrometry and elemental mapping (SEM-EDS, SEM-map). 

Loading of Pd on MgO-CQD was determined by ICP analysis to be 0.148 mmolg-1. Comparing 

fluorescence intensity of MgO-CQD with obtained Pd@MgO-CQD showed decreasing of 



fluorescence emission in Pd@MgO-CQD. This decreasing can be attributed to the electron 

transfer from the CQD to metallic ions [35-36]. 

In order to find an exact correlation between amount of loaded Pd and fluorescence intensity, 

different Pd@MgO-CQD samples with different loading of Pd were prepared and fluorescence 

emissions were studied. Results of our study indicated decreasing of fluorescence intensity with 

increasing of palladium loading on MgO-CQD (Fig. 1). As it shown in Fig. 2, using palladium 

and fluorescence emission values, a linear equation between factor X (mmol of supported Pd) 

and factor Y (fluorescence intensity) was obtained. This equation showed good harmony 

between content of supported Pd and emission and it is possible to find amount of Pd on support 

in each stage of catalytic reaction. 

 

Fig. 1. Fluorescence emissions of Pd@MgO-CQD with different Pd loadings 

 



 

Fig. 2. A linear equation between amount of supported Pd and fluorescence intensity 

Presence of carbon in the structure of Pd@MgO-CQD was confirmed by X-ray photoelectron 

spectroscopy (XPS) study of C1s region. Results showed related peaks to C-C or C=C, C-N, C-

O-C and O-C=O forms of carbon in 284.7, 285.4, 286.1, and 288.7 eV which are characteristic 

for carbon in CQDs (Fig. 3) [37-38]. 

 

 

Fig. 3. XPS spectrum of Pd@MgO-CQD in the C1s region. 



Also, XPS spectrum of the region corresponding to the binding energy range of 335-342 eV 

related to Pd3d5/2 and Pd3d3/2 was studied. Results indicated the presence of two intensive 

doublets at 335.5 and 340.7 eV related to Pd(0) and peaks at 337 and 342.5 eV related to Pd(II) 

species.[39-41]. These results indicate that 46% of palladium exist in Pd(0) state confirming the 

reducing ability of MgO-CQD (Fig. 4). 

 

Fig. 4. XPS spectrum of Pd@ MgO-CQD in the Pd3d region. 

 

Furthermore, XPS study for Mg1s region showed a single peak in position of 1304 eV which fits 

well with MgO structure (Fig. 5) [42]. 

 



Fig. 5. XPS spectrum of Pd@ MgO-CQD in the Mg1s region. 

 

In order to study elemental distribution of the Pd@MgO-CQD, elemental mapping was studied 

and results confirmed presences of C, Pd, and Mg in the structure (Fig. 6a-c). These results was 

further confirmed using SEM-EDX and showed the presence of the mentioned elements in the 

structure (Fig. 6d).  

 

Fig. 6. EDX elemental mapping of (a) C, (b) Pd, and (c) Mg. (d) EDX-SEM of Pd@MgO-CQD 

SEM images of the Pd@MgO-CQD in different magnification showed the formation of MgO-

CQD sheets as well as appearance of palladium particles (bright dots) in the surface (Fig. 7). 

Also, TEM images of Pd@MgO-CQD in different magnification indicate the presence of highly 



mono-dispersed and uniform palladium NPs in 2-6 nanometer size in the structure of MgO-CQD 

(Fig. 8). 

The nitrogen adsorption–desorption isotherms for Pd@ MgO-CQD is matched with type III 

adsorption isotherm confirming formation of multi-layer structure of the material matching well 

with MgO structure43 (Fig. 1, ESI). 

 

 

Fig.7. SEM images of Pd@MgO-CQD. 

 



 

Fig. 8. TEM images of Pd@MgO-CQD 

 

The catalytic activity of prepared Pd@MgO-CQD was assessed in the Suzuki–Miyaura coupling 

reaction. Initially, reaction of 4-bromoanisol with phenylboronic acid in water was selected as a 

benchmark reaction and the effect of different bases and temperatures was studied (Table 1). 

Results indicate that using 0.4 mol% of catalyst and different bases such as t-BuOK, K2CO3, 

Et3N, and NaOH at 80 °C reactions proceed almost efficiently giving yields in the range of 10-

99% (Table 1, entries 1-4). When the reaction temperature was decreased to 50 °C the best yield 

was obtained using K2CO3 as base (Table 1, entries 5-7). By lowering the reaction temperature to 

30 °C and using 0.3 or 0.4 mol% of Pd and K2CO3 as a base, excellent GC yields were obtained 

(Table 1, entries 8-9). However, by decreasing the Pd amount to 0.2 and 0.1 mol% lower  yields 

(68-90%) were observed (Table 1, entry 10-11). Therefore, we selected 0.3 mol% of Pd catalyst, 

K2CO3 as base at 30 °C, as the most efficient reaction conditions to study the scope of this cross-

coupling reaction (Table 1,entry 8). 



Table 1. Optimization of the reaction conditions for the reaction of 4-bromoanisol and 

phenylboronic acida 

Br

MeO

B(OH)2

base, H2O
temp.

+
MeO

Pd@MgO-CQD

 

Yieldb (%) Pd mol% Time (h) T (˚C) Base Entry 

10 0.4 6 80 t-BuOK 1 

99 0.4 6 80 K2CO3 2 

90 0.4 6 80 Et3N 3 

98 0.4 6 80 NaOH 4 

96 0.4 6 50 K2CO3 5 

68 0.4 6 50 NaOH 6 

56 0.4 6 50 Et3N 7 

98 0.4 9 30 K2CO3 8 

97 0.3 9 30 K2CO3 9 

90 0.2 9 30 K2CO3 10 

68 0.1 9 30 K2CO3 11 

a Reactions performed on a 0.5 mmol scale. b GC yields. 



 

Having optimized conditions in hand, reactions of structurally different aryl bromides having 

electron-donating groups such as -OMe and -OH as well as electron-withdrawing groups such as 

-COMe, -CN, -NO2, -COH, -Cl, and bromobenzene proceed effectively to afford the 

corresponding biaryls in excellent yields (Table 2, entries 1-7). Reaction of 5-bromoindol as 

heterocyclic halide also proceed well providing the desired product in 76% yield (Table 2, entry 

8). Furthermore, other arylboronic acids such 3,5-difluorophenylboronic acid, 4-

methoxyphenylboronic acid, 2-naphtylboronic acid, 4-chlorophenylboronic acid, and 2-

fluorophenylboronic were reacted efficiently with aryl bromides and afford the corresponding 

products in high to excellent yields (Table 2, entries 9-16). Studies of reactions of aryl chlorides 

under optimized reaction conditions afford low yields. However, increasing the reaction 

temperature to 80 °C, activated 4-chlorobenzonitrile, 4-chloronitrobenzene, 2,4-

dichloronitrobenzene reacted with arylboronic acids and desired biphenyl products were obtained 

in 72-98% isolated yields (Table 2, entries 17-20). 

 

Table 2. Suzuki-Miyaura reaction of structurally different aryl bromides and chlorides with 

different arylboronic acids catalyzed by Pd@MgO-CQD.a 

Pd@MgO-CQD (0.3 mol%)
Ar1X  +  Ar2B(OH)2

K2CO3, H2O, 30 °C
Ar1-Ar2

 

Entry Ar1X Ar2 t (h) Product Yield (%)b 



1 
Br

MeO  
Ph 9 MeO

 
91 

2 
Br

HO  
Ph 10 HO

 
76 

3 

Br

O

Me  

Ph 2 
O

Me  
90 

4 

Br

O

H  

Ph 2 
O

H  
97c 

5 
Br

NC  
Ph 2 NC

 
88 

6 
Br

Cl  
PhB 5 Cl

 
94 

7 
Br  

Ph 24 
 

95 

8 
N
H

Br

 
Ph 24 

N
H  

76 

9 

Br

O

H  

4-MeOC6H4 

 
2 

O

H
OMe

 
90 



10 

Br

O

H  

3,5-

difluorophenyl 
15 

O

H

F

F  

92 

11 
Br

NC  

4-ClC6H4 

 
3 NC Cl

 
94 

12 

Br

O

H  

2-naphtyl 24 
O

H  
97 

13 
Br  

4-MeOC6H4 

 
24 OMe

 
95 

14 N

Br

 

4-MeOC6H4 

 
24 

N
OMe

 
92 

15 
Br

MeO  

4-MeOC6H4 

 
24 MeO OMe

 
96 

16 

Br

O

H  

2-FC6H4 

 
 

O

H
F  

92 

17 
Cl

NC  
Ph 24 NC

 
72d 



18 
Cl

O2N  
4-MeC6H4 24 O2N Me

 
81d 

19 
Cl

O2N

NO2

 

Ph 24 
NO2

O2N

 
97d 

20 
Cl

O2N  

4-MeOC6H4 

 
48 OMeO2N

 
98c,d 

aReaction conditions: ArX (0.5 mmol), arylboronic acid (0.75 mmol), K2CO3 (0.75 mmol, 103 

mg), H2O (1.5 mL), catalyst (12 mg, 0.3 mol% Pd). bIsolated yields. cGC yields. dReactions 

performed in equal ratio of H2O-EtOH (1.5 mL). 

One of the main factors required in designing heterogeneous catalysts, especially for industrial 

scale reactions is the recyclability of the catalyst. Along this line, we have studied recyclability 

of the Pd@MgO-CQD for the reaction of 4-bromobenzonitrile and phenylboronic acid under the 

optimized reaction conditions. Results indicated that catalyst can be recycled for 6 consecutive 

runs with decreasing in reaction yield (Fig. 9). 

 

Fig. 9. Recycling of catalyst for the reaction of 4-bromobenzonitrile with phenylboronic acid 



Based on good relation between fluorescence intensity and loading of Pd on Pd@MgO-CQD 

(Fig. 2), fluorescence emission of each reaction cycle were studied and the amount of leached 

palladium was detected according the fluorescence value. Results indicated increasing of 

fluorescence emission of the reaction mixture was started after second run (Fig. 10). By using the 

obtained equation from Fig. 2 (Y=-703.19X +115.08) and fluorescence emission (Y) of the each 

reaction cycle, mmolg-1 of Pd (X) on catalyst in each cycle was calculated. Subtracting Pd 

loading of reused catalyst in each run from Pd loading in fresh catalyst afford amount of leached 

Pd in each run. From these results we conclude that decreasing of yields after the second run are 

mainly related to leaching and deactivation of Pd. 

 

Fig. 10. Fluorescence emissions of each reaction run during recycling processes. 

 

Table 3. Calculation of Pd leaching according to the fluorescence emission of each runs 

Run Y X Pd Leaching (mmolg-1) 

1 11.2 0.1477 0.148 - 0.1477= 0.0003 



2 11.8 0.1468 0.148 - 0.1468 = 0.0012 

3 14.85 0.1425 0.148 - 0.1425= 0.0055 

4 49.65 0.0930 0.148 - 0.0930 = 0.055 

 

The TEM and SEM images of the recycled catalyst showed that Pd@MgO-CQD preserves its 

structure with little aggregation of the Pd NPs after the fourth run (Fig. 11 and 12). Also, the 

nitrogen adsorption–desorption isotherms of recycled Pd@MgO-CQD after the fourth run 

possessed type-III isotherms confirming the stability of the structure during the reaction (Fig. 2, 

ESI). 

 

Fig.11. TEM image of the reused catalyst after fourth run 

 



 

Fig. 12. SEM image of the reused catalyst after fourth run 

 

Conclusions 

An environmentally friendly fluorescence solid support MgO-carbon quantum dots has been 

easily prepared, which is able to stabilized Pd nanoparticles. This new material Pd@MgO-CQD 

has shown excellent catalytic efficiency in the Suzuki reaction in water as solvent. Aryl bromides 

can be cross-coupled with arylboronic acids at room temperature as well as activated aryl 

chlorides at 80 °C. Remarkable advantages of this stable catalyst are its ability to show 

fluorescence emission allowing the determination the Pd loading, the recyclability and the 

aggregation preservation of the Pd Nps. 
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