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Abstract

This paper describes the generalized fractional Clifford analysis in the ternary setting. We will give a

complete algebraic and analytic description of the spaces of monogenic functions in this sense, their analogous

Fischer decomposition, concluding with a description of the basis of the space of fractional homogeneous

monogenic polynomials that arise in this case and an explicit algorithm for the construction of this basis.
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1 Introduction

In the classical physics and mathematics literature, the Dirac equation arises from the linearization of a relativis-

tic second order wave equation by imposing an additional SU(2)-symmetry. While this describes an electron

one would like to have other structures which impose an SU(N)-symmetry, for example supersymmetry, or the

Calogero-Moser dynamical system of one-dimensional N-body problem of N equal particles with a harmonic

potential. Another way of analyzing such structures can be found in d-fold factorizations; however, such a

factorization is beyond the scope of classic partial derivatives and Clifford algebras.

One way to think about imposing a higher level symmetry is to combine the concepts of fractional derivatives

and generalized Clifford Algebras [10]. But such a factorization runs into immediate problems from the point

of view of quantum mechanics and, more mathematically speaking, from the point of view of a function theory,

i.e. a theory of functions belonging to the Dirac operator that arises naturally.

To review, in the classic Clifford algebra setting, the construction of a monogenic function theory is based

on the construction of a so-called Howe dual pair consisting of a Super-Lie algebra (usually osp(1|2)) and a

Spinor space. This Super-Lie algebra osp(1|2) is then generated by three operators: the Dirac operator, the

vector variable operator, and the so-called Euler operator or radial derivative; the latter operator arises as the

anti-commutator between the Dirac operator and the vector variable operator and has as eigenspaces the space

of homogeneous polynomials. But this construction immediately fails in the present case. The principal reason

is that the choice of osp(1|2) is based on the preference of SU(2) symmetries of the classic Clifford algebras
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which are not preserved in the case of a generalized Clifford algebra (see [3]). In our case we will develop the

specific symmetries and the different algebraic model that arises.

To summarize, in this paper we will follow a different path, approaching the problem through ways pioneered

in hypercomplex analysis by F. Sommen, in the new context of generalized Clifford algebras. Following this

road, instead of constructing a Super-Lie algebra associated with our structures we will construct a so-called

Fischer pair base and introduce an inner product onto the space of homogeneous polynomials with values in the

generalized Clifford algebra. It is very clear that this cannot be the same inner product as in the case of the

classic Clifford algebra, but it can be produced by a clever introduction of a conjugation operator. While this

allows for the construction of a Fischer decomposition we encounter an additional problem. Due to the lack

of the osp(1|2)-property, in particular the lack of a suitable Euler operator, we cannot use the standard ansatz

for the monogenic projection, i.e. the projection of an arbitrary homogeneous polynomials into the space of

monogenic homogeneous polynomials. To overcome this problem we are going to show that this projection can

be recast as a linear system with coefficients in the generalized Clifford algebra. Although linear algebra with

respect to Clifford-valued matrices is a difficult topic we can show that the resulting system is solvable in our

case.

For the sake of simplicity and understanding of this paper we restrict ourselves to the case of SU(3)-

symmetries, i.e. the ternary Clifford algebra. We will see that this algebra will provide a cubic factorization

of the Laplacian and we will analyze the associated function theory. In the last part of the paper we will use

a computer algebra system to compute the coefficients of the monogenic homogeneous polynomials that form

the basis of the space of fractional homogeneous monogenic polynomials that arise in this case. For the actual

calculation of the monogenic basis polynomials we provide a MATLAB program which can be easily adapted

to larger calculations as well.

For the definition and some applications of generalized Clifford algebras, including the case of d = 3, we

point the reader to the works of Traubenberg and others [11, 17, 7], though these papers do not have the same

scope in the context of N−fold factorizations of the Laplacian.

2 Preliminaries

2.1 Generalized Clifford algebras in dimension 3

It is well known that the treatment of the two-dimensional vector spaces R2 in terms of complex numbers has

the advantage of containing an intrinsic multiplicative structure. Appropriate higher-dimensional associative

analogues of the complex numbers are the real Clifford algebras. For details about Clifford algebras and basic

concepts of the associated function theory we refer the interested reader to [1, 2, 9]. However, to obtain a Dirac

operator D such that D3 = ∆ a real Clifford algebra is not enough and we need to define a so-called generalized

Clifford algebra. In what follows we give a detailed description of the ”ternary” Clifford algebra that we use in

this case. Let {e1, · · · , ed} be the standard basis of the Euclidean vector space in Cd, i.e. the standard basis

for the Euclidean vector space in Rd, which is then complexified. The associated ternary Clifford algebra C̀ 1/3
d

is the free algebra generated by Cd subject to the multiplication rule:

e3
i = 1, eiej = ωejei, for 1 ≤ i < j ≤ d, (1)

where ω = ei2π/3. These multiplication rules are a consequence of the following relation:

[ei, ej , ek] := eiejek + eiekej + ejeiek + ejekei + ekeiej + ekejei = 6δijk, (2)

for all i, j, k = 1, . . . , d, where the form [ei, ej , ek] defined above is an extension of the anti-commutator relation

in the ternary setting. A vector space basis for C̀ 1/3
d is given by the set of all ordered products:

eν := eν11 · · · e
νd
d (3)

where ν = (ν1, · · · , νd) is an ordered d−tuple with νj = 0, 1, 2. We note that, using (1) eiej = ωejei implies

ejei = ω2eiej , for all 1 ≤ i < j ≤ d. From these relations one obtains the following commutator relation:

eνii e
µj
j = ωνiµj e

µj
j e

νi
i , e

νj
j e

µi
i = ω2νjµi eµii e

νj
j , 1 ≤ i < j ≤ d, (4)
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which leads to the multiplication rule between the elements of the basis (3) as:

eνeµ = ων∗µ eν+µ, (5)

with

ν ∗ µ := 2(νd + νd−1 + · · ·+ ν2)µ1 + 2(νd + νd−1 + · · ·+ ν3)µ2 + · · ·+ 2νdµd−1 = 2

d−1∑
j=1

d∑
s=j+1

νsµj . (6)

Here we see that, due to (1), these products have to be understood as elements of a modulus 3 class, and one

obtains relations of the following type:

e1
je

2
j = e3

j = e0
j = 1, or e2

je
2
j = e4

j = ej .

Each a ∈ C̀ 1/3
d can be written in the form a =

∑
ν aν e

ν , with aν ∈ C. Therefore, the ternary Clifford algebra

C̀ 1/3
d has the form:

C̀ 1/3
d =

{
w =

∑
ν

wνe
ν , wν ∈ C,ν = (ν1, · · · , νd), νj = 0, 1, 2

}
,

where we recall the complex scalars z ∈ C commute with the basis elements, i.e., zeν = eνz. It can easily be

proved that for a vector w = w1e1 + · · · + wded we have w3 = w3
1 + · · · + w3

d ∈ C. Therefore, a vector in C̀ 1/3
d

is invertible if and only if w3 6= 0. The conjugation in this ternary Clifford algebra C̀ 1/3
d is, by definition, the

involutory automorphism · : C̀ 1/3
d → C̀ 1/3

d given by:

w 7→ w =
∑
ν

wν eν , (7)

where wν denotes the usual complex conjugation and its action on the basis elements is defined by:

uw = w u, u,w ∈ C̀ 1/3
d , (8)

together with

e
νj
j = e

3−νj
j , νj = 0, 1, 2, j = 1, · · · , d. (9)

Therefore, one obtains:

eν = eν11 · · · e
νd
d := e3−νd

d . . . e3−ν1
1 ,

and this element can be expressed in terms of the chosen basis elements (3) as:

eν = e3−νd
d . . . e3−ν1

1 = ων
∗
e3−ν , (10)

where 3− ν := (3− ν1, · · · , 3− νd) and:

ν∗ := 2

d−1∑
j=1

d∑
s=j+1

(3− νj)(3− νs),

where we remind the reader that these products are to be understood as elements of a modulus 3 class. For

more details on these generalized Clifford algebras the reader is invited to consult Fleury, Traubenberg and

Jagannathan’s work in [7, 11, 17].

In what follows, let Ω denotes a domain of Cd with the usual topologies. We shall consider functions

f : Ω ⊂ Cd → C̀ 1/3
d , where , x = (x1, . . . , xd) ∈ Ω 7→ f(x) =

∑
ν fν(x)eν , with fν : Ω ⊂ Cd → C. Properties

will be ascribed to f if and only if all of its components fν satisfy it. For example, f is C1 if and only if all fν
are C1.
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2.2 Generalized fractional derivatives

In this section we recall some basic facts about generalized fractional calculus (for more details we refer [14]).

We start with the following definition of generalized differentiation and integration operators.

Definition 2.1 ([8, 14]) Let the function

ϕ(λ) =

∞∑
k=0

ϕk λ
k,

be an entire function with order ρ > 0 and degree σ > 0. We define the linear operator Dϕ, which acts on powers

of zn as

Dϕz
0 := 0, Dϕz

n :=
ϕn−1

ϕn
zn−1, n = 1, 2, · · · (11)

We call Dϕ the fractional derivative associated to ϕ. The operation

f(z) =

∞∑
k=0

ak z
k Dϕ−−−−−−→

Dϕf(z) =

∞∑
k=1

ak
ϕk−1

ϕk
zk−1 (12)

is said to be the Gelfond-Leontiev (G-L) operator of generalized differentiation with respect to the function ϕ,

and the corresponding G-L integration operator is:

Iϕf(z) =
∞∑
k=0

ak
ϕk+1

ϕk
zk+1. (13)

From the conditions required for ϕ we have lim supk→∞ k1/ρ k
√
|ϕk| = (σρe)1/ρ, and thus (see [15, 13])

lim sup
k→∞

k

√∣∣∣∣ϕk−1

ϕk

∣∣∣∣ = 1.

Therefore, by the Cauchy-Hadamard formula, both series, (12) and (13), inherit the radius of convergence R > 0

of f.

Example 2.2 Let ϕ(λ) be the Mittag-Leffler function of the form

ϕ(λ) = E 1
ρ ,µ

(λ) =

∞∑
k=0

λk

Γ
(
µ+ k

ρ

) , ρ > 0, µ ∈ C,

with Re(µ) > 0. Then ϕk(λ) = 1

Γ(µ+ k
ρ )

and operators (12), (13) turn into the so-called Dzrbashjan-Gelfond-

Leontiev (D-G-L) operators of differentiation and integration:

Dρ,µf(z) =

∞∑
k=1

ak
Γ
(
µ+ k

ρ

)
Γ
(
µ+ k−1

ρ

) zk−1, Iρ,µf(z) =

∞∑
k=0

ak
Γ
(
µ+ k

ρ

)
Γ
(
µ+ k+1

ρ

) zk+1, (14)

studied in [4, 5, 14].

In [14, 16] the author studied the connections between the D-G-L operators (14) and the so-called Erdélyi-Kober

(E-K) fractional integrals and derivatives. In [14], the author presented transmutation operators relating the

Riemann-Liouville (R-L) fractional integrals R
1
ρ with the D-G-L generalized integrations Iρ,1, and Iρ,µ, which

where given in terms of E-K operators. One can remark that, when more exotic derivatives are used, like

Riemann-Liouville, for example, then relation (11) is affected by a ”ground state” function 1[z], which is in

general non-analytic, satisfying:

Dϕz
n = (up to const. depending on n)zn−11[z], n = 0, 1, 2, . . . .

This in turns, requires an appropriate branch cut in the analytic domain. However, these kind of derivatives

are out of the scope of the present paper. We remark, nevertheless, that under certain regularity conditions on

a bounded real interval [0, b] these derivatives do coincide and satisfy the semigroup property DαDβu = Dα+βu
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(see [6]). The above statements lead us to consider the ternary Dirac operator D =
∑d
j=1 ejD

α
j , where Dα

j

represents the G-L generalized derivative (12) associated with the Mittag-Leffler function

Eα,1(z) =

∞∑
k=0

zk

Γ(1 + kα)
, 0 < α < 1, (15)

with respect to the j-coordinate. We emphasize that, as we use G-L derivatives associated to Eα,1, the radius of

convergence of the original series will remain unchanged under differentiation or integration procedures. Giving

a starlike open domain Ω in Cd and a (scalar-valued) function u : Ω ⊂ Cd → C, we have:

∆3α/2u := D3u = (Dα
1 )3u+ · · ·+ (Dα

d )3u, in Ω. (16)

Analogous to the Euclidean case a C̀ 1/3
d -valued function u is called ternary left-monogenic if it satisfies Du = 0

on Ω (resp. ternary right-monogenic if it satisfies uD = 0 on Ω). As can be seen from the above exposition the

most common fractional derivatives arise as special cases in our studies. We start with the discussion of one of

the most important tools in Clifford analysis, the Fischer decomposition.

3 Fractional Fischer decomposition

The aim of this section is to provide the basic tools for a function theory for the ternary Dirac operator defined

via generalized Gelfond-Leontiev differentiation operators. As we mentioned before, the standard approach to

the establishment of a function theory in higher dimensions is the construction of the analogues to the Euler and

Gamma operators and the establishment of the corresponding Sommen-Weyl relations. However, in our case

we cannot follow this path directly, since our generalized Clifford algebra does not have the necessary structure,

therefore we will follow the more classic approach via the Fischer inner product. As we mentioned before, we

consider the ternary Dirac operator D =
∑d
j=1 ejD

α
j , where Dα

j represents the fractional derivative associated

to the Mittag-Leffler function Eα,1 with respect to the j-coordinate (0 < α < 1). Therefore, for xl ∈ C we

obtain (see (11)):

Dα
j x

0
l = 0, Dα

j xl =
ϕ0

ϕ1
δj,l := ϕ(1, 0)δj,l, (17)

for all j, l = 1, . . . , d, where

ϕ(k, l) =
Γ(1 + kα)

Γ(1 + lα)
, k, l = 0, 1, 2, . . . , (18)

which imply that: Dα
j xl = Γ(1 + α)δj,l. We will first analyze how the differential operators act on the variables

xi:

(Dα
j )kxlj = ϕ(l, l − 1)(Dα

j )k−1xl−1
j

= ϕ(l, l − 1)ϕ(l − 1, l − 2)(Dα
j )k−2xl−2

j

...

= ϕ(l, l − 1)ϕ(l − 1, l − 2) · · ·ϕ(l − k + 1, l − k)xl−kj . (19)

Therefore at xj = 0 we obtain:

(Dα
j )kxlj

∣∣∣∣
xj=0

=

{
0, if k 6= l;

ϕ(l, l − 1) · · ·ϕ(1, 0) if k = l;
(20)

and we write ϕ(l, l − 1) · · ·ϕ(1, 0) = Γ(1 + lα) := Φl. We will begin by analyzing the Fischer decomposition on

the right module of polynomials, more specifically, on their building blocks, homogeneous polynomials of degree

n. In fact, any homogeneous polynomial with coefficients in our algebra can be written as:

Pn(X) =
∑

l∈Nd0 : |l|=n

Xl al, al ∈ C̀ 1/3
d ,

with l ∈ Nd0, n = |l| = l1 + . . . + ld denoting the degree of the polynomial, Xl = xl11 · · ·x
ld
d and al ∈ C̀ 1/3

d has

the form al =
∑
ν al,νe

ν . The Fischer inner product of two fractional homogeneous polynomials P and Q of

degree n is given by

〈P,Q〉n = Sc
[
P (∂) Q(X)

] ∣∣∣∣
x1=···=xd=0

, (21)
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where P (∂) is a differential operator obtained by replacing in the polynomial P each variable by its correspond-

ing fractional derivative and Sc represents the scalar part of this product, that is, the coefficient of e(0,··· ,0). It

is easy to check that (21) defines an inner product and we leave the details to the reader.

For fractional homogeneous polynomials of degree n, Pn(X) =
∑
l∈Nd0 : |l|=nX

l al andQn(X) =
∑
k∈Nd0 : |k|=nX

k bk,

we obtain

〈P,Q〉n =
∑
|l|=n

∑
|k|=n

al

(
(Dα

d )ld · · · (Dα
1 )l1xk11 · · ·x

kd
d

∣∣∣∣
x1=···=xd=0

)
bk

=
∑
|l|=n

al

∏
lj 6=0

Φlj

 bl :=
∑
|l|=n

alblΦl,

where Φl =
∏d
j=1,lj 6=0 Φlj . From (21) we immediately obtain that for any polynomial Pn−1 of homogeneity n−1

and any polynomial Qn of homogeneity n the following holds:

〈XPn−1, Qn〉n = 〈Pn−1, DQn〉n−1 , (22)

where X = x1e1 + · · ·+ xded, and this fact allows us to prove the following result:

Theorem 3.1 For each n ∈ N0 we have Πn =Mn +XΠn−1, where Πn denotes the space of fractional homo-

geneous polynomials of degree n and Mn denotes the space of fractional monogenic homogeneous polynomials

of degree n. Moreover, the subspaces Mn and XΠn−1 are orthogonal with respect to the Fischer inner product

(21).

Proof: Since Πn = X Πn−1 +(X Πn−1)⊥, it suffices to prove that (X Πn−1)⊥ =Mn. Assume that Pn ∈ Πn is

in (X Πn−1)
⊥

. Then, we have 〈X Pn−1, Pn〉n = 0, for all Pn−1 ∈ Πn−1. From (22) we get 〈Pn−1, DPn〉n−1 = 0,

for all Pn−1 ∈ Πn−1. Hence, we obtain that DPn = 0, that is Pn ∈ Mn. This means that (X Πn−1)⊥ ⊂ Mn.

Conversely, take Pn ∈Mn. Then, for every Pn−1 ∈ Πn−1 we have that

〈X Pn−1, Pn〉n = 〈Pn−1, DPn〉n−1 = 〈Pn−1, 0〉n−1 = 0,

from which it follows that Mn ⊂ (X Πn−1)⊥. Therefore Mn = (X Πn−1)⊥.

�

In consequence, we obtain the fractional Fischer decomposition with respect to the fractional Dirac operator

D. However, in order to obtain further decompositions of the space Πn we need first to study the commutator

relations between the fractional derivatives and variables acting on fractional powers:

[Dα
i , xj ]x

l
r = (Dα

i xj − xjDα
i )xlr

=


0, if i 6= j

ϕ(1, 0)xlr, if i = j ∧ i 6= r

(ϕ(l + 1, l)− ϕ(l, l − 1))xlr, if i = j = r

, (23)

with l ∈ N, i, j, r = 1, . . . , d.

Example 3.2 For the case where α = 2/3 we have ϕ(k, l) =
Γ(1+ 2k

3 )

Γ(1+ 2l
3 )

. Therefore,

[
D

2/3
i , xj

]
xlr =


0, if i 6= j

Γ(5/3)xlr, if i = j ∧ i 6= r(
Γ(1+

2(l+1)
3 )

Γ(1+ 2l
3 )
− Γ(1+ 2l

3 )

Γ(1+
2(l−1)

3 )

)
xlr, if i = j = r

.

Here we remind the reader that, under certain regularity conditions, the D-G-L derivatives enjoy the semi-group

property. Hence, the choice of parameter α = 2
3 ensures that (16) relates to the standard Laplace operator,

that is,

D3u = (D
2/3
1 )3u+ · · ·+ (D

2/3
d )3u := ∆u.

Hence, in what follows we shall consider α = 2
3 .
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Theorem 3.3 Let Pn be a fractional homogeneous polynomial of degree n. Then we have:

Pn = Mn +XMn−1 +X2Mn−2 + . . .+XnM0, (24)

where each Mj denotes the fractional monogenic polynomial of degree j. More specifically,

M0 ∈ Π0, and Mn ∈ {u ∈ Πn : Du = 0} .

Corollary 3.4 Let Hn be a fractional homogeneous harmonic polynomial of degree n, id est 0 = ∆Hn := D3Hn.

Then Hn has the form:

Hn = Mn +XMn−1 +X2Mn−2. (25)

The spaces represented in (24) are orthogonal to each other with respect to the Fischer inner product (21).
Moreover, the above decomposition can be represented in form of an infinite triangle:

Π0 Π1 Π2 Π3

M0 D←−−−−−−− X M0 D←−−−−−−− X2 M0 D←−−−−−−− X3 M0 . . .

⊕ ⊕ ⊕
M1 D←−−−−−−− X M1 D←−−−−−−− X2 M1 . . .

⊕ ⊕
M2 D←−−−−−−− X M2 . . .

⊕
M3 . . .

All the spaces in the above diagrams are right modules, the Dirac operator shifts all spaces in the same row to

the left while the multiplication by X shifts them to the right, and both of these actions establish isomorphisms

between the respective modules. From Theorem 3.3 we can derive the following direct extension to the fractional

case of the Almansi decomposition:

Theorem 3.5 For any fractional polyharmonic polynomial Pn of degree n ∈ N0 in a starlike domain Ω in Cd

with respect to 0, i.e.,

D3nPn = 0, in Ω,

there exist uniquely fractional harmonic functions P0, P1, . . . , Pn−1 such that

Pn = P0 +X3P1 + . . .+X3(n−1)Pn−1 in Ω.

3.1 Explicit formulae

The aim of this subsection is to give an explicit algorithm for the construction of the projection πM(Pn) of a

given fractional homogeneous polynomial Pn into the space of fractional homogeneous monogenic polynomials

Mn. In order to reach our goal, we start by looking at the dimension of the space of fractional homogeneous

monogenic polynomials of degree n. From the Fischer decomposition (24) we obtain:

dim(Mn) = dim(Πn)− dim(Πn−1),

with the dimension of the space of fractional homogeneous polynomials of degree n given by

dim(Πn) =
(n+ d− 1)!

n!(d− 1)!
=

(
n+ d− 1

d− 1

)
.

This leads to the following theorem:

Theorem 3.6 The space of fractional homogeneous monogenic polynomials of degree n has dimension

dim(Mn) =
(n+ d− 1)!

n!(d− 1)!
− (n− 1 + d− 1)!

(n− 1)!(d− 1)!
=

(n+ d− 2)!

n!(d− 2)!
=

(
n+ d− 2

d− 2

)
.
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In the classical setting (see [2, 12, 18]) one usually considers the following scheme for the monogenic projection:

r = a0Pn + a1XDPn + a2X
2D2Pn + . . .+ anX

nDnPn,

with aj ∈ C, j = 0, . . . , l, and a0 = 1. This approach, unfortunately, does not work in our case; this fact is, of

course, due to the lack of the osp(1|2) property. Using the Fischer decomposition and the explicit knowledge of

the dimensions of the spaces (see Theorem 3.6) we can use a more direct approach to determine the fractional

homogeneous monogenic polynomial. As we have seen before, any homogeneous polynomial of degree n = |l|
with coefficients in C̀ 1/3

d can be written as

Pn(X) =
∑

l∈Nd0 : |l|=n

Xl al, al ∈ C̀ 1/3
d ,

with n = |l| = l1 + . . . + ld denoting the degree of the polynomial. We now check under which conditions we

have DPn = 0, i.e.,

0 = D

 ∑
l∈Nd0 : |l|=n

Xl al

 =
∑

l∈Nd0 : |l|=n

(
DXl

)
al

=
∑

l∈Nd0 : |l|=n

 d∑
j=1

ej D
2/3
j xl11 · · ·x

ld
d

 al

= e1ϕ(n, n− 1)xn−1
1 a(n,0,··· ,0)

+[e1ϕ(n− 1, n− 2)xn−2
1 x2 + e2ϕ(1, 0)xn−1

1 ]a(n−1,1,0,··· ,0)

+ · · ·+ [e1ϕ(n− 1, n− 2)xn−2
1 xd + edϕ(1, 0)xn−1

1 ]a(n−1,0,··· ,0,1)

+[e1ϕ(n− 2, n− 3)xn−3
1 x2

2 + e2ϕ(2, 1)xn−2
1 x2]a(n−2,2,0,··· ,0)

+[e1ϕ(n− 2, n− 3)xn−3
1 x2x3 + e2ϕ(1, 0)xn−2

1 x3 + e3ϕ(1, 0)xn−2
1 x2]a(n−2,1,1,0··· ,0)

+ · · ·+ [e1ϕ(n− 2, n− 3)xn−3
1 x2

2 + edϕ(2, 1)xn−2
1 xd]a(n−2,0,··· ,0,2)

+ · · ·+ edϕ(n, n− 1)xn−1
d a(0,··· ,0,n). (26)

The last equality leads to the following theorem:

Theorem 3.7 Equation (26) is equivalent to the following linear system:

MA = 0, (27)

where A = [a(l1,...,ld)]dim(Πn)×1, 0 = [0]dim(Πn−1)×1 are vectors, and M is the matrix

M =
[
M(k1,...,kd),(l1,...,ld)

]
dim(Πn−1)×dim(Πn)

,

with entrances given by

M(k1,...,kd),(l1,...,ld) =

{
ei ϕ(li, ki), ki = li − 1 ∧ kj = lj ∀i 6= j

0, others cases
.

Let us now indicated a possible ordering for the rows of system (27). In order to proceed, let us consider the

following ordered set:

L = {Li = (li1, . . . , l
i
d) : |Li| = n = li1 + . . .+ lid, i = 1, 2 . . . , dim(Πn)},

where the relation order is given by

Li > Li+1 ⇔
(
li1, . . . , l

i
d

)
>
(
li+1
1 , . . . , li+1

d

)
⇔ liil

i
2 . . . l

i
d > li+1

1 li+1
2 . . . li+1

d

with

lk1 l
k
2 . . . l

k
d := lk1 × 10d−1 + lk2 × 10d−2 + . . .+ lkd × 100.

Applying this ordering we get the following corollary.
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Corollary 3.8 The matrix M has the following structure:

M =
(
M1 M2

)
,

where the sub-matrix M1 = [m1
ij ]dim(Πn−1)×dim(Πn−1) is an upper triangular matrix with entrances given by:

M1 =



e1ϕ(n, n− 1) e2ϕ(1, 0) e3ϕ(1, 0) e4ϕ(1, 0) e5ϕ(1, 0)

0 e1ϕ(n− 1, n− 2) 0 e2ϕ(2, 1) e3ϕ(1, 0)

0 0 e1ϕ(n− 1, n− 2) 0 e2ϕ(1, 0)

..

.
..
.

...
. . .

. . .

0 0 0 0 0

· · · edϕ(1, 0) 0 0 · · · 0

· · · ed−2ϕ(1, 0) ed−1ϕ(1, 0) edϕ(1, 0) · · · 0

· · · ed−3ϕ(1, 0) ed−1ϕ(1, 0) edϕ(1, 0) · · · 0

. . .
. . .

. . .
. . .

. . .
...

· · · 0 0 0 · · · e1ϕ(1, 0)

 ,

and the sub-matrix M2 = [m2
ij ]dim(Πn−1)×dim(Πn) has its entrances given by:

M2 =



0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

0 0 0 · · · 0 0 · · · 0

e2ϕ(n, n− 1) e3ϕ(1, 0) e4ϕ(1, 0) · · · edϕ(1, 0) 0 · · · 0

0 e2ϕ(n− 1, n− 2) e3ϕ(2, 1) · · · ed−1ϕ(1, 0) edϕ(1, 0) · · · 0

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 0 e2ϕ(1, 0) · · · edϕ(n, n− 1)


.

For the resolution of system (27) we implement the following algorithm to obtain the coefficients. As a first

step, we re-ordered the coefficients a(n,0,··· ,0), a(n−1,1,0,··· ,0), · · · , a(0,··· ,0,n) as a1, a2, · · · , adim(Πn). Second, we

use the fact that M1 is an upper triangular matrix. Let the entry (i, i) of M1 correspond to the index

[(k1, k2, . . . , kd), (k1 + 1, k2, . . . , kd)], then

ai = −e21 (ϕ(k1 + 1, k1))−1

[
d∑

j=2

ej ϕ(kj + 1, kj) a(k1,...,kj+1,...,kd)

]
, (28)

where

ai ↔M(i,i) ↔M(k1,k2,...,kd),(k1+1,k2,...,kd).

For the implementation of the algorithm we use the following matrix representation:

E1 =

 0 1 0

0 0 1

1 0 0

 , E2 =

 0 ω 0

0 0 ω2

1 0 0

 , E3 =

 1 0 0

0 ω 0

0 0 ω2

 .

E2
1 =

 0 0 1

1 0 0

0 1 0

 , E2
2 =

 0 0 1

ω2 0 0

0 ω 0

 , E2
3 =

 1 0 0

0 ω2 0

0 0 ω

 ,

E1E2 =

 0 0 ω2

1 0 0

0 ω 0

 , E2E3 =

 0 ω2 0

0 0 ω

1 0 0

 .

This representation determines a sub-algebra of C̀ 1/3
3 , yielding the extra condition E1E3 = E2.

Example 3.9 To illustrate the structure of M and A, consider the case of d = 3 and the Mittag-Leffer function

E 2
3 ,1

(z) =
∑∞
k=0

zk

Γ(1+2k/3) . We recall that ϕ(a, b) =
Γ(1+ 2a

3 )

Γ(1+ 2b
3 )

(see Example 2.2). Taking into account Corollary

3.8, the vector A and the matrices M1, M2 take the form

AT =
(
a(3,0,0) a(2,1,0) a(2,0,1) a(1,2,0) a(1,1,1) a(1,0,2) a(0,3,0) a(0,2,1) a(0,1,2) a(0,0,3)

)
=
(
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

)
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M1 =



E1 ϕ(3, 2) E2 ϕ(1, 0) E3 ϕ(1, 0) 0 0 0

0 E1 ϕ(2, 1) 0 E2 ϕ(2, 1) E3 ϕ(1, 0) 0

0 0 E1 ϕ(2, 1) 0 E2 ϕ(1, 0) E3 ϕ(2, 1)

0 0 0 E1 ϕ(1, 0) 0 0

0 0 0 0 E1 ϕ(1, 0) 0

0 0 0 0 0 E1 ϕ(1, 0)



M2 =



0 0 0 0

0 0 0 0

0 0 0 0

E2 ϕ(3, 2) E3 ϕ(1, 0) 0 0

0 E2 ϕ(2, 1) E3 ϕ(2, 1) 0

0 0 E2 ϕ(1, 0) E3 ϕ(3, 2)


.

Now we can see that the columns of the matrix M2 are associated, respectively, to the last four elements of the

matrix A. Therefore, if we fix a7, a8, a9, a10 we can obtain, via formula (28), the remaining elements of the

matrix A as follows:

a1 = −E2
1 (ϕ(3, 2))

−1 [
E2 ϕ(1, 0) a(2,1,0) + E3 ϕ(1, 0) a(2,0,1)

]
,

a2 = −E2
1 (ϕ(2, 1))

−1 [
E2 ϕ(2, 1) a(1,2,0) + E3 ϕ(1, 0) a(1,1,1)

]
,

a3 = −E2
1 (ϕ(2, 1))

−1 [
E2 ϕ(1, 0) a(1,1,1) + E3 ϕ(2, 1) a(1,0,2)

]
,

a4 = −E2
1 (ϕ(1, 0))

−1 [
E2 ϕ(3, 2) a(0,3,0) + E3 ϕ(1, 0) a(0,2,1)

]
,

a5 = −E2
1 (ϕ(1, 0))

−1 [
E2 ϕ(2, 1) a(0,2,1) + E3 ϕ(2, 1) a(0,1,2)

]
,

a6 = −E2
1 (ϕ(1, 0))

−1 [
E2 ϕ(1, 0) a(0,1,2) + E3 ϕ(3, 2) a(0,0,3)

]
,

which concludes the solution to the system (27). Furthermore, we can use the previous conclusions to obtain

the four polynomials which are the basis for the space of fractional homogeneous monogenic polynomials M3

V
3, 23
1 (x) = −x3

1 +
27
√

3

8π
E2

3 x
2
1 x2 −

27
√

3

8π
E3 x1 x

2
2 + x3

2,

V
3, 23
2 (x) = −E2

2 x
2
1 x2 + E2

3 x
2
1 x3 − E1E2 x1 x

2
2 −

Γ
(

7
3

)
Γ2
(

5
3

) E3 x1 x2 x3 + x2
2 x3,

V
3, 23
3 (x) = ω E2E3 x

2
1 x2 − E2

2 x
2
1 x3 −

Γ
(

7
3

)
Γ2
(

5
3

) E2
1E3 x1 x2 x3 − E3 x1 x

2
3 + x2 x3,

V
3, 23
4 (x) = −x3

1 +
27
√

3

8π
ω E2E3 x

2
1 x3 −

27
√

3

8π
E1E2 x1 x

2
3 + x3

3.

For the convenience of the reader we will also write the basic monogenic polynomials for M1 and M2, respec-

tively, as follows:

V
1, 23
1 (x) = −E3 x1 + x2,

V
1, 23
2 (x) = −E1E2 x1 + x3.

V
2, 23
1 (x) = E2

3 x
2
1 −

Γ
(

7
3

)
Γ2
(

5
3

) E3 x1 x2 + x2
2,

V
2, 23
2 (x) = −

Γ2
(

5
3

)
Γ
(

7
3

) E2
2 x

2
1 − E1E2 x1 x2 − E3 x1 x3 + x2 x3,

V
2, 23
3 (x) = ω−2 E2E3 x

2
1 −

Γ
(

7
3

)
Γ2
(

5
3

) E1E2 x1 x3 + x2
3.

Remark 3.10 The above algorithm can be easily implemented. For the convenience of the reader a Matlab

program for the D-G-L operators (see Example 2.2) is available at

http://sweet.ua.pt/pceres/Webpage/Main files/Frac Code ternary.zip
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The main program is coef frac(l). This program calculates the coefficients of the monogenic homogeneous poly-

nomials that form the basis of the space of fractional homogeneous monogenic polynomials Ml, i.e., solves the

system (27). The output is given as cells of 3× 3 representing the linear combination of the elements{
I3, E1, E2, E3, E

2
1 , E

2
2 , E

2
3 , E1E2, E2E3

}
, (29)

where the coefficients for each polynomial are given by each column ordered according to Multi-indices given by

the function MultiindexIndexgen. The input data of this program consists of the degree of homogeneity l.

The auxilliar program coef frac final form(A{r,c}) reads each cell of the output of the main program and presents

the coefficients involved in the linear combination indicated previously. The input of this program is each cell of

the output of the main program.

For the case presented in the previous example first we should call the main program in the form coef frac(3) to

generate all the coefficients. After that, in order to obtain the coefficients of V1 (similarly for V2, V3 and V4)

we make

coef frac final form(A{1,1}), coef frac final form(A{2,1}), coef frac final form(A{3,1}),

coef frac final form(A{4,1}), coef frac final form(A{5,1}), coef frac final form(A{6,1}),

coef frac final form(A{7,1}), coef frac final form(A{8,1}), coef frac final form(A{9,1}),

coef frac final form(A{10,1}).
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