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Abstract while the Earth’s surface has considerably warmed over the past two decades, the tropical
Pacific has featured a cooling of sea surface temperatures in its eastern and central parts, which went
along with an unprecedented strengthening of the equatorial trade winds, the surface component of the
Pacific Walker Circulation (PWC). Previous studies show that this decadal trend in the trade winds is generally
beyond the range of decadal trends simulated by climate models when forced by historical radiative
forcing. There is still a debate on the origin of and the potential role that internal variability may have played
in the recent decadal surface wind trend. Using a number of long control (unforced) integrations of global
climate models and several observational data sets, we address the question as to whether the recent
decadal to multidecadal trends are robustly classified as an unusual event or the persistent response to
external forcing. The observed trends in the tropical Pacific surface climate are still within the range of the
long-term internal variability spanned by the models but represent an extreme realization of this variability.
Thus, the recent observed decadal trends in the tropical Pacific, though highly unusual, could be of natural
origin. We note that the long-term trends in the selected PWC indices exhibit a large observational
uncertainty, even hindering definitive statements about the sign of the trends.

Plain Language Summary While the Earth’s surface has considerably warmed over the past two
decades, the tropical Pacific has featured a cooling of sea surface temperatures in its eastern and central
parts, which went along with an unprecedented strengthening of the equatorial trade winds. Here we show
that climate models simulate a high level of internal variability, so that the recent changes in the tropical
Pacific could still be due to natural processes.

1. Introduction

An important element of atmosphere-ocean interactions in the tropical Pacific region is the Pacific Walker
Circulation (PWC), consisting of upward deep convective motion over the maritime continent and descend-
ing motion over the eastern tropical Pacific [Bjerknes, 1969]. PWC strength controls the air-sea heat exchange
over the tropical and subtropical Pacific. In turn, it affects the heat budget of the global climate system
[Kosaka and Xie, 2013; England et al., 2014]. For example, the recent hiatus in the globally averaged surface
air temperature has been attributed to acceleration of the PWC and concurrent cooling of the eastern and
central tropical Pacific [Kosaka and Xie, 2013; De Boisséson et al., 2014; England et al., 2014; McGregor et al.,
2014; Douville et al., 2015]. Causality, however, remains unclear. Much effort has been devoted to understand
decadal climate variability in the tropical Pacific sector. However, no consensus has been achieved yet about
the origin of tropical Pacific decadal variability, specifically the relative roles of long-term internal variability
and external forcing [Latif and Keenlyside, 2011]. Vecchi et al. [2006] analyzed tropical Pacific zonal sea level
pressure (SLP) and sea surface temperature (SST) contrasts, hereafter termed ASLP and ASST, both indirect
measures of PWC strength, from a coupled general circulation model and reanalysis data. Their findings sug-
gested significant slowdown of the PWC in response to global warming, a result supported by many other
climate models [Deser et al., 2010; Gastineau and Soden, 2011; Tokinaga et al., 2012; Bellomo and Clement,
2015]. In contrast, observational data during the most recent decades and a few climate model simulations
are in conflict with the above results [Meng et al., 2011; L'Heureux et al., 2013; Sandeep et al., 2014; Latif
et al., 2015].

Significant interannual to multidecadal variabilities in the tropical Pacific sector have been documented
[Zhang et al., 1997; Newman et al., 2003; DiNezio et al., 2013; De Boisséson et al., 2014; Sandeep et al., 2014].
On the interannual time scale, variability of the PWC is well understood and strongly linked to the El Nifio—-
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Southern Oscillation (ENSO) accounting for much of the PWC variability [Zhang et al., 1997; Newman et al.,
2003; Sandeep et al., 2014; Chen and Wallace, 2015]. On the decadal to multidecadal time scales, however,
other mechanisms may come into play. Newman et al. [2003] showed a link between the Pacific Decadal
Oscillation (PDO) and equatorial SST through an atmospheric bridge, a point of view supported by other stu-
dies [Shakun and Shaman, 2009; Meehl et al., 2013; Sandeep et al., 2014]. Thus, the Interdecadal Pacific
Oscillation (IPO), which can be viewed as the basin-wide manifestation of the PDO, also has the potential
to impact the PWC [England et al., 2014]. In fact, the unprecedented recent acceleration of the equatorial
Pacific trade winds and the associated stronger zonal SST and sea surface height contrasts across the equa-
torial Pacific can be primarily attributed to the IPO phase transition in the late 1990s [Merrifield, 2011; Kosaka
and Xie, 2013; England et al., 2014; De Boisséson et al., 2014; Delworth et al., 2015]. Regarding the origin of the
Pacific long-term internal variability, Dommenget and Latif [2008] introduced the concept of a hyper mode
and argued that such variability can simply be generated through the integration of stochastic surface heat
flux variability by the ocean mixed layer. The existence of long-term variability introduces a large uncertainty
in projections of tropical Pacific sector climate [Meng et al., 2011; Bordbar et al., 2015].

Climate model simulations employing observed historical radiative forcing hardly capture the recent decadal
changes observed in the tropical Pacific region [England et al., 2014; De Boisséson et al., 2014; McGregor et al.,
2014; Kociuba and Power, 2015; Delworth et al., 2015]. It is still controversial as to whether this failure could be
ascribed to the underestimated level of internal variability in the models, unrealistic phase of climate cycles in
the models, too low model sensitivity to external forcing, unknown and/or erroneous external radiative
forcing, or observational errors.

The purpose of this study is to investigate the role that internal long-term variability may have played in the
aforementioned decadal time scale changes and, most importantly, the question if they are still within the
range of internal variability spanned by climate models. For this purpose, we analyze a large number of long
control integrations of current generation climate models and compare simulated with observed trends.

2. Data and Methods

Several control runs with preindustrial CO, concentration (280 ppm) from the Coupled Model
Intercomparison Project Phase 5 (CMIP5; Table S1 in the supporting information) are investigated here
[Taylor et al., 2012] (http://pcmdi//linl.gov). The majority of models were integrated longer than 500 years,
sufficiently long to estimate variability at decadal and multidecadal time scales (Table S1). To examine
the influence of enhanced atmospheric CO, on the long-term internal variability, two multimillennial
control integrations (each 3500 years long) of the Kiel Climate Model (KCM) [Park et al., 2009] are ana-
lyzed, one employing preindustrial and the other “present-day” (348 ppm) CO, concentration. These pre-
industrial and present-day control runs are labeled KCM-W07 and KCM-WO04, respectively. Additionally, a
number of CMIP5 models employing historical radiative forcing are analyzed (Table S1). We also utilize
different observational estimates from different sources (Text S1 in the supporting information).

The linear trend has been removed from all control runs to reduce the impacts of spurious long-term model
drift. Removing a quadratic function instead of the linear trend does not significantly change the results [see
also Sen Gupta et al., 2013].

As in previous studies [Vecchi et al., 2006; Meng et al., 2011], the zonal contrasts ASLP and ASST across the
tropical Pacific are computed as measures of the PWC strength (Text S2).

To compare model trends with observed trends, we calculate 20 year and 50 year linear trends of ASST and
ASLP over the entire period of the control runs and reanalysis data sets by applying moving windows to the
annual mean time series. We apply the commonly used nonparametric Mann-Kendall test [Pettitt, 1979] to
examine the significance level of the trend (Text S3). The distribution of the running trends is computed
and displayed in Box-and-Whisker diagrams (Text S4).

3. Results

The most extreme 20 year, 50 year, and 100 year trends in ASLP and ASST simulated in the control runs are
compared with estimates of the most recent observed trends (Figure 1). The observed 20 year trends in ASLP
and ASST during 1994-2013 obtained from the different reconstructions (Figure 1b) are very similar and
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Figure 1. Largest (left column) negative and (right column) positive (a and b) 20 year, (c and d) 50 year, and (e and f)
100 year linear trends in zonal SST (°C/decade) and SLP (hPa/decade) contrast across the equatorial Pacific computed
from several multimodel control. In the right column, the dashed (solid) lines parallel to y axis (x axis) indicate the
observed trends in the zonal SST (SLP) contrasts ending in 2013. Observational ASST trends are estimated from HadISST
[Rayner et al., 2003], ERSSTv3b [Smith et al., 2008], ERSSTv4 [Huang et al., 2015], KaplanSST [Kaplan et al., 1998] and CobeSST
[Ishii et al., 2005], and ASLP trends from NCEP/NCAR [Trenberth and Paolino, 1980], 20CRv2 [Compo et al., 2011], ICOADS, and
HadSLP2 [Allan and Ansell, 2006] reanalysis (Figures 1b and 1d). The observed 20 year, 50 year, and 100 year trends are
obtained from the periods corresponding to 1994-2013, 1964-2013, and 1914-2013, respectively. Please note that in
Figure 1f, ASLP is estimated only from HadSLP2 and ICOADS. Positive and negative trends for each model are shown by the
same symbol.

positive, suggesting enhancement of the PWC and positive ocean-atmosphere feedback. The extrema in the
model trends are rather symmetric (Figures 1a and 1b), such that those models with large (small) positive
trends also exhibit large (small) negative trends, but the magnitude of extreme trends varies remarkably
among the models.

Large year-to-year variability dominates the time series of observed ASLP and ASST (Figure S1 in the support-
ing information), which is primarily due to ENSO. For example, the strong El Nifio event of 1997-1998 and the
strong La Nifia event of 1998-1999 noticeably alter the 20 year trends in ASLP and ASST (Figure 2). In fact, the
observed 20 year trend estimates, which depict only little spread, are not statistically different from zero at
the 95% significance level. Further, these trends are within the range of internal variability spanned by the
majority of the climate models (Figure 1b). For each model, the likelihood of 20 year linear trend in ASST
and ASLP being greater than that obtained from the different observational data is computed (Tables S3
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Figure 2. Time series of (a and b) 20 year, (c and d) 50 year, and (e and f) 100 year running trends in the observed (left column) ASST (°C/decade) and (right column)
ASLP (hPa/decade). The trend is computed 1 year apart from each other. The time refers to the last year of each running block trend. The ASST is derived from
HadISST, Kaplan, ERSSTV3, ERSSTV4, and CobeSST reanalysis, whereas the ASLP is based on NCEP-NCAR, 20CRV2, HadSLP2, and ICOADS.

and S4). A large model spread is noticed, which indicates remarkable diversity in representing multidecadal
variability of equatorial Pacific SST and SLP contrasts. Yet a number of models (8 out of 23) yield probabilities
in excess of 5%, depending on the observational data set, but the likelihood is below 20% in all models for all
data sets. We argue that the recent observed 20 year trends in ASLP and ASST could be due to internal
climate variability but with rather low probability. The historical runs also yield rather low probabilities
(Table S3 and S4).

The observed 50 year trends in ASLP and ASST during 1964-2013 are also positive (Figure 1d), again suggest-
ing strengthening of the PWC and consistent positive ocean-atmosphere feedback. However, the spread is
rather large, especially with regard to the ASLP trend (Figure 2). The ASLP trends are statistically significant
at the 95% level only in the National Centers for Environmental Prediction (NCEP) SLP and the Hadley
Centre Sea Level Pressure data set 2 (HadSLP2) (Table S2). The observed 50 year trend in ASLP estimated from
International Comprehensive Ocean-Atmosphere Data Set (ICOADS) amounting to about 0.05 hPa/decade is
small and well within the range of the models’ internal variability (Figures 1d and 2d). The trend obtained
from NCEP National Center for Atmospheric Research (NCAR) and HadSLP2 amounting to about 0.18 hPa/
decade is at the high end of the largest model trends. Such a trend can thus be regarded as an extreme rea-
lization of internal variability. We note that the 50 year trend in ASLP might be overestimated due to biases in
the reconstructed data [Wu and Kinter, 2003; DiNezio et al., 2013]. Given the large observational uncertainties
(Figure 2), it remains debatable as to whether the recent 50 years have seen an unusual ASLP trend at all.

The observational uncertainty in the 50 year trends of ASST during 1964-2013 is large too (Figure 2c), with
Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) depicting a much larger trend

BORDBAR ET AL.

DECADAL TROPICAL PACIFIC CLIMATE CHANGES 4



@AG U Geophysical Research Letters

10.1002/2016GL072355

0.75)
05F
0.25} 4=

0.25-
-0.5F
-0.75F

SST trend (°C/dec)
o

0.2

01+%

-0.1

SST trend (°C/dec)
O

-0.2

SST, 20-yr trend SLP, 20-yr trend

2
T = 1‘?"7 1 . +$% Gy
’@-???‘f”fﬁ%f H Tt
o8@8888898@85HBSBBBHBHBBBHH

BBBHBBHBBBQEEBBBHBBBBBEB

= 0.3F
1 :_ | 02—
TE *177$§

04 |

SLP trend (hPa/dec)
‘?

| # 0.1 ] E
ISP s 1
-0.2r 1
i osk ! ]
FO®mME TN SR Ner=sT oS o omEg -« 0 v T Ly T o w
Beihp?PEie0eoQRUESS87323U3EE GRS PETS R 2RFRESS587E2526¢8
DL LN LOO TENDDRSSZ5d0cLBOZ20T33 DITHOTEDDOZI=>48LsmO=2I2 533
THNHNITNPD AUl A0HD=SEVBVY LT O =22 TO0VWNEgW t I O0NHsSEVVLOLENSOS =D
B RS e U S EZPUUE SRS ULORRE] EORBBEISEZC U YD =55545R23833
Lwog © 88 FH440 Q0QQ==2 LTSS = 888 nZzZn2a0 > sWFuE e
¥OO s8°WwWznapas L aua Loxildls Q0§ 8 i [alaik <] L o = O
< < [SESRS} & » S35>55=2 << g OO a9z
s 66T PE& 2 g o 65 22792 S22

Figure 3. The boxplots representing median and interquartile range (IQR) of (a and b) 20 year and (c and d) 50 year trends in the zonal SST (Figures 3a and 3c) and
SLP (Figures 3b and 3d) contrast across the equatorial Pacific obtained from different reanalysis data sets and several control runs. The bottom and top of the boxes
arethefirstand the third quartiles, respectively. The bands inside the boxes represent the medians. Whiskers indicate 99% confidence limits. The red crosses indicate the
extreme trends defined as the trends exceeding the confidence limits. The black bars to the left of each panel are obtained from observations. The blue bars are derived
from control runs. The blue markers in the observational bars are referred to the trends in 1994-2013 (Figures 3a and 3b) and 1964-2013 (Figures 3c and 3d).

estimate than the other SST data sets. However, the sign is robust, which is relevant in the context of the
ongoing discussion about the ASST response to global warming [Clement et al., 1996; Sandeep et al., 2014].
When excluding HadISST, we find that the remaining observational estimates of the 50 year trend in ASST
are well within the range of the internal variability spanned by the models (Figure 1d). Only a limited
number of models simulate the 50 year trends of ASST that are consistent with HadISST. The likelihood of
simulating 50 year trends in ASST being consistent with the observational estimates again strongly differs
from model to model (Tables S5 and S6).

We next consider the centennial trends in ASLP and ASST (Figures 1e and 1f and 2e and 2f). Twentieth cen-
tury trend in the PWC obtained from 20CRV2 is not in good agreement with the available station data [Compo
et al.,, 2011] (Figure 2f). Here the centennial trend in ASLP is estimated only from HadSLP2 and ICOADS.
However, these trends are not statistically significant at 95% level (Table S2) and different in sign. Further,
they are small and well within the range of the internal variability provided by the models. In addition, differ-
ent centennial periods yield different trend signs and magnitudes (Figure 2f). For example, HadSLP depicts a
centennial reduction over the 20th century, which is consistent with the results of previous studies [Vecchi
et al., 2006; Deser et al., 2010]. When using the last 100 years of the same data set, the sign of the trend
reverses (Figure 2f). Our analysis suggests that there is no significant centennial trend in ASLP and thus
PWC, to the extent that ASLP well represents PWC strength. Observational estimates of centennial trends
in ASST are also subject to a large uncertainty (Figure 2f). All estimates of ASST presented here are positive
and in the range of the long-term internal variability simulated by the models, with HadISST providing the
largest centennial trend (Figure 2e).

Figure 3 depicts the Box-and-Whisker diagrams of the running trends, in which each box spans the interquar-
tile range (IQR). Regarding the 20 year trends in ASST (Figure 3a), the observational estimates depict a rather
symmetric distribution in which the medians are not significantly different from zero. The IQR of the 20 year
trend in HadISST amounting to 0.227°C/decade is the smallest of all observational estimates (Table S7). The
trend in the period 1994-2013 lies within the confidence interval in each observational data set.

The IQR varies noticeably among the models, with the smallest (largest) value in inmcm4 (Geophysical Fluid
Dynamics Laboratory ESM2M) amounting to 0.097 (0.387) °C/decade (Table S7). The recently observed 20 year
trend in ASST, with estimates ranging between about 0.2°C/decade and 0.3°C/decade, is within the range of
variability of several models (9 out of 23), suggesting that it could be entirely driven by internal variability.
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Further, the likelihood of the occurrence of a trend larger than that observed during the last two decades is
larger than zero in a number of models (14 out of 23; Table S3), but the average likelihood is small.

With respect to the 20 year trend in ASLP, the results from the different observational data sets are inconsis-
tent with each other (Figure 3b). HadSLP does not depict a noticeable tendency toward either positive or
negative values, whereas ICOADS (20CRV2) tends to have more periods with negative (positive) trends,
meaning deceleration (intensification) of the PWC. In addition, extreme events exceeding the 99% confi-
dence interval are evident in both the observations and models. Finally, we note that with regard to the
20 year trends in both ASLP and ASST the IQR is smaller in most climate models in comparison to the
observations. The observations contain external forcing which, by definition, is excluded in the control inte-
grations of the models. Overall, the aforementioned probability distributions obtained from the historical
runs (Figure S2 and Tables S3 and S4) depict similar characteristics as the unforced control runs, which pro-
vides evidence for the dominant role of internal variability.

The observational uncertainty becomes even larger when considering the 50 year trends in ASST (Figure 3c).
The medians from Kaplan and HadISST are opposite in sign compared to those obtained from the ERSST ver-
sions. Apart from HadISST, the 50 year trends in ASST are within the 99% confidence intervals calculated from
all data sets and several models (11 out of 23). The IQR amounting to typically 0.075°C/decade does not
strongly vary among the observational estimates, and it is larger than the IQRs calculated from all models
which typically depict a value of about 0.050°C/decade (Table S7). Likewise, the 50 year ASLP trends suggest
that there is not much agreement among the observational data sets in terms of the IQR values (Figure 3d
and Table S7). The chance of any individual trend being positive (negative) is more (less) likely in 20CRV2
in comparison to ICOADS and HadSLP. Again, the IQR values from the models are smaller than those from
the observational data sets. The recent 50 year trends in ASLP derived from ICOADS are well captured by
the multimodel ensemble (Table S6).

The magnitude of the extreme trends at the three time scales and the level of internal variability in the KCM
“present-day” control run, termed KCM-WO04, are only marginally different from those derived from the KCM
preindustrial control run, termed KCM-WO07 (Figures 1 and 3). This suggests that today’s higher atmospheric
CO, content relative to preindustrial levels may not strongly impact the level of long-term internal variability
in climate models.

During the period 1994-2013 a pronounced cooling, with a horseshoe-type pattern and off-equatorial max-
ima, was observed in the eastern and central Pacific, whereas a warming was observed in the western tropical
Pacific (color shading, Figures 4a and 4b). This SST trend pattern was associated with anomalously high SLP
over the eastern and anomalously low SLP over the western Pacific (contours, Figures 4a and 4b) and a pro-
nounced amplification of the westward trade winds over the western and central tropical Pacific (arrows,
Figures 4a and 4b). We investigate the patterns of SST, SLP, and wind stress associated with the most extreme
20 year trends in ASST simulated in the preindustrial control integrations of the KCM and selected CMIP5
models from which wind stress was available at the time of analysis. The 20 year SST trend patterns share
some similarities with those observed over the recent decades (Figures 4c—4j), and the pattern correlations
exceed 0.50 in several models (five out of eight; Table S8). The cooling over the central and eastern tropical
Pacific is not statistically significant, neither in the observations nor in the models, supporting the notion that
the observed 20 year SST trends can be explained by internal variability.

The SST trends, which are shown for two SST analyses in the top panels (Figures 4a and 4b), are symmetric
about the equator and reminiscent of the trends observed when the climate system shifts from the positive
to the negative phase of the IPO [Zhang et al., 1997; Meehl et al., 2013; England et al., 2014; Chen and Wallace,
2015]. However, amplitude and structure of the SST trends considerably differ among the models; but in all
models, the strongest cooling is located in the central equatorial Pacific and extends into the eastern equa-
torial Pacific, consistent with an amplification of wind-driven Ekman divergence and equatorial upwelling
[England et al., 2014]. In the same way, the general picture of the decadal trend in the period 1969-1988,
when the trend in the ASST is negative, is that of a La Nifa-like pattern and also reproduced reasonably well
by the models (Figure S3). This structure brings to mind the positive phase of the IPO [England et al., 2014].

The most important difference between the model and observed SST trend estimates during 1994-2013 is
seen over the Indian Ocean. The simulated trends generally are not statistically significant and depict cooling
over large regions of the Indian Ocean, whereas the observations indicate basin-wide warming that is
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obtained from ERSSTv4 and HadISST, respectively. Twenty-year trends associated with the largest positive trend in ASST in the models (Figures 4c—4j). Hatching shows
where the SST trends are significant at 95% confidence. In each panel, positive (negative) values are denoted by solid (dashed) lines. The arrow in the top-left corner of
each panel denotes a 0.004 Pa/decade change in the wind stress. The globally averaged SST trend in 1994-2013 is subtracted from each grid point in Figures 4a and 4b.

statistically significant at the 95% level. The latter could be due to the relatively low level of internal variability
compared to the tropical Pacific [Luo et al., 2012; Lee et al., 2015]. The Indian Ocean warming may have
stimulated enhanced trade winds over the Pacific through deepening pressure over the Indian Ocean
and Maritime Continent, as suggested by, e.g.,, Meng et al. [2011] and Luo et al. [2012]. The difference to
observations in the Indian Ocean may be due to external forcing, specifically enhanced atmospheric
greenhouse gas concentrations, which is not considered in the control integrations. Further research is
required to isolate the contribution of Indian Ocean warming in recent strengthening of the trade winds.

The observed SST trend pattern during 1964-2013, which is shown for two SST analyses in the top panels
(Figures 5a and 5b) and in which the globally averaged SST trend has been subtracted at each grid point
to damp the effects of global warming, depicts cooling over most of the tropical Pacific but details signifi-
cantly differ between the two data sets. However, the cooling trend is not statistically significant at the
95% level. There is enhanced SLP over the central tropical Pacific, a strengthening of the trade winds over
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Figure 5. Fifty-year linear trends in observed and simulated SSTs (shading, °C/decade), SLP (contours, hPa/decade), and wind stress (vectors, Pa/decade). (a and b)
The SST trends are shown together with trends of SLP and wind stress from NCEP/NCAR during 1964-2013. SST trends in Figures 5a and 5b are obtained from

ERSSTv4 and HadISST, respectively. Fifty-year trends associated with the largest positive trend in ASST in the models (Figures 5c-5j). Hatching indicates where
the SST trends are significant at the 95% confidence level. In each panel, positive (negative) values are denoted by solid (dashed) lines. The arrow in the top-left
corner of each panel denotes a 0.002 Pa/decade change in the wind stress. The globally averaged SST trend in 1964-2013 is subtracted from each grid point

in Figures 5a and 5b.

the western and weakening over the eastern tropical Pacific (Figures 5a and 5b). The anomaly fields
associated with the strongest positive 50 year trends in ASST obtained from the models (Figures 5c¢-5j)
are consistent with the observations in the Pacific but not in the Indian Ocean. The pattern correlations
are small (Table S9). Strengthening of the trade winds is evident in all models but with varying
magnitude. The models also simulate opposite 50 year trends in ASST with similar magnitude and weaker
trade winds (Figure S4).

4, Conclusions

A high level of internal decadal to multidecadal variability of the tropical Pacific atmosphere-ocean system,
specifically of the Pacific Walker Circulation (PWC), is simulated by a number of climate models. We show that
a clear picture of PWC long-term trends could not be reliably defined from the available observational and
reanalysis data sets. Hence, we suggest using multiple observational estimates in evaluating climate
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models and quantifying the climate impact of external forcing. The most recent observed decadal trends in
the PWC, as measured by the zonal contrasts in SLP and SST, ASLP and ASST, are still within the range of long-
term internal variability spanned by the climate models, but the trends, if reliable, would reflect an extreme
realization of internal decadal variability. Moreover, the spatial anomaly patterns of SST, SLP, and wind stress
in the tropical Pacific, linked to extreme decadal ASST trends in the models, are in reasonably good agree-
ment with the observed trend patterns. Thus, the recent decadal time scale changes in the tropical Pacific
could be due to internal variability alone. This is also supported by historical runs employing observed forcing
1850-2005, which yield very similar results as the control runs.

For example, the likelihood of an SST gradient being more extreme than the recent 20 year trend is lar-
ger than 7% in seven of the analyzed control runs, while it is a very rare event in the other 16 models.
We also note a large sensitivity of the probabilities to the choice of the observational data sets. Similar
results are found for the recent 50 year trends. The probabilities, in general, are relatively small, so that
external forcing likely played an important role at both time scales. With regard to 100 year trends the
observational uncertainty is so large, inhibiting a meaningful model assessment. In any case, the large
long-term internal variability simulated by the models implies a large uncertainty in projecting the future
PWC and associated teleconnections.
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