
May 29, 2014 Complex Variables and Elliptic Equations Equivalence*classes

To appear in Complex Variables and Elliptic Equations
Vol. 00, No. 00, Month 20XX, 1–14

Equivalence classes of exponential polynomials with the same set

of zeros

J.M. Sepulcre∗ and T. Vidal

Department of Mathematical Analysis, University of Alicante, 03080-Alicante, Spain.

(May 2014)

Through several equivalence binary relations, in this paper we identify, on the one
hand, groups of exponential polynomials with the same set of zeros, and on the other,
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1. Introduction

For each integer n ≥ 1, let

P (z) := a1e
α1z + . . .+ ane

αnz, z ∈ C, (1.1)

be an exponential polynomial of non-null complex coefficients a1, . . . , an and dis-
tinct frequencies α1, . . . , αn so arranged that αi comes before αj if Re(αi) < Re(αj)
or if Re(αi) = Re(αj) but Im(αi) < Im(αj). The study of the zeros of the exponen-
tial polynomials P (z) is a topic which appears in the first third of the twentieth
century in relation with the development of differential equation theory (see for
example [9]). Let CP denote the convex polygon in the complex plane defined by
the complex conjugates of the frequencies of P (z), that is, the convex hull of the
points α1, . . . , αn, then the zeros of P (z) lie in half-strips in the directions of the
exterior normals to CP . In the extensive literature about this topic, we can find
for example several formulae to determine the number of its zeros in an arbitrary
region of each one of the half-strips where they are situated (see for example [4],
[7] and [8]).
The first purpose in this paper is to identify groups of exponential polynomials

P (z) which have the same set of zeros and to characterize them through some
equivalence binary relations. To do it, we will consider generic exponential poly-
nomials in Section 2 and, subsequently, we will handle particular classes of these
polynomials with real and, more generally, aligned frequencies in sections 3 and
4 respectively. In this manner, the exponential polynomials with the same set of
zeros will be able to be directly identified from their respective classes.
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On the other hand, the exponential polynomials P (z) are closely related to the
functional equations of the form

a1f(γ1z) + a2f(γ2z) + . . .+ anf(γnz) = 0, z ∈ C, (1.2)

where the aj ’s and the γj ’s are non-null complex numbers and n ≥ 2 is an integer
number. In fact, we will see that each functional equation of the form above has
associated an exponential polynomial a1e

z Log γ1 + a2e
z Log γ2 + . . . + ane

z Log γn of
type (1.1), where Log z denotes the principal branch of the logarithm. It is worth
noting that this property was already shown for the special cases

f(z) + f(2z) + . . .+ f(nz) = 0, n ∈ N, n ≥ 2, (1.3)

introduced in the literature by Mora, Cherruault and Ziadi in 1999 [3], and used
for modeling certain processes related to combustion of hydrogen in a car engine
for small values of n [5].
Thus, concurrently with the development of the different equivalence classes of

exponential polynomials, the second purpose in this paper is to establish equiva-
lence binary relations on different classes of functional equations of the form (1.2)
that lead us to corresponding equivalent exponential polynomials with the same
set of zeros. Furthermore, we will prove that the converse is true in the sense that
two equivalent exponential polynomials also lead us to two equivalent functional
equations. As in the case of the exponential polynomials, we will establish more
specific equivalence classes of the functional equations above which preserve the
same properties as in the general case.
Interestingly, it was proved in [5] that every zero of the exponential polynomial

1 + 2z + . . .+ nz, n ∈ N, n ≥ 2, provides a vector space of basic solutions of func-
tional equation (1.3). Furthermore, for the case n = 2 other solutions appear by
considering the pe function of Weierstrass [5, Section 4] or the binary character-
istic of a real number [6, Proposition 2.3]. Also, the solutions not identically null
on the rationals of Cauchy functional equation and the ternary and quaternary
characteristics of a real number provide solutions for the cases n = 3 and n = 4
respectively [6, Theorem 2.7, Theorem 2.11]. Furthermore, in a recent paper [1],
the authors consider the equation

f(z) + f(a1z) + . . .+ f(aNz) = 0,

where 0 < a1 < a2 < . . . < aN are positive real numbers and N ∈ N with N ≥ 2,
and they study the existence of continuous periodic solutions. As a consequence of
the above, there exist functional equations of the form (1.2) which have solutions
that apparently are not linked to their corresponding polynomials. In spite of this,
the equivalence binary relations that we will establish on the functional equations
above, that will lead us to corresponding equivalent exponential polynomials, de-
termine equivalent functional equations that exactly have the same set of solutions
defined on C, not uniquely the basic solutions which arise from the corresponding
exponential polynomials.

2. Generic complex frequencies

We start by considering generic exponential polynomials of complex coefficients
and frequencies.
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Definition 2.1 An exponential polynomial is said to be of the class P if it is of
the form (1.1).

Note that the set P of functions of the form (1.1) is closed with respect to the
sum and the multiplication; that is, the sum or the product of any two functions
of the class is also in the class. Furthermore, the derivative of an element of the
class is also in the class.
We can also consider the following subclass of exponential polynomials with only

one term.

Definition 2.2 An exponential polynomial is said to be of the class T ⊂ P if it is
of the form ceλz with c, λ ∈ C.

It is immediate that the class T is also closed with respect to the sum and
multiplication, the derivative of any element of T is in the same class and each
non-null element T (z) = ceλz in T has an inverse element T−1(z) = 1

ce
−λz in the

class.
We next identify two elements in the class P in terms of the class T .

Definition 2.3 We will say that two elements P (z), Q(z) ∈ P are equivalent,
and it will be denoted by P (z) ∼ Q(z), when there exists T (z) ∈ T such that
P (z) = T (z) ·Q(z) for all z ∈ C.

Notice that the binary relation ∼ defined above on the class P is an equivalence
relation. Indeed, if P (z), Q(z) and R(z) are non-null elements of P, we have that

i) (Reflexivity) As 1 ∈ T then P (z) ∼ P (z);
ii) (Symmetry) If P (z) ∼ Q(z) then there exists a non-null T (z) ∈ T such that

P (z) = T (z) ·Q(z). Hence, since Q(z) = T−1(z) ·P (z) and T−1(z) ∈ T , then
Q(z) ∼ P (z);

iii) (Transitivity) If P (z) ∼ Q(z) and Q(z) ∼ R(z) then there exist T1(z) and
T2(z) ∈ T such that P (z) = T1(z) · Q(z) and Q(z) = T2(z) · S(z). Hence
P (z) = T (z) ·R(z) with T (z) := T1(z) · T2(z) ∈ T and, consequently, R(z) ∼
P (z).

It is an elementary check that two equivalent exponential polynomials have the
same number of distinct frequencies.
Given P (z) ∈ P, let Z(P ) denote the set {z ∈ C : P (z) = 0} of the zeros of

P (z). With the help of Hadamard’s representation it is easy to characterize the
equivalent exponential polynomials depending on their zeros.

Proposition 2.4 Let P (z) and Q(z) be two exponential polynomials in the class
P. Thus P (z) ∼ Q(z) if and only if Z(P ) = Z(Q) and their zeros have associated
the same multiplicity.

Proof. Let P (z) and Q(z) be two exponential polynomials in the same equivalence
class of P/ ∼, then there exists T (z) = ceλz ∈ T such that

P (z) = T (z)Q(z).

It is immediate that if Z(Q) = ∅ then Z(P ) = ∅, thus let z0 ∈ Z(Q) be a zero of
Q(z) of multiplicity k ≥ 1. Hence,

Q(z) = (z − z0)
kg(z)
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where g(z) is an entire function such that g(z0) ̸= 0 and

Q(z0) = Q′(z0) = Q′′(z0) = . . . = Q(k−1)(z0) = 0, Q(k)(z0) ̸= 0.

Now, since P (z) = ceλzg(z)(z − z0)
k, then P (z0) = 0. Furthermore, since P (z) =

ceλzQ(z), then

P ′(z0) = Ceλz0(λQ(z0) +Q′(z0))

and, more generally, we have

P (m)(z0) = Ceλz0
m∑
j=0

(
m
j

)
λm−jQ(j)(z0), 1 ≤ m ≤ k.

Therefore, it is also verified that

P (z0) = P ′(z0) = P ′′(z0) = . . . = P (k−1)(z0) = 0, P (k)(z0) ̸= 0

and z0 is a zero of P (z) of multiplicity k.
Conversely, suppose now that P (z), Q(z) ∈ P are so that

Z(P ) = Z(Q) = {z1, z2, . . . , zl, . . .}

and their zeros have associated the same multiplicity. Then their quotient
P (z)

Q(z)
is

an entire function of exponential type without zeros. Hence, by Hadamard factor-
ization theorem [2, Theorem 4.4.3], it is an exponential monomial or, equivalently,

P (z) = ceλzQ(z)

for some c, λ ∈ C, c ̸= 0. Consequently P (z) ∼ Q(z). �

On the other hand, we will introduce a binary relation on the class of functional
equations of the form (1.2), that is

a1f(γ1z) + a2f(γ2z) + . . .+ anf(γnz) = 0, z ∈ C,

where the aj ’s and also the γj ’s are non-null complex numbers and n ≥ 2 is an
integer number.
Before going to this, it is worth noting that each functional equation of the form

(1.2) has associated the exponential polynomial Pn(z) = a1e
z Log γ1 + a2e

z Log γ2 +
. . .+ ane

z Log γn which belongs to the class P, where Log z is the principal branch
of the logarithm. Indeed, if fn,j(z) = eβn,j Log z, where βn,j is a zero of Pn(z), then

a1fn,j(γ1z) + a2fn,j(γ2z) + . . .+ anf(γnz) = 0

a1(γ1z)
βn,j + a2(γ2z)

βn,j + . . .+ an(γnz)
βn,j =

zβn,j

(
a1γ

βn,j

1 + a2γ
βn,j

2 + . . .+ anγ
βn,j
n

)
=

4
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zβn,jPn(βn,j) = 0

and, hence, the functions

gn,j(z) =

{
fn,j(z) if z ̸= 0
0 if z = 0

, (2.1)

which are closely related to the exponential polynomials Pn(z), provide solutions
defined on C to the functional equation above.

Definition 2.5 Let

a1f(γ1z) + a2f(γ2z) + . . .+ anf(γnz) = 0, z ∈ C,

be a functional equation of the form (1.2), then

Pn(z) = a1e
z Log γ1 + a2e

z Log γ2 + . . .+ ane
z Log γn

will be called the corresponding exponential polynomial.

Definition 2.6 For each integer number n ≥ 2, let Fn be the set of all functional
equations of the form (1.2) with n terms. We will say that two functionals equations
in Fn,

a1f(γ1z) + a2f(γ2z) + . . .+ anf(γnz) = 0, z ∈ C,

and

b1f(δ1z) + b2f(δ2z) + . . .+ bnf(δnz) = 0, z ∈ C,

are equivalent when there exist λ ∈ C and c ∈ C \ {0} such that δj = eλγj and
bj = caj for each j = 1, 2, . . . , n.

Plainly, the binary relation defined above on the class Fn is an equivalence rela-
tion.
We next prove that two exponential polynomials which are associated to two

equivalent functional equations have the same set of zeros.

Proposition 2.7 For each n ≥ 2, let Pn(z) and Qn(z) be the corresponding
exponential polynomials associated to two equivalent functional equations in Fn,
then Pn(z) ∼ Qn(z).

Proof. Let

a1f(γ1z) + a2f(γ2z) + . . .+ anf(γnz) = 0, z ∈ C,

and

b1f(δ1z) + b2f(δ2z) + . . .+ bnf(δnz) = 0, z ∈ C,

be two equivalent functional equations in Fn and c ∈ C \ {0}, λ ∈ C such that
δj = eλγj and bj = caj for each j = 1, 2, . . . , n. Their associated exponential
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polynomials are

Pn(z) = a1e
z Log γ1 + a2e

z Log γ2 + . . .+ ane
z Log γn

and

Qn(z) = b1e
z Log δ1 + b2e

z Log δ2 + . . .+ bne
z Log δn

respectively. Now, check that Qn(z) = ceλzPn(z) and, since ce
λz has no zeros, then

the sets Z(Pn) and Z(Qn) are the same. Finally, from Proposition 2.4, we have
Pn(z) ∼ Qn(z). �

We are now ready to prove that the converse of Proposition 2.7 is also true.

Proposition 2.8 Let P (z) and Q(z) be two exponential polynomials in P \ T
such that P (z) ∼ Q(z). Thus P (z) and Q(z) are the corresponding exponential
polynomials associated to two equivalent functional equations in Fn for some integer
number n ≥ 2.

Proof. As P (z) ∼ Q(z), then P (z) = T (z)Q(z) with T (z) = ceλz, c ∈ C \ {0} and
λ ∈ C. Therefore, if P (z) ∈ P is of the form

P (z) = a1e
α1z + . . .+ ane

αnz

for some n ≥ 2 then

Q(z) = b1e
β1z + . . .+ bne

βnz

with bj = caj and βj = αj + λ for j = 1, 2, . . . , n.
Thus, P (z) is the corresponding exponential polynomial associated to the func-

tional equation

a1f(e
α∗

1z) + a2f(e
α∗

2z) + . . .+ anf(e
α∗

nz) = 0, z ∈ C, (2.2)

where α∗
j is so that Log(eα

∗
j ) = αj for each j = 1, 2, . . . , n. That is, α∗

j = Reαj +
i(Imαj + 2πkj) for some kj ∈ Z such that Imαj + 2πkj ∈ [−π, π) for each j =
1, 2, . . . , n.
Analogously, Q(z) is the corresponding exponential polynomial associated to the

functional equation

b1f(e
β∗
1 z) + b2f(e

β∗
2 z) + . . .+ bnf(e

β∗
nz) = 0, z ∈ C, (2.3)

where β∗
j is so that Log(eβ

∗
j ) = βj for each j = 1, 2, . . . , n. Therefore, since β∗

j =
Reβj + i(Imβj + 2πmj) for some mj ∈ Z and βj = αj + λ for j = 1, 2, . . . , n, we
have

eβ
∗
j = eβj = eλeαj = eλeα

∗
j

and, consequently, functional equations (2.2) and (2.3) are equivalent in Fn and
the result follows. �
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We proved above that there exists a clear correspondence between the binary
relations defined on the classes P and Fn. In fact, two exponential polynomials
with the same set of zeros are closely related to two equivalent functional equations.
Furthermore, the equivalent functional equations in Fn have the same set of

solutions defined on whole C, as we nextly prove.

Proposition 2.9 For each integer number n ≥ 2, two equivalent functional equa-
tions in Fn have the same solutions defined on C.

Proof. Let

w1f(a1z) + w2f(a2z) + . . .+ wnf(anz) = 0, z ∈ C, (2.4)

and

v1f(b1z) + v2f(b2z) + . . .+ vnf(bnz) = 0, z ∈ C, (2.5)

be two equivalent functional equations in Fn and c, γ ∈ C, with c ̸= 0, such that
vj = cwj and bj = aje

γ for each j = 1, 2, . . . , n. First, let f1(z) be a solution of
(2.4), defined on C, then f1(z) satisfies (2.5) if and only if

cw1f1(a1e
γz) + cw2f1(a2e

γz) + . . .+ cwnf1(ane
γz) = 0,

which, by replacing z by z
eγ , is equal to

w1f1(a1z) + w2f1(a2z) + . . .+ wnf1(anz) = 0,

that is true.
Conversely, let f2(z) be a solution of (2.5), defined on C, then f2(z) satisfies (2.4)

if and only if

v1
c
f(b1e

−γz) +
v2
c
f(b2e

−γz) + . . .+
vn
c
f(bne

−γz) = 0,

which, by replacing z by zeγ , is equal to

v1f2(b1z) + v2f2(b2z) + . . .+ vnf2(bnz) = 0,

that is also true. �

As we said in the introduction, the importance of this result lies in the fact
that the binary relation established on the set of functional equations of the form
(1.2), which by Proposition 2.7 leads to exponential polynomials with the same set
of zeros, determines not only the same solutions gn,j(z) of the form (2.1) closely
related to the exponential polynomials of the class P, but also any other solutions
defined on C of equivalent functional equations.

3. Real frequencies

We now particularize the definitions of the preceding section to the case of expo-
nential polynomials with complex coefficients and real frequencies.
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Definition 3.1 For each integer number n ≥ 1, consider exponential polynomials
of the form

a1e
α1z + . . .+ ane

αnz, z ∈ C, (3.1)

with α1 < . . . < αn and aj ∈ C for each j = 1, . . . , n. An exponential polynomial
is said to be of the class P0 when it is of the form (3.1).

Definition 3.2 An exponential polynomial is said to be of the class T0 ⊂ P0 if it
is of the form

ceλz, c ∈ C, λ ∈ R. (3.2)

Note that the sets P0 and T0 of functions of the form (3.1) and (3.2) respectively
are also closed with respect to the sum and the multiplication and it is verified
P0 ⊂ P and T0 ⊂ T .
By analogy with Definition 2.3, we now identify two elements of the class P0 in

terms of the class T0.

Definition 3.3 We will say that two elements P (z), Q(z) ∈ P0 are equivalent,
and it will be denoted by P (z) ∼0 Q(z), when there exists T (z) ∈ T0 such that
P (z) = T (z) ·Q(z) for all z ∈ C.

Note that the binary relation ∼0 defined above on the class P0 is also an equiv-
alence relation.
An important result is that Proposition 2.4 can be extended to this case. Hence,

two exponential polynomials in P0 with the same set of zeros and same multiplicity
can be directly identified by the equivalence relation ∼0, which is more specific than
the relation ∼ previously considered.

Theorem 3.4 Let P (z) and Q(z) be two exponential polynomials in the class P0.
Thus P (z) ∼0 Q(z) if and only if Z(P ) = Z(Q) and their zeros have associated
the same multiplicity.

Proof. First, let P (z) and Q(z) be two exponential polynomials in the same
equivalence class of P0/ ∼0. Thus, there exists T (z) = ceλz ∈ T0 such that
P (z) = T (z)Q(z). Without loss of generality, let z0 ∈ Z(Q) be a zero of Q(z)
of multiplicity k ≥ 1, that is,

Q(z0) = Q′(z0) = Q′′(z0) = . . . = Q(k−1)(z0) = 0, Q(k)(z0) ̸= 0.

Therefore, P (z0) = 0 and, since

P (m)(z0) = Ceλz0
m∑
j=0

(
m
j

)
λm−jQ(j)(z0), 1 ≤ m ≤ k,

we have

P (z0) = P ′(z0) = P ′′(z0) = . . . = P (k−1)(z0) = 0, P (k)(z0) ̸= 0.

Therefore z0 is also a zero of P (z) of multiplicity k.
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Conversely, suppose that P (z) and Q(z) are two exponential polynomials of the
form (3.1) so that

Z(P ) = Z(Q) = {z1, z2, . . . , zl, . . .}

and their zeros have associated the same multiplicity. Then, by Hadamard factor-
ization theorem [2, Theorem 4.4.3], we have

P (z) = CP e
AP zJ(z) (3.3)

and

Q(z) = CQe
AQzJ(z) (3.4)

where CP , CQ, AP , AQ ∈ C and J(z) = zk
∏

l≥1Eh

(
z
zl

)
with k the order of the

zero at z = 0 and h an integer number depending on the exponent of convergence
of {zl}, where

Eh(z) =

{
1− z if h = 0

(1− z) exp
(
z + z2

2 + . . .+ zh

h

)
if h ≥ 1

.

Therefore, since P (z) and Q(z) are exponential polynomials, from (3.3) and (3.4),
J(z) is also an exponential polynomials of the form

c1e
γ1z + . . .+ cne

γnz

with cj , γj ∈ C, j = 1, . . . , n and n the number of terms of the exponential poly-
nomials P (z) and Q(z). Furthermore, if P (z) and Q(z) are of the form

a1e
α1z + . . .+ ane

αnz

and

b1e
β1z + . . .+ bne

βnz

respectively, with α1 < . . . < αn and β1 < . . . < βn, also from (3.3) and (3.4) we
obtain

γ1 = α1 −AP , . . . , γn = αn −AP

and

γ1 = β1 −AQ, . . . , γn = βn −AQ.

Consequently,

βk − αk = βj − αj

9
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for all j, k ∈ {1, . . . , n}, j ̸= k, or equivalently there exists λ ∈ R such that
βj = αj + λ for each j = 1, . . . , n. Hence,

λ = AP −AQ ∈ R.

On the other hand, we have

P (z) =
Q(z)

CQeAQz
CP e

AP z,

i.e.

P (z) = T (z)Q(z),

where T (z) = ceλz with c =
CP

CQ
̸= 0 and λ = AP −AQ ∈ R. So P (z) ∼0 Q(z). �

This development can be again translated to the functional equations of the form
(1.2) with real coefficients γj ’s. Thus consider another binary relation on the class
of functional equations of the form

a1f(γ1z) + a2f(γ2z) + . . .+ anf(γnz) = 0, z ∈ C, (3.5)

where n ≥ 2 is an integer number, aj ∈ C \ {0} and γj ∈ R \ {0} for each j =
1, 2, . . . , n.
Recall that the corresponding exponential polynomial (see Definition 2.5) asso-

ciated to a functional equation of the form (3.5) is given by

Pn(z) = a1e
z Log γ1 + a2e

z Log γ2 + . . .+ ane
z Log γn .

Definition 3.5 For each integer number n ≥ 2, let Gn,0 be the set of all functional
equations of the form (3.5) with n terms. We will say that two functionals equations
in Gn,0,

a1f(γ1z) + a2f(γ2z) + . . .+ anf(γnz) = 0, z ∈ C,

and

b1f(δ1z) + b2f(δ2z) + . . .+ bnf(δnz) = 0, z ∈ C,

are equivalent when there exist λ ∈ R and c ∈ C \ {0} such that bj = caj and
δj = eλγj for each j = 1, 2, . . . , n.

Given n ≥ 2, observe that Gn,0 ⊂ Fn. The results obtained for the equivalent
functional equations in Fn can be extended to the class Gn,0 with the equivalence
class above. Particularly, Propositions 2.7 and 2.9 can be analogously proved for
this case and the proof of Proposition 2.8 is nextly adapted.

Proposition 3.6 Let P (z) and Q(z) be two exponential polynomials in P0 \ T0
such that P (z) ∼0 Q(z). Thus P (z) and Q(z) are the corresponding exponential
polynomials associated to two equivalent functional equations in Gn,0 for some in-
teger number n ≥ 2.

10
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Proof. As P (z) ∼0 Q(z), then

P (z) = ceλzQ(z)

with c ∈ C \ {0} and λ ∈ R. Therefore, if P (z) ∈ P0 is of the form

P (z) = a1e
α1z + . . .+ ane

αnz

for some n ≥ 2, then

Q(z) = b1e
β1z + . . .+ bne

βnz

with bj = caj and βj = αj + λ for j = 1, 2, . . . , n.
Furthermore, P (z) and Q(z) are the corresponding exponential polynomials as-

sociated to the functional equations

a1f(e
α1z) + a2f(e

α2z) + . . .+ anf(e
αnz) = 0, z ∈ C, (3.6)

and

b1f(e
β1z) + b2f(e

β2z) + . . .+ bnf(e
βnz) = 0, z ∈ C, (3.7)

respectively.
Therefore, since eβj = eλeαj and bj = caj for each j = 1, 2, . . . , n, we infer that

functional equations (3.6) and (3.7) are equivalent in Gn,0 and the result follows. �

4. Aligned frequencies

When the frequencies have the same argument, we can generalize the development
of the preceding section in order to consider more specific equivalence classes.
For each integer number n ≥ 1, consider exponential polynomials of the form

a1e
α1z + . . .+ ane

αnz, z ∈ C, (4.1)

with complex coefficients and distinct frequencies α1, . . . , αn such that there exists
a complex number ξ with Arg(ξ) = θ ∈ [0, π) verifying αj = rjξ for some rj ∈ R
and for each j = 1, . . . , n. This condition is equivalent to state that the frequencies
are aligned, that is, Arg(αj) = Arg(αk)± π for j, k ∈ {1, . . . , n} with j ̸= k.

Definition 4.1 Let P (z) = a1e
α1z + . . .+ ane

αnz be an exponential polynomial of
the form (4.1) and ξ ∈ C with Arg(ξ) = θ ∈ [0, π) so that αj = rjξ for some rj ∈ R
and for each j = 1, . . . , n. Thus, we will say that P (z) is of the class Pθ.

Equivalently, given i ∈ {1, . . . , n}, the number θ ∈ [0, π) is given by

θ =

{
Arg(αi) + π if Arg(αi) < 0

Arg(αi) if Arg(αi) ≥ 0
.

Definition 4.2 An exponential polynomial is said to be of the class Tθ ⊂ Pθ if it
is of the form ceλz, with c, λ ∈ C such that Arg(λ) = θ or Arg(λ) = θ − π.

11
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Definition 4.3 We will say that two elements P (z), Q(z) ∈ Pθ are equivalent,
and it will be denoted by P (z) ∼θ Q(z), when there exists T (z) ∈ Tθ such that
P (z) = T (z) ·Q(z) for all z ∈ C.

The results obtained in the previous sections can be extended to the class Pθ

with the equivalence relation ∼θ. To do it, given P (z) ∈ Pθ, we define the function

HP (z) := P (ze−iθ) ∈ P0.

Then, with the usual notation Z(f) for the set of zeros of a function f , we have

Z(P ) = e−iθZ(HP ) (4.2)

and, consequently, the zeros of P (z) will be obtained multiplying by e−iθ the zeros
of HP (z).

Lemma 4.4 Let P (z) and Q(z) be two exponential polynomials of the class Pθ.
Consider HP (z) := P (ze−iθ) and HQ(z) := Q(ze−iθ). Thus P (z) ∼θ Q(z) if and
only if HP (z) ∼0 HQ(z).

Proof. If P (z) ∼θ Q(z), there exists T1(z) ∈ Tθ such that P (z) = T1(z) · Q(z) for
all z ∈ C. Hence P (ze−iθ) = T1(ze

−iθ) ·Q(ze−iθ) for all z ∈ C, i.e. HP (z) = T2(z) ·
HQ(z) for all z ∈ C, with T2(z) := T1(ze

−iθ) ∈ T0. Therefore HP (z) ∼0 HQ(z).
Conversely, if HP (z) and HQ(z) are equivalent in P0, there exists T3(z) ∈ T0 such

that HP (z) = T3(z) ·HQ(z) for all z ∈ C. Hence HP (ze
iθ) = T3(ze

iθ) ·HQ(ze
−iθ)

for all z ∈ C or, equivalently, P (z) = T4(z) · Q(z) for all z ∈ C, with T4(z) :=
T3(ze

iθ) ∈ Tθ. �

In this manner, we prove the following result.

Corollary 4.5 Let P (z) and Q(z) be two exponential polynomials of the class
Pθ. Thus P (z) ∼θ Q(z) if and only if Z(P ) = Z(Q) and their zeros have associated
the same multiplicity.

Proof. The demonstration is obtained just by considering HP (z) := P (ze−iθ) ∈ P0

and HQ(z) := Q(ze−iθ) ∈ P0, and by using (4.2), Lemma 4.4 and Theorem 3.4. �

Finally, we can consider another binary relation on the class of functional equa-
tions of the form

a1f(γ1z) + a2f(γ2z) + . . .+ anf(γnz) = 0, z ∈ C, (4.3)

where n ≥ 2 is an integer number, aj ∈ C \ {0} and the γj ’s are θ-aligned, that is
Arg(γj) = Arg(γk)± π for j, k ∈ {1, . . . , n}, j ̸= k, and θ ∈ [0, π) defined as

θ :=

{
Arg(γi) + π if Arg(γi) < 0

Arg(γi) if Arg(γi) ≥ 0
.

Recall that the corresponding exponential polynomial associated to a functional
equation of the form (4.3) is given by

Pn(z) = a1e
z Log γ1 + a2e

z Log γ2 + . . .+ ane
z Log γn .

12
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Definition 4.6 For each integer number n ≥ 2, let Gn,θ be the set of all functional
equations of the form (4.3) with n terms. We will say that two functionals equations
in Gn,θ,

a1f(γ1z) + a2f(γ2z) + . . .+ anf(γnz) = 0, z ∈ C,

and

b1f(δ1z) + b2f(δ2z) + . . .+ bnf(δnz) = 0, z ∈ C,

are equivalent when there exist λ ∈ C such that Arg(λ) = θ or Arg(λ) = θ − π,
and c ∈ C \ {0} such that bj = caj and δj = eλγj for each j = 1, 2, . . . , n.

The next proposition is an immediate corollary of Lemma 4.4 and Proposition
3.6. In fact, the demonstration of the second part of it is obtained just by following
verbatim the proof of Proposition 3.6.

Proposition 4.7 Let P (z) and Q(z) be two exponential polynomials in Pθ \ Tθ
such that P (z) ∼θ Q(z). Thus

i) HP (z) := P (ze−iθ) and HQ(z) := Q(ze−iθ) are the corresponding exponential
polynomials associated to two equivalent functional equations in Gn,0 for some
integer number n ≥ 2;

ii) P (z) and Q(z) are the corresponding exponential polynomials associated to
two equivalent functional equations in Gn,θ for some integer number n ≥ 2.

For the case of exponential polynomials of real coefficients we can make an anal-
ogous development in order to consider more specific equivalence classes which
preserve the preceding properties. For example, consider the following definitions.

Definition 4.8 For each integer number n ≥ 1, consider exponential polynomials
of the form

a1e
α1z + . . .+ ane

αnz, z ∈ C, (4.4)

with θ-aligned frequencies and aj ∈ R for each j = 1, . . . , n. Thus, an exponential
polynomial is said to be of the class Pθ,r when it is of the form (4.4).

Observe that the class P0,r is formed by exponential polynomials of real co-
efficients and frequencies, which constitutes an important case studied in the
literature through for example the partial sums of the Riemann zeta function
1 + 2−z + . . .+ n−z, where n is an integer number greater than or equal to 2.

Definition 4.9 An exponential polynomial is said to be of the class Tθ,r ⊂ Pθ,r if it
is of the form ceλz, with c ∈ R and λ ∈ C such that Arg(λ) = θ or Arg(λ) = θ− π.

Note that the sets Pθ,r and Tθ,r are again closed with respect to the sum and
the multiplication and it is verified Pθ,r ⊂ Pθ ⊂ P and Tθ,r ⊂ Tθ ⊂ T . Just as in
the other cases, we will identify two elements in the class Pθ,r in terms of the class
Tθ,r.

Definition 4.10 We will say that two elements P (z), Q(z) ∈ Pθ,r are equivalent,
and it will be denoted by P (z) ∼θ,r Q(z), when there exists T (z) ∈ Tθ,r such that
P (z) = T (z) ·Q(z) for all z ∈ C.

The results previously obtained can be easily extended to the class Pθ,r with the
equivalence relation ∼θ,r.

13
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Example 4.11 Let P (z) := 1+ ez log 2 + ez log 3, Q(z) := ezi + ez(log 2+i) + ez(log 3+i)

and R(z) := ez log 2 + ez log 4 + ez log 6. Observe that P (z), Q(z), R(z) ∈ P,
P (z), R(z) ∈ P0,r ⊂ P0 ⊂ P and we have the following equalities:

Q(z) = eizP (z), R(z) = ez log 2P (z), R(z) = ez(i−log 2)Q(z).

Therefore P (z) ∼ Q(z), P (z) ∼ R(z) and Q(z) ∼ R(z) and, consequently, Z(P ) =
Z(Q) = Z(R). Furthermore, it is also verified P (z) ∼0 R(z) and P (z) ∼0,r R(z),
which is a more specific relation because the number of transformations in the class
T0,r is smaller than that of T0 and much smaller than that of T .
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