
Universidade de Aveiro Departamento de Engenharia Mecânica
2016

Prasanna Kumar
Routray

Robô de Entretenimento para Apanhar Bolas em
Voo

Entertainment Robot for Catching a Flying Ball

Universidade de Aveiro Departamento de Engenharia Mecânica
2016

Prasanna Kumar
Routray

Robô de Entretenimento para Apanhar Bolas em
Voo

Entertainment Robot for Catching a Flying Ball

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de Au-
tomação Industrial, realizada sob a orientação científica do Doutor Filipe
Miguel Teixeira Pereira da Silva, Professor Auxiliar do Departamento de
Electrónica,Telecomunicações e Informática da Universidade de Aveiro, e do
Doutor Paulo Miguel de Jesus Dias, Professor Auxiliar do Departamento de
Electrónica, Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor Pedro Nicolau Faria da Fonseca
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Miguel Armando Riem de Oliveira
Professor Auxiliar Convidado do Departamento de Engenharia Mecânica da Uni-
versidade de Aveiro (arguente)

Prof. Doutor Filipe Miguel Teixeira Pereira da Silva
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

First of all, I would like to thank my thesis advisor, Professor Doutor Filipe
Miguel Teixeira Pereira da Silva, and my co-advisor, Professor Doutor Paulo
Miguel de Jesus Dias, for their guidance and advice throughout the entire du-
ration of Thesis work and related studies which finally resulted as this thesis.
I would like to thank Professor Vítor Santos, coordinator of the LAR, for his
guidance throughout this work. I would also like to thank Professor António
Amaro and Professor Mário Rodrigues of the School of Health Sciences of
the University of Aveiro for their support during human data acquisitions at
the Human Motion Analysis Lab. I feel very proud, honored and privileged
for having the opportunity to work with these professors. I thank Lentin
Joseph for his guidance and helpful advice at critical junctures of this work.
I would like to thank the University of Aveiro, Department of Electronics,
Telecommunications and Informatics, and Department of Mechanical Engi-
neering, and all the associated administrative staff, for the excellent facilities
offered during the course of this research. I thank all my colleagues and te-
achers at Department of Mechanical Engineering, for the helpful scientific
discussions, and for providing a friendly atmosphere. I also use this opportu-
nity to express my gratitude to everyone who supported me throughout this
course. Last but not the least, I thank my parents who are always there to
support my endeavours.

Palavras-chave Interação humano-robô, apanhar bola em voo, sensor Kinect, estimação de
trajectória, manipulador robótico Cyton

Resumo A Interação Humano-Robô (IHR) surge hoje como uma parte importante
e desafiadora da robótica, requerendo tecnologia sofisticada e lidando com
importantes aspectos de segurança. Em consonância com isso, a IHR pode
ser usado para testar e avaliar tecnologias robóticas avançadas. A tarefa de
apanhar uma bola em voo por um sistema robótico pode ser utilizada para
avaliação sistemática de sistemas de visão e braços robóticos, quer individu-
almente quer de forma integrada. A realização deste jogo entre um humano
e um robô é um exemplo de uma forma de interação segura que não envolva
contato físico. O objetivo principal desta tese está centrado no estudo de
um cenário para a realização da tarefa de apanhar um bola em voo usando
tecnologia comercial. Na prossecução deste objectivo, são abordados três
problemas principais: (1) o desenvolvimento de um sistema de visão para a
detecção e seguimento da bola usando um sensor Kinect, (2) a aplicação
de algoritmos capazes de fornecerem uma estimativa precisa da trajetória
da bola em voo, e (3) o controlo do braço robótico que permita a intercep-
ção da bola. O desenvolvimento da arquitectura software é suportado pelo
Robot Operating System (ROS) baseado numa plataforma open-source de
arquitetura distribuída. Foram realizados vários testes experimentais para
validar as soluções propostas e avaliar o desempenho do sistema em dife-
rentes situações. O teste de viabilidade do trabalho proposto foi realizado
com base na simulação do sistema completo tilizando dados pré-gravados
do sensor Kinect.

Keywords Human-robot interaction, ball catching, Kinect sensor, trajectory estimation,
Cyton manipulator arm

Abstract Human-Robot Interaction (HRI) is now an important and challenging part of
robotics as it requires high accuracy and sophisticated technology, along with
safety as the first and fore-most aspect. In line with this, HRI can be used
for testing and evaluating advanced robotic technologies. Ball catching by a
robotic system is one such task that can be used for systematic evaluation
of vision and robotic systems, either individually or in an integrated manner.
Playing ball catching between a human and a robot is an example of such a
form of safe interaction not involving physical contact. The main goal of this
thesis is focused towards the study of a possible scenario for ball catching
task by a robotic manipulator using off-the-shelf technologies. In the pursuit
of that objective, three main problems are addressed: (1) to develop a vision
system for ball detection and tracking using a Kinect sensor, (2) to provide
trajectory estimation of the flying ball, and (3) to control the robotic arm
for interception of the flying ball. The complete software development is
supported by Robot Operating System (ROS) with open-source platform
and distributed architecture. Several experimental tests are conducted to
validate the proposed solutions and to evaluate the system’s performance
in different situations. Simulation of integrated system for ball catching
task is also implemented using pre-recorded data-sets from Kinect sensor for
feasibility test of proposed work.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Dissertation Structure . 3

2 State-of-the-Art 5
2.1 Ball Catching Manipulators . 5

2.1.1 A100 Audio-Animatronics . 6
2.1.2 Rollin’ Justin . 7
2.1.3 KUKA LBR Arm . 7

2.2 Vision Systems . 8
2.2.1 Stereo Vision System . 9
2.2.2 Depth-Sensor Based Vision System 10

2.3 Technology-Oriented Works . 11
2.3.1 Related Works . 11
2.3.2 Our Approach . 12

3 Experimental Set-up 15
3.1 Overall System Architecture . 15
3.2 Cyton Gamma 1500 Manipulator Arm 17
3.3 Kinect Sensor . 19
3.4 Software Development Tools . 21

3.4.1 Robot Operating System Framework 22
3.4.2 OpenCV . 24
3.4.3 OpenNI . 25

4 Vision System for Trajectory Estimation of a Flying Ball 27
4.1 The Trajectory of a Flying Ball . 28
4.2 Ball Detection and Tracking . 30

i

Contents

4.2.1 Color Based Ball Detection and Tracking 30
4.2.2 Point-cloud Based Ball Detection and Tracking 36
4.2.3 Comparative Analysis of Ball Detection Methods 40

4.3 Trajectory Estimation Methods . 45
4.3.1 Polynomial Approximation Method 45
4.3.2 Kalman Filter Based Estimation 47
4.3.3 Comparative Analysis of Trajectory Estimation Methods . . . 51

5 Manipulator Arm Motion Control 53
5.1 MoveIt! and Robotic Arm Description in ROS 54

5.1.1 The robot model package . 54
5.1.2 Arm Configuration from MoveIt 56
5.1.3 Dynamixel-ROS Interface . 57
5.1.4 Moveit and KDL for Inverse Kinematics 59
5.1.5 Final Remarks on MoveIt! and KDL 60

5.2 3 DOF Manipulator Arm Control System 60
5.2.1 Direct Kinematics . 61
5.2.2 Inverse Kinematics . 62
5.2.3 Implementation of the Point-to-Point Motion Control 63
5.2.4 Evaluation of the Manipulator Arm’s Behavior 64

6 Experimental Results 69
6.1 Ball Catching Scenario and Calibration Process 69

6.1.1 Ball Catching Scenario . 70
6.1.2 Calibration Process . 70
6.1.3 Comparative Analysis of Kinect and Vicon Data-set 74

6.2 Predicting the Ball Trajectory . 76
6.2.1 ROS Implementation (Nodes and Topics) 76
6.2.2 Evaluation of the Estimation Methods 77

6.3 Computer Simulation of the Ball Catching Task 81
6.3.1 Spatiotemporal Conditions for Successful Ball Catching 81
6.3.2 Simulated Robot Motion Based on Real Vision Data 89

6.4 Final Remarks . 93

7 Conclusions 95
7.1 Results Discussion . 95
7.2 Final Conclusion . 96
7.3 Future Work . 97

References 99

Appendices 105

ii

Contents

A Camera Parameters 107
A.1 sensor msgs/CameraInfo Message . 107
A.2 sensor msgs/PointCloud2 Message 109

iii

List of Figures

2.1 A100 Audio-Animatronics, Walt Disney Imagineering robot [3]. . . . 6
2.2 (DLR) Rollin’ Justin [6]. 7
2.3 Kuka LBR iiwa manipulator [8]. 8
2.4 Stereo vision concept [11]. 9
2.5 Depth sensor based vision system concept [11]. 10

3.1 Integrated system architecture. 16
3.2 Cyton Gamma 1500 manipulator arm dimensions [22]. 17
3.3 Microsoft XBOX 360 Kinect sensor [23]. 19
3.4 A disassembled Microsoft XBOX Kinect sensor [24]. 21
3.5 An example of nodes and topics exchanging information. 23
3.6 Basic services communication mechanism in ROS. 23
3.7 OpenNI architecture [24]. 25
3.8 Human skeleton from OpenNI tracker. 26

4.1 Basic 2 dimensional projectile motion, different values of inclination
angle considered with same initial velocity. 28

4.2 Basic 2 dimensional projectile motion, different values of initial veloc-
ity considered for same inclination angle. 29

4.3 Color based ball detection. 32
4.4 Converting ROS image messages to OpenCV images [27]. 33
4.5 Color based ball detection flow chart. 34
4.6 ROS graph for color based ball detection methods. 35
4.7 Voxelized grid [29]. 37
4.8 Depth sensor point-cloud structure. 37
4.9 Detected ball inside a grid [29]. 38
4.10 Ball detection in point-cloud using grid voxelization method. 38
4.11 Point-cloud based ball detection flow chart. 39
4.12 Point-cloud based ball detection overall structure. 40

v

List of Figures

4.13 Comparison of implemented ball detection algorithms. 41
4.14 Color based ball detection comparison. 43
4.15 Point-cloud based ball detection comparison. 44
4.16 Basic representation of data flow in Kalman filter based process. . . . 48

5.1 Basic kinematics formulation in the field of robotics. 53
5.2 Cyton Gamma 1500 robot model in rviz. 55
5.3 PID control structure for Cyton Gamma 1500 Servos. 58
5.4 Cyton Gamma 1500 work space for a particular orientation. 59
5.5 Coordinate frames of Cyton Gamma 1500 in 3 DOF mode. 61
5.6 Forward kinematics control structure. 62
5.7 Synchronized inverse kinematics control structure. 65
5.8 Cyton Gamma 1500 arm response to target random position. 66
5.9 Analysis of maximum velocity in Cartesian space of Cyton Gamma

1500 arm. 67

6.1 Ball catching scenario. Note: The 3D axes shown in RGB refer to XYZ
in a sequential manner . 70

6.2 Markers over Kinect sensor for calibration 71
6.3 Depth sensor to Robotic Arm Transform 73
6.4 Synchronization of depth sensor based application and Vicon system. 74
6.5 Ball trajectory seen by depth sensor and Vicon system. 75
6.6 Error associated with depth sensor with respect to Vicon system. . . 75
6.7 Ball trajectory prediction nodes and topics. 76
6.8 Intersection plane of trajectory. 77
6.9 Trajectory estimation with polynomial approximation. 78
6.10 Error associated with polynomial approximation. 78
6.11 Trajectory estimation with Kalman filter. 79
6.12 Error associated with Kalman filter based estimation. 79
6.13 Comparative error analysis of estimation methods. 80
6.14 Work-space for spatiotemporal analysis, this a particular case where

the end-effector of manipulator is placed at (0.00, 0.00, 0.45). 82
6.15 Representation of the robot’s joint limiting the time-for-action (TfA). 83
6.16 Available time-for-action (TfA) Vs displacement. 85
6.17 Minimum required height for successful displacement of end-effector

(side-view). The red dotted line signifies the maximum time available
for action, if time of flight is completely given for action to catch a
flying ball. This is considered taking experimental setup in to consid-
eration. But, 1 m height is found to be optimal for proper throw. . . . 86

6.18 Work-space for Minimum required height for successful displacement
of end-effector (bottom-view). The red dotted circle signifies the area
that the manipulator can cover, if time of flight is completely given
for action to catch a flying ball. The green circle signifies the optimal
area that the manipulator can cover considering a proper throw. The
red dot signifies initial end-effector position. 87

vi

List of Figures

6.19 Number of Kinect sample Vs displacement (side-view). The red dot-
ted line signifies the minimum number of Kinect sample required to
get a proper estimation. But, 14 or more number of sample is found
to be optimal which is denoted by green line. 88

6.20 Number of Kinect sample Vs displacement (top-view). The red dot-
ted circle signifies the area that the manipulator can cover considering
an estimation with 10 samples. The green circle signifies the area that
the manipulator can cover considering an estimation with 14 samples.
The red dot signifies initial end-effector position. 89

6.21 Snapshots of the robot and ball motions taken from the simulator:
initial arm configurations and ball location (left); instant at which the
perception system provides an estimation of the catching point (mid-
dle); final catching configuration corresponding to the (x, y, z) coordi-
nates, (0.25,- 0.22, 1.0) (m) (right) . 91

6.22 Time courses of the joint angular displacements, marking the instants
in which the catching point is estimated and that when the robot suc-
cessfully caught the ball. 91

6.23 Trajectories generated by the robot’s end-effector in response to the
estimated catch point. 92

6.24 Reachable space where the Cyton arm is able to intercept the flying
ball if the end-effector is located at the intermediate target when the
prediction of the catching point and time is available. 92

6.25 Integrated system control structure for ball catching application. . . . 94

vii

List of Tables

3.1 Cyton Gamma 1500 technical specifications [22]. 18
3.2 Cyton Gamma 1500 joint specifications [22]. 18
3.3 Cyton Gamma 1500 dynamixel servo motor specifications [20] [21]. . 19
3.4 Technical specifications of Microsoft XBOX Kinect V1.0 [24]. 20
3.5 Conventional Vs ROS method of robot control. 22

4.1 Comparison of ball detection methods. 42
4.2 Comparison of trajectory estimation methods in terms of implemen-

tation. 52

5.1 DH parameters of 3 DOF configuration. 61
5.2 Analysis of maximum velocity attained by Cyton Gamma 1500 in

Cartesian space. 68
5.3 Comparison of manipulator arm motion control methods. 68

6.1 Depth sensor and Vicon system calibration analysis. 72
6.2 Analysis of time-for-action (TfA) with respect to initial end-effector

position. 84

ix

CHAPTER 1

Introduction

Increasingly present in our daily lives and used to perform various tasks, robotic
systems are engaged in new challenges involving the interaction with humans. In
the field of robotics, Human-Robot Interaction (HRI) has received considerable at-
tention by the academic community. Human—Robot Interaction (HRI) is a field of
study dedicated to understanding, designing, and evaluating robotic systems for
use by or with humans [1]. Considering HRI as an advanced testing platform for
robotic systems, ball-catching application can be considered as a real challenging
task for evaluation of new or existing robotic systems. In this context, the challeng-
ing scenario provided by the problem of catching flying objects has been extensively
considered in the literature [2]. A body of work has been devoted to playing ball
catching between a robot and a human partner as a form of safe interaction (i.e., not
involving physical contact). Robotic systems should be able to behave according to
situation and ball catching task can be used to test advanced capabilities in terms of
vision, perception and arm dynamics.

This dissertation was proposed by the Institute of Electronics and Informatics
Engineering of Aveiro (IEETA) in the scope of current activities aiming to design and
evaluate robotic systems for Human-Robot Interaction. The robotic system consid-
ered for this work consists of a Robai Cyton Gamma 1500 arm along with a vision
system based on a depth sensor (i.e., Kinect sensor) installed on the robot’s base.
This work involves technical and scientific knowledge in the areas of perception,
vision, manipulator arm dynamics, estimation and control.

1

Chapter 1. Introduction

1.1 Motivation

Human-Robot Interaction provides numerous opportunities and robotic systems
are becoming more and more advanced in terms of manipulator arm capability
and vision systems. Highly dynamic manipulators and advanced vision systems
combined together can be used to accomplish difficult tasks. The problem of ball-
catching by a robotic system requires a combination of perception and action across
time for successful completion: fast reactions in response to perceived movements.
In addition to imposing stringent time constraints, a ball catching task requires
trading-off the time allocated to perception and action, namely when only one is
possible at a given instant. In general, the longer we perceive, the smaller the un-
certainty in perceptual estimates. However, a longer perception phase leaves less
time for action, which results in less precise movements. In line with this, control-
ling robot end-effector for catching a flying target is a challenging task requiring
the consideration of two closely related problems: First, predicting accurately the
trajectory of the moving object, a complicated problem given that sensory inputs
are subjected to noise and, more generally, uncertainty. Second, controlling robot’s
end-effector for catching the moving object.

This work proposes the design of a robotic system able to perform a safe and
entertaining task that directly engages a robot with a human partner for catching
a flying ball using off-the-shelf technology. Addressing the main challenges of the
task demands the implementation of prediction and action based abilities in robots.
These required information’s are obtained through a motion capture system based
on a depth sensor.

1.2 Objectives

Human-Robot Interaction in terms of ball catching application requires study of
computer vision system along with manipulator arm dynamics. Depth sensor based
vision system is to be used to track the ball and predict its trajectory, position and
time required to reach the landing point along with the orientation of the robot to
intercept ball trajectory. Once robot has the desired parameters it will try to catch
the ball. In order to compensate sensor inaccuracy in robotics (i.e., sensory uncer-
tainties) that influences the estimation of the dynamics of the flying object, proper
characterization of vision system is required. As both robot and object are mov-
ing, frequent re-estimation and re-planning of manipulator arm motion is required
to reach target location in a limited available time. A major cause of failure is the
robot’s limitation in terms of acceleration, which severely restricts its performance
in accomplishing the task. In order to solve those problems, a set of well-defined
objectives are framed for this work. The main objectives of this work are listed be-
low.

1. Setup of complete system for the purpose of experimental analysis in terms
of both hardware and software. Study of proposed method for ball catching

2

1.3. Dissertation Structure

application.

2. Development of a vision system application that must be suitable for ball
catching application with off-the-shelf technology. This goal requires robust
method for ball detection and tracking in 3-dimensional space. Study of esti-
mation methods, which are suitable for estimation of trajectory of flying ball,
so as to get the position and time required to reach the landing point.

3. Kinematics analysis of the 7 DOF manipulator arm, considering joints limits,
joints velocity limits, end-effector velocity in Cartesian space and work-space
constraints. This analysis is to be done in accordance with the ball catching
application

4. Experimental analysis in simulation mode of developed vision system and
manipulator arm motion control system for feasibility test. This means that
the developed system is suitable for ball catching application with available
resources or not. Simulation based analysis of developed vision system and
manipulator arm motion control system on a stand-alone basis to validate the
developed methods. The final part is about integration of developed system.

1.3 Dissertation Structure

This dissertation is divided in seven chapters supported by appendices. Chapter
1 presents an introduction to this work and a brief explanation of the topics stud-
ied. Chapter 2 presents a review of ball-catching systems, some of the techniques
and approaches and also the usual motion control systems available and suitable for
this dissertation work. Chapter 3 provides an overview of the experimental set-up,
presenting some specifications of the Cyton Gamma 1500 robotic arm and the depth
sensor (i.e., Kinect sensor), that are to be used for ball-catching purpose. Chapter
4 is dedicated towards study of vision system for ball detection, tracking and tra-
jectory estimation of a flying ball. Chapter 5 presents the kinematic analysis of the
Cyton Gamma 1500 robotic arm and an explanation of the processes to execute robot
motion control. In Chapter 6 are discussed the experimental results along with an
evaluation of the complete integrated system. Finally, in Chapter 7 are presented
some conclusions obtained during this project work and also some possible ideas to
improve it in future work.

3

CHAPTER 2

State-of-the-Art

This chapter reviews the literature relevant for this dissertation work aimed at
gaining a better understanding of the problem of robot ball catching, in order to gain
a deeper insight into the different approaches taken and assessing the most recent
progresses. From the viewpoint of robotics, several research works embarked on a
two-pronged approach: one focusing on making improvements to robot design and
the vision system, the other on machine learning and computational approaches
to provide the necessary algorithms for perception and robot control. However,
there is a dichotomy in the way the ever-more sophisticated software is coupled
with the used technology. While some works only use off-the-shelf components,
without any specialized hardware, others make use of cutting-edge components to
provide solutions shaped by technology. At a later stage these works are reviewed
by highlighting how estimation of trajectories of moving objects are carried out and
how robot’s motion is controlled.

2.1 Ball Catching Manipulators

For the case of ball catching application, there are different types of robotic manipu-
lator arms available. These manipulator arms can be of industrial robotic manipula-
tor or assistive robotic manipulator type, but now a days industrial robotic manipu-
lators are more confined to industrial sector. In this regard assistive robotic manip-
ulators are gaining more and more ground either in terms of medical applications
or in educational sector. At research and academic level, there are some important
case study among which the Rollin’ Justin, the A100 Audio-Animatronics, KUKA
LWR arm, and Cyton Gamma 1500 arm can be considered. In the next sub-sections
are outlined the most relevant ball-catching manipulators.

5

Chapter 2. State-of-the-Art

2.1.1 A100 Audio-Animatronics

A100 Audio-Animatronics [3] is a Walt Disney Imagineering Robot. This robot has
39 degrees-of-freedom, 38 of which are driven by hydraulic actuators. This type
of robot platform is currently commonly employed in the theme parks. The robot
stands on a 60 cm base containing its hydraulic valve manifold, pressure transduc-
ers, and computer connections. Its feet are fixed to the base so stability and balance
are not a concern. For throwing and catching it uses its left arm, which has seven de-
grees of freedom plus five fingers with one degree of freedom each. For additional
motions such as orienting the robot towards the participant, simulating ball follow-
ing, and acknowledging catching failure, additionally the pelvis, torso, shoulder
shrugs, neck and eyes are used. Figure 2.1 presents the Walt Disney Imagineering
Robot, A100 Audio-Animatronics.

Figure 2.1: A100 Audio-Animatronics, Walt Disney Imagineering robot [3].

The control system for A100 Audio-Animatronics allows for the update of de-
sired joint position set-points at 30 Hz, a rate considered quite slow for reactive
control. However, as this robot was designed only for prerecorded trajectory play-
back, it is one the limitation of this robot. Lower level hydraulic valve controllers
realize the desired positions of each actuator at a control loop of 1 kHz. The maxi-
mal hand velocity is approximately 1.5 m/s. The left hand of the robot is augmented
with a plate to cover and protect the finger actuators and a foam rim to provide a
more cup-like shape suitable for catching and to maintain as much of a human-like
appearance as possible [4].

6

2.1. Ball Catching Manipulators

2.1.2 Rollin’ Justin

Rollin’ Justin [5] is an autonomous, programmable humanoid robot. This humanoid
robot consists two Kuka assistive robotic manipulators as it’s hands and commu-
nication with this robot is done by wireless communication. The two modular 7
DOFs assistive manipulator arms consists two four-fingered hands are attached to
the torso, that is attached to a mobile base. This structure of Rollin’ Justin makes it
one the most sophisticated and accurate robotic system. Figure 2.2 presents the the
Rollin’ Justin, the upper torso combined with the mobile platform.

Figure 2.2: (DLR) Rollin’ Justin [6].

Rollin’ Justin was designed to perform two-handed manipulation and should
be able to reach objects up to 2-meter high as well as objects on the floor. Initially,
this robot only had the upper body, however later was implemented with a mobile
platform that allowed the robot to interact with humans in different kinds of tasks.
Rollin’ Justin main features are the visual tracking that gives it the capability to
track and grasp freely moving objects in 6 DOFs. The robot also allows commands
via speech recognition and dual arm path planning [6] [7].

2.1.3 KUKA LBR Arm

Kuka LBR iiwa [8] arm is very responsive due to its integrated sensors. Since they
are not situated in the end-effector, but in the robot itself, simple tools can be used

7

Chapter 2. State-of-the-Art

for any task. This particular manipulator arm can be used in industry environment
as well as as an assistive robotic system. The robot can also be programmed by
hand moving it (i.e., Robot learning by demonstration [9]. This along with its 7-
axes, means that it can easily reach any point within its work zone. It also retains its
position during programming, so, Kuka affirms that programming their LBR iiwa
series arms are very intuitive and efficient. Its rounded shape contains no sharp
edges that could be harmful to a human working beside it. A generic Kuka LBR
iiwa arm is as shown in Figure 2.3.

Figure 2.3: 7-axis Kuka LBR iiwa manipulator [8].

It’s sensors are capable enough to detect small external forces made by an obsta-
cle or a human. These sensors are also independent from each other. These char-
acteristics make the LBR iiwa arm a safe working partner following basic rules of a
robot, either for feeding human workers pieces or holding them while your employ-
ees work on it. At research and academic level it (i.e., KUKA LWR 4+, older version
of KUKA LBR iiwa robots) is being used for several types applications such as, to
catch a hammer, a tennis racket, an empty bottle, a partially filled bottle, and a card-
board box at Learning Algorithms and Systems Laboratory, School of Engineering,
EPFL, USA [10].

2.2 Vision Systems

Many of the today’s robots are inspired by nature. Robots are replacing humans
in the assistance of performing some repetitive and dangerous tasks which humans
prefer not to do, or are unable to do due to some limitations. With vision system, a
robotic system can be more efficient and it has numerous advantage over basic ma-
nipulator arm. Robotic system with vision can be used for manipulation of various

8

2.2. Vision Systems

tasks starting perception to execution. Ball catching task is one application where,
robot’s capability can be tested. Ball catching task requires proper hand-eye coordi-
nation because catching a thrown ball with a hand is not easy, neither for humans
nor for robots. It requires a better visual sensing mode to reach the necessary pre-
cision in space and time. There are two basic methods of vision system (i.e., stereo
vision and depth sensor based vision system), that are used for ball catching pur-
pose. These methods are presented in detail in next subsections.

2.2.1 Stereo Vision System

”Two Eyes = Three Dimensions (3D)!” Each eye captures its own view and the two
separate images are sent on to the brain for processing. When the two images arrive
simultaneously in the back of the brain, they are processed together into one picture.
The mind combines the two images by matching up the similarities and adding in
the small differences. The small differences between the two images add up to a
big difference in the final picture! The combined image is more than the sum of its
parts. It is a three-dimensional stereo picture. The word ”stereo” comes from the
Greek word ”stereos” which means firm or solid [11]. main concept of stereo-vision
can be understood from Figure 2.4.

Figure 2.4: Stereo vision concept [11].

With stereo vision one can see an object as solid in three spatial dimensions (i.e.,
width, height and depth or x, y and z). It is the added perception of the depth di-
mension that makes stereo vision so rich and special. With stereo vision, one can see
where objects are in relation to it’s own body with much greater precision, especially
when those objects are moving toward or away from it in the depth dimension. A
person can see a little bit around solid objects without moving his head and he can

9

Chapter 2. State-of-the-Art

even perceive and measure ”empty” space with his eyes and brain [11]. In many of
the cases this kind of vision system is used for ball-tracking task. This specific work
of ”Estimation and prediction of multiple flying balls using probability hypothesis
density filtering [6]” is done using stereo vision system.

2.2.2 Depth-Sensor Based Vision System

This kind of sensors basically work with the principle of structured light. Microsoft R©

Kinect sensor is today’s best known structured light-based 3D sensor. The struc-
tured light approach, is one example of an active non-contact scanner; non-contact
because scanning does not involve the sensor physically touching an object’s sur-
face, and active because it generates its own electromagnetic radiation and analyses
the reflection of this radiation from the object. Typically, active non-contact scanners
use lasers, LEDs, or lamps in the visible or infra-red radiation range. Since these
systems illuminate the object, they do not require separate controlled illumination
of the object for accurate measurements. An optical sensor captures the reflected
radiation [11].

Figure 2.5: Depth sensor based vision system concept [11].

Structured light is an optical 3D scanning method that projects a set of patterns
onto an object, capturing the resulting image with an image sensor. Structured light
replaces the previously discussed stereoscopic vision sensor’s second imaging sen-
sor with a projection component. Similar to stereoscopic vision techniques, this
approach takes advantage of the known camera-to-projector separation to locate a
specific point between them and compute the depth with triangulation algorithms.
Thus, image processing and triangulation algorithms convert the distortion of the
projected patterns, caused by surface roughness, into 3D information (Figure 2.5).

10

2.3. Technology-Oriented Works

In the case of Disney’s robot A100 Audio-Animatronics depth sensor based vision
system is used [3].

2.3 Technology-Oriented Works

Robots have been playing catch with humans for years: it is a dynamic, interac-
tion that does not require physical contact with the human while also a techno-
logically complex task. The majority of experimental set-ups reported in literature
on link-flexible robot arms operate only in the horizontal plane. For these systems
gravitational effects are neglected. Recent works are driven by challenges experi-
enced in terrestrial applications, where the non-linear gravitational influence has to
be considered. Over the years the robotic systems used as well as the perception
and planning methods got more and more complex.

2.3.1 Related Works

Jorn Malzahn [2] proposes a control architecture, which enables a multi-link flexible
robot arm under gravitational influence to catch multiple balls sequentially thrown
by a human. A net at the end-effector is utilized to intercept the balls when they pass
the vertically oriented robot plane of motion. The ball detection, tracking as well as
the prediction of the ball intercept location is based on a wall-mounted Kinect RGB-
D sensor. Previously caught balls represent a varying payload, which induces also
dynamic disturbances due to the pendulum motion. These disturbances as well
as the coupled flexible-link vibrations are damped with a model free independent
joint controller. The inverse kinematics approach is based on neural networks and
augmented by an on-line payload estimation. The ball trajectories generated by the
human thrower are not reproducible. There are no selected operating points, but
the trajectory may pass through the robot work-space at any point.

Georg Batz [12] proposes a special approach to accomplish the task: the non-
prehensile catching using single Kinect RGB-D sensor. Jwu-Sheng Hu [13] proposes
a robotic ball catcher with embedded visual servo processor. Servo processor is hav-
ing the powerful parallel computing capability, which is used to track and navigate
a flying ball. Author uses the recursive least square algorithm for trajectory predic-
tion. Planning human-like robot trajectories for catching rapidly moving targets is
a challenging task. Seungsu Kim [14] considers a novel approach to control the tim-
ing of motions when these are encoded with autonomous dynamical systems(DS).
Accurate timing of motion is crucial if a robot must synchronize its movement with
that of a fast moving object. Disney has designed a humanoid robot that can play
catch and juggle with humans. The A100 Audio-Animatronics [3] can catch a ball
and throw it back with a human participant using a Microsoft R© Kinect sensor. Ac-
cording to a video the company released, Disney plans on using similar technology
to make its rides more interactive and realistic. The color and depth cameras on
the Kinect sensor are used to track the colored balls and a Kalman filter or equation
helps predict where they’ll land.

11

Chapter 2. State-of-the-Art

2.3.2 Our Approach

The ultimate goal is to perform a ball catching task directly engaging the physical
robot system with a human partner. However, the main objectives of the proposed
work are divided in to five sub goals: First, to study about suitable vision system
with off-the-shelf technology (i.e., Kinect sensor). Second, to evaluate the available
robotic system’s performance in terms of joints velocity limits and end-effector ve-
locity in Cartesian space. Third, to study the basic estimation methods that can be
used for ball catching task. Fourth, to explore simulation scenario for testing of de-
veloped vision system in ROS platform. Fifth, to study the possible scenario for
integration of developed vision system and manipulator arm control system for ball
catching task. Considering robotic system as an integral part of this work, the pri-
mary objective is to evaluate the performance of the robotic system by performing
several experiments before final integration, for example, the maximum velocity in
joint space and end-effector Cartesian space, that the manipulator arm can attain.
Below are presented the sub goals more precisely.

1. Development of vision system: A suitable vision system should be estab-
lished in order to detect and track the ball. This task is to be accomplished
using a depth sensor, that is available in the laboratory. This vision should be
reliable and robust in the sense that, it should be able to detect the ball under
different circumstances. If the vision system is not robust enough then, it will
be difficult to detect and track a flying ball that will be ultimately used for ball
catching purpose. In order to address the associated problems, several trials
under different environmental conditions are to be carried out for setting a
result oriented application.

2. Development of manipulator arm motion control system: It is worth noting
that for the application ball catching task, it is necessary to evaluate the manip-
ulator arm under different operational conditions. These conditions include,
testing of maximum joint space velocities the arm can attain along with an
overall analysis of end-effector velocity in Cartesian coordinate space. These
experiments are to be carried out for many trials in order to get a concrete in-
formation about the manipulator arm’s capability. This can be termed as the
performance evaluation of the available manipulator arm (i.e., Cyton Gamma
1500) in laboratory.

3. Study of estimation methods: For the purpose of ball catching task, if robust
ball detection and tracking can be done, then it is necessary to estimate ball’s
trajectory along with landing point over a plane of fixed height or inside a cer-
tain volume. Several methods for the purpose of estimation of trajectory exists,
such as polynomial approximation, energy minimization, Kalman filter. Some
of these methods are of concern for the purpose of ball trajectory estimation in
the scope of this dissertation work, considering the task of ball catching by a
robotic arm.

12

2.3. Technology-Oriented Works

4. Simulation scenario: Before implementation of any kind of real-time applica-
tion, it is always required to asses the developed system in a simulation en-
vironment. Simulation environment provides safe and hassle-free implemen-
tation of developed ideas for testing purpose. ROS has some of it’s own sim-
ulation environments such as, rviz and Gazebo. Gazebo simulator provides
real-time environment for simulation purpose and rviz is the basic visualiza-
tion platform that can be used for simulation and planning along with MoveIt!
library. These platforms are to be explored for implementation of developed
applications before real-time implementation. In addition to that MATLAB R©

can also be used for simulation purpose.

5. Integration of developed systems: Ultimate goal of this dissertation work is
the integration of developed individual systems (i.e., vision system and ma-
nipulator arm motion control system) for real-time ball catching task. For this
to happen, several trials are to be done in order to get conclusion about feasi-
bility of the proposed method for this dissertation work.

Estimation of ball trajectory requires good sample at the very beginning of ball
catching task. Depth sensor has it’s internal error like all other sensors, and there
can be other influential factors for error accumulation. Ground truth is a required
for comparison of estimation methods along with the data from depth sensor. For
the purpose of ground truth, a key component of the work is the acquisition of mo-
tion capture data. Motion capture will be performed at the Human Gait Laboratory
(ESSUA-UA) equipped with a gold-standard Vicon Opto-electronic system with 8
infra-red cameras [15]. A standard marker set will be attached to the flying ball for
motion capturing purpose. The three-dimensional coordinates of the markers will
be collected and stored for later analyses. Thus, an important activity will be the
definition of the most adequate experimental protocols with the choice of marker
placement over the ball.

13

CHAPTER 3

Experimental Set-up

This chapter is about the components that are required to carry out experiments
concerning this dissertation work. For the application of ball catching task, it is
required to go for a complete setup and assessment of available features before ex-
perimentation phase. Components can be hardware, software and in this case both
are required to accomplish ball catching task. It requires a robotic manipulator, a
vision system that should be able to give enough information of a flying ball, soft-
ware development tools for the purpose of controlling through program. Software
development tools are meant to control the hardware through programming.

The main hardware components consist of a dexterous robotic arm that is c©Cyton
Gamma 1500 by Robai corporation [16], a Microsoft R© Kinect sensor [17], and a cen-
tral processing unit (PC-based). From the very beginning of the project a few as-
sumptions underlying the work were defined: First, the vision system consists of a
depth sensor which holds a compromise among accuracy, sensing range and price.

In the case of software, according to the requirement of this work, the software
architecture should be based on distributed computation and control type. The key
element for this software architecture is the Robot Operating System5 [18] (ROS),
that provides an extensive list of libraries and tools to create robotic applications.
Other libraries include the OpenNI driver for the depth sensor and the dynamixel
controller for low level control of the manipulator arms, OpenCV [19] inside ROS
for vision system in order to achieve image processing capability.

3.1 Overall System Architecture

In accordance with the overall system architecture, the software architecture is based
on the Indigo version of the ROS framework under Ubuntu 14.04. C/C++ program-

15

Chapter 3. Experimental Set-up

ming language to be used for coordination among all the components. Figure 3.1
illustrates the overall system’s architecture, both in terms of hardware and software
level.

Figure 3.1: Integrated system architecture.

The Hardware used in this thesis includes Cyton Gamma 1500 dexterous robotic
arm and a low cost depth sensor. Both of these hardware can be connected to PC
with USB interface. Cyton Gamma 1500 supports TTL as well as serial mode of com-
munication, where as depth sensor supports USB based communication. The com-
munications protocol between the PC and the Cyton Gamma 1500 robotic system
is established through USB controllers in TTL mode, with a speed limit of approxi-
mately 8000 bps ∼ 4.5 Mbps [20] [21], using the functions provided by the dynamixel
controller to send and receive the commands. The dynamixel is a smart actuator
system developed to be the exclusive connecting joints on a robot or mechanical
structure. Dynamixel motors are designed to be modular and daisy chained on any
robot or mechanical design for powerful and flexible robotic movements.

Among software components ROS works as a primary agent inside Ubuntu plat-
form. OpenCV, dynamixel controller, MoveIt!, rviz, OpenNI and OpenNI tracker, all
constitute together to form a complete software system for ball catching application
by Cyton Gamma 1500 dexterous robotic arm using vision system based on depth
sensor.

16

3.2. Cyton Gamma 1500 Manipulator Arm

3.2 Cyton Gamma 1500 Manipulator Arm

Cyton Gamma 1500 was introduced by Robai Corporation and this model offers in-
creased joint torques compared to other versions. This arm has 7-DOFs and also a
motor to control the gripper. These arms have kinematic redundancy that enables
the placement of the end-effector at a position and orientation in many different
ways. It can be interesting to avoid obstacles or to reach the goal in different con-
figurations but it turns the kinematics of the arm more difficult. Each joint actuator
can provide position, speed, load, voltage and temperature feedback information
and the user is able to configure these parameters using some predefined python
script for dynamixel controllers. Figure 3.2 presents an overall structure and dimen-
sion of 7 DOF Cyton Gamma 1500 manipulator arm.

Figure 3.2: 7-DOF Cyton Gamma 1500 manipulator arm dimensions [22].

Technical Features

In Table 3.1 are described some technical specifications of the Cyton Gamma 1500
manipulator. They are related to physical characteristics such as its weight and
length, to its performance such as its maximum linear speed and repeatability and
also to its electrical and control interface. Joint specifications related to Cyton Gamma
1500 is presented in Table 3.2. Joint angle and joint velocity limits as well as the cor-
responding servos are also presented in Table 3.2. Table 3.3 ,presents two types of

17

Chapter 3. Experimental Set-up

Dynamixel servo MX-28 and MX-64 motors that are used in Cyton Gamma 1500.

Table 3.1: Cyton Gamma 1500 technical specifications [22].

Parameter Specified value
Total weight 3 Kg

Payload at full reach 1200 g
Payload at mid reach 1500 g

Arm length from base to tip 76 cm
Reach 68 cm

Maximum linear speed 45 cm/sec
Maximum speed (free move) 70 cm/sec

Repeatability ± 0.5 mm
Input Voltage 100-240V AC or 12 DC 2A battery

Current 2.5 A max in normal use
Control interface USB or RS485

Total independent joints 7

Table 3.2: Cyton Gamma 1500 joint specifications [22].

Joint name (type) Angle limits
(degrees)

Joint velocity limits
(Degrees/sec)

Servo
model

Shoulder roll - joint 0
(spin)

-150 to 150 75 MX-64

Shoulder pitch - joint 1
(articulate)

-105 to 105 75 MX-64

Shoulder yaw - joint 2
(articulate)

-105 to 105 75 MX-64

Elbow pitch - joint 3
(articulate)

-105 to 105 65 MX-28

Wrist yaw - joint 4
(articulate)

-105 to 105 110 MX-28

Wrist pitch - joint 5
(articulate)

-105 to 105 330 MX-28

Wrist roll - joint 6 (spin) -150 to 150 330 MX-28

18

3.3. Kinect Sensor

Table 3.3: Cyton Gamma 1500 dynamixel servo motor specifications [20] [21].

Servo
model

Servo
resolution
(degrees)

Servo
gear ratio

Position sensor Stall torque
(N.m)

MX-64 0.088 200:1 Contact-less absolute
encoder (12 bit, 360

degree)

6.0 (@ 12V,
4.1A)

MX-28 0.088 193:1 Magnetic
potentiometer (12

bit, 360 degree)

2.3 (@ 12V,
1.5A)

3.3 Kinect Sensor

For long ago, robots and computers were able to process images that are provided by
cameras, and with hard effort, it was possible to extract information about objects.
By processing two dimensional images, three dimensional data are extracted. The
computational cost was high and the precision and quality of the measures were
not good considering invested equipment cost. The 3D sensors, such as the Kinect
sensor shown in Figure 3.3 [23], changed all these with the implementation of depth
sensor along with RGB camera in one small box.

Figure 3.3: An assembled Microsoft XBOX Kinect sensor [23].

It can be considered a special case of 3D sensors, that is based on light coding.
Actually, the technology used in the depth sensor is active triangulation with struc-

19

Chapter 3. Experimental Set-up

tured light. It has a CMOS RGB sensor. This video camera aids in facial recognition
and other detection features by detecting three color components (i.e., red, green,
and blue). Microsoft calls this an ”RGB camera” referring to the color components
it detects.

Technical Features

Kinect sensor is not made up of just one sensor. It has got several components. The
motorized base enables to change the vertical range of acquisition up or down of
± 28◦ as mentioned in Table 3.4. The Figure shows the three main sensor of the
Kinect or better the Kinect sensor’s eyes: two cameras and an Infra-red (IR) projec-
tor. The first component on the left is the IR projector as illustrated in the Figure
3.3, the central components is a Color Complementary Metal Oxide Semiconductor
(CMOS), a simple Red, Green and Blue (RGB) camera with a resolution of 640×480
32-bit color at 30 frames/sec and lastly on the right we have the IR CMOS or the IR
Receiver with a resolution of 320×240 16-bit depth at 30 frames/sec. The device is
also equipped with an array of microphones that permits the Kinect to receive vocal
commands. The multi-array microphone enables acoustic source localization and
ambient noise suppression. The four microphones are disposed in a line, three of
them in the left side and another in the right, all of them placed below of the device.

Table 3.4: Technical specifications of Microsoft XBOX Kinect V1.0 [24].

Sensor item Specification

Viewing angle 43◦ vertical by 57◦ horizontal field of view
Mechanized tilt
range (vertical)

± 28◦

Frame rate (depth
and color stream)

30 frames per second (FPS)

Resolution, depth
stream

QVGA (320×240)

Resolution, color
stream

VGA (640×480)

Audio format 16-kHz, 16-bit mono pulse code modulation (PCM)
Audio input

characteristics
A four-microphone array with 24-bit

analog-to-digital converter (ADC) and
Kinect-resident signal processing such as acoustic

echo cancellation and noise suppression

From Figure 3.4, it is evident that the Kinect sensor is not a single piece device
but it’s composed by a lot of different components and technologies to offer the user
a new entertainment experience that involves different senses.

20

3.4. Software Development Tools

Figure 3.4: A disassembled Microsoft XBOX Kinect sensor [24].

3.4 Software Development Tools

This section is all about the software tools that are required for this dissertation
work. Considering Cyton Gamma 1500, it requires low level interface software tool
for controllers and depth sensor requires a middle-ware for data acquisition. Low
level interface with Cyton Gamma 1500 is accomplished by Dynamixel driver. High
level control can be done either in C++ or python. Dynamixel driver is compatible
with ROS’s latest versions and overall control interface for Cyton Gamma 1500 can
be implemented in ROS using Dynamixel motor package. For the purpose of joint
level control only Dynamixel motor package is enough, but for the mode of inverse
kinematics control, additional tools are needed for the calculation of joint space pa-
rameters from the end-effector Cartesian coordinate. Method of inverse kinematics
calculation can be either analytic or based on numerical methods.

In next subsections are presented some features of the ROS, the OpenNI package
used to acquire data. OpenCV for image processing required for vision system, rviz
for visualization in ROS and OpenNI tracker for human skeleton. ROS was chosen
for this work because of it’s advantage over other platforms such as: it is more ver-
satile, flexible and easier to use. It allows us to create individual processes, which in
turn can communicate between each other through specific kind of messages. Each
process can be programmed using different programming languages. Thus, if it is
necessary to add new functionality or features to the system it is just a matter of
creating a new process and incorporating it to the existing system. OpenNI package
works as a middle-ware between ROS and depth sensor. This allows us to retrieve
images in different format, point-cloud data and information about connected cam-
era. OpenCV enables us to perform image processing task for vision system. rviz
is the visualization tool integrated in ROS, that can be used for vision system or

21

Chapter 3. Experimental Set-up

manipulator arm based visualization either in real-time or in simulation mode.

3.4.1 Robot Operating System Framework

The Robot Operating System (ROS) framework is the unifying element of this project.
It defines the interaction between the Cyton Gamma 1500 manipulator and the
depth sensor, using the functionality already present on the ROS platform and other
software personally developed. ROS is a framework that is widely used in robotics.
The idea is to create functionality that can be shared and used in other robots with-
out much effort. ROS was originally developed in 2007 by the Stanford Artificial
Intelligence Laboratory (SAIL). The platform is now maintained by the open-source
community and Willow Garage.

ROS Programming Environment

Lot of research institutions and companies have started to develop projects and
adapt their products to be used in ROS. With the large increase of the community in
research and development of robotic systems it was noticeable the several difficul-
ties developing software applications for robotic systems. This is mostly due to the
fact that each robot have a particular communication protocol, each camera has a
specific image format and the need that can be acquired data from sensors running
in different computers are some of the many difficulties experienced when there is
the need to develop robot software. In order to solve or minimize this difficulties
Robot Operating System was developed. Table 3.5 presents a comparison between
conventional methods and ROS for robot control.

Table 3.5: Conventional Vs ROS method of robot control.

General Purpose ROS

Explicitely for general purpose Explicitely for Robots
Native language programming language Independent

Sequential architecture Asynchronous distributed
Programming IDE Software framework

Proprietary/open source Open-source BSD license
Heavily coded ROS frameworks are very light

Programs nodes
Communication Messages
Splintered usage Industry-wide and academic

usage

ROS provides interesting and useful features and services such as hardware ab-
straction, simple mechanisms of communication between processes, package man-
agement, software reuse, easy and rapid testing and language independence. Those

22

3.4. Software Development Tools

features made ROS a powerful tool for robotics software development. ROS pro-
grams and libraries that perform a certain function are grouped into packages. In-
side each package are stored source code, libraries, binaries, manifest.xml file, where
the declaration of a packages dependencies over other packages are stored. The
CMakeList.txt file is the one, which contains instructions for the CMake compila-
tion of any package.

Figure 3.5 presents a simple example of message exchanging between three nodes.
Nodes are represented by ellipses and topics are represented by rectangles. This ex-
ample shows three nodes, A, B, and C and three topics, A, B and C. Node A does
not subscribe any message but it is publishing messages on topic A and B. Node
B and C are subscribing to messages of topic B. Node B is publishing messages on
topic C. Node C is subscribing only to topic C for any different task. Each node can
be programmed to publish to a certain topic at a specific frequency and it can be
different in all nodes of the program. This explains that the exchange of complex
messages can be easily managed by ROS framework and also easier to implement.

Figure 3.5: An example of nodes and topics exchanging information.

Communication with the help of nodes and topics is the primary method of
communication between but it has some limitation. First it is unidirectional and
the messages are published to any node that wants to subscribe it and there is no
response. Alternatively, services are bi-directional and implements one-to-one com-
munication. Thus, one node sends information to another and waits for response,
this method is based on server/client topology as shown in the diagram of the Fig-
ure 3.6.

Figure 3.6: Basic services communication mechanism in ROS.

23

Chapter 3. Experimental Set-up

ROS Visualization Tool (rviz)

ROS visualization tool (rviz) is a 3D visualizer for displaying sensor data and state
information from ROS. Using rviz, you can visualize Baxter’s current configuration
on a virtual model of the robot. You can also display live representations of sensor
values coming over ROS Topics including camera data, infra-red distance measure-
ments, sonar data, and more [25].

3.4.2 OpenCV

OpenCV (Open Source Computer Vision) is a library of programming functions for
real time computer vision. It is developed by Willow-Garage, which is also the
organization behind the famous Robot Operating System (ROS).

OpenCV Programming Environment

OpenCV is released under a BSD license and hence it’s free for both academic and
commercial use. It has C++, C, Python and Java interfaces and supports Windows,
Linux, Mac OS iOS and Android. OpenCV was designed for computational ef-
ficiency and with a strong focus on real-time applications. Written in optimized
C/C++, the library can take advantage of multi-core processing. Enabled with
OpenCL, it can take advantage of the hardware acceleration of the underlying het-
erogeneous compute platform. Usage of OpenCV ranges from interactive art, to
mines inspection, stitching maps on the web or through advanced robotics. Some of
the acceptable features of OpenCV over other available tool are given below.

• Speed: OpenCV is basically a library of functions written in C/C++. We are
closer to directly provide machine language code to the computer to get exe-
cuted. So ultimately we get more image processing done for our computers
processing cycles, and not more interpreting. As a result of this, programs
written in OpenCV run much faster than similar programs written in Matlab.
So, OpenCV is very fast when it comes to speed of execution. For example, we
might write a small program to detect people’s smiles in a sequence of video
frames. In Matlab, we would typically get 3-4 frames analyzed per second.
In OpenCV, we would get at least 30 frames per second, resulting in real-time
detection.

• Memory Management: OpenCV is based on C. As such, every time we allo-
cate a chunk of memory we will have to release it again. If we have a loop in
our code where we allocate a chunk of memory in that loop and forget release
it afterwards, we will get what is called a ’leak’. This is where the program will
use a growing amount of memory until it crashes from no remaining memory.
Due to the high-level nature of Matlab, it is ’smart’ enough to automatically
allocate and release memory in the background.

24

3.4. Software Development Tools

• Development Environment: Matlab comes with its own development envi-
ronment. For OpenCV, there is no particular IDE that we have to use. Instead,
we have a choice of any C programming IDE depending on whether we are
using Windows, Linux, or OS X. For Windows, Microsoft Visual Studio or Net-
Beans is the typical IDE used for OpenCV. In Linux, its Eclipse or NetBeans,
and in OSX, we can use Apple’s Xcode.

3.4.3 OpenNI

Open Natural Interaction (OpenNI) is a non-for-profit organization created by Prime-
sense, Willow-Garage, Side-Kick, Asus and Appside in 2010. It has the aim to certify
the compatibility of NI devices such as the Kinect sensor. OpenNI API is an abstract
layer that provides the interface to the physical devices and middle-ware compo-
nents [24]. Figure 3.7 presents generic OpenNI architecture.

Figure 3.7: OpenNI architecture [24].

OpenNI provides compatibility for NI (natural interaction) devices such as the
Kinect sensor and is now an integral part of ROS. The OpenNI community provides
developers with a full range of software tools along with a vivid ecosystem platform
for effective collaboration and promotion that address the complete development
life-cycle of discovery, development and distribution. OpenNI can be installed and
used very easily in a limited time in accordance with ROS.

25

Chapter 3. Experimental Set-up

OpenNI Tracker for Human Skeleton

OpenNI tracker allows one to track a person’s skeleton using a depth sensor. It
also gives the positions, relative to the camera frame, of the person’s head, torso,
hands, knees, elbows, etc. According to the documentation, the positions of the
person’s head, torso, arms, legs, etc. are supposed to be published as TF transforms
obtained from That is, each body part will be considered its own coordinate frame,
and accordingly openni tracker publishes the transformation necessary to convert a
body part coordinate frame to the camera’s coordinate frame. Figure 3.8, presents a
skeleton of human body obtained from depth sensor using openni tracker.

Figure 3.8: Human skeleton from OpenNI tracker.

When the user is detected, one can ask NITE to start looking for it’s skeleton data
(i.e. position of all joints of the person’s body). The ”calibration” (as is this process
called) is fully automatic (no need to make any special poses), however the user
needs to be standing (not sitting/lying) and the sensor should see the majority of
his body. Usually, it is also better if the user is moving (i.e., not standing still). Once
the skeleton is detected, one can get 3D coordinates of all joints of user’s body, with
the exception of joints that are not visible (i.e, if a user’s hand is behind his back).

26

CHAPTER 4

Vision System for Trajectory Estimation of a Flying
Ball

This chapter describes the vision system algorithms developed for estimating the
position of a flying ball in 3D space using a depth sensor (i.e., RGB-D camera). One
key component of the perceptual system is the capability to detect and recognize the
target object - a ball - in a static and controlled environment. Two basic formulations
are evaluated for comparison purposes: detecting the ball through a color-based
algorithm and using the 3D point-cloud available from the Kinect. Visual tracking is
another key problem in the development of the vision-based system. Once detected,
the ball is tracked and localized in 3D, considering the case where the model of the
tracked object is fully known (model-based tracking).

When the ball is in moving state, it becomes more difficult to track. Ball de-
tection is much more easier than tracking, because detection occurs in static-state
and tracking in dynamic-state. It is usual that the sensors give noisy measurements
along with errors due to several internal and external factors. These factors affect
ball tracking severely in-accordance with sensor imperfections. To address the prob-
lem of noisy and erroneous sensor data, Kalman Filter is to be used to estimate and
correct measurements with each new sample of data. Since tracking the flying ball
is a spatiotemporal (belonging to both space and time or to space-time.) process,
Kalman filtering is used for improving trajectory estimation results and robustness.
Trajectory estimation is a necessary and important part of this work. If and only if
the ball detection and tracking is robust enough and works under various circum-
stances, trajectory estimation can be done subsequently. Next sections are dedicated
towards study of trajectory of a flying ball, ball detection and tracking methods and
finally trajectory estimation methods.

27

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

4.1 The Trajectory of a Flying Ball

The trajectory of a flying ball is modeled as a parabola (ballistic model), such that the
only force acting upon it is the gravitational force that points downwards ignoring
air resistance. It pulls the ball straight downwards the entire time when in the air,
while there is no additional force to maintain the horizontal motion because of the
object’s inertia. The result is an accelerated motion in the vertical direction and a
constant motion in the horizontal plane. Thus, one can look on the overall motion of
the ball as an overlapping of the horizontal and the vertical motions, where neither
influences the other. In order to analyze the motion of a ball and implement its
mathematical description in the 2D space, one can use a coordinate system with the
x-axis in the horizontal direction and the y-axis in the vertical direction. At any time
t, the ball’s horizontal and vertical positions are described by the expression 4.1, and
4.2 [26].

distance(m) = v0 · t · cos(θ) (4.1)

height(m) = v0 · t · sin(θ) +
1
2
g · t2 (4.2)

Figure 4.1, presents the basic 2 dimensional projectile motion, with same initial
velocity (i.e., v0), for different values of inclination angle (i.e., θ).

Figure 4.1: Basic 2 dimensional projectile motion, different values of inclination an-
gle considered with same initial velocity.

28

4.1. The Trajectory of a Flying Ball

Figure 4.2, presents the basic 2 dimensional projectile motion, with same inclina-
tion angle (i.e., θ), for different values of initial velocity (i.e., v0).

Figure 4.2: Basic 2 dimensional projectile motion, different values of initial velocity
considered for same inclination angle.

From Figure 4.1 and 4.2, it is evident that the distance covered by projectile com-
pletely depends upon initial velocity v0) and inclination angle (i.e., θ). Where as
height attained by projectile depends upon an additional factor g, the acceleration
of gravity. Maximum height, maximum distance and time of flight are some of the
important parameters, and are described below.

Time of Flight

The total time t , for which the projectile remains in the air is called the time of flight.
Using equation 4.2, by setting height as zero, time of flight can be computed as given
below.

t f =
2 · v0 · sin(θ)

g
(4.3)

Maximum Height of the Projectile

Maximum height of the projectile is the greatest height that the object will reach. The
increase in height will last until vy = 0, that is, described by the following equations:

29

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

Time to reach the maximum height is half of the time of flight and is given by
expression 4.4.

th =
v0 · sin(θ)

g
(4.4)

Using equation 4.4 and 4.2, maximum height can be computed as given below.

hmax =
v2

0 · sin2(θ)

2 · g
(4.5)

Maximum Distance of the Projectile

The horizontal range d of the projectile is the horizontal distance it has traveled
when it returns to its initial height y = 0. Using equation 4.3 and 4.2, where height
becomes zero maximum displacement can be expressed as 4.6.

dmax = v0 · t f · cos(θ) =
v2

0 · sin(2 · θ)

g
(4.6)

4.2 Ball Detection and Tracking

Object detection, segmentation, tracking, and estimation are some of the most im-
portant and challenging fundamental task in the field of computer vision. These are
widely used in machine vision sector for inspection, registration and manipulation
of different kind of tasks. In many cases, robotic arms need some kind of mechanism
to recognize objects to act on them, in an autonomous way. But the algorithms for
object recognition or detection and tracking have many limitations because of the
changes in illumination, occlusion, scales, background and dynamics.

Ball detection and tracking in dynamic state is even more challenging consider-
ing sensor imperfection, environmental factors and computational capability. Two
different methods of ball detection and tracking are used for this dissertation work.
First method uses OpenCV to handle color processing in the images to detect the
ball. Second method of detection and tracking is without color, i.e. using point-
cloud data of work-space acquired from depth sensor. Both of the above stated
methods were implemented and a comparative analysis was performed to evaluate
their limitations.

4.2.1 Color Based Ball Detection and Tracking

One of the easiest way to detect and segment an object in 3D space from an image is
the color based method. Object detection is a critical part in many applications such
as image search, scene understanding, etc.. However, it is still an open problem due
to the variety and complexity of object classes and backgrounds. The object and
the background should have a significant color difference in order to successfully

30

4.2. Ball Detection and Tracking

segment objects using color based method. Hue, Saturation, Value or HSV is a color
model that describes colors (i.e., hue or tint) in terms of their shade (i.e., saturation
or amount of gray) and their brightness (i.e., value or luminance). RGB format is the
way computers treats color, and The HSV color space is quite similar to the way in
which humans perceive color.

In a first step, color image is converted to HSV color-space using OpenCV func-
tionality. This HSV image can be thresholded to extract the desired object. Second, is
to get the center of detected object in a color image and third, is to get 3D coordinate
of the detected object in 3D scene.

Object Detection Concept

To detect a desired object, a color image frame of video is taken and converted to
HSV color-space. This can be done using track-bars initially and then with static
limits. In OpenCV, detecting objects is like finding white object from black back-
ground. So, it must be taken into consideration that the object to be found is white
and background should be black. After thresholding (i.e., partitioning an image into
a foreground and background) the image, some small white isolated objects can
be found in the image. It may be because of the noises in the image or the actual
small objects which have the same color as the main object. These unnecessary small
white patches can be eliminated by applying morphological opening. Morpholog-
ical opening can be achieved by a erosion, followed by the dilation with the same
structuring element. In addition to that, thresholded image may also have small
white holes in the desired object, may be because of the noises in the image. These
unnecessary small holes in the main object can be eliminated by applying morpho-
logical closing. Morphological closing can be achieved by a dilation, followed by
the erosion with the same structuring element.

In this application, Moments’ method is used to calculate the position of the
center of the detected object. In addition to that, noise of the binary image should
be at minimum level to get accurate result.

Computation of the Center of a Detected Object

Moment is a quantitative measure (i.e., descriptor), popularly used in mechanics
and statistics, to describe the spatial distribution of set of points. In most simplistic
terms, moments are set of scalars that provide an aggregated measure of a set of
vectors. The definition of moments is the same across domains of mechanics, statis-
tics, and computer vision. The concept of moment in statistics and mechanics has
been borrowed in computer vision to coarsely characterize the shape of an object in
an image. These moments capture basic statistical properties of the shape, includ-
ing the area of the object, the centroid (i.e., the center (x, and y) coordinates of the
object), orientation, along with other desirable properties. For this particular work
centroid (i.e., center of the detected object), is the only desired parameter and this in-
formation is extracted using OpenCV functions. The spatial moments of of detected

31

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

object m ji are computed using expression 4.7.

m ji =
∑
x,y

(array(x, y) · x j · yi) (4.7)

Where, i,j are the order of moments.
Where, (x̄, ȳ) is the center of the object and are calculated using the expression

4.8 given below.

x̄ =
m10

m00

and

ȳ =
m01

m00
(4.8)

Where, m10 is the 1st order spatial moment around x-axis, m00 is the 0th order cen-
tral moment, and m11 is the 1st order spatial moment around y-axis. Figure 4.3a
and 4.3b, presents a color image of 3D scene and detected object in color image.
In this case a blue ball is considered as the desired object in the 3D scene. Figure
4.3a is the color image of 3D scene and Figure 4.3b is the thresholded image with
morphological operations.

(a) RGB image with a blue ball. (b) Thresholded image with detected ball.

Figure 4.3: Color based ball detection.

Implemented Algorithm for Ball Detection and Tracking

The ball detection and tracking algorithm is implemented in ROS using depth sen-
sor, OpenNI, and OpenCV. Image format in ROS is different from OpenCV. It is
necessary to convert the acquired image (i.e., image in ROS format retrieved with
the help of OpenNI), to OpenCV format. ROS passes around images in its own sen-
sor msgs/Image message format, but this format is not compatible in OpenCV and
needs to be converted, to use images in conjunction with OpenCV.

32

4.2. Ball Detection and Tracking

CvBridge is a ROS library that provides an interface between ROS and OpenCV
as shown in Figure 4.4. CvBridge defines a CvImage type containing an OpenCV
image, its encoding and a ROS header. CvImage contains exactly the same informa-
tion that sensor msgs/Image does, so conversion is possible from one to the other
for the purpose of representation and processing [27]. This image in OpenCV for-
mat, can be processed to detect object and subsequently center of the detected object.

Figure 4.4: Converting ROS image messages to OpenCV images [27].

It should be noted that the center of the detected object is in pixels and not in
metric system. To get ball position in 3D space it is necessary to have more informa-
tion about the work-space. More information about the work-space can be found
in point-cloud data (i.e, produced by depth sensor). After the conclusion of initial
part of center extraction, 3D position of ball can be found using point-cloud data. A
point-cloud is a set of data points in some coordinate system. In a three-dimensional
coordinate system, these points are usually defined by X, Y, and Z coordinates, and
often are intended to represent the external surface of an object. For this to hap-
pen two different topics(i.e., RGB image topic, and point-cloud topic), should be
subscribed with synchronization in time as shown in Figure 4.5.

Synchronization is needed to get ball position at a particular time instant from
these topics. Subscribed point-cloud has 3D coordinates of all the valid points in
work-space. These data can be accessed in real-time to get 3D coordinate of a partic-
ular pixel-index. The relation between 2D pixel index and 3D points are established
using camera calibration parameters [28]. This information can be used to get 3D
coordinate of detected objects center. Figure 4.5 presents implemented algorithm for
this method of ball detection and tracking. Implemented algorithm can be divided
in to four sub steps and these constitute together to form the ball detection algo-
rithm color image and point-cloud given by depth sensor. These four steps are 1)
image acquisition and conversion to OpenCV format, 2) conversion of RGB image
to HSV format and then thresholding it, 3) application of morphological operations
(i.e, dilation and erosion), and object detection using area as a parameter, 4) getting
3D coordinate of the detected object.

33

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

Figure 4.5: Color based ball detection flow chart.

As shown in Figure 4.5, First, the RGB image is acquired using OpenNI (i.e, acts
as a middle-ware) and ROS functionality (i.e, subscribing the RGB image topic) from

34

4.2. Ball Detection and Tracking

depth sensor. This image is converted to OpenCV format using CvBridge [27]. Sec-
ond, this OpenCV format image is converted to HSV format using OpenCV func-
tionality and subsequently thresholded (i.e., partitioning an image into a foreground
and background) for object detection. Third, the thresholded image is processed
with morphological operations (i.e, dilation and erosion) to remove noise and un-
wanted objects. Once noises and unwanted objects are removed, the image can be
filtered using area as a parameter to get the desired object in thresholded image.
Center of the detected object can be found using Moments’ method. Fourth and
final step is to get 3D coordinate from point-cloud data for the center of detected ob-
ject. To get RGB image and point-cloud data at the same time instant, approximate
time synchronization mode is used. In addition to these steps, validity of retrieved
3D coordinates are tested using maximum possible distance of ball between past
and present position, and by not considering the border pixels for detection and
tracking.

Color Based Ball Detection Overall Structure

Color based ball detection and tracking method is implemented in ROS platform.
Figure 4.6 presents overall structure for color based ball detection and tracking
method. The topics ’/camera/rgb/image color’ and ’/camera/depth/points’ are
coming from depth sensor through OpenNI. These two topics are subscribed by
’/vision node’ for further processing. The topic ’/camera/rgb/image color’ is re-
sponsible for RGB image in ROS format and later converted using CvBridge to
get image in OpenCV format inside ’/vision node’. This converted OpenCV im-
age is used to detect ball and subsequently centroid pixel index is calculated. The
topic ’/camera/depth/points’ is used to get 3D coordinate of detected ball in depth
camera-space. Other topics of interest are ’/ballCord’ and ’/ball3D’, these are pub-
lished by ’/vision node’ for further use. The topic ’/ballCord’ will be subscribed by
’/estimation node’ to estimate ball’s landing point over a plane of fixed height. The
last topic ’/ball3D’ is meant to be used by ’/visualization node’ for the purpose of
visualization in rviz in real-time. It must be noted that these two topics(i.e., ’/cam-
era/rgb/image color’, and ’/camera/depth/points’) are subscribed using approx-
imate time-synchronization, so as to get information correctly as shown in Figure
4.5.

Figure 4.6: ROS graph for color based ball detection methods.

35

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

4.2.2 Point-cloud Based Ball Detection and Tracking

As stated earlier that, a point-cloud is a set of data points in some coordinate system.
In a three-dimensional coordinate system, these points are usually defined by X, Y,
and Z coordinates, and often are intended to represent the external surface of an
object.

”The main idea behind this method is to detect any cloud of points isolated,
provided that there are points in cloud around it, but at a distance more than the
specified threshold limit.”

This means that the point-cloud based ball detection and tracking works only if
a set of points in point-cloud found to be isolated (i.e., if there are some points inside
point-cloud), so that these points are completely isolated from other rest portion
of point-cloud given a threshold parameter to check if they are separated or not.
This isolated set of points can be considered as a flying object inside the specified
volume of point-cloud. Other strategies can also be adapted to modify this method
of detection such as, considering only the upper half of isolated cloud to detect
object, this works only if the ball is on the ground.

This is a difficult problem to tackle given the dynamics and speed of a flying
object. The problem is even more difficult when the vision system is not so good
(i.e., point-cloud is not stable or infrared sensor is not good enough to get complete
information about working environment). But, in this case color of the object is not
as issue and hence synchronization problem stands void. To achieve this, given the
properties of a flying ball in the work-space, voxelization of the work-space is done
in an occupancy voxel space rather than considering the whole cloud of points [29].

Point-cloud Grid Voxelization Concept

A ’voxel’ is a tiny box of certain dimension, ’voxel-set’ is a set of voxels and can
be termed as ’mask’ for this work. A ’voxel-grid’ is a set of boxes in space, this
can contain several ’voxel-sets’. The method of voxelization is dividing the whole
work-space in to tiny boxes to get a voxelized grid. Figure 4.7a shows the basic
concept of grid voxelization. In the scope of this work, to maximize the algorithm
execution speed, a specified volume is considered. This volume is the place where
detection and tracking experimentation will be carried out. As volume (i.e., grid
size) for this task is predefined, voxelization is possible with the definition of ball
radius, and mask-size. For example, If a mask is considered to be of 5 × 5 × 5 3D
matrix to be examined, then in all total a mask (i.e., voxel-set) contains 125 voxels,
and it is assumed that the ball is in the central voxel of the mask. Figure 4.7b shows
a voxelized grid. The basic concept is to find voxel that contains cloud of points
and is surrounded by empty voxels (i.e., no cloud of point inside voxel). Number of
voxels in the grid of specific volume fully depends upon ball radius, larger the ball
radius less will be number of boxes (i.e., voxels).

A side-way view of point-cloud from depth sensor is as presented in Figure 4.8a.
It is also evident from figure 4.8a that the separation between planes increases as

36

4.2. Ball Detection and Tracking

(a) Voxels in a grid. (b) Voxel grid.

Figure 4.7: Voxelized grid [29].

the depth from camera increases. Figure 4.8b shows the point-cloud organization,
where the black portions are points without measurement. These points without
measurement can be termed as something of which the IR camera has no informa-
tion or these point are too far from the depth sensor. This may be at a distance out
of range of depth sensor or are shadows of any object.

(a) Perspective projection of Kinect IR camera. (b) Depth sensor point-cloud organization.

Figure 4.8: Kinect point-cloud structure.

37

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

Implemented Voxel Grid Algorithm

The values used for the grid and the mask obviously depend on the size of the
ball to be detected. However, they have to be defined taking into consideration
two main aspects: 1) the grid size must be large enough to allow a real flying ball,
when voxelized, does not become smaller than the space between any two planes.
This issue becomes more hazardous at farther distances; 2) the grid mask must be
large enough to accommodate a volume larger than the ball, since some blurring is
inevitable due to the high speeds achieved by a ball. With this mask approach, it
is expected to rule out false positives from any other object inside the work-space.
Figure 4.9 illustrates a detected ball in point-cloud.

Figure 4.9: Detected ball inside a grid [29].

(a) Point-cloud from depth sensor. (b) Ball detected in cloud of points from depth
sensor.

Figure 4.10: Ball detection in point-cloud using grid voxelization method.

Figure 4.10a shows the generated point-cloud from the depth sensor and Figure
4.10b shows a detected ball exactly at the place where the ball is physically sus-

38

4.2. Ball Detection and Tracking

pended. This method of ball detection and tracking works in a highly non-uniform
environment, because it considers a cloud of points and not single point. Even if the
information provided by depth sensor has error, this method works fairly well. Fig-
ure 4.11 represents the overall flow-chart for point-cloud based ball detection and
tracking.

Below is the pseudo code for implementation of this algorithm [29].

for (Each point-cloud) do
Voxelization of grid
Detection of flying ball in specified volume (use flying object mask)

end for

Figure 4.11: Point-cloud based ball detection flow chart.

39

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

Implemented algorithm can be divided in to three sub steps and these constitute
together to form the ball detection algorithm using only point-cloud data given by
depth sensor. These three steps are 1) point-cloud data acquisition and grid compu-
tation, 2) detection of flying ball using mask, 3) computation of the 3D coordinate of
the detected ball and publish it for further processing.

As shown in Figure 4.11, First, the point-cloud data is acquired using OpenNI
(i.e, acts as a middle-ware) and ROS functionality (i.e, subscribing the point-cloud
topic) from depth sensor. This point-cloud data is used to computed grid (i.e, vox-
elization of the work space) according to ball size and works-pace. Second, this grid
is searched for flying ball using mask ((i.e, a 3D structuring element)). Third, if the
flying ball is found, 3D coordinates of it are computed and published for further
processing. In this case there is no tool available for the purpose of debugging, and
hence rviz is used as a visualization tool for confirmation of ball detection in real-
time. It is worth of mention that, the point-cloud for the detected flying ball is on
the surface and it adds an error. This error can be neglected using a compensation
factor. More details about experimental analysis on ball detection methods will be
discussed in Chapter 6.

Point-cloud Based Ball Detection Overall Structure

Point-cloud based ball detection and tracking method is implemented in ROS plat-
form. Figure 4.12 presents overall structure for point-cloud based ball detection and
tracking method. The topic ’/camera/depth/points’ is used to get cloud of points.
At a later stage this point point-cloud is voxelized knowing the volume. Voxelized
grid is passed through a testing phase using mask (i.e., voxels set) and if any iso-
lated set of points found then center of these points is calculated. Other topics of
interest are ’/ballCord’ and ’/ball3D’, these are published by ’/vision node’ for fur-
ther use. The topic ’/ballCord’ will be subscribed by ’/estimation node’ to estimate
ball’s landing point over a certain plane. The last but not the least topic ’/ball3D’ is
meant to be used by ’/visualization node’ for the purpose of visualization in rviz in
real-time.

Figure 4.12: Point-cloud based ball detection overall structure.

4.2.3 Comparative Analysis of Ball Detection Methods

Two methods of ball detection and tracking were implemented in ROS using depth
sensor. At this stage, it is important to compare these two methods, considering

40

4.2. Ball Detection and Tracking

robustness and other operational characteristics. Figure 4.13a depicts the basic di-
versity of color based ball detection and tracking method. Where as Figure 4.13b
depicts point-cloud based ball detection and tracking methods.

(a) Color based ball detection methods. (b) Point-cloud based ball detection methods.

Figure 4.13: Comparison of implemented ball detection algorithms.

The color based method of detection is divided into two sub-methods, 1) using
RGB image and point-cloud, 2) using RGB and depth image. Figure 4.13a presents
the basic difference between color based detection methods. The rate of RGB im-
age and point-cloud method is 30 Hz (i.e, algorithm execution speed), because of
the point-cloud data. It makes the process slower, because huge amount of data is
handled simultaneously to get point-cloud. The other method (i.e, RGB image and
depth image), runs faster in terms of execution speed. The execution speed is faster
here because of less data handling at a time.

Again, the point-cloud based method of detection is divided into two sub-methods,
1) using only point-cloud, 2) using point-cloud and human skeleton from openni tracker.
Figure 4.13b presents the basic difference between point-cloud based detection meth-
ods. The rate of only point-cloud based method of detection runs at 30 Hz (i.e, al-
gorithm execution speed) after optimization. The other method (i.e, RGB image and
depth image), runs slower in terms of execution speed (i.e, runs at approximately 20
Hz). The execution speed is slower in second case is because of skeleton data.

Color based detection: This method of detection uses both RGB image and
point-cloud for detecting object. In place of point-cloud, depth can also be used
to get 3D coordinate of detected ball. Below are presented some of the basic obser-
vations related to color based detection method.

• Algorithm execution speed doesn’t depend upon size of the ball

• Error in 3D coordinates ∝ Ball distance from depth sensor

Point-cloud based detection: This method of detection uses only point-cloud
for detecting object. At a later stage human skeleton information is added to make

41

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

it more robust and reliable, but this method makes the process slower. Point-cloud
with human skeleton method is more robust because, even if the ball is not in flying
state, it’s coordinates can be computed using human hand joint position from skele-
ton data. With this information about ball position is available before the ball starts
flying. Below are presented some of the basic observations related to point-cloud
based detection method.

• Algorithm execution speed ∝ Size of the ball

• Number of points to detect a flying ball ∝ Size of the ball

• Error in 3D coordinates ∝ Ball distance from depth sensor

• Algorithm execution speed ∝ Grid size

Table 4.1 presents some of the observed characteristics from the previously men-
tioned and implemented methods of ball detection and tracking. From the above
mentioned comparative analysis it is evident that point-cloud based ball detection
and tracking is robust and fast enough (i.e, runs at approximately 30 Hz with fairly
better result in terms of ball detection and tracking) to be used for trajectory esti-
mation and ball-catching application. Where as from Figure 4.13b it is evident that
the point-cloud and human skeleton method is slower, but it gives an upper hand
to the other one if speed of execution is neglected as a constraint while comparing
both the algorithms. In addition to that, another advantage of this point-cloud based
method is that, this method works fairly well in terms of ball detection and tracking
compared to color based ball detection and tracking.

Table 4.1: Comparison of ball detection methods.

Color based ball detection and
tracking

Point-cloud based ball detection and
tracking

Runs at 30 Hz Runs at 30 Hz
Easy to implement not easy to implement

Performance is affected by light
intensity and background

Performance is not affected by light
intensity and background

can be used for balls of different size
without changing the algorithm

can not be used for balls of different
size without changing the algorithm

Algorithm unable to find valid
coordinates of ball sometimes and

gives stray positions as ball position

Algorithm finds valid coordinates of
ball often

Algorithm execution speed doesn’t
change with size of ball

Algorithm execution speed changes
drastically with size of ball

42

4.2. Ball Detection and Tracking

Experimental Analysis of Detection and Tracking Algorithms

From Figure 4.13a, it is evident that the RGB image and depth image method of
ball detection is faster but it’s not worth of concern because RGB and depth image
topics are being published at a rate of 30 Hz. In addition to that, if robustness of this
color based detection method is considered, it gives mixed result. Mixed result in
the sense that the 3D coordinates are not valid (i.e., wrong position ball) when the
ball is in dynamic state. In addition that, this method is affected by external factors
such as background and environment light intensity. Figure 4.14 presents a basic
representation of how external factors influence color based ball detection process.
In Figure 4.14a and 4.14b are the RGB images that are used to detect a blue colored
ball and 4.14c and 4.14d show thresholded image, and how it worked in one case
and failed in another.

(a) Scene-1 with ball. (b) Scene-2 with ball.

(c) Ball not detected. (d) Ball detected.

Figure 4.14: Color based ball detection comparison.
Figure 4.15 show that the 2nd algorithm (i.e, point-cloud based ball detection
method) is less sensitive to external factors in ball detection process. In Figure 4.15a
and 4.15b upper images are the RGB images are shown only to illustrate the set
up (i.e, not used for detection) and 4.15c and 4.15d show detected ball in both the
cases. These images show that the point-cloud based ball detection algorithm is less
sensitive to changes in background and illumination.

43

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

(a) Scene-1 with ball. (b) Scene-2 with ball.

(c) Detected ball in point-cloud Scene -1. (d) Detected ball in point-cloud Scene -2.

Figure 4.15: Point-cloud based ball detection comparison.

Conclusion on Detection Algorithms

From Figure 4.14 and Figure 4.15, it is evident that the point-cloud based detection
method is better than color based detection method. Where as, color based detec-
tion and tracking is easier to understand, implement and works fairly well for static
objects but it is not suitable for objects in motion. Color based detection is highly af-
fected by background and environment light intensity. On other hand point-cloud
based detection and tracking has it’s own limitations. This method of detection
works well if the background is uniform. If the background is not uniform then
this method fails sometimes because it detects something else considering that there
exists some isolated points. In addition to that, execution speed of this algorithm de-
pends upon size of ball, grid size and distance from sensor. But, point-cloud based
method of ball detection is robust enough to be used for ball-catching application.
It should be noted that Kinect has an error of 2.5 cm per meter and if we consider
approximation and detection algorithm errors we end up with more errors. This
accumulated error can extend up to 5-7%.

44

4.3. Trajectory Estimation Methods

4.3 Trajectory Estimation Methods

Estimation of the possible pose (position and orientation) of moving targets has
great significance in terms of defense industry and in the sports arena. If a shoot
aiming at the target is planned, then the estimation problem is not that difficult.
However, if the shoot or throw is not a planned one, then the issue of estimation
becomes difficult task because of several reasons, such as air-drag, angle of throw,
initial velocity etc. There exist several estimation methods that can be used as per re-
quirement, including curve fitting methods [30] and state estimation methods (e.g.,
Kalman filtering [31]).

Catching a flying ball implies to predict its trajectory ahead of time so that to de-
termine the intersection point along this same trajectory. In this work, it is assumed
a known model of the dynamics of the motion by modelling the trajectory of a fly-
ing ball as a parabola (ballistic model). In addition to that, this study is tuned for
spherical objects by estimating only the position of the ball. Whereas, other possible
estimation parameters can be velocity and acceleration along with position. On the
one hand, polynomial approximation and estimation of the parameters can be done
recursively through least squares optimization. In addition to that, to enable real-
time tracking, the model of the ball dynamics is used in conjunction with a Kalman
filter [32] [33]. for online re-estimation of the trajectory and robustness against noise
sensing. Both methods were implemented and then a comparative analysis to find
what they had to offer and of what they lacked of.

4.3.1 Polynomial Approximation Method

The least-squares (LS) method is one of the best-known approaches in solving a
problem of finding the best polynomial approximation to the input samples [34]. It
was originally developed for statistical regression, but nowadays a general concept
of LS approximation is widely used for various applications beyond the statistics.
For this dissertation work, this method of approximation will be used for estimation
of ball position from few past samples.

Linear Regression for St-Line Fitting

Least Squares method of regression for straight line fitting is the simplest one. This
method of fitting is simple not only because it has less number of parameters to
be estimated, but also it requires less number of points for estimation compared to
other fitting methods. Linear regression is a method to best fit a linear equation
(straight line) of the form y(x) = ax + b to a collection of points. The algorithm
basically requires minimization of the sum of the squared distance from the data
points to the proposed line. In addition, although the unsquared sum of distances
might seem a more appropriate quantity to minimize, use of the absolute value re-
sults in discontinuous derivatives which cannot be treated analytically. The square
deviations from each point are therefore summed, and the resulting residual is then

45

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

minimized to find the best fit line. This is achieved by calculating the derivative
with respect to ax ,bx and setting these to zero.

f (ax ,bx) =
n∑

i=1

(
ax · ti + bx − xi

)2
(4.9)

∂ f
∂ax
=

∑ [
2 · (ax · ti + bx − xi) · ti

]
(4.10)

∂ f
∂bx
=

∑ [
2 · (ax · ti + bx − xi) · 1

]
(4.11)

(∑
t2
i

)
· ax +

(∑
ti

)
· bx =

∑ [
ti · xi

]
(4.12)(∑

ti

)
· ax +

(∑
1
)
· bx =

∑ [
1 · xi

]
(4.13)

Above equations can be represented in matrix form as follows.

s20 s10
s10 s00

×

ax
bx

=

s11
s01

(4.14)

Using Cramer’s rule [35], ax ,bx can be found and then a point in trajectory can be
found using following equation at any instant of time ti.

xi = ax · ti + bx (4.15)

Quadratic Regression for Parabolic Curve Fitting

Least Squares method of regression for parabolic curve fitting is an extension to lin-
ear regression. This method of fitting is used to extract three parameters. These
three parameters are extracted so as to fit a parabolic curve. This is also called as
quadratic regression to best fit a quadratic equation (parabolic curve) of the form
y(x) = ax2 + bx + c to a collection of points. The algorithm basically requires min-
imization of the sum of the squared distance from the data points to the proposed
line. This is achieved by calculating the derivative with respect to ax ,bx ,cx and set-
ting these to zero.

f (az,bz,cz) =
n∑

i=1

(
az · t2

i + bz · ti + cz − zi
)2

(4.16)

46

4.3. Trajectory Estimation Methods

∂ f
∂az
=

∑ [
2 · (az · t2

i + bz · ti + cz − zi) · t2
i

]
(4.17)

∂ f
∂bz
=

∑ [
2 · (az · t2

i + bz · ti + cz − zi) · ti
]

(4.18)

∂ f
∂cz
=

∑ [
2 · (az · t2

i + bz · ti + cz − zi) · 1
]

(4.19)

(∑
t4
i

)
· az +

(∑
t3
i

)
· bz +

(∑
t2
i

)
· cz =

∑ [
t2
i · zi

]
(4.20)(∑

t3
i

)
· az +

(∑
t2
i

)
· bz +

(∑
t1
i

)
· cz =

∑ [
ti · zi

]
(4.21)(∑

t2
i

)
· az +

(∑
t1
i

)
· bz +

(∑
1
)
· cz =

∑ [
1 · zi

]
(4.22)

This can be represented in matrix form as follows.

s40 s30 s20
s30 s20 s10
s20 s10 s00

×

az
bz
cz

=

s21
s11
s01

(4.23)

Using Cramer’s rule az,bz,cz can be found and then a point in trajectory can be
found using following equation at any instant of time ti.

zi = az · t2
i + bz · ti + cz (4.24)

4.3.2 Kalman Filter Based Estimation

A Kalman filter can be used to predict the state of a system where there is a lot of
input noise. A state estimation algorithm determines the values of a number of pa-
rameters of a system, such as its position and velocity, from measurements of the
properties of that system. The Kalman filter forms the basis of most state estimation
algorithms used in navigation systems. Its uses include maintaining an optimal
satellite navigation solution, integration of global navigation satellite system (i.e.,
GNSS) user equipment with other navigation sensors, and alignment and calibra-
tion of an inertial navigation system (i.e., INS). State estimation is key to obtaining
the best possible navigation solution from the various measurements available. A
Kalman filter uses all the measurement information input available until a given
moment, not just the most recent set of measurements. Developed around 1960
mainly by Rudolf E. Kalman [36], It was originally designed for aerospace guidance
applications. While it is the optimal observer for system with noise, this only true
for the linear case. A non-linear Kalman Filter can not be proven to be optimal.

47

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

Basic Kalman Filter Equations

Kalman filtering, also known as linear quadratic estimation (LQE), is an optimal
estimator (i.e., infers parameters of interest from indirect, inaccurate and uncertain
observations). It is recursive so that new measurements can be processed as they
arrive. Basic representation of Kalman filter is given by expression 4.25 [32]. Figure
4.16 depicts basic data flow in a Kalman model during estimation process.

System Description
ẋ = Ax + Bu

z = Hx

Time Update
xk+1 = Ax + Bu

Pk+1 = APkAT +Q

Measurement Update
K = PkHT (HPkHT + R)−1

xk+1 = xk +K(yk −Hxk)
Pk+1 = (I −KH)Pk

(4.25)

Figure 4.16: Basic representation of data flow in Kalman filter based process.

Kalman Filter Model for Ball Catching Application

The kinematics of the ballistic object in the re-entry phase is derived under the hy-
potheses of Newton’s laws of motion. The forces acting on the target are gravity. The
effects of drag, centrifugal acceleration, Coriolis acceleration, wind, lift force, and
spinning motion are ignored, due to their small effect on the trajectory as the time of
flight is very small. Another simplifying assumption is related to flat Earth approx-
imation. Having assumed a flat Earth, an orthogonal coordinate reference system
can be used with the concerning variables. Some of the basic projectile equations
presented below, these equations 4.26, 4.37, and 4.28 represent projectile motion in
3 dimensional space.

48

4.3. Trajectory Estimation Methods

x = x0 + vx0 · t (4.26)
y = y0 + vy0 · t (4.27)

z = z0 + vz0 · t +
1
2
· g · t2 (4.28)

Kalman Filter model for ballistic motion [37] can be designed from above stated
equations, according to the requirement of states. A state can a position or velocity
or acceleration. State transition matrix for ball catching application without mass as
a factor is as follows:

A =

1 0 0 dt 0 0
0 1 0 0 dt 0
0 0 1 0 0 dt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(4.29)

State transition matrix with mass as a factor is little bit different and is as follows:

A =

1 0 0 dt − k ·dt2

2·m 0 0
0 1 0 0 dt − k ·dt2

2·m 0
0 0 1 0 0 dt − k ·dt2

2·m
0 0 0 1 − k ·dt

m 0 0
0 0 0 0 1 − k ·dt

m 0
0 0 0 0 0 1 − k ·dt

m

(4.30)

Input control matrix for ball catching application is as follows:

B =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(4.31)

Observation matrix H is the ”link” between a predicted state vector X and measure-
ment vector z, such that z = H X is satisfied. So the observation matrix is a parameter
of filter and generally it doesn’t change.

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(4.32)

49

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

Input matrix is the one that contains controlling parameters such as components of
force or drag.

u =

0
0

0.5 · g · dt2

0
0

g · dt

(4.33)

Kalman Filter Implementation

To implement a Kalman filter model for ball position estimation, it is required to
take some parameters in to consideration. State co-variance matrix changes as the
estimation starts. it contains all the information about last samples. It can be said
that this method of estimation not only depends upon last sample, but also depends
upon all the samples from initialization. Initialized states change with each new
sample but co-variance matrices except state co-variance matrix doesn’t change at
all.

These matrices are initialized at the beginning of process and must be reset to
this initialized value at the end of process. Initialization of state matrix is done
with some reasonable value, so as to get correct estimation as soon as possible. Co-
variance matrices represent the confidence value on the specific parameter, and can
be initialized with guessing. This initialization methods works well if some prior
knowledge about the process in terms of sensor imperfection and possible error is
available.

Initialized states, This contains position and velocity in the order of x,vx , y,vy, z,
and vz.

X =

0.5
3.0
0.5
3.0
5.5
3.0

(4.34)

State co-variance matrix P is the initial guess for the co-variance of the states.

P = 1000

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(4.35)

50

4.3. Trajectory Estimation Methods

Matrix Q is the process co-variance.

Q = 0.1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(4.36)

Matrix R is the measurement co-variance.

R = 0.2

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(4.37)

Estimation of the Landing Point

At the very beginning of estimation process, Kalman model starts giving estimated
velocity and position in all the three dimensions. These estimates parameters can be
termed as coefficients of ballistic model as presented in equation 4.26, 4.27, and 4.28.
Expression 4.28, with known coefficients can be used to get time of flight by solv-
ing typical quadratic equation. This time of flight is a dynamic parameter, which
depends upon current velocity, current position and landing plane. With time of
flight, current position, and current velocity, landing point in 3D space can be calcu-
lated using expressions 4.26, 4.27, and 4.28.

4.3.3 Comparative Analysis of Trajectory Estimation Methods

Table 4.2 presents a basic comparison between discussed methods for ball trajectory
estimation in terms of implementation.

Two different methods of ball trajectory estimation implemented but it is worth
of a comparative analysis on experimental results of these methods to get an overall
idea of what can be done to make the algorithm better. Both of these methods will
be used for experimental analysis in chapter 6.

51

Chapter 4. Vision System for Trajectory Estimation of a Flying Ball

Table 4.2: Comparison of trajectory estimation methods in terms of implementation.

Kalman filter based estimation Polynomial approximation
Runs at 30 Hz Runs at 30 Hz

Performance is affected by initialized
values

No problem of initialization

Estimates the very next state but, can
be used to estimate up to certain plane

Estimates position at any time but, can
be used to estimate up to certain plane

Estimated error is reduced in every
iteration

No scope of error correction, but
estimated error will reduce if

subsequent measurements are added
for regression

Requires process model Requires information about the type
of curve with which data to be fitted

Suitable for ball catching application Suitable for ball catching application

52

CHAPTER 5

Manipulator Arm Motion Control

The main objectives of this chapter are to explore the possible solutions for the 7-
DOF manipulator arm in terms of forward and inverse kinematics for ball catching
application. Robot motion control applies geometry to the study of the movement
of multi-degree of freedom kinematic chains that form the structure of robotic sys-
tems. The emphasis on geometry means that the links of the robot are modeled
as rigid bodies and its joints are assumed to provide pure rotation or translation
[38]. Kinematics is the study of the mathematics of motion with out considering the
forces that affect the motion. Figure 5.1 presents the basic concept of robot kinemat-
ics in the field of robotics. Where joint values can be in degrees/radians (joint space)
and exactly opposite space contains information about end-effector coordinate and
orientation (Cartesian space) [39].

Figure 5.1: Basic kinematics formulation in the field of robotics.

The dynamixel servomotors provide control actions in a typical position mode
using the actuator’s built-in micro-controller. In addition to that, ROS provides dy-

53

Chapter 5. Manipulator Arm Motion Control

namixel motor package for direct interface with dynamixel servo-motors. This dy-
namixel motor package will be used extensively for low-level control (i.e., control
in joint space). Next section is dedicated towards study of the MoveIt! software
for this dissertation work in order to get possible solution for Cyton Gamma 1500 7
DOF manipulator arm kinematics, to be able to implement manipulator arm motion
control for ball catching application.

5.1 MoveIt! and Robotic Arm Description in ROS

For the application of ball catching, performance evaluation of robotic arm is neces-
sary to get an overall idea of feasibility of proposed work. This performance eval-
uation includes study of kinematics analysis, joint limits, joint velocity limits, end-
effector velocity in Cartesian space and executions rate of motion control algorithm
for manipulator arm motion control. Ball catching task requires high speed percep-
tion and actuation so as to get the work done in a specific time without having prior
knowledge of initial position, and velocity of ball. This requires best performance
form the manipulator to be used.

A robotic manipulator arm with 7 degrees of freedom is flexible enough to reach
any point inside it’s work space. It exhibits infinite redundancy if all the possible
orientations are considered while calculating inverse kinematics. Inverse kinemat-
ics calculation can be done either analytically or based on numerical methods. For
a manipulator of 7 degrees of freedom it is really difficult to implement analytic
method if redundancy is not avoidable. For example, the manipulator arm Cyton
Gamma 1500, with only one orientation it has 100 thousand points inside it’s work
space, where it can reach. For any kind of manipulator arm having infinite redun-
dancy, it is difficult to get inverse kinematics with analytic method. There exist one
such open source library for calculation of inverse kinematics known as MoveIt!
[40].

MoveIt! is a state of the art software for mobile manipulation, incorporating the
latest advances in motion planning, manipulation, 3D perception, kinematics, con-
trol and navigation. It provides an easy-to-use platform for developing advanced
robotics applications, evaluating new robot designs and building integrated robotics
products for industrial, commercial, R&D and other domains. The default kinematic
solver is the KDl solver [41], which is a numerical method based solver. Other in-
verse kinematics solver can also be added easily. Using MoveIt! is easy, but to
implement MoveIt! in ROS, robot model is required for manipulator kinematics.
Before going to motion control analysis, some of the important ROS packages that
are commonly used to build robot models are to be discussed. Robot models are
basically used before and after MoveIt! integration for forward and inverse kine-
matics.

54

5.1. MoveIt! and Robotic Arm Description in ROS

5.1.1 The robot model package

A robot model [42] is that package, which contains all the required information
about joint types, link dimensions, and transforms for whole arm, specified in the
XML Robot Description Format (i.e., URDF (Universal Robot Description Format)).
ROS has a meta package called robot model, which contains important packages
that helps in building the 3D robot models. Figure 5.2 shows the 3D robot model
created using robot model meta package and CAD model for Cyton Gamma 1500
manipulator arm.

Figure 5.2: Cyton Gamma 1500 robot model in rviz.

All the important packages inside robot model meta package are as follows [43]:

• urdf: The oldest in ROS for robot description and one of the important pack-
ages inside the robot model meta package is urdf. The URDF package contains
a C++ parser for the Unified Robot Description Format (URDF), which is an
XML file to represent a robot model. One can define a robot model, sensors,
and a working environment using URDF and can parse it using URDF parser.

• joint state publisher: This tool is very useful while designing robot models
using URDF. This package contains a node called joint state publisher, which
reads the robot model description, finds all joints, and publishes joint values
to all non-fixed joints using GUI sliders.

• kdl parser: Kinematic and Dynamics Library (KDL) is an ROS package that
contains parser tools to build a KDL tree from the URDF representation. The
kinematic tree can be used to publish the joint states and also to forward and
inverse kinematics of the robot.

55

Chapter 5. Manipulator Arm Motion Control

• robot state publisher: This package reads the current robot joint states and
publishes the 3D poses of each robot link using the kinematics tree build from
the URDF. The 3D pose of the robot is published as ROS tf (transform). ROS tf
publishes the relationship between coordinates frames of a robot.

• xacro: Xacro stands for (XML Macros) and one can define how xacro is equal
to URDF plus add-ons. It contains some add-ons to make URDF shorter, read-
able, and can be used for building complex robot descriptions. It is possible to
convert xacro to URDF at any time using some ROS functionality.

5.1.2 Arm Configuration from MoveIt

To be able to use MoveIt!, it is necessary to generate configuration files, that are
compatible with MoveIt!. MoveIt! takes the .urdf file and generates different config-
uration files (i.e., controllers configuration file, arm configuration file In .srdf format,
joint limits file, joint names file, and kinematics file). These files are to be used for
planning, manipulation, kinematics, collision checking, control, and navigation and
are described below.

Controllers Configuration File

This contains list of controllers the arm contains. This will specify the controller
configuration for your robot.

Arm Configuration File in .srdf Format

SRDF is compact term for Semantic Robot Description Format. This format is in-
tended to represent information about the robot that is not in the URDF file, but it
is useful for a variety of applications. The intention is to include information that
has a semantic aspect to it. URDF can be used for specifying only the kinematic and
dynamic properties of a single robot in isolation. URDF can not specify the pose of
the robot itself within a world. It is also not a ”universal” description format since
it cannot specify joint loops, and it lacks friction and other properties. Additionally,
it cannot specify things that are not robots, such as lights, height maps, etc.

On an implementation side, the URDF syntax breaks proper formatting with
heavy attributes which in turns makes URDF more inflexible. There is also no mech-
anism for backward compatibility. SRDF solves all these problems. It is a complete
description for everything from the world level down to the robot level. It is highly
scalable, and extremely easy to add and modify elements. The SRDF format is itself
described using XML, which facilitates a simple upgrade tool to migrate old ver-
sions to new versions. It is also self descriptive. The only reason to use URDF is
because it has been historically used within ROS.

56

5.1. MoveIt! and Robotic Arm Description in ROS

Joint Limits File

joint limits.yaml allows the dynamics properties specified in the URDF to be over-
written or augmented as needed specific joint properties can be changed with the
keys [max position, min position, max velocity, max acceleration]. Joint limits can
be turned off with [has velocity limits, has acceleration limits]

Joint Names File

joint names.yaml contains all the joint names that Moveit! will be using for inverse
kinematics and forward kinematics calculations.

Kinematics File

The kinematics.yaml file generated by the MoveIt! Setup Assistant is the primary
configuration file for kinematics for MoveIt!. The set of available parameters in-
clude:

• kinematics solver: This is the name of our kinematics solver plugin. Note that
this must match the name that we have specified in the plugin description file.

• kinematics solver search resolution: This specifies the resolution that a solver
might use to search over the redundant space for inverse kinematics, e.g. using
one of the joints for a 7 DOF arm specified as the redundant joint.

• kinematics solver time-out: This is a default time-out specified (in seconds)
for each internal iteration that the inverse kinematics solver may perform. A
typical iteration (e.g. for a numerical solver) will consist of a random restart
from a seed state followed by a solution cycle (for which this time-out is ap-
plicable). The solver may attempt multiple restarts - the default number of
restarts is defined by the kinematics solver attempts parameter below.

• kinematics solver attempts: The number of random restarts that will be per-
formed on the solver. Each solution cycle after the restart will have a time-out
defined by the kinematics solver timeout parameter above. In general, it is
better to set this time-out low and fail quickly in an individual solution cycle.

5.1.3 Dynamixel-ROS Interface

The ROS stack for interfacing the dynamixel motor is dynamixel motor. This stack
contains interface for several types of dynamixel motors. The stack consists of the
following packages:

• dynamixel driver: This package is the driver package of dynamixel, which
can do low level Input/Output communication with dynamixel from PC. This
driver has hardware interface for the previously mentioned series of servos
and can do the read/write operation to Dynamixel through this package. This

57

Chapter 5. Manipulator Arm Motion Control

package is used by high level packages such as dynamixel controllers. There
are only few cases when the user directly interacts with this package.

• dynamixel controllers: This is a higher level package that works using the
dynamixel motor package. Using this package, we can create a ROS controller
for each Dynamixel joint of the robot. The package contains a configurable
node, services, and spawner script to start, stop, and restart one or more con-
troller plugins at once. In each controller, we can set the speed and the torque.
Each dynamixel controller can be configured using the ROS parameters or can
be loaded by a YAML file. The dynamixel controllers packages support the
following kinds of controllers:

– Joint Position controllers

– Joint Torque controllers

– Joint Trajectory Action controller

• dynamixel msgs: These are the message definitions which are used inside the
dynamixel motor stack.

Figure 5.3 [20] presents an overall PID structure of dynamixel controller. This
controller model is similar to both MX-28 and MX-64 servo motors.

Figure 5.3: PID control structure for Cyton Gamma 1500 Servos.

This dynamixel controller is the low level controller that directly interacts with
the servo motors of Cyton Gamma 1500 arm. Servo motors of MX-series use the
PID controller as a main control method. P gain refers to the value of proportional
band, I gain refers to the value of integral action, and D Gain refers to the value of
derivative action. Where, gain values are in between 0 to 254. Where Kp,Ki,andKd

58

5.1. MoveIt! and Robotic Arm Description in ROS

are defined as follows [20]:

Kp = P ·
Gain

8

Ki = I ·
Gain · 1000

2048

Kd = D ·
Gain · 4

1000

5.1.4 Moveit and KDL for Inverse Kinematics

Cyton Gamma 1500 is nothing but a chain of dynamixel servos, and can be con-
sidered as a chain of servo motors for kinematics based operations. This kinematic
chain can be presented as a KDL Chain object, and KDL solvers can be used to
compute anything from forward position kinematics, to inverse dynamics. The
kdl parser includes support to construct a KDL chain from a XML of Robot De-
scription Format (URDF) file. Figure 5.4 presents the work space for Cyton Gamma
1500 for only one orientation, inverse kinematics from MoveIt! is used for work
space analysis.

Figure 5.4: Cyton Gamma 1500 work space for a particular orientation.

MoveIt! provides a great flexibility to switch the inverse kinematics algorithms
using the robot plugins. Anyone can write his own inverse kinematics solver as

59

Chapter 5. Manipulator Arm Motion Control

a MoveIt! plugin and switch from the default solver plugin (i.e, KDL) whenever
required. The default inverse kinematics solver in MoveIt! is a numerical Jacobian-
based solver (i.e, KDL solver). It is possible to use it with any number of joints but it
should be noted that with more than 6 DOF, the robot is redundant and there can be
multiple solutions. KDL gives one of the solution, depending on which initial posi-
tion (i.t., seed) it is started. Of-course there are certain positions where singularities
will cause issues in finding solutions but the solver does use a damped least squares
method which should help with some of those situations [43].

It can be seen from Figure 5.4, that 100 thousand points are available for only
one orientation and the robotic arm can reach almost all the positions inside work
space. Compared to the analytic solvers, the numerical solver can take time to solve
Inverse Kinematics. To be able to interface a robotic arm in MoveIt!, one need to
satisfy the components that are mentioned in previous sections. The move group
node essentially requires parameters such as URDF, SRDF, configuration files, and
joint states topics along with TF from a robot to start with motion planning. MoveIt!
provides a GUI based tool called ”Setup Assistant” to generate all these elements.
This tool is used to generate required files for Inverse kinematics implementation.
At this stage, it is tried and tested with real arm to control it in inverse kinematics
mode using move group node and robot model with c++ compatible API’s.

5.1.5 Final Remarks on MoveIt! and KDL

As stated in previous sections, KDL is a numerical method based solver, that is being
is used for calculating inverse kinematics solution. Below are presented some of the
experimental observations.

1. Runs at approximately 5 Hz, as inverse kinematics computation takes more
time.

2. Not easy to implement, because lots of additional files are required by MoveIt!.

3. Arm is more flexible with more Degrees of freedom.

4. Not suitable for ball-catching application with available resource, because it
takes more time for computation.

5. This method of inverse kinematics (i.e., numerical method based solver) com-
putation is suitable for low dynamic operations.

Considering all the above stated observations, it can be concluded that this method
(i.e., MoveIt! for inverse kinematics using KDL solver) of arm motion control is not
suitable for ball catching application with Cyton Gamma 1500 manipulator arm.
From next section on-wards, it is considered that a 3 DOF configuration for Cyton
Gamma 1500 manipulator arm will be used with inverse kinematics solution based
on analytic method.

60

5.2. 3 DOF Manipulator Arm Control System

5.2 3 DOF Manipulator Arm Control System

To be able to control a robotic manipulator, it is essential to know its kinematics. As
stated earlier that, kinematics is the study of the mathematics of motion with out
considering the forces that affect the motion, this section is all about direct kinemat-
ics, and inverse kinematics of 3 DOF configuration for Cyton Gamma 1500 robotic
arm. Direct kinematics is used to obtain position of the end-effector in Cartesian
coordinate frame on the base of the robotic arm by knowing its joint angles. On the
other hand, inverse kinematics is used to know the joint angles that the robotic arm
requires to reach the desired position, without considering the path.

5.2.1 Direct Kinematics

Figure 5.5 presents coordinate frame for Cyton Gamma 1500 in 3 DOF mode. Table
5.1 presents details about DH-parameters for Cyton Gamma 1500 in 3 DOF config-
uration. All other joints, those will not be considered for motion control are blocked
to be able to reduce the 7 DOF manipulator arm to 3 DOF structure.

Figure 5.5: Coordinate frames of Cyton Gamma 1500 in 3 DOF mode.

61

Chapter 5. Manipulator Arm Motion Control

Table 5.1: DH parameters of 3 DOF configuration.

link θi Li di αi

1 90◦ + θ1 0 L1 90◦

2 90◦ + θ2 L2 0 0
3 θ3 L3 0 0

Figure 5.6 presents an overall structure of forward kinematics for Cyton Gamma
1500 robotic arm. Here cyton FK node is the intermediate node just before dy-
namixel manager. The low level control is managed by dynamixel manager. For
7 DOF configuration the manipulator arm is controlled by setting position and ve-
locity for all the available joints. Whereas, for 3 DOF configuration it is done by
setting position and velocity for corresponding joints(3 joints) and all other joints
(i.e., joints that must be stiff), are set to zero position and zero velocity so that they
are blocked from moving. The node robot state publisher can be used for real-time
visualization in rviz. This can be termed as a kind of imitation of real-arm move-
ment in visualization window in real-time.

Figure 5.6: Forward kinematics control structure.

62

5.2. 3 DOF Manipulator Arm Control System

5.2.2 Inverse Kinematics

Usually, the Inverse Kinematics is determined by manipulating the direct kinematics
expression. The expression of θ1, presented in the equation (5.2), can be obtained
using (5.1).

X
Y
=

sin(θ1) · (L2 · sin(θ2) + L3 · sin(θ2 + θ3))
− cos(θ1) · (L2 · sin(θ2) + L3 · sin(θ2 + θ3))

(5.1)

θ1 = arctan*
,

X
−Y

+
-

(5.2)

θ2 can be obtained by manipulating x and z expressions.

X
sin(θ1)

= L2 · sin(θ2) + L3 · sin(θ2 + θ3) (5.3)

Z − L1 = L2 · cos(θ2) + L3 · cos(θ2 + θ3) (5.4)

From expressions 5.2, 5.3, and 5.4, after manipulation the form of k1 · sin(θ) + k2 ·

cos θ = k3 is obtained. This contains an analytic solution and (θ2, θ3, k1, k2, k3) can
be computed as follows:

k1 = 2 · L2 · *
,

Y
sin(θ1)

+
-

OR

2 · L2 · *
,

Y
− cos(θ1)

+
-

(5.5)

k2 = 2 · L2 · (Z − L1) (5.6)

k3 = −L2
3 + L2

2 +
*
,

Y 2

sin(θ2
1)
+
-
+ (Z − L1)2

OR

−L2
3 + L2

2 +
*
,

Y 2

cos(θ2
1)
+
-
+ (Z − L1)2 (5.7)

The solution for θ2 is given by the equation 5.8.

θ2 = atan*
,

k1

k2
+
-
± atan*

,

√
k2

1 + k2
2 − k2

3

k3
+
-

(5.8)

63

Chapter 5. Manipulator Arm Motion Control

The expression of θ3 is given by the equation (5.9).

θ3 = ±*
,

√
k2

2 − k2
3

k3
+
-

(5.9)

5.2.3 Implementation of the Point-to-Point Motion Control

For this dissertation work, point-to-point control mode will be used for manipula-
tor motion control. The point-to-point control mode is usually used used when the
goal is to move the end-effector to a certain position regardless of the path. Fig-
ure 5.7 presents an overall structure of inverse kinematics for Cyton Gamma 1500
arm for motion control in point-to-point control mode. The topic /pubEE publishes
desired position and is subscribed by /cyton JS. The node /cyton JS collects joint
states and publishes them along with desired end-effector in /jointArmData topic.
The node /cyton IK subscribes /jointArmData and computes inverse kinematics
solution. This inverse kinematics solution is used by cyton FK for arm motion in
real-time. The node cyton JS subscribes all the joint states, so as to be able to set
joint velocity for smooth motion. The node /cyton SV calls services to set velocity
for each joint according to joint values subscribed from /jointIkData.

Synchronized control of joint movement is implemented after getting joint dis-
placement from inverse kinematics solver. Each joint has maximum speed limit and
this speed is used for faster movement. Each time the joint displacement is calcu-
lated, maximum velocity for maximum displacement for synchronous mode of op-
eration, so that all the joint start and stop at same time. The node robot state publisher
can be used for real-time visualization in rviz. Advantage of this synchronized
mode of joint control is that, it allows smooth movement and precise control. This
method of control reduces vibration and the arm remains more.

5.2.4 Evaluation of the Manipulator Arm’s Behavior

Robot motion planning is usually done by ignoring dynamics and other differential
constraints and primary focus is on the translations and rotations required to move
the end-effector to desired position with or without considering orientation. This
section is dedicated for analysis of joint velocity, end-effector real position for any
desired target position and relative errors associated during operation. Experimen-
tal tests are conducted with real manipulator arm to test velocity constraints and
goal position error.

Evaluation of the manipulator arm’s motion can be done in many different ways
(i.e., maximum velocity in Cartesian space, maximum velocity in joint space, and
reachability of the end-effector) according to the requirements. In this case, it is im-
portant to evaluate the arm’s capability in terms of maximum velocity in Cartesian
space as well as reachability of the end-effector. It is assumed that the manipula-
tor joints will be operating at maximum speed and hence maximum joint velocity
analysis is not taken into account.

64

5.2. 3 DOF Manipulator Arm Control System

Fi
gu

re
5.

7:
Sy

nc
hr

on
iz

ed
in

ve
rs

e
ki

ne
m

at
ic

s
co

nt
ro

ls
tr

uc
tu

re
.

65

Chapter 5. Manipulator Arm Motion Control

• Random Targets for Reachability Test:

This experiment is done in order to evaluate the reachability of robotic arm to
any random position in a free mode (i.e., the end-effector path is not planned).
This test is done at different frequency of operation. Figure 5.8 presents one of
the test that is conducted at a rate of 1 Hz in order to allow the end-effector to
reach the desired position.

Figure 5.8: Cyton Gamma 1500 arm response to target random position.

From Figure 5.8, it is evident that the robotic arm takes significant amount of
time to reach the goal position. In Figure 5.8, the real position and desired
position of end-effector in X, Y, Z coordinate respectively, and finally the as-
sociated error in Cartesian space is presented. The error associated with this
reachability test is found to be 0.030 ± 0.006 meter. This means that, the arm
takes time to reach the desired goal, but the associated error is acceptable con-
sidering manipulator arm and controller imperfections.

• Maximum Velocity in Cartesian Space:

66

5.2. 3 DOF Manipulator Arm Control System

As stated in last part that, the arm is capable of reaching a goal position but,
it is important to analyze end-effector velocity in Cartesian space of robotic
arm, considering joint velocity constraints. Figure 5.9, presents the analysis of
end-effector set-point at any time-instant and real position of end-effector at
that time-instant. It can be seen that the arm takes significant amount of time
to reach the desired position in all the three-axes. This experiment is carried
out at a rate of 0.2 Hz, in order to allow the arm to reach the desired position
without considering time as a constraint. In this case, maximum velocity for
all the working joints are imposed, so as to get exact behavior of arm and faster
movement.

Figure 5.9: Analysis of maximum velocity in Cartesian space of Cyton Gamma 1500
arm.

Table 5.2 presents the velocities associated for different test points and time
taken to reach goal position. From this experiment, it can be concluded that the
arm can move in Cartesian space at a rate of 0.44308 ± 0.052933 meter/second.
considering these specification, ball-catching task can be performed both in
simulation and real-time scenario for further analysis.

Comparative Analysis of Manipulator Arm Motion Control Methods

Two methods are implemented for manipulator arm motion control. These methods
of arm motion control have their own advantages and disadvantages according to
several factors. Table 5.3 contain some of the experimentally observed factors that
affect arm motion control.

67

Chapter 5. Manipulator Arm Motion Control

Table 5.2: Analysis of maximum velocity attained by Cyton Gamma 1500 in Carte-
sian space.

Test
Num-
ber

Initial
Point(x,y,z)

Final
Point(x,y,z)

Displacement
(ms)

Time
Taken

(s)

End-
effector
velocity

(m/s)

1 0.30, -0.30, 0.40 -0.30, -0.30, 0.40 0.60 1.30 0.46

2 -0.30, -0.30, 0.40 0.20, -0.20, 0.40 0.51 1.25 0.41

3 0.20, -0.20, 0.40 -0.20, -0.20, 0.40 0.40 1.00 0.40

4 -0.20, -0.20, 0.40 0.20, -0.30, 0.40 0.41 1.18 0.35

5 0.20, -0.30, 0.40 -0.20, -0.30, 0.40 0.40 1.00 0.40

6 -0.20, -0.30, 0.40 0.40, -0.20, 0.40 0.61 1.35 0.45

7 0.40, -0.20, 0.40 -0.40, -0.20, 0.40 0.80 1.75 0.46

8 -0.40, -0.20, 0.40 0.30, -0.20, 0.40 0.70 1.55 0.45

9 0.30, -0.20, 0.40 -0.30, -0.20, 0.40 0.60 1.42 0.42

10 -0.30, -0.20, 0.40 0.40, -0.40, 0.40 0.73 1.60 0.45

11 0.40, -0.40, 0.40 -0.40, -0.40, 0.40 0.80 1.50 0.53

12 -0.40, -0.40, 0.40 0.30, -0.30, 0.40 0.71 1.33 0.53

Table 5.3: Comparison of manipulator arm motion control methods.

Arm motion with 7 DOF Arm motion with 3 DOF

Runs at 5 Hz Runs above 30 Hz

Not easy to implement Easy to implement

Performance is affected by inverse
kinematics calculation rate

Performance is not affected by inverse
kinematics calculation rate

Arm is more flexible with more DOF Less flexible in comparison to 7 DOF

Inverse kinematics is calculated using
numerical method

Inverse kinematics is calculated
analytically

Not suitable for ball-catching
application with available resource

Suitable for ball catching application

Suitable for low dynamic operations Suitable for highly dynamic
application

68

CHAPTER 6

Experimental Results

The purpose of this chapter is to present the experiments conducted, the prin-
cipal results obtained and the major conclusions in terms of overall system’s per-
formance. First, to perform real experiments a calibration process to align the arm
and the sensor is necessary and the implemented procedures are described in this
chapter. Second, the vision and the robot arm systems are evaluated separately to
measure the performance of the proposed solutions. Finally, a set of experiments
are conducted using depth sensor raw-data (i.e., ball in real flight), taken from mea-
surements in the real scenario, combined with a custom simulator (MATLAB R©). The
main goal is to evaluate the overall system with the integration of vision and robot
motion in a simulation environment, but based on vision prerecorded data. From
the very beginning of the project, it was assumed that more important than the rate
of success with the real robot, it would be preferable to analyze and evaluate the
conditions and range of open parameters that are necessary to perform a success-
ful ball catching task. These open parameters are time of flight, maximum height
attained by ball, initial velocity, inclination angle and distance of subject from the
depth sensor.

6.1 Ball Catching Scenario and Calibration Process

To validate depth sensor data as a robust data, it is necessary to evaluate it using
some ground truth data. For this dissertation work, system validation was per-
formed using a Vicon system. Vicon system [15] [44] is best known for its accurate
motion capture mechanism, where 8 infrared cameras are simultaneously capturing
movement of an object through placed markers. For the purpose of comparison of
depth sensor and Vicon data.

69

Chapter 6. Experimental Results

6.1.1 Ball Catching Scenario

An overview of all the elements of the ball catching experiment (robotic arm, depth
sensor, subject launching the ball, in which the respective coordinate frames are
represented) is presented in Figure 6.1. The distance between ground and the origin
of robotic arm is 1.62 m. Depth sensor is placed just above robotic arm. It can be
seen that, the robotic arm is in a hanging state.

Figure 6.1: Ball catching scenario. Note: The 3D axes shown in RGB refer to XYZ
in a sequential manner. In addition to that, the cross symbol denotes axis negative
direction towards user, and dot symbol denotes axis positive direction towards user.

Below are presented some of the constraints and observations according to the
implemented vision system using depth sensor.

• The prediction of the flying trajectory starts once the ball leaves the subject’s
hand (the ball must be isolated from any other object). This corresponds to an
approximate distance of about 4.0 3.5 meter from the robot and depth sensor.

• The average flying time for several experiments conducted with the depth sen-
sor is found to be 0.933 ± 0.107 second, considering throw from different angle
and different height. This average time of flight is calculated using several
experimental measurements obtained from implemented vision system.

• The average time period for which the depth sensor can see the ball from sev-
eral experimental measurements found to be 0.682 ± 0.061 second, considering
throw from different angle and different height.

6.1.2 Calibration Process

For the ball catching task, the Kinect-sensor and the robot arm must be calibrated,
i.e., their positions and orientations must be well-characterized. The pose of the

70

6.1. Ball Catching Scenario and Calibration Process

camera must be known relative to the robot’s arm in order to be able to perform the
task precisely and to allow a rigorous off-line analysis as well. Not only the depth
sensor has to be calibrated with respect to the manipulator arm, but the sensors,
depth sensor and Vicon system, have to be calibrated to each other. Otherwise, the
evaluation of the ball detection algorithm could fail when combining data from the
two sensors for analysis purposes.

In robotics applications, different coordinate systems can be used to define where
robots, sensors, and other objects are located. In general, the location of an object in
3-D space is defined by its position and orientation with respect to a certain frame
of reference. There are multiple possible representations for these quantities, some
of which are specific to certain applications. Translation and rotation are alternative
terms for position and orientation. There are several methods that can used for
calibration between different sensors or sensor and a robotic arm.

Transformation between one coordinate frame to another basically can be de-
fined in two ways, 1) Using Translation and Rotation representation or 2) using
Quaternions. For this particular dissertation work, two different systems that are to
be calibrated to get transform from one to another or the other way around. These
two different systems are Kinect-Vicon for the purpose of comparison and Kinect-
Cyton for ball catching application. The two calibration process for these two sys-
tems are presented below:

Depth sensor-Vicon

The Vicon is one of the most accurate system for motion capture purposes and is
used as ground truth to evaluate robustness of depth sensor data. In this case, to get
the transformation matrix between depth sensor and Vicon system, three Vicon IR
markers are placed on different parts of the depth sensor as shown in Figure 6.2.

Figure 6.2: Markers over Kinect sensor for calibration. Note: The 3D axes shown
in RGB refer to XYZ in a sequential manner. In addition to that, the cross symbol
denotes axis negative direction towards user, and dot symbol denotes axis positive
direction towards user.

Coordinates of these markers are obtained with respect to Vicon system frame of
reference. This position and orientation subsequently used to get transform between

71

Chapter 6. Experimental Results

these two systems and are presented by expression 6.1 and 6.2.

VT K =

0.83141 0 −0.55565 1.2421
0.55565 0 0.83141 −1.4319

0 −1 0 1.1009
0 0 0 1

(6.1)

KTV =

0.83144 0.55562 0 −0.23711
0 0 −1 1.1009

−0.55562 0.83144 0 1.8807
0 0 0 1

(6.2)

Where, VTK is the transform matrix from Vicon frame to depth sensor frame
and KTV is the transform matrix from depth sensor frame to Vicon frame. Table 6.1
presents an analysis of robustness of depth sensor data with respect to Vicon system
measurements.

Table 6.1: Kinect sensor and Vicon system calibration analysis.

Test
num-
ber

Actual
distance

from Kinect
(mm)

Distance
given by
Kinect
(mm)

Error (mm)
without Kinect
correction (%

Error)

Error (mm) with
Kinect correction

(% Error)

01 2910.4 2882.8 110.83 (3.81) 27.597 (0.95)
02 3111.4 3072.2 124.6 (4.00) 39.241 (1.26)
03 3400 3362.4 129.57 (3.81) 37.606 (1.10)
04 2511.1 2491.5 92.469 (3.68) 19.587 (0.78)
05 2764.5 2736.3 110.15 (3.98) 28.132 (1.01)
06 3201.8 3151.3 141.39 (4.41) 50.479 (1.57)

From Table 6.1, it is evident that after enforcing depth sensor correction factor
error in depth sensor data reduces significantly. Ball positions are recorded by plac-
ing the ball at different positions using Vicon IR marker. These positions are used
for comparative analysis after using transform from depth sensor frame to Vicon
system frame of reference. Ball position is recorded by both the systems simultane-
ously. These correction factors are defined as follows:

• Calculated center of ball is actually on the surface of ball and not exactly in the
center of ball. This error can be reduced by adding an offset in depth data of
depth sensor. This correction factor is used by adding the information of ball’s
radius to the depth sensor depth data.

• Depth sensor has an internal error of 2.5 cm per meter in z-axis of depth optical
frame. This correction factor is enforced by adding a compensation factor of
2.5 cm per meter of the depth sensor depth data.

72

6.1. Ball Catching Scenario and Calibration Process

Kinect-Cyton

The coordinate frames of the depth sensor and the Robotic arm system for inter-
ception of the flying-ball trajectories must be calibrated so as to get transformation
matrix from one frame to another. From Figure 6.3, it can seen that the depth sensor
is placed just above robotic manipulator. To get transformation between depth sen-
sor and robotic manipulator, approximation method (i.e., by using a measurement
tape) is used. By measuring the translations along all three axes and getting rotation
around all three axes, transform is computed. Transform between these two frames
are represented by expression 6.3 and 6.4.

Figure 6.3: Depth sensor to Robotic Arm Transform. Note: The 3D axes shown
in RGB refer to XYZ in a sequential manner. In addition to that, the cross symbol
denotes axis negative direction towards user, and dot symbol denotes axis positive
direction towards user.

KT R =

1 0 0 0
0 0 −1 −0.065
0 1 0 −0.055
0 0 0 1

(6.3)

73

Chapter 6. Experimental Results

RT K =

1 0 0 0
0 0 1 0.055
0 1 0 −0.065
0 0 0 1

(6.4)

Where, KTR is the transformation matrix from depth sensor frame to Robot
frame as presented in expression 6.3, and RTK is the transformation matrix from
Robot frame to Kinect frame as presented in expression 6.4. Coordinate frames for
this transform are presented in Figure 6.3.

6.1.3 Comparative Analysis of Kinect and Vicon Data-set

After Kinect-Vicon calibration and considering Vicon as ground truth, a compara-
tive analysis on trajectories given by depth sensor and Vicon system can be done.
Vicon data is being recorded at a rate of 4 times to depth sensor rate. These data
are synchronized to get exact position of ball with respect to both the systems. The
synchronization is done in space and not in time.

For the purpose of synchronization both the systems (i.e., depth sensor based
application and Vicon system) are started at any instant (i.e., not related to each
other) and ball catching experiment data are recorded. To synchronize these data,
before ball catching experiment, pendulum like swinging task is established. This
swinging task helped greatly for synchronizing depth sensor and Vicon system data.
Figure 6.4, presents the swing-state of ball, that is used for synchronization of depth
sensor and Vicon system data. The peak position of ball from both the data sets are
considered for synchronization by finding a proper delay.

Figure 6.4: Synchronization of depth sensor based application and Vicon system.

74

6.1. Ball Catching Scenario and Calibration Process

Flying ball trajectories are recorded in both the systems simultaneously and is as
shown in Figure 6.5. It can be seen that, the depth sensor based trajectory has less
number of sample with respect to Vicon system and there is an offset-error, which is
systematic in nature.

Figure 6.5: Ball trajectory seen by depth sensor and Vicon system.

Figure 6.6: Error associated with depth sensor with respect to Vicon system.

75

Chapter 6. Experimental Results

The offset error associated with depth sensor data with respect to Vicon system
can be seen in Figure 6.6. From Figure 6.5, it can be seen that the data from depth
sensor is robust, but there is a systematic offset between trajectory seen by depth
sensor and Vicon system. Associated error is 0.10947 ± 0.00463 meter, and it can
be compensated in real-time. With all the available experimental data, it can be
concluded that the vision system with depth sensor works fairly well. In addition
to that, it is also observed that the number of measurements given by depth sensor
is fair enough for trajectory estimation at an early stage (i.e., when ball starts flying).
From now on-wards depth sensor based application will be used for experimental
analysis of ball trajectory estimation with two different methods stated earlier (i.e.,
polynomial approximation, and Kalman filter based estimation).

6.2 Predicting the Ball Trajectory

For the purpose of ball trajectory and landing point prediction, two different meth-
ods are implemented (i.e., polynomial approximation, and Kalman filter based esti-
mation). These methods of prediction are to be analyzed according to experimental
results. The analysis of estimation methods will be done using real data-sets that
are recorded with implemented vision system. Following subsections contain some
of the experimentally obtained results related to ball trajectory, time of flight and
landing point estimation.

6.2.1 ROS Implementation (Nodes and Topics)

The application of ball trajectory prediction along with landing point over a certain
plane is implemented in ROS platform, and the corresponding ROS graph is pre-
sented in Figure 6.7. This application is implemented using point cloud based ball
detection and tracking method. The node detection node is implemented for ball
detection and tracking using point-cloud data. The node estimation node receives
ball coordinates from detection node in real-time and estimates the trajectory us-
ing polynomial approximation or Kalman filter and then publishes estimated land-
ing point. But, this estimated landing point is in depth sensor’s reference frame.
To transform this estimated point to robotic manipulator frame, transform node
takes this estimated landing point and transforms to robotic manipulator’s reference
frame using expression 6.3. The node cyton EE takes this estimated point in robotic
manipulator’s reference frame and treats it as the goal position for ball catching task.

Figure 6.7: Ball trajectory prediction nodes and topics.

76

6.2. Predicting the Ball Trajectory

6.2.2 Evaluation of the Estimation Methods

As stated earlier, two estimation methods are implemented. A plane of fixed height
is considered for ball’s landing plane, where the robot will be trying to catch the ball.
Figure 6.8 presents a basic visualization of real-world scenario, showing the landing
plane of fixed height that is used to estimate ball’s trajectory and it’s landing point.

Figure 6.8: Intersection plane of trajectory.

It can be seen that, the estimated point over the landing plane changes. More
details about estimation are explored in the following section.

Polynomial Approximation

Estimated trajectory from polynomial approximation can be seen in Figure 6.9. It
can be seen that as the number of samples increases, estimation becomes better and
better. But, this method takes more time to give a better estimation and leaves less
time for actuation. This method solely depends upon few past samples, and if the
samples are good enough then the estimation will be really good. But if past samples
are not uniform then the estimation will not be good. Figure 6.9a and 6.9b, present
estimated trajectory of ball from past 8 and 12 samples respectively.

Figure 6.10, shows the associated error with respect to polynomial approxima-
tion. A closer look at the Figure 6.10 gives better understanding about error associ-
ated to this method of trajectory estimation.

77

Chapter 6. Experimental Results

(a) Polynomial approximation with 8 samples. (b) Polynomial approximation with 12 samples.

Figure 6.9: Trajectory estimation with polynomial approximation.

Figure 6.10: Error associated with polynomial approximation.

Kalman Filter Based Estimation

The main idea on which Kalman filter works [32] is, 1) error correction and 2) reduc-
tion of effect of noise over sensor measurement. This method of estimation works
well if the model is well designed and states are initialized with proper values. Fig-
ure 6.11, shows estimation based on Kalman filter and it estimates next state with all
the past information unless it is reset to initialization state. The next estimated state
can be used to compute the landing point. From Figure 6.11, it is evident that the
initial estimation is far away from real-trajectory. But, after addition of some more
samples, the estimation becomes better.

Error associated with Kalman filter based estimation cab seen in Figure 6.12.

78

6.2. Predicting the Ball Trajectory

(a) Estimated trajectory with Kalman filter (side-
view).

(b) Estimated trajectory with Kalman filter (top-
view).

Figure 6.11: Trajectory estimation with Kalman filter.

From Figure 6.12, it can be seen that as more samples are added, associated error
reduces almost exponentially but, at a faster rate. A closer look at the Figure 6.12
gives better understanding about error associated to this method of estimation.

Figure 6.12: Error associated with Kalman filter based estimation.

79

Chapter 6. Experimental Results

Comparative Analysis of Polynomial Approximation and Kalman Filter Based
Estimation

Considering above two estimation methods and in the scope of this dissertation
work, there is another way of thinking is that, if a high performance system (i.e., high
acquisition frame rate, faster computation capability, and highly dynamic manipu-
lator arm) is available, polynomial approximation based estimation can be used. In
that case more time can be given for estimation and less time for actuation. Fig-
ure 6.13, shows a comparative look at the associated error with respect to Kalman
filter based estimation, as well as polynomial approximation. With Kalman filter,
next state can be estimated and then corrective action can be taken, which is not
considered in the case of polynomial approximation.

Figure 6.13: Comparative error analysis of estimation methods.

According to the error analysis results, it can be concluded that, both the estima-
tion methods works fairly well. But, a comparative analysis will provide more de-
tailed conclusion. From Figure 6.13, it can be seen that the estimation error reduces
with time almost exponentially as more samples are added for both the methods.
There is one observation worth of attention is that Kalman filter based estimation
has more error that polynomial approximation method. Below are presented some
conclusions related to experimental observation of estimation methods.

1. Polynomial approximation method works fairly well compared to Kalman fil-
ter based estimation, if and only if past sample vales are considered and not
other factors such as: error correction, sensor imperfection, noise in sensor
measurements. Its worth of mention that, this comparison is not related to
real ball trajectory but, related to depth sensor trajectory.

80

6.3. Computer Simulation of the Ball Catching Task

2. On the other hand, Kalman filter works well but, the error in estimation is sig-
nificantly higher than polynomial approximation method, when comparison
is not related to real ball trajectory but, related to depth sensor trajectory.

3. From 6.12, it is evident that the error associated with Kalman filter is approx-
imately 10 cm in all the observations. But, from Figure 6.6, it can be seen
that the error associated with depth sensor with respect to Vicon system is
also 0.109 ± 0.005 meter. This means that the Kalman filter based estimation
method compensates noisy measurements given by depth sensor.

4. From above observations, it can be concluded that the Kalman filter based
estimation works better than polynomial approximation. Kalman filter based
estimation gives real position of ball, by compensating noise and other sensory
imperfections.

5. By doing a fine tune of co-variance matrices, Kalman filter model can be used
without any compensation and can be termed as a reliable method of estima-
tion over polynomial approximation. A fine tuned model will reduce the esti-
mation time and will give exact estimation of ball’s landing point at an early
stage of estimation process.

6.3 Computer Simulation of the Ball Catching Task

Given the high complexity of the ball catching task, a computer simulation that
attempts to model the real situation is an invaluable tool for analyzing how the
system works and changes behavior according a set of parameters. Rapid testing,
validation and performance optimization can be carried out in simulation before
any implementation in the real hardware. To address this need, a ball-catching sim-
ulator that represents the operation of the overall system over time was developed
in MATLAB R©. This simulator integrates the kinematic models of the Cyton manip-
ulator arm with real data-sets of the depth sensor previously recorded. The focus
of this section is on the description of the computer experiments conducted and
the insights gained into the system’s functioning. It shows the effects of alternative
conditions and courses of action, as well as strategies for successful ball catching.

6.3.1 Spatiotemporal Conditions for Successful Ball Catching

Catching a flying ball is a behavioral task with time constraints for a successful com-
pletion, requiring a trade-off between the time allocated to perception and action.
In general, a longer perception may reduce the uncertainty in perceptual estimates.
However, a longer perception phase leaves less time for action, which results in less
precise movements. This subsection aims to analyze the conditions for a success-
ful catching by changing Spatiotemporal parameters and assuming the maximum
attainable velocity in the robot’s joints. More specifically, this study focuses on the

81

Chapter 6. Experimental Results

impact of the trade-off between the amount of time allocated to perception and the
amount of time remaining for action, assuming ideal parabolic trajectories gener-
ated by the computer.

Work-space

The analysis of trade-off between the time allocated to perception and action can
only be done for a specific work-space where the manipulator arm will be operating.
Figure 6.14, shows the work-space considered for this analysis, at a particular plane
(i.e., 0.45 meter in manipulator arm’s z-axis). The blue portion represents the near by
area of manipulator arm’s end-effector and can be considered as the easily accessible
region for manipulator arm in a limited available time.

Figure 6.14: Work-space for spatiotemporal analysis, this a particular case where the
end-effector of manipulator is placed at (0.00, 0.00, 0.45).

Analysis of Joint Limiting the Time-for-action (TfA)

The robot’s joint limiting the time-for-action (TfA), when the end-effector is required
to move from a predefined initial position to the target positions defined by a grid of
uniformly distributed points inside the work-space (the horizontal plane is defined
for a height above the ground of 1.17 meter) can be analyzed considering different
cases.

Figure 6.15, presents the joint limiting the time-for-action (TfA), where the dif-
ferent colored portion represent different joint of manipulator arm (i.e., red colored

82

6.3. Computer Simulation of the Ball Catching Task

(a) End-effector initial position is at (0.00, 0.00,
0.45).

(b) End-effector initial position is at (0.15, 0.00,
0.45).

(c) End-effector initial position is at (0.15, 0.15,
0.45).

(d) End-effector initial position is at (0.15, -0.15,
0.45).

(e) End-effector initial position is at (0.20, 0.00,
0.45).

(f) End-effector initial position is at (0.20, 0.20,
0.45).

(g) End-effector initial position is at (0.20, -0.20,
0.45).

(h) End-effector initial position is at (0.30, 0.00,
0.45).

Figure 6.15: Representation of the robot’s joint limiting the time-for-action (TfA).

83

Chapter 6. Experimental Results

area for shoulder roll joint, blue colored area for shoulder pitch joint, and green col-
ored area for elbow joint,) in terms of prominent joint for successful catching. The
blue dots signifies that, if the estimated ball position is in those area, then the joint 2
(i.e., shoulder pitch joint) requires maximum time for successful catching. Similarly,
joint 1 and joint 3 will be taking maximum time, if the predicted ball position lies in
red and green area for successful catching respectively. Sub-figures in Figure 6.15,
represent different joint limiting condition for different initial end-effector position.
It can be seen from these figures that, the allocated area for joints are different for all
the cases except mirror positions about y = 0 axis.

Table 6.2, shows the overall analysis related to time-for-action (TfA), considering
different initial end-effector position. It can seen that the Tmean action (s) decreases
proportionally with respect to distance from (0.0,0.0,0.45). It is because of the re-
duction in distance to be covered by end-effector on an average basis to any goal
position inside work-space.

Table 6.2: Analysis of time-for-action (TfA) with respect to initial end-effector posi-
tion.

End-effector
initial position

Distance (m)
from

(0.0,0.0,0.45)

Tmean action
(s)

Tmean action left
(s)

Tmean action right
(s)

0.00, 0.00, 0.45 0.0 1.1489 1.1493 1.1493

0.15, 0.00, 0.45 0.15 0.8825 0.8830 0.8830

0.15, 0.15, 0.45 0.2121 0.9542 1.2681 0.6408

0.15, -0.15, 0.45 0.2121 0.9542 0.6408 1.2681

0.20, 0.00, 0.45 0.20 0.8295 0.8299 0.8299

0.20, 0.20, 0.45 0.2828 0.9065 1.2524 0.5612

0.20, -0.20, 0.45 0.2828 0.9065 0.5612 1.2524

0.30, 0.00, 0.45 0.30 0.7536 0.7539 0.7539

The time Tmean action (s), signifies the average time taken by the manipulator arm
to reach any point inside work-space. Whereas, Tmean action left (s) and Tmean action right
(s), denotes the average time required by the manipulator to move the end-effector
from initial position to reach any of the point in left side and right side of work-space
respectively.

The Figure 6.16, presents the the robot’s capability in terms of time-for-action
(TfA), when the end-effector is required to move from the initial position (i.e., this
is a particular case with end-effector initial position at (0.30,0.0,0.45)) to the pre-
dicted goal position. It can be seen that, the analysis of time-for-action (TfA) is in 2
dimensional space, assuming the manipulator need to operate over a fixed plane.

84

6.3. Computer Simulation of the Ball Catching Task

(a) Time-for-action (TfA) Vs displacement (side-view). The red dotted line signifies the maximum
time available for action, if time of flight is completely given for action to catch a flying ball. The green
line signifies the time available for action, assuming half of the time of flight is given for perception
to catch a flying ball.

(b) Work-space for Time-for-action (TfA) Vs displacement (top-view). The red dotted circle signifies
the area that can be covered by manipulator, if time of flight is completely given for action to catch a
flying ball. The green circle signifies the time available for action, assuming half of the time of flight
is given for perception to catch a flying ball. The red dot signifies initial end-effector position.

Figure 6.16: Available time-for-action (TfA) Vs displacement.

85

Chapter 6. Experimental Results

Figure 6.16a, presents the side view of time-for-action (TfA) analysis. Where as
Figure 6.16b, shows the top view of relation between TfA and displacement by end-
effector of manipulator arm. This shows that the time-for-action (TfA) is inversely
proportional to the displacement made by end-effector. This is done by trajectory
planning, in order to make the end-effector follow the liner path to reach the desired
position. If there is more time available for action then the end-effector can travel
more distance. Considering the average time of flight described in section 6.1.1
as 0.9335 ± 0.10696 second, it is very difficult for this manipulator arm to cover
a distance more than 20 cm. There are exceptions in every case and in this will
be covered in next section of this chapter. It must be noted that, there is time for
perception and action, and if all the time is left for action then there is no time left
for perception. For successful catching, there must be a trade-off between perception
and action time.

Impact of Maximum Height Attained by Ball Over Time-for-action (TfA) and
End-effector Displacement

As mentioned in section 4.1, that the maximum height attained by ball affects time-
of-flight (ToF). This subsection is about an overall analysis of relation between max-
imum height attained by ball and it’s time-of-flight (ToF).

Figure 6.17: Minimum required height for successful displacement of end-effector
(side-view). The red dotted line signifies the maximum time available for action, if
time of flight is completely given for action to catch a flying ball. This is considered
taking experimental setup in to consideration. But, 1 m height is found to be optimal
for proper throw.

86

6.3. Computer Simulation of the Ball Catching Task

The Figure 6.17, presents the the effect of maximum height attained by ball dur-
ing flight over the time-for-action (TfA) and time-for-perception (TfP), when the
end-effector is required to move from the initial position to the predicted goal posi-
tion.

In this case an analysis is done to validate the condition of minimum height re-
quired for successful movement of end-effector from initial position (i.e., this is a
particular case with end-effector initial position at (0.30,0.0,0.45)) to the predicted
goal position. Of course the height attained by ball decides time available for per-
ception and action. It can be said that, if the ball travels with more height, it has
higher time of flight and accordingly the end-effector can make larger displacement.
This shows that the time-for-action (TfA) and time-for-perception (TfP) together de-
pends directly over maximum height attained by ball. This can be understood in
a different way that, if the ball attains a higher position during flight, it will have
longer time of flight. Longer time of flight will be helpful for the perception and ac-
tion process. Hence, if there is more time available for action then, the end-effector
can travel more distance. Form Figure 6.17, it can be seen that the end-effector can
only displace 25 cm approximately considering the available experimental setup
with depth sensor. Figure 6.18, presents top view of work-space for height related
analysis.

Figure 6.18: Work-space for Minimum required height for successful displacement
of end-effector (bottom-view). The red dotted circle signifies the area that the ma-
nipulator can cover, if time of flight is completely given for action to catch a flying
ball. The green circle signifies the optimal area that the manipulator can cover con-
sidering a proper throw. The red dot signifies initial end-effector position.

87

Chapter 6. Experimental Results

Impact of Number of Kinect Samples Over Time-for-action (TfA) and End-effector
Displacement

In line with the analysis of time-for-action (TfA), minimum height required for suc-
cessful catching and possible end-effector displacement, it is also necessary to an-
alyze the effect of number of samples over time-for-action (TfA) and end-effector
displacement. Figure 6.19, presents the the robot’s overall analysis of relation be-
tween number of depth sensor samples and end-effector displacement, when the
end-effector is required to move from the initial position (i.e., this is a particular case
with end-effector initial position at (0.30,0.0,0.45)) to the predicted goal position.

Figure 6.19: Number of Kinect sample Vs displacement (side-view). The red dotted
line signifies the minimum number of Kinect sample required to get a proper esti-
mation. But, 14 or more number of sample is found to be optimal which is denoted
by green line.

From Figure 6.19, it is evident that the end-effector can cover more distance, if
the manipulator arm receives a command to move to the predicted position with
less samples. Again, there is conflict between time-for-action (TfA) and time-for-
perception (TfP). This conflict can only be solved if and only if time-for-action (TfA)
and time-for-perception (TfP) together is less than the time of flight (ToF), in order to
achieve a successful catching task. Figure 6.20, presents the analysis of displacement

88

6.3. Computer Simulation of the Ball Catching Task

in a fixed plane related to the number of samples. If more time is spent on estimation
then, there is less time left for action.

Figure 6.20: Number of Kinect sample Vs displacement (top-view). The red dotted
circle signifies the area that the manipulator can cover considering an estimation
with 10 samples. The green circle signifies the area that the manipulator can cover
considering an estimation with 14 samples. The red dot signifies initial end-effector
position.

6.3.2 Simulated Robot Motion Based on Real Vision Data

The preceding subsection presented a general study focusing on conditions for suc-
cessful ball catching. The study included the evaluation of three performance mea-
sures: (i) the time required to move the arm’s end-effector to a grid of reachable
target points using the maximum joint velocities (time-for-action, TfA), (ii) the re-
quired maximum height that the ball must reach to ensure proper time of flight for
a given time-for-perception (TfP) and (iii) the available number of Kinect samples
for trajectory estimation for a given time-of-flight (ToF). Here, time-for-perception is
defined as the total time for which the difference between two successive estimates
of the catching point is less than a given threshold. All these measures were com-
puted assuming that the ball catching task requires trading-off the time allocated to
perception and action and, most importantly, that only one is possible at a given in-
stant. This means that the more task time is spent sensing, the less task time remains

89

Chapter 6. Experimental Results

for robot’s movement.
In this subsection, a ball catching task is simulated to demonstrate a specific case

in which success is achieved (empirical validation), but considering that moving the
robot’s end-effector is possible during the perceptual estimates. Two additional as-
sumptions are imposed in the computer experiment: First, it is assumed that the
height of the catching plane (i.e., the horizontal plane where the intersection be-
tween the ball and the arm’s end-effector should occur) is the same as the ball’s
initial height (i.e., the first sample taken from the depth sensor). Second, the initial
position of the robot’s end-effector is given by the (x, y, z) coordinates, (0.2, 0.0, 1.0)
(m). The trajectory of the flying ball was selected from a large set of throws recorded
with the depth sensor in the real scenario with random initial positions and veloc-
ities. An off-line data analysis revealed average values for the time-of-flight and
time-for-perception (TfP) using Kalman estimation.

After the ball is launched, the robot’s end-effector moves immediately to a new
target as the prediction of the final catching point improves over time. This inter-
mediate target is selected assuming that a good estimate about the direction of the
horizontal component of the velocity vector (i.e., the vertical plane where the ball
travels) can be obtained initially, for example, based on the hand’s motion of the
subject launching the ball. More specifically, the end-effector of the robot moves to
the target point that minimizes the time-for-action (TfA), from the set of points be-
longing to the intersection line of the vertical plane with the work-space area. Here,
additive noise was added to this estimate associated with noise and measurement
errors.

Then, the predicted catching point is fed as the final target to the robot motion
module when the difference between two successive estimations is less than 2 cm.
Even so, the robot motion is not activated in two circumstances. The first occurs
whenever the target end-effector position lies outside the robot’s reachable volume.
Second, it is possible that the robot cannot reach the target at the desired time. Given
the initial arm configuration and taking into account the Cyton arm’s physical limits
(i.e., maximum joint velocities and accelerations), the inverse kinematics algorithm
solution may allow estimating the time needed to bring the end-effector to the tar-
get.

Figure 6.21 shows the simulation results in the form of three snapshots of the
robot and ball motions. The snapshots are taken for the initial arm configuration
and ball location (left), at the instant in which the perception system provides the
estimation of the catching point (middle) and at the final catching configuration
(right). Figure 6.22 illustrates the time evolution of the robot’s joints, marking the
instants in which the catching point is estimated and that when the robot success-
fully caught the ball.

It is worth mentioning that robot’s joints move with the maximum attainable
velocity, but synchronous motion is not required. Finally, the robot’s end-effector
trajectory according to ball measurements and estimation of catching point is shown
in Figure 6.23.

The estimation of the flying ball can only start when the ball is visible and ends

90

6.3. Computer Simulation of the Ball Catching Task

Figure 6.21: Snapshots of the robot and ball motions taken from the simulator: initial
arm configurations and ball location (left); instant at which the perception system
provides an estimation of the catching point (middle); final catching configuration
corresponding to the (x, y, z) coordinates, (0.25,- 0.22, 1.0) (m) (right)

Figure 6.22: Time courses of the joint angular displacements, marking the instants in
which the catching point is estimated and that when the robot successfully caught
the ball.

91

Chapter 6. Experimental Results

Figure 6.23: Trajectories generated by the robot’s end-effector in response to the
estimated catch point.

Figure 6.24: Reachable space where the Cyton arm is able to intercept the flying ball
if the end-effector is located at the intermediate target when the prediction of the
catching point and time is available.

when the ball leaves the volume (i.e., voxel grid) previously defined. This corre-
sponds to distance about 3.0 m from the robot. As a final evaluation of the possible
success rate when using this strategy for planning the catching motion, it was calcu-
lated the total area, measured in the catching plane, where the ball could land and

92

6.4. Final Remarks

the robot is able to intercept the flying ball. Given the intermediate target calculated
in this particular case, the area is about 10 % of the total available work-space area,
when considering only the left-side, as shown in Figure 6.24.

6.4 Final Remarks

The preceding sections presented an experimental analysis of studied methods for
ball catching application. This includes calibration process, trajectory estimation,
spatiotemporal conditions for successful ball catching, and computer based simu-
lation of ball catching task for feasibility test. In line with the studied topics, some
observations are presented below.

• Calibration of depth sensor and Vicon system was necessary for validation of
measurements given by depth sensor, in order to explore the sensory imperfec-
tions. In addition to that, calibration of depth sensor and Cyton Gamma 1500
manipulator arm is also necessary for integration of developed vision system
and manipulator arm motion control system. This gave an insight to depth
sensor and implemented vision system algorithm accuracy.

• A comparative analysis of estimation methods was necessary for selection of
better one among them, in order to get better estimation in real-time. This anal-
ysis is also carried out considering sensory noise and imperfections. Kalman
filter based estimation gave better result compared to polynomial approxima-
tion method.

• For successful ball catching, it was necessary to study the spatiotemporal con-
ditions for this work. It is worth of mention that, this study provided some
result about suitable conditions for successful ball catching task. It was also an
important aspect to consider how (time-for-action, TfA), time-for-perception
(TfP), and time-of-flight (ToF) are related or should be related for successful
ball catching task. The resulted condition is that, there should be enough time
left from time-of-flight (ToF) for (time-for-action, TfA) after spending some
time for perception.

• Computer based simulation scenario is used for validation of developed sys-
tems, considering manipulator arm constraints and taking real-data from depth
sensor. It was observed that, successful ball catching is possible but only in
some cases.

Integrated System for Real-time Ball Catching Task

The integrated application of ball catching task is implemented in ROS platform and
corresponding ROS graph is presented in Figure 6.25. This an integrated application
and consists both vision system and arm motion control applications.

93

Chapter 6. Experimental Results

Figure
6.25:Integrated

system
controlstructure

for
ballcatching

application.

94

CHAPTER 7

Conclusions

This final chapter is dedicated to discuss the significance of the main results
achieved, to present the final conclusions of the work and perspectives of future
developments.

7.1 Results Discussion

The main objective of this work was to develop computational algorithms to control
the Cyton Gamma 1500 robotic arm to catch a flying ball. This work was divided
into four fundamental parts: first, to study the possible scenario for ball catching
application, second, vision system that is to be used for this ball catching task with
available resources, third, the need of low level control of the robotic arms that allow
to control them using different approaches, fourth, study of spatiotemporal condi-
tions for successful ball catching task and finally the development of a software
architecture for simulation of ball catching application considering the real data-set
from implemented vision system.

Calibration of different associated system was necessary for evaluation of per-
formance of vision system and for the purpose of integration of developed vision
system with manipulator arm motion control system. It is observed that the imple-
mented vision system is robust enough to be used for ball catching task.

It is also observed that the depth sensor works fairly well in the range of 0.8
meter to 4 meter. Out side of this range, error increases significantly and this cre-
ates problem in estimation. Depth sensor’s field of view is limited and that puts a
constraint on distance of ball throwing task.

Implementation of Kalman filter for estimation is found to be suitable with some
advantageous feature and it helped in solving the core problem: noise and sensory

95

Chapter 7. Conclusions

imperfection in its measurements.
To make the implemented vision system a more robust one, human skeleton can

be added so as to get an idea of the ball’s landing vertical plane at an early stage
from the user’s hand movements. This will reduce the time-for-action (TfA) and
subsequently more time can be given for a better perception.

During the course of implementation of motion control algorithm, it was noticed
that the ROS package for 7 DOF configuration is not suitable for ball catching task
because of its sluggish nature. It runs at a rate of 4 ∼ 5 Hz. To solve this prob-
lem, the configuration of manipulator arm is reduced to 3 DOF. This 3 DOF based
configuration solved the problem of algorithm execution rate to a great extent.

Manipulator arm was tested for performance evaluation under different circum-
stances. This provided an overall idea about the dynamic capability of manipulator
arm for the evaluation of feasibility of the ball catching task.

In terms of analysis of spatiotemporal conditions, it is observed that if the height
of thrown ball is more then, the time-of-flight (ToF) increases. Increase in time-of-
flight (ToF) provides more time for time-for-action (TfA) and time-for-perception
(TfP). In addition to that, for better estimation more no of uniform samples are re-
quired, this in turn increases time-for-perception (TfP) and makes ball catching task
difficult. This affects time-for-action (TfA) directly. If better measurement is avail-
able at the very beginning then, the robot can move to exact position at an early
stage.

Considering all the constraints along with manipulator arm limitations in terms
of maximum joint velocity and joint displacement range, it is found that exist some
cases where successful ball catching task is possible.

7.2 Final Conclusion

Globally, the results obtained are acceptable and relevant, even if some refinements,
improvements and extensions are required to improve the system’s performance.
Considering this, following are some of the conclusions can be drawn:

1. Implemented vision system is robust enough to be used for ball catching task.

2. A finely tuned Kalman filter is suitable for estimation, this estimation can be
used for ball catching task.

3. Simulation of implemented vision system based data can be used for analysis
of spatiotemporal conditions.

4. ROS provides an upper-hand in these kind works where distributed control
is necessary considering implementation, control and management of several
processes.

5. Implemented system is suitable for ball catching task, but only under some
circumstances.

96

7.3. Future Work

6. Finally, the vision system performance was satisfactory and the robotic arm
also performed well during performance evaluation.

7.3 Future Work

During the implementation of this project, it was noticed that the system could be
improved by addressing to new features or improving the implemented ones. Given
the current state of development, the perspectives of future work points in the fol-
lowing directions:

1. Kinect version 2 can be used for establishment of better vision system.

2. Fine tuning of implemented Kalman filter can be done to improve the estima-
tion process.

3. System can be modified for a robust control structure with automatic unwanted
error avoidance feature.

4. A new and better robotic manipulator should be used for this kind of task,
because this arm is not rigid enough for highly dynamic applications.

5. Human skeleton and point cloud data can be used simultaneously to get a
better idea about ball’s landing point as soon as possible.

6. Better calibration method can be implemented to get transform between two
coordinate frames in order to reduce error.

7. Before going to any kind of real-time implementation, evaluation of developed
system can be done in virtual environment. In ROS, rviz and Gazebo can be
used for simulation purpose

8. New available version of ROS can be used for this application, as the catkin
based build system still exists.

9. If possible, stereo vision system with better features can be used. This will help
in increasing distance between subject and manipulator arm, subsequently in-
creased time-of-flight (ToF) is possible.

97

References

[1] Michael A. Goodrich and Alan C. Schultz. Human-robot interaction: A survey.
Foundation and Trends in Human-Computer Interaction, 1(3):203 – 275, 2007.

[2] Jorn Malzahn, Anh Son Phung, and Torsten Bertram. A multi-link-flexible
robot arm catching thrown balls. In 7th German Conference on Robotics, Pro-
ceedings of ROBOTIK 2012, Munich, Germany, May 2012. VDE.

[3] Jens Kober, Matthew Glisson, and Michael Mistry. Playing catch and juggling
with a humanoid robot. Technical report, Disney Research, Pittsburgh, PA
15213, USA, 2012.

[4] Jens Kober, Matthew Glisson, and Michael Mistry. Playing catch and juggling
with a humanoid robot. @ONLINE available. https://www.youtube.com/
watch?v=83eGcht7IiI, December 2015.

[5] Institute of Robotics and German Aerospace Center Mechatronics.
Rollin’ justin, dlr. @ONLINE available. http://www.dlr.de/rm/en/
desktopdefault.aspx/tabid-5471/, December 2015.

[6] Oliver Birbach and Udo Frese. Estimation and prediction of multiple flying
balls using probability hypothesis density filtering. IEEE/RSJ International Con-
ference on Intelligent Robots & Systems, 2011.

[7] Berthold Bauml, Thomas Wimbock, and Gerd Hirzinger. Rollin’ justin robot
catches balls tossed in its direction. @ONLINE available. https://www.
youtube.com/watch?v=R6pPwP3s7s4, December 2015.

[8] Seungsu Kim, Ashwini Shukla, and Aude Billard. Catching objects in flight,
lasa, epfl. @ONLINE available. https://www.youtube.com/watch?v=
24TCUZISIdU, December 2015.

99

https://www.youtube.com/watch?v=83eGcht7IiI
https://www.youtube.com/watch?v=83eGcht7IiI
http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-5471/
http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-5471/
https://www.youtube.com/watch?v=R6pPwP3s7s4
https://www.youtube.com/watch?v=R6pPwP3s7s4
https://www.youtube.com/watch?v=24TCUZISIdU
https://www.youtube.com/watch?v=24TCUZISIdU

References

[9] Aude Billard and Daniel Grollman. Robot learning by demonstration, scholar-
pedia, 8(12):3824. @ONLINE available. http://www.scholarpedia.org/
article/Robot_learning_by_demonstration, December 2015.

[10] Kuka Robots. Kuka lbr iiwa, @ONLINE available. http://www.
kuka-lbr-iiwa.com/, December 2015.

[11] Michael Brading, Kenneth Salsman, Manjunath Somayaji, and Aptina Imag-
ing. Using 3d sensors to bring depth discernment to embedded vision apps.
@ONLINE available. http://www.embedded.com, February 2016.

[12] Georg Batz, Arhan Yaqub, Haiyan Wu, Kolja Kuhnlenz, and Martin Buss
Dirk Wollherr. Dynamic manipulation: Nonprehensile ball catching. In 18th
Mediterranean Conference on Control & Automation, Marrakech, June 2010. IEEE.

[13] Jwu-Sheng Hu, Ming-Chih Chien, Yung-Jung Chang, Yen-Chung Chang, Shyh-
Haur Su, Jwu-Jiun Yang, and Chen-Yu Kai. A robotic ball catcher with embed-
ded visual servo processor. In International Conference on Intelligent Robots &
Systems, Taipei, October 2010. IEEE.

[14] Seungsu Kim, Elena Gribovskaya, and Aude Billard. Learning motion dynam-
ics to catch a moving object. In 10th IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids), Marrakech, December 2010. IEEE.

[15] Vicon Motion Systems Ltd. Motion capture systems, @ONLINE available.
http://www.vicon.com/, April 2016.

[16] Robai Corporation. Cyton gamma 1500, @ONLINE available. http://www.
robai.com/robots/robot/cyton-gamma-1500/, October 2015.

[17] Microsoft Corporation. Kinect for xbox 360, @ONLINE available. http://
www.xbox.com/en-US/xbox-360/accessories/kinect, October 2015.

[18] Inc. (OSRF) Open Source Robotics Foundation. Robot operating system, @ON-
LINE available. http://www.ros.org/, October 2015.

[19] Itseez team. Opencv (open source computer vision), @ONLINE available.
http://opencv.org/, November 2015.

[20] ROBOTIS INC. Robotis e-manual v1.27.00, mx-28t / mx-28r, @ONLINE
available. http://support.robotis.com/en/product/dynamixel/
mx_series/mx-28.htm, December 2015.

[21] ROBOTIS INC. Robotis e-manual v1.27.00, mx-64t / mx-64r, @ONLINE
available. http://support.robotis.com/en/product/dynamixel/
mx_series/mx-64.htm, December 2015.

100

http://www.scholarpedia.org/article/Robot_learning_by_demonstration
http://www.scholarpedia.org/article/Robot_learning_by_demonstration
http://www.kuka-lbr-iiwa.com/
http://www.kuka-lbr-iiwa.com/
http://www.embedded.com
http://www.vicon.com/
http://www.robai.com/robots/robot/cyton-gamma-1500/
http://www.robai.com/robots/robot/cyton-gamma-1500/
http://www.xbox.com/en-US/xbox-360/accessories/kinect
http://www.xbox.com/en-US/xbox-360/accessories/kinect
http://www.ros.org/
http://opencv.org/
http://support.robotis.com/en/product/dynamixel/mx_series/mx-28.htm
http://support.robotis.com/en/product/dynamixel/mx_series/mx-28.htm
http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm
http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm

References

[22] Robai Corporation. Cyton gamma 1500 arm specifica-
tions, @ONLINE available. www.robai.com/assets/
Cyton-Gamma-1500-Arm-Specifications_2015.pdf, November
2015.

[23] Andrew Davison. Kinect open source programming secrets, @ONLINE avail-
able. http://fivedots.coe.psu.ac.th/˜ad/jg/nui16/index.html,
November 2015.

[24] Mattia Avancini. Using Kinect to emulate an Interactive Whiteboard. PhD disser-
tation, 2012.

[25] Rethink Robotics. rviz (ros visualization), @ONLINE available. http://sdk.
rethinkrobotics.com/wiki/Rviz, March 2016.

[26] D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics. Wiley Publica-
tions, 9th edition, 2010.

[27] William Woodall. Converting between ros images and opencv, @ONLINE
available. http://wiki.ros.org/cv_bridge/Tutorials/, December
2015.

[28] Nicolas Burrus. Kinect calibration, @ONLINE available. http://nicolas.
burrus.name/index.php/Research/KinectCalibration, April 2016.

[29] Paulo Dias, Joao Silva, Rafael Castro, and Antonio J. R. Neves. Detection of
Aerial Balls Using a Kinect Sensor. Springer International Publishing, May 2015.

[30] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover
printing, tenth gpo printing edition, 1964.

[31] Peter S. Maybeck. Stochastic models, estimation, and control, volume 141 of Math-
ematics in Science and Engineering. 1979.

[32] Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical
report, Chapel Hill, NC, USA, 1995.

[33] Mohinder S. Grewal and Angus P. Andrews. Kalman Filtering: Theory and Prac-
tice with MATLAB. Wiley-IEEE Press, 4th edition, 2014.

[34] Samprit Chatterjee and Ali S. Hadi. Regression Analysis by Example. Wiley Pub-
lications, 5th edition, 2012.

[35] Thomas S. Shores. Applied Linear Algebra and Matrix Analysis. Springer-Verlag
New York, 2007.

[36] Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45,
1960.

101

www.robai.com/assets/Cyton-Gamma-1500-Arm-Specifications_2015.pdf
www.robai.com/assets/Cyton-Gamma-1500-Arm-Specifications_2015.pdf
http://fivedots.coe.psu.ac.th/~ad/jg/nui16/index.html
http://sdk.rethinkrobotics.com/wiki/Rviz
http://sdk.rethinkrobotics.com/wiki/Rviz
http://wiki.ros.org/cv_bridge/Tutorials/
http://nicolas.burrus.name/index.php/Research/KinectCalibration
http://nicolas.burrus.name/index.php/Research/KinectCalibration

References

[37] G. M. Siouris, Guanrong Chen, and Jianrong Wang. Tracking an incoming
ballistic missile using an extended interval kalman filter. IEEE Transactions on
Aerospace and Electronic Systems (Volume:33 , Issue: 1), 1997.

[38] Richard P. Paul. Robot Manipulators: Mathematics, Programming, and Control.
MIT Press, Cambridge, MA, USA, 1st edition, 1982.

[39] P.J. McKerrow. Introduction to Robotics. Electronic Systems Engineering Series.
Addison-Wesley Pub (Sd), May 1991.

[40] Ioan A. Sucan and Sachin Chitta. Moveit!, @ONLINE available. http://
moveit.ros.org, April 2016.

[41] Open Robot Control Software. Kinematic and dynamic solvers, @ONLINE
available. http://www.orocos.org/kdl/UserManual/kinematic_
solvers, April 2016.

[42] Inc. (OSRF) Open Source Robotics Foundation. Robot model, @ONLINE avail-
able. http://wiki.ros.org/robot_model, April 2016.

[43] Lentin Joseph. Mastering ROS for Robotics Programming. Packt Publishing, De-
cember 2015.

[44] Faculty of Human Sciences. 8-camera vicon passive marker system, @ONLINE
available. http://www.psy.mq.edu.au/me2/index.php/about/, April
2016.

102

http://moveit.ros.org
http://moveit.ros.org
http://www.orocos.org/kdl/UserManual/kinematic_solvers
http://www.orocos.org/kdl/UserManual/kinematic_solvers
http://wiki.ros.org/robot_model
http://www.psy.mq.edu.au/me2/index.php/about/

Appendices

105

APPENDIX A

Camera Parameters

This part of appendix contains some of the most important information about
camera that are used either in ROS or in another platform where ever vision system
is used. This sensor msgs is that message which defines meta information for a
camera.

A.1 sensor msgs/CameraInfo Message

It should be in a camera namespace on topic ”camera info” and accompanied by
up to five image topics named:

1. image raw - raw data from the camera driver, possibly Bayer encoded.

2. image - monochrome, distorted.

3. image color - color, distorted.

4. image rect - monochrome, rectified.

5. image rect color - color, rectified.

The image pipeline contains packages (image proc, stereo image proc) for pro-
ducing the four processed image topics from image raw and camera info.. The im-
age geometry package provides a user-friendly interface to common operations us-
ing this meta information. If you want to, e.g., project a 3d point into image coor-
dinates, we strongly recommend using image geometry. If the camera is not cali-
brated, the matrices D, K, R, P should be left zeroed out. In particular, clients may
assume that K[0] == 0.0 indicates of a non-calibrated camera. The meaning of the
camera parameters are described in detail at:

107

Appendix A. Camera Parameters

http://www.ros.org/wiki/image pipeline/CameraInfo

Image acquisition info is defined as follows: Time of image acquisition, camera
coordinate frame ID, where Header timestamp should be acquisition time of image,
Header frame id should be optical frame of camera, origin of frame should be op-
tical center of camera, +x should point to the right in the image, +y should point
down in the image, +z should point into the plane of the image. Camera calibration
Parameters are those values that are usually fixed during camera calibration. Their
values will be the same in all messages until the camera is re-calibrated. Note: self-
calibrating systems may ”re-calibrate” frequently.

The internal parameters can be used to warp a raw (distorted) image to:

1. An un-distorted image (requires D and K)

2. A rectified image (requires D, K, R)

The projection matrix P projects 3D points into the rectified image. The image di-
mensions with which the camera was calibrated. Normally this will be the full cam-
era resolution in pixels and is declared as:

1. uint32 height

2. uint32 width

Intrinsic camera matrix for the raw (distorted) images is the one which . Projects
3D points in the camera coordinate frame to 2D pixel coordinates using the focal
lengths (fx, fy) and principal point (cx, cy). K is a 3x3 row-major matrix of float64[12]
type. K is defined as follows:

K =

f x 0 cx
0 f y cy
0 0 1

By convention, Projection/camera matrix matrix specifies the intrinsic (camera)
matrix of the processed or rectified image. That is, the left 3×3 portion is the normal
camera intrinsic matrix for the rectified image. It projects 3D points in the cam-
era coordinate frame to 2D pixel coordinates using the focal lengths (f xτ, f yτ) and
principal point (cxτ, cyτ) - these may differ from the values in K. Projection matrix
is defined as follows:

P =

f xτ 0 cxτ T x
0 f yτ cyτ T y

0 0 1 0

Operational Parameters define the image region actually captured by the cam-
era driver. Although they affect the geometry of the output image, they may be

108

A.2. sensor msgs/PointCloud2 Message

changed freely without re-calibrating the camera. Region of interest (sub-window
of full camera resolution), given in full resolution image coordinates. A particular
ROI always denotes the same window of pixels on the camera sensor, regardless of
other settings. The default setting of roi (all values 0) is considered the same as full
resolution (roi.width = width, roi.height = height).

A.2 sensor msgs/PointCloud2 Message

This message holds a collection of N-dimensional points, which may contain
additional information such as normals, intensity, etc. The point data is stored as
a binary blob, its layout described by the contents of the ”fields” array. The point
cloud data may be organized 2d (image-like) or 1d (un-ordered). Point clouds or-
ganized as 2d images may be produced by camera depth sensors such as stereo or
Kinect.

Time of sensor data acquisition, and the coordinate frame ID (for 3d points) are
defined by header and frame. 2D structure of the point cloud. If the cloud is un-
ordered, height is 1 and width is the length of the point cloud. Other parameters
such as if the data is dense or bigendian or not are declared.

109

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Dissertation Structure

	State-of-the-Art
	Ball Catching Manipulators
	A100 Audio-Animatronics
	Rollin' Justin
	KUKA LBR Arm

	Vision Systems
	Stereo Vision System
	Depth-Sensor Based Vision System

	Technology-Oriented Works
	Related Works
	Our Approach

	Experimental Set-up
	Overall System Architecture
	Cyton Gamma 1500 Manipulator Arm
	Kinect Sensor
	Software Development Tools
	Robot Operating System Framework
	OpenCV
	OpenNI

	Vision System for Trajectory Estimation of a Flying Ball
	The Trajectory of a Flying Ball
	Ball Detection and Tracking
	Color Based Ball Detection and Tracking
	Point-cloud Based Ball Detection and Tracking
	Comparative Analysis of Ball Detection Methods

	Trajectory Estimation Methods
	Polynomial Approximation Method
	Kalman Filter Based Estimation
	Comparative Analysis of Trajectory Estimation Methods

	Manipulator Arm Motion Control
	MoveIt! and Robotic Arm Description in ROS
	The robot_model package
	Arm Configuration from MoveIt
	Dynamixel-ROS Interface
	Moveit and KDL for Inverse Kinematics
	Final Remarks on MoveIt! and KDL

	3 DOF Manipulator Arm Control System
	Direct Kinematics
	Inverse Kinematics
	Implementation of the Point-to-Point Motion Control
	Evaluation of the Manipulator Arm's Behavior

	Experimental Results
	Ball Catching Scenario and Calibration Process
	Ball Catching Scenario
	Calibration Process
	Comparative Analysis of Kinect and Vicon Data-set

	Predicting the Ball Trajectory
	ROS Implementation (Nodes and Topics)
	Evaluation of the Estimation Methods

	Computer Simulation of the Ball Catching Task
	Spatiotemporal Conditions for Successful Ball Catching
	Simulated Robot Motion Based on Real Vision Data

	Final Remarks

	Conclusions
	Results Discussion
	Final Conclusion
	Future Work

	References
	Appendices
	Camera Parameters
	sensor_msgs/CameraInfo Message
	sensor_msgs/PointCloud2 Message

