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Summary

We implemented the Rational-Krylov-Subspace (RKS) Algorithm on graphics cards for marine 3D time domain
CSEM forward modeling as well as sensitivity calculation. We present a comparison between the run-time of a)
the new code and the older Polynomial-Krylov-Subspace method code and b) with run-times on old and new
graphics cards (to quantify the improvements by hardware and by algorithms). We show, that both together
improve the performance significantly by a factor of 20 in comparison with an old GPU parallelized code.
For sensitivity computation, we expanded the implementation of the RKS algorithm to block spaces and im-
plemented a model reduction framework, instead of the commonly used adjoint method. Comparisons with
brute-forced Jacobians validate the approach.
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Introduction

For a marine 3D time domain CSEM system devel-
oped at GEOMAR (Hölz, Swidinsky, Sommer, Je-
gen, & Bialas, 2015) we implement 3D forward codes
(Sommer et al., 2013) and are currently developing a
3D inversion. Problematic in 3D problems are high
run-times. There are two ways to make codes faster,
chose better algorithms or better hardware. We tried
both, by implementing the Rational Krylov subspace
method on Graphic Processing Units (GPUs) and
running it on different cards.
For 3D-tCSEM, implicit solution strategies of the
EM-diffusion equation, like the Lanczos algorithm
first introduced by (Druskin & Knizhnerman, 1994),
became popular. In difference to time stepping,
where every computed E-field depends on the full
space solution of the previous time step, implicit
solvers compute the electric field at any, arbitrary
point in time. In a logarithmic time space, the E-field
computation at many small, time steps can therefore
be skipped. Lanczos algorithms are based on Krylov-
spaces, a subspace approximation of the solution
space. Next to polynomial Krylov spaces, much ef-
fort has been spent on the research of optimal Ratio-
nal Krylov Space (RKS)((Börner, Ernst, & Spitzer,
2008),(Knizhnerman, Druskin, & Zaslavsky, 2009),
(Druskin, Lieberman, & Zaslavsky, 2010), (Druskin
& Simoncini, 2011), (Zaslavsky, Druskin, & Knizh-
nerman, 2011), (Börner, Ernst, & Güttel, 2014)).
Typically in RKS the approximating dimension and
therefore the number of iterations is drastically re-
duced, whereby every iteration itself becomes more

expensive.
In terms of hardware, high performance GPUs are
now available. While Moore’s Law is not valid for
CPUs anymore, the FLOPS of GPUs still increase.
Here, we test our implementation on an old graphics
card and a new one to quantify the improvement by
hardware alone.

Solution strategy of the forward
problem

The general solution strategy for polynomial Krylov
spaces is described in (Druskin & Knizhnerman,
1994) and we describe it very shortly here. The spa-
tial operators of the diffusion equation:

~∇× ~∇× (σµ)−1 ~E = −∂
~E

∂t
(1)

becomes discretized by central finite differences ~∇×
~∇ × (σµ)−1 ~E ⇒ A ~E, with A ∈ RN×N and N be-
ing the model size, such that (1) is changed from a
PDE to an ODE. Instead of discretizing time (like in
explicit strategies) an exponential Ansatz function is
chosen and spectrally decomposed:

~E = ~E0exp(−tA) =

N∑
i=1

~ziexp(−tλi)~zTi ~E0 (2)

with ~E0 denotes the initial source field and λi, ~z
T
i

eigenpairs of A. Since computation of eigenpairs is
too expensive, A is projected by an orthonormalized
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Krylov space Q ∈ RN×k to the Ritz approximation
H:

QAQT = H ∈ Rk×k (3)

Eigenpairs of H approximate those of A and can be
used in (2). For k � N , the computation becomes
much more efficient.
To compute Q, it is very common to span the column
vectors by the polynomial Krylov space:

Kkpoly(A, ~q0) = span(~q0,A~q0,A
2~q0, . . . ,A

k−1~q0)

(4)

(Ruhe, 1984) has shown, that the most optimal sub-
space to approximate eigenspaces is the Rational
Krylov subspace (RKS):

Kkrat(A, ~q0, ~s) = (5)

span

{
(A− s1I)−1~q0, . . . ,

k∏
i=1

(A− siI)−1~q0

}
.

(6)

Instead of performing many matrix times vector mul-
tiplications like in (4), the matrix is shifted by poles
s1, . . . , sk and inverted. The dimension of Krat is
much smaller than Kpoly (between 14 to 22 instead
of 1000 to 4000). For our implementation, ~q0 corre-
sponds to the initial electric field ~E0.

Implementation on GPU

The implementation of the polynomial method on
GPU, described in (Sommer et al., 2013), gave a
significant speedup compared with a CPU optimized
code from Schlumberger (compare black & green line
in Fig.1 above). The Krylov-dimension k was set to
values between 1000 and 4000. Therefore, the eigen-
pairs of H of this size had be to solved by an eigen-
solver of the CULA library.
For spanning the RKS, the matrix had to be shifted
and inverted, which was achieved by using Conju-
gate Gradients (CG). Many ways of preconditioning
were tried, but turned out to be suboptimal. It can
be shown, that even without preconditioning, a good
speedup can be achieved.
We investigated run-times of our code for and old and
new graphics card, to quantify the progress in hard-
ware development. Run-times for our implementa-
tion and other codes are depicted in Fig.1. The black
curve corresponds to the CPU optimized code sld-
mem from Schlumberger, the green one to the poly-
nomial method on an old GPU, the blue one to the
new code on an old card and the red one to the new
code on a new card. The figure below shows speedups

for the different codes and hardware with respect to
each other. Run-time for this model is between 1 to
3 seconds. Compared with our previous code on the
old GPU, the speedup is constant around 20. A new
GPU reduces run-time by a factor of 3.
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Figure 1: Up: run-times of sldmem (black),
temddd_GPU on GTX275 (green), rksmem on
GTX275 (blue) and rksmem on Titan (red) in
dependence of model sizes in x/y-direction be-
tween 40 and 80. Krylov dimension was set
to 3000 for SLDM based codes and to 20 for
RKSM based codes. Down: Speedups of the
codes to each other, to reveal the impact of
different algorithms and architectures on run-
time.
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Sensitivity calculation

The implementation of the aforementioned RKS al-
gorithm was extended to calculate sensitivities J ∈
RNmodel×Ndata . We followed thereby an approach of
(Zaslavsky et al., 2011). There, a derivative is ap-
plied to the Ansatz eq.(2) (which gives the electric
field) with respect to conductivity (σ = σi,j,k), yield-
ing, by definition, the Jacobian

J =
∂ ~E

∂σ
≈ ETB (7)

with E = E(~t, ~λ, ~z1, . . . , ~zk) ∈ RNdata×2k and
B = B(~λ, ~z1, . . . , ~zk,

∂~λ
∂σ ,

∂ ~z1
∂σ , . . . ,

∂ ~zk
∂σ ) ∈ RNmodel×2k.

Whereby ~λ and ~z1, . . . , ~zk are eigenpairs of the cor-
responding Ritz approximation H. The calculation
of the derived Ritz-eigenpairs is deduced from the
Rayleigh quotient formula:

∂λi
∂σ

= ~zTi
∂A

∂σ
~zi

∂~zj(l)

∂σ
=

N∑
j=1,j 6=i

~zTj
∂A
∂σ ~zi

λi − λj
~zj(l)

(8)

with l being the element index.
The computation of the Ritz-pairs is done by a Block-
Krylov-Space (BKS)

Kkblock(A, ~q0, ~s) =
span{(A− s1I)−1~q0, . . . , (A− s1I)−1~qm,
k∏
i=1

(A− siI)−1~q0, . . . ,
k∏
i=1

(A− siI)−1~qm}

whereby ~q0 is the initial source field and ~q1, . . . , ~qm
are canonical vectors corresponding to receivers loca-
tions, for m receivers. The BKS preserves the adjoint
principle.

Implementation of Sensitivity
calculation

The computation of the BKS was implemented in a
similar way like the RKS for the forward problem.
Most run-time is spent for deriving the Ritz-pairs.
Writing the Ritz vectors in a matrix Z = [~z0, . . . , ~zk]
allows to compute all derivatives with eq.(8) through
multiplying a sparse with a dense matrix (∂A∂σ ·Z = R)
and multiplication of the resulting matrix R with an-
other dense matrix (ZT ·R).
First tests show, that Jacobians computed in this way
looks very similar to brute-forced Jacobians. Prob-
lematic is the high run-time of eq.(8), and the mem-
ory transfer of ∂A∂σ on the GPU. A possible remedy to
this problem would be to solve ∂A

∂σ on GPUs.
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