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Abstract. In drylands, the underlying vegetation structure is associated with ecosystem functioning and
ecosystem resilience. Although scale-dependent patterns are also predicted, empirical evidence often
demonstrates that patch sizes are distributed according to a power-law probability distribution function or
truncated power-law probability distribution function for a varied range of environmental conditions.
Using satellite images and field measures, we assessed the spatial pattern of vegetation patches for a wide
range of vegetation cover values in a large set of Mediterranean dryland (MDL) plots, focusing on the
statistical distribution function that better fits the patch sizes. We found that power-law or truncated
power-law probability distribution function does not always fit the observed patch size frequencies, while
lognormal probability density function always fit well to them, implying that the vegetation structure is
scale dependent for a large range of conditions. We show how the sampling approach, fit methods, and
system dimensionality can affect the patch size distribution, which can explain some conflicting evidence
obtained from the empirical data. Our findings question the robustness of criticality as the underlying
mechanism driving vegetation patterns in MDLs. The better fit to patch size distribution provided by
lognormal as compared with power-law indicates that multiplicative effects of multivariate local influences
underlie pattern formation, and suggests that the role of plant–plant facilitation can be overestimated for a
large range of conditions.
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INTRODUCTION

Drylands are regions where the climate is clas-
sified as hyper-arid, arid, semiarid, or dry sub-
humid. Drylands cover approximately 40% of
land worldwide, on which more than 2 billion
people live (Food and Agriculture Organization
of the United Nations 2008). The environmental
conditions in drylands are restrictive for many
organisms, and the degradation processes in dry-
lands commonly lead to and reflect reduced

vegetation, which may cause sudden disrup-
tions to the ecosystem organization (Millennium
Ecosystem Assessment 2005). These changes,
reported as catastrophic shifts, are related to the
loss of resilience and the process of desertifica-
tion and can be irreversible, with important
social, economic, and environmental conse-
quences (Niemeijer et al. 2005, Hammad and
Tumeizi 2012, Low 2013). As a result, dryland
conservation has gained the attention of gov-
ernments and social organizations, and many
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theoretical and empirical studies have been con-
ducted to reveal the functioning of these ecosys-
tems (Poulsen 2013, Mueller et al. 2014).

The vegetation in drylands forms a mosaic
structure in which plant patches are separated by
areas of exposed soil (inter-patches). This struc-
ture is mainly due to the scarcity of water and
nutrients, which limits vegetation growth (Aguiar
and Sala 1999, Hochstrasser et al. 2014). Dryland
functioning depends on vegetation structure bec-
ause the size and spatial arrangement of patches
can influence water infiltration, nutrient cycling,
runoff, and soil stability, as well as the ecosystem
response to environmental stress (Puigdefabregas
et al. 1999, von Hardenberg et al. 2001, Puig-
def�abregas 2005, Alados et al. 2006, Bautista et al.
2007, Meron et al. 2007, Thompson 2010, Mayor
and Bautista 2012, Mayor et al. 2013, Svejcar et al.
2015). Vegetation patches can also facilitate the
establishment of other organisms, thus mediating
the resilience and biological diversity of drylands
(Bascompte and Rodr�ıguez 2001, HillerRisLam-
bers et al. 2001, Ludwig et al. 2004, Granda et al.
2014). Despite extensive knowledge of the ecologi-
cal features of drylands, conflicting interpreta-
tions of experimental evidence have brought into
question some issues regarding vegetation spatial
patterns in drylands and the underlying processes
that govern the spatial arrangement of patches
(K�efi et al. 2010, 2014, Maestre and Escudero
2010).

The patch size distribution is used to infer the
properties of these systems as well as subjacent
mechanisms. Empirical data and theoretical
models show that vegetation patch sizes in dry-
lands may vary from random to regular (von
Hardenberg et al. 2001, 2010, Rietkerk and van
de Koppel 2008, Xu et al. 2015a), and scale-free
patterns are often found (K�efi et al. 2007, Scanlon
et al. 2007, Moreno-de Las Heras et al. 2011,
Jeltsch et al. 2014). For instance, K�efi et al. (2007)
assessed drylands from different regions and
reported that the non-cumulated patch size dis-
tribution in vegetation drylands could be fitted
by a power-law probability density function (PL)
in well-preserved sites and by a truncated
power-law probability density function (TPL) in
degraded sites, suggesting that the curve shape
could be used as a desertification index. The
mechanism proposed for the origin and mainte-
nance of scale-free patterns is a self-organized

regime driven by local facilitation and global
competition for resources (K�efi et al. 2007, Scan-
lon et al. 2007). In this regime, patch size distri-
bution as a PL is expected for two reasons: (1) As
a critical phenomenon, it is expected that the geo-
metrical properties of patches show a PL behav-
ior around the critical transition (second-order
phase transition; Sahimi 1994) and (2) the aggre-
gation produced by plant–plant facilitation (K�efi
et al. 2007, Xu et al. 2015a, b) that may result in
PL patterns, even when these systems are far
from the critical transition.
Because PL behavior is commonly found for

several drylands conditions, these systems are,
sometimes, interpreted as robust systems (Pas-
cual et al. 2002, Pascual and Guichard 2005, K�efi
et al. 2011, Gowda et al. 2016). In a general
sense, the robustness concerns the range of para-
meter values able to produce a particular pattern:
Robustness increases as the range of parameter
values increases. Concerning the classical critical
systems in percolation problems (Tobochnik
1999, Dakos et al. 2012, van den Berg et al. 2015),
a model based on robust critical systems (RCS;
K�efi et al. 2011, Pascual et al. 2002) exhibits less
deviation from PL behavior in the neighborhood
of the critical point. RCS could explain the wide-
spread scale-free behavior found in empirical
data, which is often associated with local facilita-
tion, indicating that a large range of conditions
may produce scale-free patterns (K�efi et al. 2007,
Xu et al. 2015b). Another regime that can pro-
duce frequent PL behaviors is self-organized crit-
icality (SOC). SOC theory explains vegetation
patterns found in drylands according to the con-
ditions: a process of recovery and active propa-
gation of disturbance as well the time scale
separating both processes. However, as dis-
cussed by Scanlon et al. (2007) and K�efi et al.
(2011), the necessary ecological mechanisms to
support SOC do not collectively hold for dryland
conditions.
Even though several empirical evidences sug-

gest scale-free patterns as ordinary, further
evidences point out in another direction. For
instance, Maestre and Escudero (2009) assessed a
large set of sites from Mediterranean drylands
(MDLs) where the frequencies of patch sizes
were always fitted by a TPL and never a PL. The
authors stated that the shape of the statistical dis-
tribution was more correlated with the local soil
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properties than with desertification. Further-
more, a model proposed by von Hardenberg
et al. (2010) explicitly considered the water reso-
urce distribution in soil to explain the emergence
of both scale-free and characteristic-length pat-
terns, depending on the parameter setup. von
Hardenberg et al.’s model suggests that the
speed ratio between spatial distribution of water
and water uptake by roots drives the emergence
of different patterns because this ratio modulates
the range of global competition. In this model,
scale-free patterns are only possible in environ-
ments in which water diffuses faster than plants
can absorb it; when the opposite conditions are
present, patterns with a characteristic-length
scale are produced. Considering the range of soil
properties, terrain conditions, and types of vege-
tation found in drylands worldwide (Food and
Agriculture Organization of the United Nations
2008, 2014, 2015), the findings of von Harden-
berg et al. suggest that the conditions able to
produce patch sizes distributed as scale-free pat-
terns are unlikely to be an ordinary condition for
several drylands. In fact, a recent study (Xu et al.
2015a) demonstrated that a characteristic scale
can be found in several drylands worldwide.
These arguments shed doubts on how frequent
the scale-free patterns are in some regions, such
as the MDLs of southern Spain, where water
remains available for plants for very short peri-
ods on the surface and its underground mobility
is slow due to soil characteristics (Gallardo 2016).

These empirical evidences concerning patch
size distribution have been used to propose a
number of models to describe the patch forma-
tion in drylands. Such models are able to pro-
duce most of the spatial patterns found in
empirical data. However, each model approach
focuses on a different ecological mechanism or
assign different weights to different influences,
affecting the global interpretation. It is necessary
to take in mind that models can contain many
parameters and virtually infinite possibilities of
settings, some of them unlikely to occur on field
conditions. As stated by K�efi et al. (2014), theo-
retical models have been developed faster than
field experiments can validate them, and this
delay has led to a gap in knowledge of how veg-
etation patterns are governed in drylands. Not
coincidentally, the current conceptual framework
concerning vegetation spatial patterns is marked

by different points of view, mainly concerning
the role of drivers, such as environmental fea-
tures and biological interactions (Rietkerk et al.
2004, Maestre and Escudero 2009, 2010, K�efi
et al. 2010, von Hardenberg et al. 2010).
Here we call attention for the role of empirical

evidences as primary assumptions to formulate
conceptual frameworks. For instance, when emp-
irical data are used with these purposes, techni-
cal aspects such as sampling techniques and fit
methods may lead to misinterpretations. These
technical issues may suggest patterns that do not
correspond to those really present in nature,
resulting in further implications for the interpre-
tation of the ecological system. In the context of
dryland vegetation patterns, it is possible that a
portion of the conflicting empirical and theoreti-
cal evidence might be attributable to problems
related to sampling techniques and fit methods.
When heavy-tail distributions are found in

empirical data, PL and the lognormal probability
distribution function (LNorm) are almost always
competing hypotheses, and distinguishing them
is not a trivial task (Clauset et al. 2009) and all
available tests may not be sufficient to attain a
conclusive result (Cirillo 2013). This is a well-
known problem in ecology (White et al. 2008) and
other areas (Klaus et al. 2011) that are still poorly
explored for the patch size distribution in dry-
lands. A deeper implication is that PL or LNorm
indicates the involvement of different interaction
rules in the problem. Thus, we call attention for
the importance to determine the correct path size
distribution, because a poor data fit of empirical
data or an inadequate sampling technique may
lead to a misconception about which forces are
governing the patch formation in drylands.
On the one hand, scale-free patterns imply

“infinite variance” (even if finite, as in empirical
data, it is always very large) and translational
invariance. These patterns can emerge from a
variety of mechanisms, including critical and
non-critical processes (Cross and Hohenberg
1993, Dickman et al. 2000, Bonachela and Mu~noz
2009). Interpreting scale-free patterns in dynamic
systems (Sol�e 2011, Dakos et al. 2012), the PL
should be associated with the critical phase tran-
sition, which is of interest for explaining the
catastrophic shifts in drylands. These patterns
may also be associated with plant–plant facilita-
tion (K�efi et al. 2007, Xu et al. 2015a, b), in a
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mechanism that finds analogy in the preferential
attachment described for the evolution of scale-
free networks (Barab�asi and Albert 1999). If
patch size distribution is a PL, it means that
long-range correlations drive the system and that
plant–plant interactions (facilitation and compe-
tition) are the major influences for the global
regime. If PL is a frequent pattern, then RCS and
SOC are plausible hypotheses to describe the
patch formation.

On the other hand, scale-dependent distribu-
tions, such as Gaussian probability distribution
function (Normal) and LNorm, are produced by
local random effects. For this hypothesis, the
underlying mechanism able to explain vegetation
patterns are the multiple local environmental
influences. Accordingly, the local environmental
conditions are determinant for the vegetation
growth, producing short-range correlations that
result in patch size frequencies distributed as
LNorm. This hypothesis implies that the local
aspects, such as the cumulated water in the soil,
terrain slope, grazing pressure, nutrients, micro-
climate among other factors, govern the patch
growth and are able to produce the general pat-
terns of the system. Systems under these regimes
evolve gradually, and the stationary state is
determined by a saturation process, which is
defined by the local carrying capacity (Vetter
2005). The hypothesis does not exclude the
occurrence of PL for some particular set of condi-
tions, but scale-free patterns are restricted to a
thin region of the parameter space, generally
around critical transitions when they are present
(Sol�e 2011). Systems showing this pattern result
in low robustness, meaning that transitions bet-
ter fit classical percolation problems (Sahimi
1994, Pascual and Guichard 2005). If the patch
size distribution shows a characteristic scale for a
large range of vegetation covers, the inferred
underlying process indicates that short-range
correlations are the main drivers of global pat-
terns, whereas further influences, such as plant–
plant interactions, are less relevant. Accordingly,
the patch size distribution would fit a variety of
Normal (additive process) or LNorm (multiplica-
tive process; Mitzenmacher 2003).

In this study, we aimed to investigate the patch
size distribution in MDLs from southern Spain
(1) using three different data sets of empirical
data (from satellite images and field samples), (2)

explicitly considering and interpreting the prop-
erties and parameters of the statistical distribu-
tions that can fit the data, and (3) demonstrating
that problems in empirical data fit can lead to
misinterpretations about the underlying mecha-
nisms driving the ecological patterns. We used
PL, TPL, and LNorm distributions as competing
hypotheses, and we determined the best-fit
model using different techniques. We also tested
whether a scale characteristic can be found in dif-
ferent ranges of vegetation cover, to assess how
often scale-free patterns are found or not. We
demonstrate that sampling bias may affect the
interpretation of the true patterns found in nat-
ure, which can lead to misinterpretation of the
weight of distinct ecological mechanisms. We
conjecture that previously used sampling strate-
gies and data fitting might be responsible for
misleading evidence about the distribution of
patch sizes in drylands, with consequences for
the current theoretical framework.

METHODS

Theoretical background
Linking different heavy-tail statistical distri-

butions.—Two of the most important distributions
proposed for the frequencies of patch sizes in
drylands, the PL and TPL, are specific cases of a
very general probability density function (PDF)
known as Amoroso (Crooks 2010), also known
as generalized gamma PDF (Consul and Jain
1971). The Amoroso also originates an extensive
family of further statistical distributions that
include the gamma, Normal, and LNorm as well
as other distributions commonly reported for
biological systems (Crooks 2010). Amoroso is a
PDF with four real parameters:

f ðxÞ ¼ 1
CðaÞ

b
h

����
���� x�a

h

� �/b�1
� exp � x�a

h

� �b
� �

(1)

where a is the location parameter. The scale
parameter h is related to the data of standard
deviation. The parameters a and b are the shape
parameters and determine the shape of the curve.
A noteworthy property of the above PDF is that
the metrics used to characterize the shape behav-
ior, such as skewness and kurtosis, only depend
on a and b (Granzotti and Souto Martinez 2014).
Sampling bias or data treatments that discard
extreme values from data have a strong impact on
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data dispersion, namely h. The impact may be
greater on the tails of the PDF, which can lead to
inaccurate estimates of a and b leading to the
identification of different PDFs to represent the
same quantity at the same location.

The connections of the parameters a, b, and h
with physical and biological properties are speci-
fic to each case. For example, an interesting case
for drylands occurs for b = 1 and a = 0, resulting
in the gamma distribution:

f ðxÞ ¼ A� x/�1 � exp � x
h

� �h i
(2)

where A ¼ 1=haCðaÞ is the normalization con-
stant. An interesting fact about this particular
gamma PDF is that the TPL distribution is repre-
sented by the same mathematical expression,
f ðxÞ ¼ Cx�ce�ðx=xmaxÞ, although the interpretation
of the parameters is slightly different. For TPL,
the parameter h, which is generally interpreted
as the dispersion of the distribution, assumes a
different interpretation, xmax, which is the thresh-
old value of x at which the tail decay is faster
than that obtained with the exponent c of the
decaying term x�c. When xmax >> 1, the expo-
nential term of TPL becomes a constant, and then
we have the formula C 9 x�c, which represents
the PL.

Therefore, PL and TPL are obtained from Eq. 1
by fixing their parameters. The last heavy-tail
PDF to be considered in our study is the LNorm,
which is also a limiting case of the Amoroso. In
Eq. 1, we replace a and h, by writing them as
function of b, with a ¼ 1=br2, h ¼ ðbrÞ2=b, con-
sidering the limit case b ? 0 (Crooks 2010). The
resulting PDF is the LNorm:

f ðxÞ ¼ A00 � x�1 � exp
1

br2 lnðxÞ �
1

b2r2
� eb lnðxÞ

� �
(3)

or simply

f ðxÞ ¼ 1
xr

ffiffiffiffiffiffi
2p

p � exp
ðlnðxÞ � lÞ2

2r2

" #
(4)

where l and r are the mean and standard devia-
tion, respectively. Considering that a random
variable x follows a LNorm, one expects that the
transformed variable Z = ln (x) follows the Nor-
mal (Mitzenmacher 2003). It then follows that the
logarithmic transformation can be applied to

each element of the data set to evaluate whether
the transformed data are properly described by
the Gaussian distribution.
Fitting empirical data with heavy-tail distri-

butions.—When fitting empirical data, the
classical LNorm distribution may be visually dis-
tinguished from the PL distribution: By taking
the logarithm of the variable, a LNorm has a
Gaussian shape, whereas PL data have an expo-
nential shape. These distributions can also be dis-
tinguished by plotting data on the log–log scale.
The PL distribution in the log–log scale becomes
a straight line, whereas the LNorm distribution
fits a straight line only in the middle region, and
the tail decays faster relative to a PL (or even a
TPL) distribution. Errors may appear when data
for a random variable that actually follows a
LNorm distribution are limited due to sampling
or data management biases.
In fact, no purely PL distributions are found in

empirical data, and the fit of scale-free distribu-
tions is only possible for a limited range of values
(Clauset et al. 2009). When fitting PL to empirical
data, two non-consecutive steps are required:
(1) to find the parameters that better fitted the
curve by such exponents, the xmin values (the
minimum values in the empirical data that are
able to fit a PL), and for TPL, the xmax values (the
threshold values at which the decay rate is faster
than that with a PL distribution), and (2) discard-
ing alternative hypotheses. Discarding alterna-
tive hypotheses is particularly important because
statistical distributions such as the LNorm
behave as PL functions at a specific range of val-
ues, mainly when the exponent of the cumulative
probability distribution is approximately 1
(Newman 2005, Guerriero 2012, Cirillo 2013,
Deluca and Corral 2013, Virkar and Clauset
2014). Since the hypotheses are conceived a pri-
ori, multiple-model comparison can be used to
determine the statistical distribution showing the
best-fit model. For instance, when the PL is
assumed as a feasible pattern to fit the empirical
data, the xmin value is calculated, and PL and
LNorm are considered as competing hypotheses
for the data range limited by xmin, but when PL
is not a plausible hypothesis, there is no reason
to calculate xmin.
The solution of this problem is not trivial and

is subject of debate in different areas, and care
must be taken when interpreting the likely patch
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size distribution from empirical data, as we
argue below. For instance, K�efi et al. (2007) and
Maestre and Escudero (2009) used recursive 1-d
line intercept to sample patches in drylands that
were 2-d spatially dispersed and used a binned
approach to determine the statistical distribution.
The authors found patch sizes distributed as
scale-free patterns, which can be actually biased.
The 1-d samples can create an important bias in
the resulting PDF because large patches (higher
diameter) are oversampled, whereas small
patches are undersampled, affecting the propor-
tion of distinct patch sizes. Similarly, the con-
struction of bins as regular bins directly from
variables or from the log-transformed variable
can result in distributions with distinct shapes.
When adopting the procedure of log–log plot
analysis (White et al. 2008), the empirical data
distribution can follow a simple straight line or
even an initially straight line followed by moder-
ate decaying of the tail, demanding further tests
to determine the real pattern. In turn, these dif-
ferent procedures can produce misinterpretation
about the real PDF that describes the frequencies
of patch sizes by altering the data dispersion. In
these cases, the PL or TPL distributions may be
incorrectly considered the best model because
the data interval is not suitable to distinguish
between LNorm and PL (Boccara 2010). As afore-
mentioned, this type of bias can be of great
importance when the underlying mechanisms
are thought to reproduce field conditions.

Site description and data acquisition
Our study was conducted in an MDL region in

Murcia, southeastern Spain, in the area defined
by the coordinates 37°5806″ N–37°54025″ N and
1°400″ W–0°5800″ W. The climate is semiarid
Mediterranean, with a mean annual rainfall of
297 mm and a mean annual temperature of 19°C
(Murcia weather station; 38°007″ N–1°10015″ W;
1984–2010 period). The soils are loamy-silty loam
developed over marls and limestones. The land-
scape in the region is a mosaic of semiarid
steppes and open shrublands interspersed with
agricultural terraces, most of which are aban-
doned. The most abundant species in the natural
areas are the perennial grasses Stipa tenacissima L.
and Brachypodium retusum (Pers.) P. Beauv.,
shrubs such as Anthylis cytisoides L. and Rosmari-
nus officinalis L., and several chamaephytes, such

as Teucrium polium L. and Fumana ericoides (Cav.)
Gand. These steppes and shrublands have been
used for grazing, wood gathering, and marginal
agriculture for centuries (Puigdef�abregas and
Mendizabal 1998). At present, most exploitation
activities are abandoned, but some marginal
grazing still occurs (Verwijmeren et al. 2014).
Using both satellite images (main data source)

and field surveys, we assessed the patch size dis-
tribution of the natural dryland vegetation in the
area at different sampling scales and vegetation
cover (V) ranges, which allowed us to also assess
whether scale-free patterns are resilient to
different field conditions (Bonachela and Mu~noz
2009). Concerning the satellite images, we
defined 32 square sampling plots of approxi-
mately 100 m2 each (Set1) and 14 plots of approx-
imately 1000 m2 each (Set2) distributed all over
the steppe–shrubland slopes in the study area,
maximizing the range of vegetation cover values
captured by the sampling plots and avoiding
areas with clear signs of human interventions,
such as paved and unpaved roads, margins of
agricultural lands, and watering pools. The 32
plots of Set1, which was the smallest in size, cov-
ered the widest range of vegetation cover (V val-
ues between 2% and 96%), totaling 965 patches.
For the 14 plots in Set2, the total number of
patches was 4912. The V range was smaller in
Set2 (20–64%) than in Set1, as large areas with
large V values are not common in natural semi-
arid lands. To have a comparable range of V
between data sets for the specific analysis of the
V effect of patch size distribution, we defined six
additional 1000-m2 plots on areas with excep-
tionally high cover values that were included in
Set2, resulting in an increased V range (20–79%)
for this particular analysis. All color images were
acquired from Google Earth (Google 2015), edi-
ted, transformed to binary files, and analyzed
using the software ImageJ (Schneider et al. 2012,
see details in Appendix S1). From these images,
we retrieved data on the number and size of
patches and on the total vegetation cover in the
plot. Patch sizes were measured as the patch area
(cm2) and patch diameters (cm) by geometrical
approximation, and these measures were used in
different analyses.
The field data (hereafter only as Field) were

achieved by field measures. We established 14
sampling plots, of approximately 400 m2 each.
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These field plots were located within the same
region that was represented by the images. On
each site, we randomly selected five circular par-
cels of 5 m in radius (~400 m2 per site), where all
patches inside were counted and measured. We
measured the diameters, converting to area by
geometrical approximation. Therefore, instead of
sampling patches using transects by line inter-
cept, 1-d approach, as in K�efi et al. (2007) and
Maestre and Escudero (2009), we sampled the
entire area, a 2-d approach, similar to the area
used for the images. The vegetation cover in
plots ranged between 3% and 85%, totaling 982
patches.

Statistical tests
To determine the statistical distribution that

best described the general patch size distribution
in each data set, we used all data available (Set1:
data from 32 images; Set2: data from 14 images;
Field: data from 14 sites). Our first test consisted
of elucidating how different methods used to cre-
ate bins can alter the shape of the patch size dis-
tribution (K�efi et al. 2007, 2010, Maestre and
Escudero 2009, 2010). As discussed in White
et al. (2008), regular bins created directly from
raw data tend to underestimate small values
with high frequencies by clustering them in only
one or few bins. When taking the log-bins, high
values with low frequency produce data noise in
the tail of the curve. Regular bins created by log-
transformed data tend to reduce these two types
of bias (White et al. 2008). Then, we apply these
two techniques to construct bins: regular bins
taken directly from raw data and then their log
values, and regular bins taken from the log-
transformed data. Thus, we graphically com-
pared these results, making reference to results
found by previous authors that assessed empiri-
cal data from the same region (K�efi et al. 2007,
Maestre and Escudero 2009, Xu et al. 2015a).

Next, we analyzed whether the patch size dis-
tribution could fit different heavy-tail PDFs (PL,
TPL, and LNorm), which were considered as
alternative hypotheses. We also used the Uni-
form PDF, as a control treatment. We conducted
this analysis using two different routines (a set of
data analysis and statistical tests). In the first
one, we aimed to discard the hypothesis that
LNorm could fit patch sizes, and we followed
the routine described in Clauset et al. (2009). This

routine is described in four steps: (1) xmin values
are calculated for the empirical data; (2) only the
data range constrained by xmin is used to esti-
mate the parameters of different functions
describing distinct statistical distributions (PL,
TPL, LNorm, and Uniform); (3) the estimated
parameters are used to generate random values
showing different distributions (PL, TPL,
LNorm, and Uniform), which are considered as
alternative hypotheses; and (4) the best-fit distri-
bution is determined by comparison of multiple
hypotheses. In the second routine, the PL distri-
bution was not considered a priori as the most
important hypothesis to fit the empirical data;
that is, the xmin value was senseless, and only
three of the four steps above described were
applied: (2), (3), and (4). The second routine
aimed to exclude the scale-free patterns as a
plausible hypothesis to fit the empirical data. The
main difference between the first and second
routines relies on the use of the xmin value and
which hypothesis is excluded as feasible. Below,
we present the details and implications of each
step to clarify this issue.
The first step (1) is to determine xmin, the mini-

mal value of x (patch size) in the empirical data
that permit fitting of a PL distribution. This step
does not guarantee that empirical data are truly
distributed as a PL, but it is essential to deter-
mine the real exponent c (the shape of the curve)
when data are actually distributed as a PL. The
xmin value is acquired by recursive exclusions of
minimum values with conjugated data fit using
the maximum-likelihood estimation (MLE). Each
exclusion of the minimum x-value modifies the
c-value, which leads to a new exclusion of the
x-value, until further exclusions do not alter c
further. The process stops when the c-value sta-
bilizes, yielding the value of xmin. Consequently,
the xmin determination constrains the empirical
data only to the tail part and implies that the first
and second routines above differ mainly in the
data range. In step 2, the parameter estimation
of distinct probability distribution functions
(PL, TPL, LNorm, and Uniform) is performed
using the goodness of fit, a process that uses
conjugated optimization with MLE as method
(Clauset et al. 2009). In step 3, the estimated
parameters achieved in step 2 are used to gener-
ate “expected” values, data vectors, using the
inverse of the cumulated distribution functions
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(e.g., y = f(x)�1). Accordingly, step 3 produces
data vectors distributed with the probability
functions considered as the alternative hypothe-
ses. In step 4, these “expected” values are consid-
ered as competing alternative hypotheses to fit
the “observed” values, the vectors containing the
empirical data used to estimate the parameters.
Next, we calculated the cumulative distribution
function (CDF) and the PDF of all “expected”
and “observed” raw values, taking regulars bins
from log-transformed data. PDF and CDF pro-
vide complementary information about probabil-
ity distributions: Whereas PDF is an intuitive
way to analyze data, it is susceptible to fluctua-
tions, while CDF provides better results for data
fitting, but low resolution on the tails. A linear
regression between each “expected” data vector
and the respective “observed” data vector is per-
formed for each probability distribution. Next,
we use the Akaike Information Criterion (AIC),
with corrections for small samples (AICc), to
assess the most plausible hypothesis, where the
best probability distribution is provided by the
goodness of fit (Burnham and Anderson 2002,
Mazerolle 2006). We consider as a parameter the
DAICc, where DAICc = AIC � AICmin, and the
best-fit model is given by DAIC = 0 (Johnson
and Omland 2004). The test also scales the AIC
values as weights; probability of each model is
the actual best-fit model.

As argued in Xu et al. (2015a), plant–plant
facilitation is affected by the size of patches.
Thus, we do not discharge the hypothesis that
patch size distribution could be, even weakly,
influenced by vegetation cover. In this sense, we
assessed whether the patch size distribution is
maintained for different ranges of V. For each
data set (Set1 = 32 images; enlarged Set2 = 20
images; Field = 14 plots), we created ranges of V
by clustering the plots in three classes: low cover
(V < 35%), medium cover (35% < V < 55%), and
high cover values (V > 55%). Once the best statis-
tical distribution describing patch size frequen-
cies in overall data was found, we used this
pattern as reference to analyze patch size fre-
quencies found for different ranges of V. Thus,
we used the reference distribution to perform
CDF plots with upper bounds and lower
bounds (103 permutation tests; 95% confidence
interval), and we calculated the R2 values to pro-
vide the fit quality.

Finally, we assessed whether data sets that
actually fit LNorm distributions can fit a PL dis-
tribution for specific data ranges. Here, we aim
to show how bias from inadequate sampling
and/or data handling can possibly lead to misin-
terpretation about the real statistical distribution.
Although patch size is a continuous variable that
demands the use of bins (although initially mea-
sured as pixels, they are later transformed to area
or diameter in units of cm, cm2, or m2), we used
instead a ranked arrangement of patches for bet-
ter visualization, from the highest size to the
smallest. The procedure consisted of gradually
excluding the smallest patches from the analysis,
a process similar to the estimation of the xmin

threshold and the actual exponent value when
fitting the PL distributions (White et al. 2008,
Clauset et al. 2009). All statistical analyses were
performed step by step (no automatic routines),
using Microsoft Excel 2013, Statistica 13, and R
2.16 (R Core Team), also using the R package
bbmle (Bolker 2016).

RESULTS

Patch size distribution: Is it a scale-free pattern?
In our first test, the statistical distributions of

patch sizes (diameters, cm) achieved by different
binning methods are compared. As observed in
Fig. 1, bins taken from raw data tended to pro-
duce a pattern that resembles a “straight” line at
the log–log scale, similar to patterns observed by
K�efi et al. (2007) and Maestre and Escudero
(2009). This means that data are power-law-
distributed, but we point out two additional
aspects. First, the higher frequencies (small
patches) were all grouped in a few bins, which
underestimates the weight of their frequencies
and produces bias when assessing the PDF distri-
bution. Furthermore, a few large patches were
allocated to several bins, all low frequency,
which aggregates data noise in the curve. Hence,
when taking bins directly from raw data, an
important bias was produced on both sides of
the curve, creating an apparent straight line at
the log–log scale. As depicted in Fig. 1, this prob-
lem was solved by taking bins from the log-
transformed variable. The bins constructed from
log values provided further details about higher
frequencies (small patches) while clustering
lower frequencies (large sizes). This approach
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also recovers the patterns observed in Xu et al.
(2015a). Therefore, when patch size distribution
was depicted by the bins obtained from the
log-transformed data, a PL distribution was
obviously not a plausible hypothesis to fit the
entire data range.

Considering all realizations in each data set at
a single-log scale (natural logarithm of patch size
as area measures, in units of m2), the histograms
obtained for patch sizes indicated that a Gaus-
sian curve was a plausible hypothesis to fit the
data distribution (Fig. 2A, D, G). The cumulated

Fig. 1. Different ways to verify patch size distributions in drylands. Set1: data from 32 satellite images of
100 m2, n = 965; Set2: data from 14 satellite images of 900 m2, n = 4912; Field: data from 14 field samples of
~400 m2, n = 982. A and B represent different methods to obtain the bins for three different data sets. Patch sizes:
diameter (cm). For A, the distribution of patch sizes uses regular bins directly from raw values and results in pat-
terns similar to those found in K�efi et al. (2007) and Maestre and Escudero (2009). The method used in A shows
two well-known problems produced by the method for establishing bins (Clauset et al. 2009, Cirillo 2013). First,
a large range of small values is grouped in the same bin, increasing their frequencies in a non-trivial manner. Sec-
ond, large values show high data noise at the end of the tail. These two effects alter the shape of the distribution,
leading to a misinterpretation of the actual statistical distribution of patch size. For instance, the graphics
obtained with A indicate that a power-law distribution could fit them well, considering the “apparent” straight
line at log–log scale. For B, bins are taken from the Log10 of raw values. When this approach is adopted, the puz-
zling problems common to method A are avoided, providing more confident details about high frequencies and
high sizes. When B is adopted, it is clear that the patch sizes are lognormally distributed.
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frequencies of patch sizes (single-log) followed a
CDF (Fig. 2C, F, I), whereas the log–log scale
resulted in a PDF that is fitted as a parabola-like
curve (Fig. 2B, E, H). When considering the data
range constrained by the xmin values, approxi-
mately 33% of the data were lost from each data
set (both images and field samples), with all
patches smaller than 45 cm in diameter dis-
carded. In the case of TPL, the xmax values of all
data sets suggested that more rapid decays begin

for patches approximately 80 cm in diameter,
thus indicating that the PL distribution fits well
only for values above this threshold.
For data constrained by the xmin threshold, the

LNorm distribution was the unique plausible
distribution fitting the PDF of the empirical data
(DAIC = 0.0) in all three data sets (Set1, Set2, and
Field) and the CDF of Set2. For the CDF of Set1
and Field, the LNorm distribution was one of the
plausible models able to describe the cumulative

Fig. 2. Frequency of patch size according to different views. A, D, G: histograms, frequencies of patch size
according to regular bins created using log-transformed data; B, E, H: PDFs, probability density functions for
patch sizes at the log–log scale; C, F, I: CDFs, cumulative density functions for patch size taken at the single-log
scale. A–C: data from 32 satellite images (Set1), n = 965; D–F: data from 14 satellite images (Set2), n = 4912; G–I:
data from 14 field samples, n = 982. The histograms show that when patch sizes are log-transformed (Ln), the
frequencies fit well to a Gaussian curve (straight red lines). All images show the entire range of raw data, mean-
ing that xmin is not considered. In the PDF cases (B, E, and H), the probabilities are plotted at a log–log scale and
show that a lognormal distribution better fits the empirical data than the power-law and truncated power-law
distributions, which fit only part of the data range. In the CDF cases (C, F, and I), the cumulative probabilities are
plotted at a single-log scale (log-bins), showing the fit quality in a more confident test.
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probabilities (respective DAIC values: 0.6 and
0.7; Table 1), with other plausible models includ-
ing TPL for the Set1 data (DAIC = 0.0) and PL for
the Field data (DAIC = 0.0). Concerning the
unconstrained data (beyond the xmin threshold),
the best-fit distribution was always achieved by
the LNorm distribution for either PDF or CDF
(Table 1, Fig. 2). Therefore, the LNorm distribu-
tion was a plausible hypothesis to describe the
patch size distributions in all cases and was the
unique plausible hypothesis for 10 of the 12 com-
binations of conditions (data range, data set, and
type of probability function) assessed.

Considering different sub-samples of several V
ranges, we found that LNorm distributions
always fit the patch size frequencies well, and
the adjusted R2 value for the expected vs.
observed values was never below 0.99 (Fig. 3).

Fitting PL and TPL to LNorm-distributed data
Fig. 4 illustrates how disregarding extreme

small values in a data set allows us to fit a PL in
data that frequencies actually follow a LNorm.
The patches from Set1 (Fig. 4A:E), Set2 (Fig. 4F:J),
and Field (Fig. 4K:O) are ordered from the small-
est to the largest size along the x-axis. For each
data set, the sequence of graphs in Fig. 3 shows
the changes in the modal frequencies and the
curve shape associated with the gradual exclu-
sion of the smallest patches (i.e., the relative fre-
quencies of large patches are increased). Fig. 4A,

F, and K shows the entire data range for each
data set. By excluding 30% of patches, patch sizes
around the xmin values were achieved, and the
data also fit well to a TPL (Fig. 4D, I, N). In
Fig. 4E, J, and O, the exclusion of the smallest
patches reached 50% of the total patches, a
threshold near the estimated xmax values, and the
remaining data can fitted by a PL. For this last
case, the ranges of the original data sets are
strongly reduced, and by excluding the values
with highest noise, that is, 10 to 15 of the largest
patches, the remnant data can perfectly be fitted
by a PL function (Set1: c = 1.1 and R2 = 0.99;
Set2: c = 1.1 and R2 = 0.99; Field: c = 1.0 and
R2 = 0.99). Thus, data sets that truly follow log-
normal distributions may be well fitted by a
power-law or truncated power-law distributions
at specific data ranges. Notice that exponent
c = 1.1 is very close to 1.0, which is compatible
with that predicted by the lognormal distribu-
tion, and is similar to the value previously
reported for MDL (c = 1.2; K�efi et al. 2007).

DISCUSSION

Using a multi-scale data set of patch sizes from
an MDL region in southeastern Spain, we
demonstrated that a LNorm provides a better fit
for patch size than PL or TPL. Although scale
patterns are reported for patch sizes in some
dryland conditions (von Hardenberg et al. 2010,

Table 1. Multiple hypothesis test comparisons of different statistical distributions to establish the goodness of fit
to patch size distributions in the Mediterranean drylands of southern Spain.

Data range Function Par.

DAIC (Weights)

Set1 image samples Set2 image samples Field samples

CDF PDF CDF PDF CDF PDF

Constrained Uniform l 53.1 (0.0) 27.3 (0.0) 110.2 (0.0) 54.4 (0.0) 43.9 (0.0) 31.4 (0.0)
LNorm l; r2 0.7* (0.4) 0.0* (1.0) 0.0 (1.0) 0.0 (1.0) 0.6* (0.4) 0.0* (1.0)
TPL a; h 0.0* (0.6) 25.1 (0.0) 40.2 (0.0) 34.4 (0.0) 8.3 (0.1) 11.0 (0.0)
PL c 32.4 (0.0) 15.8 (0.0) 110.2 (0.0) 54.4 (0.0) 0.0* (0.5) 26.9 (0.0)

Unconstrained Uniform l 110.0 (0.0) 54.1 (0.0) 114.8 (0.0) 61.9 (0.0) 85.4 (0.0) 44.9 (0.0)
LNorm l; r2 0.0* (1.0) 0.0* (1.0) 0.0* (1.0) 0.0* (1.0) 0.0* (1.0) 0.0* (1.0)
TPL a; h 40.2 (0.0) 34.4 (0.0) 37.5 (0.0) 58.0 (0.0) 26.0 (0.0) 26.9 (0.0)
PL c 60.1 (0.0) 44.9 (0.0) 79.8 (0.0) 61.9 (0.0) 41.3 (0.0) 33.5 (0.0)

Notes: Constrained: fittings that considered only the data range constrained by xmin, thus excluding approximately 33% of
the data; unconstrained: fittings that considered the full data. *Plausible models (0.0 < DAIC < 2.0); weights: relative chance
(probability) that the model is the best descriptor. For Set1 image samples, n = 965, l = 7.33 (log cm2); r = 2.16 (log cm2);
a = 0.85; h-rank = 507; h-value = 5383 cm2; c = 1.14. For Set2 image samples, n = 4912, l = 7.48 (log cm2); r = 1.75 (log cm2);
a = 0.8; h-rank = 1500; h-value = 4417 cm2; c = 0.83. For field samples, n = 982, l = 7.91 (log cm2); r = 2.41 (log cm2); a = 0.8;
h-rank = 392; h-value = 4025 cm2; c = 1.18. Par., parameters; CDF, cumulative function distribution; PDF, probability density
function; AIC, Akaike Information Criterion.
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Xu et al. 2015a), our results are not consistent
with other results, some of them previously
reported for MDLs and for other dryland
regions (K�efi et al. 2007, Scanlon et al. 2007,
Maestre and Escudero 2009, Moreno-de Las
Heras et al. 2011). The contrasting PDF found in
empirical data represents an intriguing problem
well known in ecology (White et al. 2008) and
other areas (Klaus et al. 2011) that might be
explained in terms of the theory of probability
functions (Boccara 2010, Crooks 2010). Consid-
ering the implications and possibilities pro-
duced by data acquisition and treatment on the

statistical distributions, we argue that scale-free
patterns seem to be not widespread as previ-
ously believed.
We demonstrated that sampling and fitting

methods can affect the relative frequencies of
patch sizes, thus creating technical issues to dis-
tinguish among PL, TPL, and LNorm. In fact,
sampling and/or binning methods affect the rela-
tive weight of small and large patches, as when
the smallest patches are gradually eliminated
from the analysis (Fig. 4). They may hide the
scale of the problem, making PL becomes more
plausible (Figs. 1, 4). Hence, PL and TPL may

Fig. 3. Fitting the cumulative relative frequencies of patch sizes to a lognormal function for different ranges of
vegetation cover (V) found in the Mediterranean drylands. The bins considered the log-transformed area of
patches (cm2), and the adjusted R2 values were never below 0.98. A, B, C: data from 32 image samples, each
representing 102 m2; D, E, F: data from 20 image samples, each representing ~103 m2; G, H, I: data from 14 field
samples, each representing ~4 9 102 m2; bounds: confidence interval (95%) for 103 permutations.
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Fig. 4. Effect of sampling that discards small patches when fitting patch size frequencies in the Mediterranean
drylands (MDLs). A to E: patches from 32 images (~3200 m2, n = 965); F to J: patches from 14 images
(~14,000 m2, n = 4912); K to O: patches from field measures obtained in 14 sites (~5500 m2, n = 982). The trunca-
tion process excluded smaller patches, thus changing the shape of the distribution and permitting the conclusion
that a power-law distribution is the correct distribution rather than a lognormal distribution. A, F, and K: original
curves; B, G, and L: 10% of the smallest patches discarded; C, H, and M: 20% of the smallest patches discarded;
D, I, and N: 30% of the smallest patches discarded; E, J, and O: 50% of the smallest patches and some few highest
values (higher noise) discarded, thus fitting a power-law function (dashed line). In E, J, and O, the power-law
exponents are ffi1, compatible with the exponents found by previous studies in MDLs, and the linear regression
(expected vs. observed) is [R2 ~ 1]; if the largest patches are retained, the R2 value tends to be smaller, and the
exponent values tend to be higher.
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describe well frequencies in empirical data that
actually are distributed according to a LNorm.
For instance, K�efi et al. (2007) and Maestre and
Escudero (2009) assessed patch sizes that were
sampled using 1-d line intercept and found dif-
ferent types of scale-free patterns (PL and TPL).
Although binning method is not explicitly con-
cerned, the sampling by self could produce some
type of data bias. Linking the consequences for
the distribution shape, changes in the tail decay
could lead to misinterpretations of the PL expo-
nents or the type of PDF. Consequently, the
underlying dynamics governing the patch pat-
tern might be misinterpreted. As an insight about
this issue, although the degradation process
tends to change patch size frequencies, the PL
exponent fitted to data distributed as LNorm
always produces exponent values of approxi-
mately 1 for PDF, information that may be used
to compare our findings with data from other
drylands worldwide.

The evidence reported by Moreno-de Las Heras
et al. (2011) regarding patch size distribution as
PL bears another important consideration that
goes beyond the bins construction and sampling
techniques. These authors adopted a much larger
scale (km2) than the scale dealt in this paper. It
is well known that the sum of the effects pro-
duced by multiple LNorm on different scales can
produce true PLs when the variances are very dif-
ferent (Mandelbrot 1983). Accordingly, multiple
scales considered together are able to produce
emergent patterns, which may be fitted by PL,
although the underlying processes concern scales
(see Zhao et al. 2015). Unfortunately, very large
MDL plots free of the interference of human activ-
ity are hard to find and, consequently, to analyze.
This was also the case for our study region, limit-
ing further investigation of this subject.

Because PL (or TPL) and LNorm originate
from distinct processes, some of which are well
known in statistical physics (Mitzenmacher 2003,
Boccara 2010), finding the right statistical distri-
bution of empirical data can shed some light on
which drives the patch patterns and the physical
interpretation of the problem. A PL distribution
implies spatial invariance and “infinite” data
variance, also indicating that long-range correla-
tions among plants in drylands are the predomi-
nant forces in the system. It means that one event
affecting a particular plant will be propagated to

all other plants. The LNorm distribution implies
in scale-dependent patterns, finite variance. It
means that only events inside a characteristic
scales are correlated and that independent events
and local influences are dominant in such case.
Since scale invariance is a necessary condition for
criticality, our findings do not support any criti-
cal transition for the current stage of our target
MDL plots. In fact, the evidence concerning
LNorm does not exclude the possibility that veg-
etation can show criticality at some range of
parameter space (e.g., at particular vegetation
cover), but the lack of evidence associated with
scale-free behavior indicates that PL or TPL is
not common in the studied region. Therefore,
RCS and SOC hypotheses (Roy et al. 2003, K�efi
et al. 2011) are not supported by our data.
A variety of models based on distinct mecha-

nisms have been proposed to explain the self-
organization of patch patterns in drylands
(Rietkerk et al. 2004, K�efi et al. 2007, 2011, von
Hardenberg et al. 2010). According to the model
proposed by von Hardenberg et al. (2010), scale-
free patterns are only possible where water diffu-
sivity in soil, or water distribution on surface, is
faster than the plant water uptake, while all other
conditions produce patterns with a characteristic
scale. This change in parameter conditions puts in
contrast the limiting factors governing the vegeta-
tion growth, from global to local constraints. Our
study area shows gentle to steep slopes and silty
soils rich in calcium (Gallardo 2016). It means that
water runs fast on surface and slow in soil layers,
but also means that water is still no long available
on surface and may accumulate on soil layers.
Although we did not specifically test the ratio
between water distribution speed and water
uptake, our findings are in accordance with
the predictions of the model presented by von
Hardenberg and colleagues. The clay-rich soils
and the rugged topography found in the studied
region should produce short-range correlations
and thus patch sizes with a characteristic scale.
Therefore, our hypothesis is that the current

framework concerning the role of plant–plant
facilitation as driver of vegetation patterns in
drylands, possibly, is not applicable for the
region evaluated in this paper. In fact, there are
further empirical evidences indicating that small
patches cannot produce important effects on
ecohydrological dynamics (Bautista et al. 2007,
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Mayor et al. 2013), which seems to also produce
effects on global patch patterns, as the scales
found in drylands worldwide (Xu et al. 2015a).
Our data corroborate these statements and pro-
vide a new one. For MDLs from southern Spain,
we demonstrate that a characteristic scale of
patch sizes is still present for the most common
vegetation covers found in the MDL (up to
~60%). It indicates that for the range of condi-
tions assessed in our study, the mechanisms that
drive scale-free patterns are not dominant, even
though they may be present.

We have not explicitly addressed the intrinsic
local factors and control variables in this paper,
but the specialized literature provides a variety of
examples indicating the existence of these local
influences, including water and nutrient availabil-
ity, terrain slope, climate, and the carrying capac-
ity for vegetation growth (von Hardenberg et al.
2001, Puigdef�abregas 2005, Thompson 2010, Bar-
bier et al. 2014, Cerd�a et al. 2014). In this sense,
we call attention for the aggregate patterns dem-
onstrated in Xu et al. (2015a), which are stated as
the result of plant–plant facilitation. According to
our views about the topic, these patterns could
also be explained as “virtual aggregation” (Wie-
gand and Moloney 2004), the “apparent” aggre-
gation produced by spatial heterogeneity, which
is more in accordance with local influences than
with plant–plant facilitation. In fact, it is more
probable that both local environmental influences
and plant–plant interactions affect the patch pat-
terns in drylands, and thus, we highlight the
necessity of field studies concerning for which
ecological conditions one effect predominates
over the other. Our conclusions about scaling and
local influences are based on data acquired in a
limited region, the MDL, but we argue that Xu
et al. (2015a) found scales for a wider spectrum of
conditions worldwide. Hence, it is possible that
our findings might be applicable to further
regions, a topic that is still demanding validation.

In summary, our results provide the evidence
that the LNorm can be considered a solid model
to describe patch size distributions in MDLs to
vegetation covers up to 60%. PL and TPL might
be explained as statistical artifacts of LNorm,
resulting from a variety of technical issues.
LNorm emerges from multiple local influences,
indicating that terrain conditions are important
for producing spatial patterns of vegetation in

drylands in a range of conditions. These results
question the robustness of criticality in dryland
systems and support the role of local environ-
mental influences in shaping dryland vegetation
patterns.
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