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Abstract 

The Asian green mussel Perna viridis is an abundant and important ecological and economical species across its native 
range. However, outside its native range, this species has been considered invasive and concerns have been raised worldwide 
regarding its potential impacts. Despite this, little work has been done to investigate the genetics of native and/or introduced 
populations of this species. In the present study, we developed 16 new polymorphic microsatellite markers using the Illumina 
MiSeq Platform. Four to 15 alleles per locus were detected. There was no evidence of linkage disequilibrium between pairs 
of loci and all loci were in Hardy-Weinberg equilibrium. 
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Introduction 

The Asian green mussel Perna viridis (Linnaeus, 
1758) occurs extensively throughout the Indo-
Pacific region from the Persian Gulf, throughout 
India and South East Asia, to China and Japan 
(Baker et al. 2007; Siddall 1980). This species’ 
native and introduced range within Asian waters is, 
however, unclear. Perna viridis are fouling organisms 
that are likely to have increased their range through 
centuries of shipping in the region (Baker et al. 2007; 
Hanyu and Sekiguchi 2000; Siddall 1980). They are 
also an important food source and have been 
intensively farmed, and translocated for farming, in 

South East Asia since the 1950’s (Ye 1997; Vakily 
1989). Intentional (aquaculture) and unintentional 
(shipping) introductions of P. viridis outside of its 
Asian range have further occurred to numerous 
Pacific islands (Eldredge 1994), the Caribbean (Agard 
et al. 1993) and North and South America within the 
Atlantic Ocean (Benson et al. 2001; Power et al. 2004; 
Rylander et al. 1996). 

The successful establishment of this species outside 
its native range has had concerning economic and 
ecological impacts in some areas e.g. south-east 
coast of the USA (Ingrao et al. 2001; Benson et al. 
2001; Gilg et al. 2012). In Australia, P. viridis is 
among the most commonly identified target pest 
species within the biofouling community of vessels 
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entering Australian waters (McDonald 2012; Piola 
and McDonald 2012) and is listed under the National 
System for Prevention and Management of Marine 
Pest Incursions (DAFF 2010). In Indonesia, concerns 
have been raised recently regarding the role of 
domestic shipping as vectors of introduction and 
dispersal across native (west) and non-native (east) 
bioregions (Huhn et al. 2015). 

Despite the worldwide distribution, abundance 
and overall importance of this species, only a few 
studies have addressed its population genetics, with 
most occurring within its native range and using a 
small number of populations and/or markers (Gilg et 
al. 2012; Lin et al. 2012; Prakoon et al. 2010). 
Genetic markers can be used to characterise genetic 
diversity and are therefore able to provide important 
information needed to identify native and introduced 
ranges and investigate potential frequency and 
routes of colonisation and dispersal (Cristescu 2015; 
Holland 2000). The success of being able to track 
invasion routes however depends on a balance between 
sampling effort, type and number of markers used 
and, ultimately, the species native range genetic 
structure (Estoup and Guillemaud 2010; Geller et al. 
2010; Holland 2000). Fast evolving mitochondrial 
markers such as COI are commonly used to investigate 
taxonomy, phylogeography and population genetics 
of metazoan species (Estoup and Guillemaud 2010). 
While the maternally transmitted mitochondrial COI 
marker can be more sensitive to genetic drift, 
abundant and hypervariable nuclear microsatellite 
markers tend to give higher population structure 
resolution (Darling et al. 2008; Holland 2000). 

A total of 37 microsatellite markers developed 
specifically for P. viridis are publicly available in 
the scientific literature (10 by Lin et al. 2007, 19 by 
Ong et al. 2005, 2008 and 2009, and 8 by Cao et al. 
2013). However, these markers were developed 
using the enrichment technique and only Lin et al. 
2007 used a DNA sequencer to obtain allelic data. 
Upon testing, we found only six of these 37 loci to 
be consistently scoreable. Therefore, we developed 
16 new markers because a greater number of loci are 
needed to support population and bioinvasion genetic 
studies on P. viridis at native and introduced locations. 

Materials and methods 

Next-generation sequencing 

Genomic DNA (2.6 µg) was isolated from a 25 mg 
tissue sample of a P. viridis using a Fisher Biotec 
Favorgen FavorPrep Tissue Genomic DNA Extraction 
Mini Kit. The DNA was sent to the Australian 
Genomic Research Facility (AGRF, Melbourne) for 

sequencing using an Illumina MiSeq Platform. 
Libraries were prepared with the TruSeq DNA Nano 
using the 550 base pair (bp) insert protocol, which 
includes shearing and bead size selection at the 
AGRF. Sequencing was performed at the AGRF 
with 300 bp paired end reads on the Illumina MiSeq. 
The data was de-multiplexed as part of the sequencing 
protocol options. The sequences were assembled 
into paired reads using PEAR v0.9.7 (Zhang et al. 
2014), with a q-value cut-off of 20. These paired 
reads were scanned for Simple Sequence Repeats 
(SSRs) and a list of primer sequences and PCR 
conditions was generated for pure microsatellites using 
the open source QDD v1.3 (Meglécz et al. 2010) and 
Primer3 v2.3.3 (Rozen and Skaletsky 2000) software 
following Gardner et al. (2011). 

Primer testing 

We selected 39 di-, tri-, tetra-, and penta-base repeat 
microsatellite loci with a PCR product of 100–400 
bp for further development. These loci were trialled 
for amplification separately in 5 µl reactions containing 
10 ng of DNA, 1 × MyTaq reaction buffer (containing 
5 mM dNTP and 15 mM MgCl2), 0.5 U MyTaq DNA 
polymerase (Bioline Reagents), and 0.2 µM of each 
primer. The following PCR conditions were used:  
95 °C for 3 min followed by 30 cycles at 95 °C for 
30 s, an optimal annealing temperature (Table 1) for 
45 s, and 72 °C for 30 s, and a final elongation step 
at 72 °C for 5 min. PCR products were visualized on 
3 % agarose gels stained with GelRed (Biotium Inc.) 
alongside a 100 bp molecular weight marker (Axygen 
Biosciences) and visualised under UV light. Loci 
which generated a product of the expected size were 
tested for polymorphism using DNA extracted from 
eight individual P. viridis mussels collected by hand 
from along the Kaohsiung river (22º37′23.57″N, 
120º16′10.02″E), a built up area in Taiwan with 
considerable boating activity. 

Each of the forward primers for polymorphic loci 
selected for fragment analysis were labelled with a 
fluorescent tag: FAM (GeneWorks), NED, PET or 
VIC (Applied Biosystems) and screened for variation 
using 37 P. viridis collected by hand from mussel 
aquaculture farms in Jakarta Bay (06º04′0″S, 
106º43′0″E), Indonesia. PCR products (2.5 µl) were 
analysed on an ABI 3730 Sequencer, sized using the 
GeneScan-500 LIZ internal size standard and scored 
using GENEMARKER software (SoftGenetics). 

We used CERVUS (Kalinowski et al. 2007) to 
calculate the number and range of allele sizes, 
polymorphic information content, observed and 
expected heterozygosity and the frequency of null 
alleles for each locus. To test for deviation from Hardy- 
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Table 1. Primer sequences, GenBank accession numbers, annealing temperatures, repeat motif, and levels of diversity for 16 microsatellite 
loci in marine mussel Perna viridis. Number of alleles (Na), polymorphic information content (PIC), observed heterozygosity (HO), expected 
heterozygosity (HE), probability value from a test for deviation from Hardy-Weinberg Equilibrium (P) and null allele frequency (F). F, N, V, 
and P indicate dyes FAM, NED, VIC, and PET respectively. 

Locus Primer Sequence (5'-3') 
GenBank 
Acc. no. 

Annealing
Temp 

Repeat 
Motif 

Na 
Size Range 

(bp) 
PIC Ho HE P F (Null) 

Pv02P 
F:ATGGAACATCTCGAGTGCAA 

KX463418 53°C (AAAC)9 8 230-259 0.58 0.61 0.63 0.59 -0.01 
R:CGTTTGACTTTCCAACCTTCA 

Pv05N 
F:TACTGCATGCTGCTCCTCTG 

KX463419 53°C (AATC)7 11 333-372 0.83 0.81 0.86 0.87 0.02 
R:AGCAATTAACTCGGAACAGTTTCT 

Pv06N 
F:AATTTAGATCTTCTCAATCGCCC 

KX463420 60°C (AATC)9 7 224-248 0.62 0.61 0.67 0.56 0.04 
R:AGCATAGCATGTCTGTTGTCTTC 

Pv13F 
F:CTGCGTTAGCACTTGCTTTG 

KX463421 53°C (AAT)15 12 130-168 0.85 0.77 0.88 0.23 0.05 
R:TTCCCAATTAGTCATCGTTCA 

Pv15V 
F:TCAATAGGGAATGATATGAAGGA 

KX463422 53°C (AAT)14 8 195-220 0.79 0.85 0.83 0.30 -0.02 
R:CAAATCGAACACCAGGATGA 

Pv17F 
F:TGAAAGATCAAAGGATAGCTTAAAGG 

KX463423 53°C (AAT)9 5 156-168 0.61 0.62 0.66 0.05 0.05 
R:CATGTGCATGTAAATGACCAAA 

Pv18F 
F:TTTCTTGAAAGCAAACAGTTACG 

KX463424 53°C (AAT)15 12 127-164 0.85 0.78 0.88 0.19 0.05 
R:TGAGAAACCAAGACGCTGAA 

Pv21V 
F:GCTAGGTTTCATCCTTAATAACATTG 

KX463425 53°C (AAT)14 5 130-146 0.59 0.69 0.65 0.59 -0.05 
R:ATCCATGTCCAATGCACAAA 

Pv22N 
F:TGACATTATCATGTAGAACATCTCAA 

KX463426 53°C (AC)12 9 252-268 0.74 0.78 0.78 0.10 -0.02 
R:TCATTCAAACCTGTCTGTGCTT 

Pv26P 
F:AGTCCCTTCTCCTCGCTGAT 

KX463427 60°C (AC)10 7 189-201 0.70 0.73 0.74 0.96 0.00 
R:AAAGACAGTTTAGGCGTTCCA 

Pv30V 
F:GGCACCAGTAATGCTGTTCTC 

KX463428 53°C (AC)10 12 192-215 0.85 0.91 0.88 0.66 -0.03 
R:TTTGAAGCATACCAATTACAGTGA 

Pv31P 
F:TGCATATTACTCATTCACCACAAG 

KX463429 53°C (AC)9 4 188-194 0.23 0.22 0.25 0.05 0.05 
R:TGTATTTCAGCAAATTGGCATT 

Pv32N 
F:GGCCGAGGTACATTTGTGAG 

KX463430 53°C (AC)8 4 127-134 0.46 0.39 0.57 0.07 0.18 
R:TCACCAAACTAACATATTCCGAGA 

Pv33P 
F:TGTCTCAATACCATGGCGAA 

KX463431 53°C (AC)9 6 214-227 0.64 0.70 0.68 0.72 -0.01 
R:TGCCTACTTGATACCATTCGAT 

Pv34N 
F:TCAGACTGCACACTGAGTCAAA 

KX463432 53°C (AG)9 15 145-181 0.90 0.90 0.92 0.40 0.00 
R:TTGCAAACACATTTCAAGCA 

Pv37F 
F:CCACACCTGTACATAGCCTGA 

KX463433 60°C (AC)9 13 176-209 0.76 0.70 0.79 0.38 0.05 
R:GAAAGCAGGTTCATTGGGTG 

 

Weinberg equilibrium and linkage disequilibrium 
between pairs of loci, we used the online version of 
GENEPOP 4.0 (Raymond and Rousset 1995). All 
pairwise tests were adjusted for multiple tests by 
false discovery rate (FDR) correction (Benjamini 
and Yekutieli 2001). 

Results and discussion 

The sequence run yielded 890,475 quality paired 
reads with the sequences between 50–590 bp having 
a peak at approximately 550 bp. There were 14,404 
pure microsatellites of >4 repeats for which primers 
were designed. Thirty four of the 39 targeted loci 
generated a product of the expected size. Of the 39 
loci initially screened, 27 (69%) produced PCR 
products with clear bands and appeared polymorphic 
after agarose gel electrophoresis. From these, 16 loci 
produced genotypes that were consistently scoreable. 

The number of alleles per locus ranged from four to 
15 and the observed and expected heterozygosities 
ranged between 0.22 to 0.91, and 0.25 to 0.92 
respectively (Table 1). All loci were in Hardy-
Weinberg equilibrium, and there was no evidence of 
linkage disequilibrium between any pair of loci. 

Studies looking at differences between the enrich-
ment technique and the next-generation sequencing 
technique (Gardner et al. 2011; Abdelkrim et al. 2009) 
have found the latter to recover more useable loci, as 
it targets all microsatellite repeat types (e.g. di-, tri-, 
tetra- penta- and hexanucleotides). The high number 
of perfect and polymorphic loci developed in this 
study, should allow for a higher success when 
attempting to reproduce its application. Further, they 
will be useful to future genetic diversity and 
bioinvasion studies of P. viridis, supporting a 
science-based management approach to the future 
prevention and management of this species. 
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