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Abstract 

 
The aim of this study is to analyze the techno-economic performance of process 

configurations for ethanol production involving solid-liquid separators and reactors in the 

saccharification and fermentation stage, a family of process configurations where few alternatives 

have been proposed. Since including these process alternatives creates a large number of possible 

process configurations, a framework for process synthesis and optimization is proposed. This 

approach is supported on kinetic models fed with experimental data and a plant-wide techno-

economic model. Among 150 process configurations, 40 show an improved MESP compared to a 

well-documented base case (BC), almost all include solid separators and some show energy 

retrieved in products 32% higher compared to the BC. Moreover, 16 of them also show a lower 

capital investment per unit of ethanol produced per year. Several of the process configurations 

found in this work have not been reported in the literature.  

Keywords: Solid-liquid separation; Biofuels; Techno-economic analysis; Process 

optimization 

1 Introduction 
With an increasing concern about global warming and long-term sustainability of fossil fuels 

and chemicals, products obtained from lignocellulosic biomass have been intensively studied 

during the last decades as sustainable substitutes to petroleum based products (Dale et al., 2014). 

Lignocellulosic ethanol is the first biofuel produced from lignocellulosic materials instead of 

edible feedstock (Dale, 2015), an advance made possible by extensive research and development, 
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an existing infrastructure for ethanol distribution and use in some countries, and national 

renewable fuel policies and subsidies such as the Renewable Fuel Standard in the United States 

(Whistance et al., 2017). However, there is room for improvement, as much as the one observed 

in the evolution of the first petroleum refineries into the modern ones. A large effort has been 

made by the Process System Engineering community to develop decision-making tools based on 

optimization to select among the myriad of feedstock, technologies, processes and product 

alternatives. These efforts include optimization of the entire manufacturing system, including 

supply chain design and analysis (Giarola et al., 2012; Osmani and Zhang, 2014; You et al., 

2012), selection of optimal processing plants including feedstock and products (Tsakalova et al., 

2015) and individual plant sections and technologies (Gabriel and El-Halwagi, 2013; Matthews et 

al., 2015). 

However, the current industry of ethanol production from corn stover requires an analysis 

focused at the equipment level to retrofit its existing ethanol plants and to design more 

sustainable (both economically and environmentally) new ones. In this regard, previous studies 

on improving the economics of lignocellulosic ethanol production generally fix the topology (this 

is the combination of processes, equipment and their interconnection) to analyze one process 

configuration at a time. For every topology, heat and mass balances are calculated using a process 

simulation software and an economic analysis is carried out to calculate a minimum product 

selling price, net present value or any other financial metric. In this way, some of the leading 

pretreatments for agricultural biomass have been analyzed in a techno economic study (Tao et al., 

2011) showing that, despite significant variation in investments, the minimum product selling 

price varies little between the pretreatments. Moreover, several process configurations for the 

saccharification and fermentation of pretreated corn stover (PCS) have been analyzed, and in 

some cases compared, including separated saccharification and fermentation, SHF, and 
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simultaneous saccharification and fermentation, SSF (Bura et al., 2007; Saha et al., 2011). More 

advanced processing alternatives include separate processing of pulp and pretreatment liquor 

(Dutta et al., 2009) and several highly integrated bioprocesses, such as consolidated 

bioprocessing (CBP) where enzyme production, saccharification and fermentation are integrated 

into one system (Brethauer and Studer, 2014). However, a thorough comparison between process 

configurations is not possible due to an inexistent common framework of economic parameters 

and pretreatment conditions. Using the Attainable Region concept, Scott et al. (2013) showed that 

for the saccharification and fermentation of PCS the reactor networks that minimize the residence 

time can be constructed using plug flow reactors and continuously stirred tank reactors, despite 

the complexity of the reaction networks and underlying kinetics. However, no solid separators 

were included in this analysis. Including multiple reactors and solids separators in the 

saccharification and fermentation areas creates a combinatorial process synthesis problem, which 

calls for an optimization approach to determine the best process configurations from an economic 

perspective. Solid separators can be used to remove the unhydrolyzed cellulose and 

hemicellulose, allowing the separated fermentation of the released sugars. Thus, after combining 

the cell-free fermentation liquor with the separated solids, saccharification can resume with a 

reduced concentration of glucose and xylose. Although this alleviates product inhibition over the 

enzymatic reactions rates (Hodge et al., 2008; Teugjas and Väljamäe, 2013), the use of solid 

separators increases the investment costs, thus creating a new trade-off in the superstructure. This 

trade-off, have been recognized in the open literature (Sievers et al., 2014; Tao et al., 2012), 

however, no attempts have been made to analyze the optimal sequence of separation-reactor units 

in the saccharification and fermentation stages. This paper aims at filling this gap in the techno-

economic analysis of process configurations in the saccharification and fermentation stages of a 

second generation ethanol plant using corn stover, through proposing and comparing process 

configurations beyond the conventional SHF, SSF and CBP processes by incorporating solid 



  

 

4 

separators. We propose a systematic, optimization-driven, framework for the search of 

economically improved process configurations (modeled at the equipment level) of a stand-alone 

and energy self-sufficient plant producing ethanol, electricity and solid fuel from corn stover. 

Recognizing that a unique (optimal) solution is uninformative for decision makers, optimal and 

suboptimal process configurations will be ranked.  

The novelty of this work is twofold. Firstly, a framework for the synthesis of processes 

producing ethanol from corn stover, able to handle a mathematical representation of the 

superstructure and to compare it against a rigorous process simulation is presented. This 

framework allows the assessment of a large number of process configurations in a common 

technical and economic basis, or the optimization of the superstructure to find a process 

configuration with optimal economic performance. The methodology used to create the 

superstructure results in a more compact formulation compared to previously reported ones based 

on Mixed Integer non-linear Problem formulations (MINLP) (Baliban et al., 2013; Martín, 2016), 

a reduced computational burden and a more natural modeling approach. Secondly, its application 

produced several new process configurations for ethanol production from corn stover, which have 

not been reported in the literature and show improved Minimum Ethanol Selling Price (MESP) 

values respect to a benchmark.  

2 Materials and Methods 
This section introduces the Generalized Disjunctive Programming (GDP) formulation and the 

construction of the superstructure, this is, the mathematical representation of the process 

alternatives embedded in a plant-wide model. It is organized as follows. The problem is formally 

stated in Section 2.1, the conceptual design of the superstructure is presented in Section 2.2 and 

its mathematical representation is given in section 2.3 along with the optimization problems that 

will be solved to find process configurations with improved MESP. Finally, in Section 2.4 the 
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implementation of the problem is given, including the calibration of the superstructure against a 

rigorous simulation in Aspen HYSYS
TM

. 

2.1 Problem statement 
The problem addressed by this framework can be formally stated as follows (equations are 

deferred to the Electronic Supplementary Information, ESI). Given is a superstructure for ethanol 

production from corn stover; this is, a mathematical representation of the pretreatment, 

saccharification, fermentation, distillation, combined heat and power production (CHP) and 

wastewater treatment (WWT) stages. Every plant design uses dilute sulfuric acid pretreatment 

and must be energy self-sufficient; generating heat and power from the lignin rich subproduct 

obtained after enzymatic hydrolysis, without consumption of gas, coal or oil. At the fermentation 

and saccharification stages, a number of process alternatives (equipment) are available to be 

included. They are represented by saccharification reactors, fermentation reactors and solid 

separators. Properly arranged, a combination of process alternatives can represent well-known 

process configurations, such as SHF or SSF, or new ones, including processes using pulp 

separation and cell recycle. The saccharification and fermentation reactors include consistent 

experimental information captured in the form of kinetic models, while pulp separators 

incorporate operational information generated using PCS. Investment and operating costs for 

every operation in the superstructure are also included. Hence, the linear and nonlinear equations 

in the superstructure allow for the calculation of process economics for any of the complete 

lignocellulosic ethanol production plants embedded in the superstructure. 

The objective is to minimize the MESP (see Section 2.2.3) by optimizing the process design 

variables, operating variables and process topology (which process alternatives will be included 

in a given biomass to ethanol process). Reactors volume, solid separator areas, CHP installed 

capacity, areas of heat exchangers and height and diameter of distillation columns among others, 
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represent the design variables. Operating variables include enzyme dosage, reactors temperature 

and solid fraction, washing efficiency in solid separators and boiler operating pressure. 

2.2  Ethanol process superstructure: conceptual design  
This section outlines the design considerations, modeling approach and sources of 

information used to build the superstructure of processes for ethanol production from corn stover. 

Details regarding the mathematical model are shown in the ESI.  

2.2.1 Plant capacity, base case and substrate 

The base case corresponds to the biochemical ethanol conversion process proposed by NREL 

(Humbird et al., 2011). Corn stover is pretreated using a mild thermochemical pretreatment, 

followed by liquefaction and SSF. As in the base case, plant capacity was set at 2000 metric ton 

of dry corn stover (oven dry metric ton, ODMT) per day. The pretreatment stage for every 

process configuration, and not only the base case, follows the design and operating conditions 

indicated in the NREL report (Humbird et al., 2011). Thus, capital and operating expenditures 

were taken from the aforementioned study for this stage. Moreover, since the operating 

conditions in the pretreatment are fixed, so is the pretreated substrate composition. 

2.2.2 Process superstructure modeling 

Detailed models for the saccharification and fermentation, product recovery, CHP and WWT 

stages were created. Since product recovery and WWT stages were modified from the base case, 

only the description of the saccharification and fermentation stage is presented in this section. 

Moreover, the CHP stage was adapted from the base case by allowing that a fraction of the 

separated solids (subject to optimization) can be allocated for pellet production. The process 

considers drying, pelletization and pellet storage. Technical and economic parameters for this 

section were taken from literature (Thek and Obernberger, 2004). A thorough description of these 

stages is presented in the ESI. The saccharification and fermentation stage was modelled as an 

interconnected network of continuous reactors, pulp separators and cell separators (Figure 1). 
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Saccharification reactors (R1A, R2A and R3A) were modeled as continuous stirred tank reactors 

where cellulose is converted to cellobiose and glucose. These reactors are operated with a 

residence time greater than 24 h, producing cellulose conversions typically greater than 20%; this 

is, 20% of the cellulose in the feed stream is converted to glucose and cellobiose. At the insoluble 

solids fractions selected by the optimization framework, this conversion was deemed enough as 

to guarantee that its content behaves as a pourable fluid with yield stresses less than 10 Pa (Roche 

et al., 2009; Stickel et al., 2009). Reaction stoichiometry and rates were taken from Scott et al. 

(2015). This model was selected because it considers solid contents between 10 to 25% w/w, 

washed or unwashed solids, the effect of enzyme loading over cellulose conversion and a 

pretreated substrate consistent with the one included in the superstructure (dilute sulfuric acid 

pretreated corn-stover at NREL pilot plant). Moreover, when combined with operating and 

capital costs equations, this model is able to capture the trade-off between the increasing 

conversion and the higher expenditures in enzymes when the enzyme dosage in the 

saccharification stage is increased. Once embedded in the mathematical model of the 

superstructure, the enzymatic hydrolysis model can be used to select an optimal solid loading and 

enzyme dose that minimizes product cost for each process configuration. 

Sugars released by the saccharification of cellulose and the sugars contained in the 

pretreatment liquor can be fermented using S. cerevisiae, able to transform glucose to ethanol, or 

a recombinant Z. mobilis, capable of fermenting xylose and glucose. Fermentation with S. 

cerevisiae was modeled according to Rivera et al. (2006), accounting for the effects of 

temperature and sugar concentration over reaction rates, while fermentation with Z. mobilis 

ZM4(pZB5) was described by the kinetic expressions presented by Leksawasdi et al. (2001), at a 

fixed temperature of 30 °C. Thus, when S. cerevisiae is used, the temperature during SSF is an 

optimization variable since higher temperatures, with a maximum of 40°C, increase enzymatic 
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hydrolysis rates but affect cells growth and ethanol yield. Reactors included in the superstructure 

allow for multiple fermentation alternatives. Reactors R1B, R2B and R3B can operate in SSF 

mode or in fermentation mode (pulp-free) and with either S. cerevisiae or Z. mobilis. On the other 

hand, reactors RC51 and RC52 are only allowed to operate using Z. mobilis (see Figure 1). 

Vacuum belt filters were selected for the separation of PCS solids, as they represent the most 

cost effective option for this task (Sievers et al., 2014). Two class of separators were included in 

the superstructure (Figure 1): separators SS-LE1 and SS-LE2 do not include washing, but can 

process 100 kg h
-1

m
-2 

of insoluble solids, and separators SS-HE0 to SS-HE3, that on the contrary, 

produce washed solids, increasing sugars recovery, but they have a reduced throughput of 60 kg 

h
-1

m
-2

. The wash ratio (wash water volumes passed through the cake) is subject to optimization 

since this variable controls the sugars recovery efficiency according to the correlation presented 

by Sievers et al. (2014) for PCS. 

2.2.3 Economic assessment and objective function 

The objective function for the optimization problem corresponds to the MESP based on 

annualized costs. This indicator incorporates the total investment cost, operating costs and 

ethanol and coproduct sales, allowing a fair comparison of the process configurations included in 

the superstructure. As shown in Eq. 1, the MESP corresponds to the minimum plant-gate selling 

price of ethanol (in USD per kg) allowing a zero-annualized cost, this considering that 60 % of 

investment is financed using a 10-year bank loan at 8% interest rate and the remaining 40% is 

financed by equity at a 10% rate. These conditions were selected to resemble the base case and 

produce a capital charge factor (��) equal to 0.131 (Humbird et al., 2011).  

����� = {	:	�
	 + �
� + ��� − ���� − ����� = 0} Eq. 1 

Purchased equipment costs were estimated using the cost correlations presented in ESI 

(section S1 1.7) and a factored approach in which multipliers are applied to the sum of purchased 



  

 

9 

equipment costs allows the estimation of the total capital investment (TCI). More details can be 

found in the ESI (section S1 1.7). All capital costs were converted to 2007 USD using the 

Chemical Engineering Plant Cost Index to be comparable to the base case. The operating cost 

(OPEX) was estimated from the mass and energy balances and the prices and costs of enzymes 

(4.24 USD/kg of protein for cellulose and �-glucosidase), corn stover (64.5 USD per dry metric 

ton), chemicals and salaries as in the base case. Coproduct sales are represented by electricity (E, 

in MWhe/y, 55.2 USD/MWh) and pellets (P, in MWht/y, 22.5 USD/MWh), whose price is 

assumed to be determined by its energy content and considers its transportation costs (Argus 

Biomass Markets, 2015). Maintenance and insurance were taken as 3% and 0.7% of the capital 

investment, respectively.   

2.3 Mathematical modeling of the process superstructure 
In this work, a GDP formulation is used to create a framework to find economically improved 

process configurations for the production of ethanol from corn stover. GDP characterize 

problems in terms of Boolean and continuous variables, allowing the representation of process 

alternatives as disjunctions (Grossmann and Ruiz, 2012) as in equation GDP-1. The set of 

Boolean variables �� 	 indicates whether a disjunction �� (with � = 1, . . ,28) is active or inactive. 

If true, all the equations within the disjunction representing mass and energy balances, 

investment and operational costs, and physical and chemical equilibrium for a particular piece of 

equipment and its connections will be included in the superstructure. If the Boolean variable is 

false, the disjunction is inactive and the constraints within it are ignored. Thus, Boolean variables 

control whether a reactor or separator is included in a process. 

 

min%,&' ����	(. ).		ℎ+	, = 0										-+	, ≤ 0	
(GDP-1) 
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                                 		/ ��0�+	, ≤ 0(�+	, = 01∨	3
¬��	5,� = 06 				� ∈ 8	

                                                Ω+�, = �0:;													<= ≤ 	 ≤ 	>? ,	 
 	5,� ⊆ 	, 	 ∈ 	ℝB, �� ∈ {�0:;, �CD(;}, � ∈ 8 

In problem GDP-1, 	 is a vector of mass and energy flows, temperatures, pressures, enzyme 

dosages, capital and operating costs and any other continuous variable. Constraints that are 

always active (they do not belong to any disjunction) are represented by ℎ and -, corresponding 

to mass and energy balances, design and costing equations for the pretreatment, distillation, CHP 

and WWT areas. On the other hand, 0� and (� denote equations that are incorporated to the 

problem if and only if the disjunction they belong is active (�� = �0:;,, controlled by a set of 

Boolean variables ��. Otherwise, when	�� = �CD(;, the corresponding constraints are ignored.  

In combination with the Logic-based Outer Approximation algorithm (Türkay and Grossmann, 

1996), the GDP formulation shown in equation GDP-1 allows avoiding the reformulation of the 

problem as an MINLP. Thereby, no relaxed problems need to be solved, but only a set of sub-

problems that corresponds to feasible process configurations. Moreover, variables and constraints 

related to non-active disjunctions are not included in the optimization problems, hence, 

difficulties related to errors in function evaluations are avoided and the size of the non-linear 

problems (NLP) is reduced because only the equations in the active disjunctions are included in 

each problem. Other advantages of the GDP formulation can be found elsewhere (Navarro-

Amorós et al., 2014). Thus, the use of GDP in the framework presented in this work allows for a 

more natural modeling approach of the alternatives embedded in the superstructure and a more 

efficient optimization as compared with a traditional MINLP formulation. 

A set of active disjunctions selected in such a way that the feed stream to the saccharification 

and fermentation section (F300) is converted to ethanol is a valid selection, more properly, they 
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define a feasible topology for the process flowsheet. For example, the saccharification and 

fermentation stages of the base case scenario are represented by the process flowsheet where 

�E = �0:;, F ∈ {1,3,8,10,16,21,25}, and all the remaining disjunctions are false. From Figure 1, 

the process starts with �300 being fed to R1A
 
(�JK is active) after ammonia conditioning, the 

stream leaving R1A is transferred to R1B (�L and �M are active) and its outlet stream feds R2B (�N 

and �MO are active). Finally, the outlet stream from R2B is fed to R3B (�MP is active) and the 

product stream, the stream leaving R3B since �JM is active, is sent to the distillation area.  

Since a large number of the conceivable process configurations that can be obtained from the 2
28

 

possible combinations of the Boolean variables will not define feasible topologies, it is necessary 

to introduce a set of logic propositions relating the Boolean variables (Q+R, = �0:;). Logic 

arguments can be incorporated to the superstructure by using the logical operators OR (∨), AND 

(∧), IF-THEN (⇒), XOR (exclusive or, ∨ ), NOT (¬) and IF AND ONLY IF (⇔). For example, 

in Figure 1, stream �300 can be fed to SS-HE0 (�JJ is active) or be directly fed to R1A (�JK is 

active), but both alternatives cannot be simultaneously selected. This logic argument can be 

represented as �JJ ∨	�JK. A list of the logical propositions included in the superstructure is 

presented in the ESI (section S1). The set of logic propositions Q+R, = �0:;, can be converted 

to a set of linear equations with binary variables (VW ≤ X) by replacing each Boolean variable by 

a binary one, representing each proposition in its conjunctive normal form and, finally, 

transforming logic propositions to linear constraints using Boolean algebra rules (Williams, 

1999). The list of feasible process configurations can be found by iteratively solving the MILP: 

minYZW	|	VW ≤ X, W ∈ {0,1}\, and augmenting it with a binary cut on each iteration to exclude the 

previously found solution for the binary variables (Raman and Grossmann, 1991). The list of the 

150 feasible process configurations is presented in the ESI (section S2). Each entry in the list 
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represents a process configuration whose process flow diagram in the saccharification and 

fermentation stages can be traced by following the active disjunctions in Figure 1.  

Before introducing the use of the GDP formulation to obtain optimal process configurations a 

remark is made. If a valid process configuration is selected, then Y is no longer subject to 

optimization, thus eliminating the binary variables from the optimization problem converting it to 

an NLP. 

2.3.1 Minimum MESP processes: optimization of the superstructure and the base case 

scenario. 

The most profitable process configurations in the superstructure can be identified by solving 

problem GDP-1or by non-linear optimization (NLP) of each one of the feasible process 

configurations (fixing the process configurations beforehand). The superstructure includes 150 

valid process configurations, including the base case process configuration. They can be operated 

with recombinant Z. mobilis in every fermenter or with S. cerevisiae in reactors R1B to R3B and 

Z. mobilis in reactors RC51 and RC52, thus creating two scenarios. Thereby, 300 processes need 

to be optimized by solving each NLP one at a time. Alternatively, the optimal process 

configuration can be found by solving problem GDP-P1. The complete GDP-1 problem includes 

28 Boolean variables, 3063 continuous variables, 1069 non-linear equations, 1758 linear 

equations and 52 logic equations.  

To analyze the techno economic performance of the process configurations in the 

superstructure, first, the MESP of the base case process configuration is calculated using the 

operating conditions reported by Humbird et al. (2011). To provide a fair comparison, in a second 

stage of optimization, the operating variables of the base case process configuration are allowed 

to be optimized; including enzyme dosing, temperature and solid fraction in saccharification 

reactors, thus defining an Optimized Base Case (OBC). Finally, the remaining 149 process 
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configurations in the superstructure are benchmarked against the OBC in the two aforementioned 

scenarios.  

Solving GDP-1 directly allows the identification of the optimal process configuration, given 

that it is possible to calculate the global optima of this problem, or a near optimal configuration in 

a time that will generally be shorter than visiting every process configuration, and that in the 

worst case, will be the same. However, if the designer is not interested in only the “best” solution 

but rather in a list of processes ordered according to its MESP value, problem GDP-1 needs to be 

solved iteratively augmenting it on each iteration with an integer constraint that eliminates the 

previously found process configuration from the superstructure. Thus, depending on the number 

of elements in the list that the designer wants to find, and the number of possible process 

configurations in the superstructure, it might be less time consuming to optimize each process 

configuration and store the value of the design and operating variables. The last approach is 

facilitated in a GDP framework, where each NLP can be constructed automatically from the 

superstructure including only the relevant equations and variables, thus limiting the size of the 

problem. 

2.4 Implementation 

2.4.1 Problem solution 

The optimization problem GDP-1, the backbone of the framework presented in this work, 

was solved using the Logic-based Outer Approximation algorithm to exploit the structure of the 

Generalized Disjunctive Programing approach taken in this framework (Navarro-Amorós et al., 

2014; Türkay and Grossmann, 1996). Since some constraints in GDP-1 are non-convex, the 

global optimality of the solution cannot be guaranteed.  

The set of linear and non-linear equations representing the superstructure was implemented in 

MATLAB
TM

 using an in-house language tailored for GDP problems. The file with the problem 
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definition is processed and transformed into a standard NLP problem or MILP problem using 

OPTI, a toolbox for MATLAB
TM

 (Currie and Wilson, 2012). The generated NLP problems were 

solved using GAMS
TM

, CONOPT (Drud, 1985) or IPOPT (Wächter and Biegler, 2006) while 

CPLEX was used to obtain the solution of the MILP master problems. 

2.4.2 Calibration of the superstructure 

The superstructure was calibrated against a rigorous simulation in Aspen HYSYS
TM

 by 

debugging involuntary errors in coding and adjusting the values of physical properties such as 

densities and enthalpies to the values calculated by Aspen HYSYS
TM

. This was performed until a 

close correlation between the values of key process indicators calculated by the superstructure, as 

a set of linear and non-linear equations, matched the values calculated by the representation of 

the superstructure in the process simulator. This comparison was made using a reduced number 

of process configurations that were selected as to include every disjunction being active at least 

once, thus ensuring that all the equipment and streams that can be included (or not) in a process 

configuration are tested. This comparison was automatized using a connection between 

MATLAB
TM

 and Aspen HYSYS
TM

 (Navarro-Amorós et al., 2014). Details regarding the 

implementation of the superstructure can be found in section S3 of the supplementary material.  

3 Results and discussion 
In this section, the results for the optimal synthesis of processes for ethanol production from 

corn stover are presented and discussed. In Subsections 3.1 the mathematical formulation of the 

superstructure is compared with a rigorous formulation in HYSYS, showing that they produce 

equivalent values for key process indicators. Next, in subsection 3.2  the operational variables in 

the base case process configuration are optimized, producing a lower MESP value than the one 

found using the conditions reported by Humbird et al. (2011). Finally, in subsection 3.3, every 
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process in the superstructure is optimized and compared (in terms of MESP) with the optimized 

base case. 

3.1 Comparison of rigorous process simulation in HYSYS and results from NLP 
Results are presented in Figure 2 A to D for cellulose conversion, ethanol yield, installed 

equipment cost for the saccharification and fermentation area and power consumption indicating 

a proper correlation between the values calculated by the process simulator and the simplified 

mathematical representation in the superstructure.  

Figure 2.E shows the thermal energy (provided by saturated steam at 6 bar) required to 

achieve a 92.5% w/w ethanol content from a stream containing ethanol between 1 to 7% w/w. 

Three designs are compared, a design took from Humbird et al.(2011), Galbe et al.(2007) and the 

design used in this work. These designs were rigorously simulated in HYSYS to produce the 

result shown. It can be seen that the design used in this work requires less thermal energy because 

of its heat integrated scheme (see supplementary material) and that above 3 % w/w ethanol the 

thermal energy requirements decrease slightly compared to more diluted solutions. These results 

were used to establish a correlation between energy requirements for distillation and the ethanol 

mass fraction of the stream entering the concentration column. This correlation was used to avoid 

the rigorous modeling of the two columns distillation system in the superstructure using the 

MESH equations (Material, Equilibrium, Summation and Enthalpy). Figure 2.F shows the 

ethanol titers of the stream entering the concentration column for the 150 process configurations 

embedded in the superstructure for the scenario where Z. mobilis is used in every fermenter and 

also for the scenario where S. cerevisiae is used in R1B to R3B. The ethanol titer produced in all 

process configurations range between 3.5 to 6.5% w/w, values in the zone where increasing 

ethanol contents have reduced impacts in the energy requirements for distillation according to 

Figure 2.E. However, a proportionality was found between ethanol titer and the percentage of 
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energy from corn stover retrieved as ethanol, electricity and pellets, whose values span from 44 to 

62% (Figure 2.F).  

3.2 Base case process configuration. 
 

According to the technical report published by NREL (Humbird et al., 2011), the pulp at 

10.6% w/w insoluble solids content is liquefied in a battery of continuous parallel reactors with a 

residence time of 24 h and an enzyme loading of 20 mg of protein per gram of glucan. The 

liquefied pulp is discharged to a battery of batch reactors where saccharification continues for 60 

h at 48°C. Since the superstructure is a network of continuous reactors and pulp separators, the 

process configuration representing the base case is mimicked by the process configuration C146 

(shown in Figure 5, panel OCB) where all reactors are operated in continuous mode. Using the 

same operating conditions as in the base case and not allowing the production of pellets from the 

enzymatic hydrolysis solid residue, an MESP of 69.1 cUSD/kg was calculated based on 

annualized costs. When a discounted cash flow rate of return analysis (DCFROR) is used to 

calculate the MESP, a value of 72,3 cUSD/kg was obtained, similar to the 71.9 cUSD kg
-1

 

calculated by Humbird et al. (2011). An ethanol yield of 231 kg ODMT
-1

 and an ethanol 

volumetric productivity of 0.42 kg m
-3

h
-1

 were calculated. These values compare with 260 kg 

ODMT
-1

 and 0.39 kg m
-3

h
-1

 calculated from the work of Humbird et al. (2011). The specific 

capital investment per kg of ethanol produced per year and the amount of ethanol produced per 

unit mass of enzymes are shown in Figure 3 A and C. The difference in the specific capital 

investment values can be explained by the capital expenditures in enzyme production included by 

Humbird et al. (2011), an expenditure not included in the superstructure, where enzymes are 

assumed to be purchased. Thus, the process configuration mimicking the base case resembles the 

results obtained by Humbird et al. (2011). If the aforementioned values of the operating 
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conditions are allowed to be optimized, an MESP equal to 67.2 cUSD kg
-1

 is calculated by 

reducing the enzyme dose to an optimal value of 10.4 mg g
-1

, reducing the insoluble solids 

fraction to 11.3% w/w and increasing the total residence time to 128 h. This MESP value is 

guaranteed to be the optimal value for configuration C146 since the global NLP solver BARON 

(Sahinidis, 1996) was used to check this result. These changes lead to an increase in the specific 

capital investment, but also increase the specific ethanol production per mass of enzymes used 

(see Figure 3 A and C). A simplified mass balance for the OBC is shown in Figure 5 A.  

3.3 Optimization of the superstructure  

3.3.1 Optimization of the superstructure using the logic-based outer approximation 

algorithm 

The optimal solution of problem GDP-1, including Boolean variables, identified by the 

algorithm corresponds to C135 with an MESP of 61.68 cUSD kg
-1

. The algorithm terminates at 

NLP worsening. After solving each NLP subproblem in the superstructure (with S. cerevisiae in 

R1B to R3B, see the next section) the optimal solution of the superstructure corresponds to C145 

(MESP of 61.62 cUSD kg
-1

). For the scenario where Z. mobilis is used in every reactor in the 

superstructure, the solution of the GDP-1 problem identified C133 as the optimal solution with an 

MESP equal to 63.85 cUSD kg
-1

. After solving every valid process configuration, the optimal 

solution of the superstructure using Z. mobilis corresponds to C128 with an MESP of 62.41 

cUSD kg
-1

. As stated in section 2.4.1, the optimization method used to solve GDP-1 might 

produce sub-optimal solutions due to the non-convexity of the problem. However, results show 

that the GDP framework achieves near optimal process configurations. 

3.3.2 Optimization of each valid process configuration in the superstructure 

Since the direct solution of GDP-1 was shown to produce suboptimal process configurations, 

it was decided to optimize the operating variables of each process configuration in the 
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superstructure. The NLP problems generated by this approach, are readily solved (within 3 

minutes), thanks to the reduced number of variables and constraints obtained in this formulation. 

Figure 3 shows the results for the 300 valid processes (150 process configurations in two 

scenarios) embedded in the superstructure. Each dot is the result of a non-linear optimization of 

the design and operating variables with fixed (but different) topology of the process. Figure 3 A 

shows that when S. cerevisiae is used in reactors R1B to R3B and xylose is not fermented to 

ethanol, only MESPs above one cUSD kg
-1

 are attained with specific total capital investments per 

kg of ethanol produced per year (���]^?, larger than 4 USD/kgEtOH. These process configurations 

are characterized by disjunction 23 being active, hence the xylose-rich stream is separated and 

directed to biogas production, or disjunction 25 being active, and thereby xylose is not fermented 

arriving at the WWT area in the stillage stream (see Figure 1, D23 and D25). Figure 3.C presents 

a zoom of process configurations that achieve MESP values below 75 cUSD kg
-1

 in Figure 3.A. 

Every process configuration showing an MESP below the OBC includes solid separation of the 

pulp and liquor after the pretreatment reactor (D22 is active), and a number of these process 

configurations include an intermediate solid separator (D5 or D6 is active).  

Altogether, and when S. cerevisiae is used in reactors R1B to R3B (when active), 26 process 

configurations show MESP values lower than the OBC and 11 of them show specific capital 

investments below the one shown by the OBC (Figure 3.C). Moreover, the specific ethanol 

production per mass of enzymes (�]B_
`ab) used by these process configurations is larger than the 

values calculated for both the base case and its optimized version (Figure 3.E). This can be 

explained by the low optimal enzyme doses calculated for these process configurations, with 

values between 6.8 and 9.2 mg of protein per gram of glucan and higher ethanol yields. 
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When Z. mobilis is used in each fermenter, 14 process configurations show an improved 

MESP compared to the OBC, and 5 of them show specific capital investments below the one 

shown by the OBC (Figure 3 B, D and F). Process configurations where the stream rich in xylose 

separated after pretreatment is used for biogas production, instead of ethanol (D23 is active), 

show the worst MESPs. On the other hand, those processes showing MESPs below the OBC 

include separated fermentation of the xylose reach stream after solid separation (D24 is active), 

separation of pulp and liquor after liquefaction (either D5 or D6 is active) or processing of the 

pretreatment reactor outlet stream without separation. It is interesting to point out that the optimal 

process configuration when Z. mobilis is used corresponds to C128 (Figure 5.B), including pulp 

and liquor separation after the pretreatment reactor. Thus, although it would be simpler to 

simultaneously process both pulp and liquor in a train of reactors, the separated processing of 

pulp and the liquor rich in xylose allows a smaller MESP to be achieved. Despite the reduction in 

the specific capital investment achieved by process C128, the total capital investment for this 

process configuration at fixed plant capacity (2000 ODMT of corn stover per day) is higher than 

the value calculated for the OBC (345.8 MMUSD, see Table 1). Thus, the decrease in the specific 

capital investment is caused by a 9.5% increase in ethanol production per year in C128 as 

compared to the OBC. Thereby, if the same plant capacity (in terms of ethanol production per 

year) is to be achieved, selecting C128 as the process configuration will result in a smaller TCI 

than if the base case configuration is selected. In fact, after setting a new constraint that equals 

the ethanol production in C128 to 5.12 kg s
-1

 (as in the OBC) and performing a non-linear 

optimization, plant capacity is calculated as 1974 ODMT d
-1

, achieving an MESP equal to 63.9 

cUSD kg
-1

 and TCI equal to 343 MMUSD. 

Figure 5 and Table 1 show mass balances, economic and process indicators for selected process 

configurations, including the OBC. As it can be seen from Table 1, the OBC shows the smaller 
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total capital investment. However, also achieves the lower ethanol production (see Figure 5) at a 

fixed plant capacity of 2000 ODMT d
-1

. In turn, the lower total operating costs for C128, C145 

and C69, promoted by a decrease in the expenditures in enzymes, and the higher ethanol yields 

translate in a lower payback time and MESP (calculated either using a DCFROR analysis 

(Humbird et al., 2011) or annualized costs) for these process configurations compared to the 

OBC. In terms of energy consumption, the OBC shows the smaller specific thermal energy 

consumption (provided by steam). This can be explained by its higher ethanol titer compared to 

other process configurations in Table 1. Since a higher amount of steam must be provided to the 

reboiler of the ethanol concentration column in these process configurations, the OBC also 

produces more electricity and can export a large amount of power to the grid. Another factor that 

determines a lower electricity production in process configurations different than the OBC is 

pellet production. However, the results from the nonlinear optimization of the design and 

operating variables show that in order to achieve optimal MESPs, a mix of ethanol, electricity and 

pellets must be produced. Moreover, producing pellets allows for more of the energy contained in 

corn stover to be included in products (Table 1). As a comparison, for the OBC, 38.0% and 8.9% 

of the energy in corn stover (based on the lower heating value from Humbird et al. (2011)) is 

retrieved as energy in ethanol and electricity. On the other hand, for process configuration C131, 

40.5%, 4.1% and 13.1% of the energy in corn stover ends in ethanol, electricity and pellets. The 

maximum value of total energy in products was achieved by C111 reaching 62.4%, a 1.32-fold 

increase compared to the base case. In this analysis, no difference in the “quality” of the energy 

in each product was made. Certainly, liquid fuels, electricity and solid fuels are intended for 

different purposes, and so factors can be used to valuate the different forms of energy.  

The difference between the MESP of the base case and the process with the lower MESP in 

the superstructure (C145) shows a 10.8% reduction. This result matches with other technical and 
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economic reports comparing similar processes for lignocellulosic ethanol production. Tao et al. 

(2011) compare processes based on leading pretreatment operations including dilute acid, AFEX, 

liquid hot water, soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam 

explosion (SO2) for switchgrass processing. They found a 9% reduction on MESP when liquid 

hot water was used as pretreatment compared with dilute sulfuric acid pretreatment. Recently, 

Chen et al.(2015) found a 4.2% increase in MESP compared to the 2011 NREL design case 

(Humbird et al., 2011) when dilute acid pretreatment was replaced by deacetylation and disk 

refining. Using a modified low-severity dilute acid based pretreatment including disk refining 

and deacetylation, Tao et al.(2012) found a 13.7% reduction in MESP compared to the 

pretreatment used in the 2011 NREL design case (Humbird et al., 2011). Interestingly, they also 

analyzed including a solid-liquid separation equipment prior to the liquefaction reactor, allowing 

the separate processing of the pretreatment liquor and pulp in a configuration similar to C145. 

Using 20 mg of protein per g of glucan, 20 % of insoluble solids and 120 hours of residence time 

for the saccharification and fermentation stage, they found an 11% increase in ethanol yield 

compared to the simultaneous processing of pulp and liquor. Despite the increase in ethanol 

throughput, the high investment cost in solid-liquid separation equipment leads to a 5.8% 

increase in MESP. In the present work, solid liquid separation after pretreatment allows a 

reduction on MESP compared to the OBC (see C145 and process configurations in Figure 4). This 

opposite result can be explained by a smaller investment cost for the solid liquid separation 

equipment used in this study, costs that are supported by more accurate information(Sievers et 

al., 2014) and the reduction of the enzyme dose and insoluble solids loading. 

As previously stated, not every process configuration with MESPs below the optimized based 

case is new to the literature. In fact, process configurations C145 and C143 have been previously 

analyzed by Dutta et al.  (2009), using Genencor Spezyme CP (the same enzyme used in the 
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saccharification model in Scott et al.(2015), but without supplementation of the β-glucosidase 

activity) at dosages of 30 to 40 mg g
-1

 and diluted acid PCS. Their results show that the best 

yields and economic results for whole slurry are achieved at 10% total solids, with very low 

yields at 20%. However, the ethanol titer achieved at 10% total solids is only 2.3% w/v, requiring 

extra corn stover be fed to the boiler to generate process steam. When xylose was fermented in a 

separate reactor and the pulp was subject to SSF (a process configuration comparable to C145), 

the ethanol titer rises to 2.8%. The MESP calculated for this case by the authors rises to 1.03 

USD kg
-1

, while for C145 an MESP of 61.6 cUSD kg
-1 

was found. The difference in MESP rises 

due to the high enzyme loading used in Dutta et al. (2009), in fact, under identical enzyme dose, 

the MESP of the process configurations C145 reaches 78 cUSD kg
-1

. Other factors contributing 

to the high MESP in Dutta et al. (2009) are a 27% lower electricity price, taxes, the low ethanol 

concentration achieved and cost and performance of the solid-liquid separation equipment, which 

were based on a very preliminary estimation. While for C145, an ethanol titer of 4.1 % w/v was 

calculated, Dutta and coworkers reported a 2.8% w/v ethanol content, a low titer that according to 

their simulation, requires more corn stover to be fed to the boiler for steam generation. However, 

using the conversions for the saccharification and fermentation stages and the initial solid 

contents, we calculate a higher ethanol concentration than the one reported in their results.  

A second process configuration, equivalent to C143 (Figure 4) was analyzed by Dutta et al. 

(2009), where the liquor separated from the pretreatment reactor is recirculated to the pulp after 

fermentation. Beyond the expected increase in the titer of ethanol, up to 4.4% w/v in Dutta et al. 

(2009) compared to 6.0 %w/v in C143, is interesting to point out that they found that the 

recirculation of the fermentation liquor produces a decrease in cellulose saccharification yield 

from 83% to 73%. Dutta and coworkers attribute this decrease in cellulose conversion to “ethanol 

inhibition or some other inhibitor contained in the beer from xylose fermentation or a 
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combination of both factors”. Process configurations C145 shows an 85% saccharification yield 

while C143 achieves 76% at their optimal enzyme and solid loadings. Considering that the 

saccharification model used in this work does not incorporate an inhibitory effect of ethanol, but 

does include xylose and acetic acid inhibition over the reaction rates of saccharification (Scott et 

al., 2015), the effects of the latter compounds seem to be sufficient to explain the decrease in 

cellulose conversion.  

The process configurations in the superstructure include continuous saccharification and 

fermentation reactors. Most of the literature concerning ethanol production from lignocellulosic 

reports on the use of batch reactors, however, exceptions can be found. Jin el al. (2013) compared 

the volumetric productivity at similar sugar to ethanol conversions for batch SHCF, SSCF and 

continuous SSCF (C stands for co-fermentation) using a cascade of five bioreactors, where the 

first reactor is used as a liquefaction tank. Experiments were performed at 6% total solids of 

unwashed AFEX
TM

 PCS and 24 mg g
-1

 of Accellerase 1500. The process analyzed by the authors 

can be mimicked by process configuration C150, under identical enzyme dosages, insoluble solid 

fractions and total residence time of 52.2 h (distributed in 25 h in R1A, 5.3 h in R1B and R2B and 

16.6 h in R3B). Under these conditions, an ethanol volumetric productivity equal to 0.66 gL
-1

h
-1

 

and specific ethanol production per mass of enzymes equal to 22.7 kg kg
-1

 was found after 

solving the NLP representing C150. These values compare with 0.65 gL
-1

h
-1

 and 21.2 kg/kg 

found by Jin et al.(2013). The process configurations presented in Figure 4 and Figure 5 represent 

promising conceptual designs to be investigated at laboratory and pilot scale. However, they are 

based in continuous reactors for saccharification and fermentation. Since a batch operation is 

easier to investigate at these scales, more research is required on how to interpret the process 

configurations under batch mode, including the effect of moving from continuous operation to 

batch operation over volumetric productivities and MESP.  
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Processes including pulp separation were designed according to the results presented by 

Sievers et al. (2014) where no flocculants were used. In a recent study, Sievers and coworkers at 

NREL (Sievers et al., 2015) reported a 40-fold increase in filtration flux by using a 

polyelectrolyte cationic flocculant in the filtration of solids obtained at the end of the enzymatic 

hydrolysis. Previously, Reye et al. (2011) showed that cationic polyacrylamides (c-PAM) 

accelerate the cellulase-mediated hydrolysis of bleached softwood Kraft pulp. The mechanism 

involves the reduction of the negative charge of fibers by c-PAM. As the enzyme is also 

negatively charged, c-PAM indirectly promotes enzyme binding by reducing charge repulsion 

between fiber and enzyme. Both results suggest that using cationic polyelectrolytes might 

simultaneously decrease investment, by augmenting the filtration flux and the hydrolysis rate, 

and the operational costs by reducing enzyme doses. However, no consistent experimental results 

are available in the literature for PCS.  

In this work, corn stover was chosen as the substrate for ethanol production since enough 

experimental information was available in the form of kinetic and process models that were 

consistent with the pretreatment and other auxiliary operations (WWT and CHP). Although the 

framework can be easily adapted to handle other substrates and operations, obtaining sufficient 

and consisting experimental information remains a challenge.  

The superstructure includes kinetic models for the saccharification and fermentations stages 

whose parameters were obtained by non-linear fitting to a set of experimental data (Scott et al., 

2015). Hence, uncertainty is associated with the parameters in the model and in prices, and 

thereby, to the economic performance of the saccharification and fermentation operations in the 

superstructure. A sensitivity analysis was performed considering uncertainty in corn stover, 

electricity and enzyme prices using an indifference curve analysis (ESI, Figure 6). Results show 

that, among other process configurations; C69, C145, C131 and C110 can produce a zero-net-
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income at an ethanol selling price of 75 cUSD/kg for larger (worst) corn stover and enzyme 

prices pairs and lower electricity-higher corn stover price pairs. This can be explained by the 

higher yields achieved at the same enzyme dose for these process configurations compared to the 

OBC. Regarding the effect of the uncertainty in the parameters of the kinetics models used in the 

superstructure, a sensitivity analysis was carried out considering the uncertainty intervals 

presented in Table S1 (ESI). MESP increments up to 20% were found for the OBC while for 

C145 and C69 the larger increment in MESP was 4%. Moreover, the larger MESP value for 

C145 or C69 was below the lower MESP found for the OBC under uncertainty (Figures 7 to 9 in 

ESI). In a subsequent publication, the effect of uncertainty over process design variables and 

economic indicators will be incorporated into the GDP framework to obtain robust designs.  

Conclusions 

In this work, a rigorous optimization framework for process synthesis is proposed to find 

processes for ethanol production from corn stover. Among 150 process configurations, 40 show 

an improved MESP compared to a well-documented base case and almost all include solid 

separators. Moreover, 16 of them also show a lower specific capital investment per kg of ethanol 

produced per year. Some of the resulting process configurations have not been reported and are 

promising conceptual designs to be investigated at laboratory and pilot scale. Results showed that 

the process configuration with the lowest MESP (61.6 cUSD kg
-1

) includes solid separators.  
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Figure 1: Conceptual design of the superstructure for ethanol production from corn stover including process 

alternatives in the saccharification and fermentation stage.  
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Figure 2: Comparison between key process indicators calculated in HYSYS and calculated by the NLP representation 

of the superstructure. 
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Figure 3: Results from the non-linear optimization of every process in the superstructure for two scenarios. Panels A, 

C and E show results for the scenario where S. cerevisiae is used in  reactors R1B to R3B. Panels B, D and F display results for the 

scenario where Z. mobilis is used in every fermentor of the network. ● solid separation after pretreatment (D22 is active), ●: no 

solid separation in pretreatment (D25 is active), ● Base case process configuration,  □: high efficiency pulp separator (D5 active), 

□: low efficiency pulp separator (D6 active), ◊: high efficiency pulp separator (D13 active), ◊: low efficiency pulp separator (D14 

active), ▽: pretreatment liquor (rich in xylose) is sent to biogas production (D23 is active). 
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Figure 4. MESP and simplified flow diagram of the process configuration showing MESP values below 65 cUSD/kg (except 

C133). Process configurations C150, C111 and C133 use Z. mobilis in each fermentor, the remaining proccess configurations use 

S. cerevisiae in reactors R1B to R3B. T.D. indicates streams going to distillation. 
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Figure 5: MESP and simplified mass balances for selected process configurations. Processes OCB and C128 use Z. mobilis in 
every fermentor. C145 and C69 use S. cerevisiae in R1B to R3B. 
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Table 1: Investment per process area, operating cost, sales, economic and energetic indicators for selected process 

configurations. 

Units OBC C145 C69 C128 C131 C111 

Installed Equipment costs and total investment 

Saccharification & fermentation MMUSD 23.2 28.4 34.5 28.7 31.9 26.5 

Distillation & solids separation MMUSD 18.0 18.5 18.6 18.5 18.2 17.4 

Heat & power MMUSD 58.4 55.0 55.2 53.2 50.2 47.5 

Wastewater treatment MMUSD 47.3 53.0 53.0 51.1 48.6 45.2 

Total direct cost MMUSD 204.7 214.6 222.0 212.2 211.6 199.7 

Total capital investment MMUSD 345.8 362.4 374.9 358.3 357.4 337.3 

Operating costs    

Enzymes MMUSD -9.6 -6.4 -6.8 -6.7 -7.2 -9.5 

Corn stover MMUSD -44.7 -44.7 -44.7 -44.7 -44.7 -44.7 
Chemicals, maintenance, labor and 
insurance MMUSD -20.7 -20.9 -21.3 -20.8 -20.6 -19.9 

Sales [MMUSD]   

Ethanol MMUSD 105.0 108.3 111.2 106.5 103.6 99.0 

Electricity MMUSD 15.1 9.6 8.9 8.6 6.9 5.1 

Pellets MMUSD 0.0 1.3 1.4 3.7 8.4 13.9 

Economic indicators   

Payback (based in EBITDA with 
ethanol at 75 cUSD/kg) Years 6.17 5.36 5.70 5.34 5.39 5.63 

Ethanol price for ROI=20%  USD/kg 0.83 0.78 0.80 0.78 0.78 0.80 
MESP with 20% tax (calculated with 
DCFOR) USD/kg 0.70 0.62 0.64 0.62 0.62 0.64 

Energy indicators   

Specific thermal energy per unit of 
ethanol kJ/kg 10270 14892 15053 138030 12170 11119 
Specific electric energy per unit of 
ethanol kJe/kg 2708 2479 2789 2551 2754 3245 

Total energy in products  % 46.9 50.1 49.7 52.6 57.7 62.4 
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4 Highlights 
• An optimization framework for process design of ethanol plants is presented 

• 150 different process configurations are compared and analyzed  

• New process configurations outperform the NRELs base case  

• Lower MESPs were found when solid-liquid separators are included  

• Energy in products ranges from 44% to 62.4% of the energy in corn stover  

 

 

 




