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resumo
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As especificacfes das redes de telecomunicac8es de quinta geragéo
ultrapassam largamente as capacidades das técnicas mais modernas de
linearizacédo de amplificadores de poténcia como a pré-distorcao digital. Por
esta razao, esta tese propde um método de linearizagdo alternativo: um pré-
distorcor analégico, a banda base, constituido por uma rede neuronal artificial.
A rede foi treinada usando trés métodos distintos: avaliagao de politica através
de TD(A), otimizac&o por estratégias de evolugdo como CMA-ES, e um
algoritmo original de aproximacdes sucessivas. Apesar do TD(A) néo ter
produzido resultados de simulagéo satisfatorios, os resultados dos outros dois
métodos foram excelentes: um NMSE entre as funcdes de transferéncia
pretendida e efetiva do amplificador pré-distorcido até -70 dB, e uma reducédo
total das componentes de distor¢éo do espetro de frequéncia de um sinal GSM
de teste. Apesar das estratégias de evolucdo terem alcancado este nivel de
linearizacdo apds cerca de 4 horas de execuc¢do continua, o algoritmo original
consegue fazé-lo numa questdo de segundos. Desta forma, esta tese abre
caminho para que se cumpram as exigéncias das redes de nova geracéo.
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abstract

linearization, predistortion, analog predistortion, neural predistortion, neural
network, reinforcement learning, temporal difference, optimization, evolution
strategies, cma-es.

Fifth-generation telecommunications networks are expected to have technical
requirements which far outpace the capabilities of modern power amplifier (PA)
linearization techniques such as digital predistortion. For this reason, this thesis
proposes an alternative linearization method: a base band analog predistorter
consisting of an artificial neural network. The network was trained through three
very distinct methods: policy evaluation using TD(A), optimization using
evolution strategies such as CMA-ES, and an original algorithm of successive
approximations. While TD(A) proved to be unsuccessful, the other two methods
produced excellent simulation results: an NMSE between the target and the
predistorted PA transfer functions up to -70 dB, and the complete elimination of
distortion components in the frequency spectrum of a GSM test signal. While
the evolution strategies achieved this level of linearization after about 4 hours
of continuous work, the original algorithm consistently does so in a matter of
seconds. In effect, this thesis outlines a way towards the meeting of the
specifications of next-generation networks.
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1. INTRODUCTION

The work reported in this dissertation was done, in part, under the supervision of Doctor
Mikko Valkama, of the Tampere University of Technology, Finland. A significant portion of

the text within this document was al so presented to the same institution as a dissertation [1] .

While the requirements and specifications for figneration (5G) mobile systems and
services have yet to be fully defined, some gobth@next generation of mobile networks
are already very clear: a tremendous increaserinamion density and speed (over 1 Gb/s
downlink bit rate) and a similarly significant deese in connection latency (under 1 ms

roundtrip delay) [2].

However desirable, these advancements impose chargeonly on the hardware that
constitutes cellular networks, but on their topglag well. To be able to yield such high bit
rates at such low latencies, cellular base stafiansmitters will need to have wider
operational bandwidths — on the order of 500 td01Biz [3], in contrast to the few tens of
MHz that current base stations possess —, andciratier frequencies will have to be adjusted
to higher regions of the spectrum — reportedlyigh bs 6 to 300 GHz [2].

Radiation at such high frequencies will evidenthyé limiting effects on the propagation of
radio frequency (RF) signals through buildings atygects, thus leading to a structural
change in network architectures: instead of netwamrkerage being provided by central,
hugely encompassing, high power transmitters, il wistead be done through the

deployment of swarms of small, low power, distrézutransmitters [2,4].

Ultimately, all of these changes, from the highgnal bandwidths to the lower power levels
of the transmitting amplifiers, contribute to ongtical outcome: the downfall of digital
predistortion (DPD) as a viable linearization tegae. Not only will the bandwidth of 5G
power amplifiers (PAs) be too wide for the limij@wcessing speed of state-of-the-art digital
processors, but also their own power consumptiampfgtional to their switching
frequency) will be too great compared to the poleeel of the PAs they linearize, thus
defeating any sort of effort for increased powdicefncy — in other words, it would not be
sensible to linearize a 1 W power amplifier witBGW digital processor.

1



Naturally, the need for a means of PA linearizatidhremain: without it, achieving any of
the next-generation (or even current-generatioa)sgmould be impossible. New ideas must,

therefore, be proposed and explored, and that & this dissertation is all about.

1.1. The Dissertation

Extraordinary needs require extraordinary measaes,thus a new line of thinking must
begin. The aim of this dissertation is not to sdhwe problem of replacing 20 years’ worth
of research and technological development on digitadistortion, but to start the discussion

on one way in which it might be possible to do seventually.

This dissertation builds upon analog predistortigkPD), the precursor to digital

predistortion. Due to very significant technicaadcements in digital electronics at the
turn of the century, APD has been mostly put agidavor of DPD. However, a small set
of researchers have realized that the requirenientgext-generation telecommunications
will prove to be insurmountable for DPD, thus prdimg the authoring of new literature on

APD [5-7], albeit at a still relatively slow pace.

Another topic this dissertation builds upon istise of artificial neural networks (ANNS) as
predistortion devices, which has also been explorede past. Most existing publications
on neural predistortion are about DPD [8-10], siaoky recently has it been possible to
implement ANNSs as analog circuits. For this reasioa]iterature on this topic is still lacking
[11,12].

The headline of this work is the linearization @wgr amplifiers using the predistortion
technique, performed at base band using analogemmaitations of artificial neural
networks (ANNSs). Three very distinct methods oirtireg the predistorting ANNs were
tested: policy evaluation using TO( learning, which proved to be unsuccessful,
optimization using evolution strategies such as CEB\ which proved to be very
successful, yet slow; and a novel, custom-maderighgo which proved to be very

successful and exceptionally fast.



2. LINEARITY AND THE LACK THEREOF

Power amplifiers are some of the most fundameniadportant devices in radio frequency
telecommunications, since they are that which quaes an information-carrying signal is
of sufficiently high power level to be successfullgnsmitted by an antenna as small as a

cell phone's or as large as a broadcasting raglims's.

Power amplifiers typically handle large amountpodver (for varying degrees of “large” —
power ratings can vary by several orders of mageitlepending on the application), which
means that power efficiency is of the highest ingruee: if efficiency is low, a cell phone's
battery life may be severely compromised or theatpmal cost of a base station’s cooling
system may become unreasonably high.

On the other hand, if an amplifier is not perfeditear — that is, if it doeanything to the
input signal other than to increase its power I€bekides introducing a constant delay) —,
the information that is supposed to be transmittedugh the succeeding antenna may be
corrupted.

And therein lies the problem. In general, the miorear an amplifier is, the less efficient it
is [13]. For example, a class A amplifier (suchtlas textbook common emitter, single
transistor amplifier) has very high linearity, lautheoretical (absolute maximum) efficiency
limit of 50%. This isn't as unintuitive as it migkdem — consider a class D amplifier, which
is ideally a switch: because it is a switch, it @tiner beon or off, making it extremely
nonlinear; but also because it is a switch, itetbtcal efficiency is 100%, since “an ideal
switch in itson state conducts all the current but has no volkagg across it and therefore
no heat is dissipated, and when ibikit has the full supply voltage across it but nakle

current flowing through it, and again no heat ssghated”.

In short, typical applications demand high effiagrpower amplifiers; because they are
highly power efficient, they are very nonlineardamecause they are very nonlinear, the
amplified signals — as well as the information thayy — are distorted. To solve this, these



amplifiers are linearized in a variety of ways,uléag in a system that is both highly power
efficient and highly linear: the best of both wald

2.1. Linearity: An Intuitive View

Static linearity can be formally defined throughotwlistinct properties: superposition,
F(x; + x,) = F(x;) + F(x,), and first-degree homogeneifi{ax) = aF (x). Essentially,
this means that the net response of a linear syst@mumber of simultaneous inputs is the

sum of the responses of the system to each indilidput.

It is much easier, however, to think of a statieeéir system as one whose input/output
response is, as the name impliesgar: a line. This line cannot have an offset, howesasr,
there should be no output when there is no inpeg. Hgures 2.1 and 2.2 for examples of

linear and nonlinear static input/output responses.

On a more general and formal note, a linear systbmit static or dynamical —, is one whose
variation of its state vector is defined as in (2.1), where is a constant matrix is a

constant vector, and is the input vector.

x = Ax + bu 2.1)

Figure2.1. A linear static system. Figure2.2. Nonlinear static systems.



2.2. Effects of Nonlinearity

It has been established that nonlinearity proddessrtion in signals and has the potential

to corrupt the information they carry. But how $&&wv can that be quantified?

Consider an amplifier whose behavior can be modeyed simple third-order (nonlinear)
polynomial with inputx(t) and outputy[x(t)]: y[x(t)] = ax(t) + ayx(t)? + azx(t)3.
Consider also a signal composed of two close tamesat frequency,; and amplitudes;
and another at frequenay, and amplitudeX,: x(t) = X; cos(w,t) + X,cos(w,t). The
response of the amplifier to the signal is the sfirarious tones at the following frequencies
[14]:

Base-band:w, — w;

Coincident with the signalw, , w,

In-band distortion:w; , w, , 2w; —wW, , 20w, — wWq

2nd harmonic2w, , w, + w; , 2w,

3rd harmonic:3w; , 2w; + w, , Wy + 2w, , 3w,

Clearly, the response of the amplifier is not arplfied version of its input, otherwise the

output tones would only be those coincident indiesgey with the input ones; the spectrum
has, therefore, expanded — see Figures 2.3 aridra4raphical example of a slightly more
complex PA model (fifth-degree polynomial), showiagly the fundamental frequency

band.

High order harmonics and base band distortion ateexactly the problem, because they
can be easily filtered out by the amplifier’s outmatching network. The real problem is in
having to deal with spurious (unwanted) tones vegr the input tones, because they would
require filters with extremely high Q-factors (shdrequency responses) to be eliminated,
and those are not at all trivial to design. Alsittefing would not be reasonable for
transceivers operating with multiple channels {atinct frequency locations, although in
nearby regions of the spectrum). Thus, intermodaradistortion (IMD) tones cannot be

filtered — they have to be suppressed resortirguariety of linearization techniques.
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2.3. Linearization Techniques

Most linearization techniques fall into the fouffeient categories explained in this section.
Naturally, one can take advantage of a combinabibthem, producing fairly complex

linearization circuits, but each of them may beduseparately to great effect.

2.3.1. Power Back Off

Most power amplifiers have three operation reginaé$ow powers, the amplifier is linear,
with constant gain; when the amplifier approachessaturation point, the device starts
behaving nonlinearly and the gain starts decreasimgly, when either the maximum rail
voltage is reached or the maximum current is dralaeamplifier fully saturates and its gain

reaches its minimum — the amplifier cannot prodarcg more output power.

Power back off simply consists in operating an afireplin its linear regime, “backing off”
(or “away”) from the nonlinear ones; see Figure &énerally, the amount of back off power
(say, 3 dB) is in respect to the device's 1 dB aasgion point, which is the point at which
the power gain is 1 dB lower than its maximum vdlire gain in the linear region, in the
case of single-transistor class-A amplifiers).



The advantage of the employment of this techniguts iextreme simplicity: either the input
power is lowered so the amplifier operates excklgivn its linear region, or the supply
voltage is increased so that the amplifier's linezgion is extended. The disadvantage,
however, is that the efficiency rapidly decreasés whe increase of the back off power,
since a linear amplifier is (usually) an inefficieme. Also, as a general rule, the higher the
maximum power rating of an amplifier, the more exgee it is, so using a 200 W amplifier
to produce a 100 W signal (3 dB back off) woulda@ety be more expensive than using a

100 W amplifier to produce the same signal.

Input

Figure2.5. Power back off from the perspective of an

amplifier's normalized voltage input/output respans

2.3.2. Cartesian Feedback

Most RF signals are generated through the modulatica high frequency carrier signal
using lower frequency data signals, called thehase () and quadratureQ) signals. It is
thesel andQ components that define a system as “Cartesiamtedhey directly relate to a
Cartesian representation of the transmitted si@maathposition of two orthogonal vectots,

andQ), rather than a polar one (magnitude and phase).



The most distinguishing feature of Cartesian feeklyaS] — and the fundamental concept
behind it — is the use of a negative feedback lmopontrol each of thenput | and Q
components so that theutput | and Q components of the amplifier correspond to an output
composite signal that is a linearly amplified versiof the input composite signal. In
Cartesian terms, a system is said to be line&s dutput [, Q) vector is a scaled version of
its input (, Q) vector — their phases should, therefore, be equal

The output of an RF amplifier is an RF signal,isarder to perform the feedback of its
and Q output components, these must be extracted wikknzodulator which reverses the
up-conversion done by the modulator that mixedripat| andQ signals with the carrier
signal. After extracting the outpuandQ componentd, andQ error signals (the difference
between the respectivandQ input and output components) are fed to contrstiesys that
guarantee the linearity of the overall system. €hamtrol systems, represented as “H(s)”
blocks in Figure 2.6, may be designed with clasdieehniques such as dominant pole
compensation [15].

The advantage of the Cartesian feedback lineavizaéichnique is, similarly to the power

back off technique, its fair simplicity and reasbiealMD suppression. Feedback systems
are inherently slow, though, so this techniqueniy celiable for low base band frequencies
— up to hundreds of kHz at most [16] —, so RF feekhls not even attempted: any phase
shift from the feedback path would ruin the syssestability.

R
[/ Directional

Coupler

Figure2.6. Cartesian feedback.
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2.3.3. Feedforward Linearization

In a feedback loop, a sample of the controlledesyst output is subtracted from a reference
input signal, producing an error signal. Likewisea feedforward scheme a sample of the
controlled system's output is also subtracted faeference input signal, producing an error
signal as well. (Naturally, if the system has axgdiA W/W then the sampled output should

be attenuated b& W/W to achieve a proper difference or error sigeaé Figure 2.7.)

The difference between the two architectures —tfaekland feedforward — is how they use

the error signal which carries the information ofiexactly the actual system output differs

from the intended, target output: in a feedbaclklagy, the error signal is used as the input
of a controller which adjusts the controlled systeoutput so it matches the reference signal,
i.e., the error signal has an indirect consequemcthe system's output; in a feedforward

topology, the error signal directly subtracted from the system's output, producing a new,
error-free signal further down the road.

Consider the following example:

* An amplifier has a power gain of 10 and introdusesie spurious signals, whose
power shall be named (“D” for “distortion”). [e.g.,D = 0.2 W]

* LetX be the input of the amplifier. Then, the outputref amplifier isY'= 10X+ D,
that is, a 10 times amplified version of the ingignal plus som& amount of
distortion. [e.g.X =7W;Y =70.2 W]

* Now, to get the error signak, the input and output signals are subtracted while
taking into account the gain of the amplifier (smhosignals are at the same power
level), soE =X —Y/10 =X — (10X + D)/10 = —D/10. [E = —0.02 W]

* Finally, the feedforward part: the error signat@ipled (added) to the amplifier's
output; again, the amplifier's gain has to be taikeéo consideration, so the error
signal has to be multiplied by 10. The overall omtpf the linearized system is
thereforeY + 10E = 10X + D — D = 10X, a perfectly amplified, distortion-free
version of the input signalY[+ 10E = 70.2 W + 10 X (—0.02 W) = 70 W]



The main advantages of feedforward linearizati@tlae wide operating bandwidth and the
compensation of any sort of distortion produce@iyyamplifier — even that which is caused
by the device's memory effects. The tradeoff, tioug the high complexity and the

requirement of automatic adaptation to maintairigperance specifications [16].

Main Amplifier
P=X \ P=_AX + D Amplified
XA .
/ Signal

il Splitter Attenuator
Input

P=-X-D/A

P=X N\ P--D/4  Error
Signal

Combiner

Figure 2.7. Error signal generation through signal canceliati

A typical feedforward linearization system, schemeat in Figure 2.8, consists of two

circuits: a signal cancellation circuit and an egancellation circuit.

The first circuit implements steps 1 to 3 of theypous example, that is, it produces a signal
thatonly contains the distortion created by the power amplifier; it does this gmtating

the output of the amplifier (by an amount equatht® amplifier's gain) and combining the
resulting signal with a copy of the input signaédaduse these two signals have opposite

phases, this essentially results in a subtractadher than an addition.

Finally, the second circuit implements step 4 @& pinevious example, that is, it amplifies
the distortion signal extracted by the first cit@and couples it to the output of the amplifier.
Similarly to the previous case, these two signalgehopposite phases, so this essentially
results in a subtraction. This means that the distogenerated by the amplifier is subtracted
from the amplifier's own output signal, leaving igral that is free of distortion and, by

definition, a linearly amplified version of the upsignal.
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Figure 2.8. Feedforward linearization [16].

2.3.4. Predistortion

Predistortion [17], illustrated in Figure 2.9, eetact of distorting a signal before it is fed to
a nonlinear system in such a way that the distorgjenerated by the system is exactly
canceled by the distortion synthesized by the gteder (PD), resulting in an overall linear
cascade of two devices. As an example, considgstara that has an input/output transfer

function ofy = x3, which is clearly nonlinear. If a predistorter kvén input/output transfer

function of y =¥/(x) is used, then thecascade of the PD and the system is

3
y = [3,/(x)] = x and the overall system is perfectly linear.

The main advantage of predistortion is its poténtaachieve fantastic intermodulation

distortion suppression, i.e., very high linearljowever, predistortion usually requires the
physical modeling of the amplifier, which is extrel;n complex, since most amplifiers

exhibit memory effects, that is, their outputs depeot only on the current input, but the
input at previous times as well. These models,edkas the predistortion of the input signals,
are usually implemented using digital processotscivmeans that the bandwidth of the
input signals is either limited by the samplingerat the processing speed of the digital

predistorter.

11



A common modification of the basic concept of pséaltion is Cartesian predistortion
(Figure 2.10), which is the predistortion of thesdbdand (low frequency) in-phase and
quadrature components gndQ) instead of the predistortion of the RF (high fregcy)
composite signal. Among other things, this greatijuces the required bandwidth of the
predistorter. While this is a welcome relaxatiorpefformance specifications in the case of
APD, it is the very basis of DPD, since the premisdn of the RF signal would require

extremely fast analog/digital conversion units amen faster processing units.

Finally, a very common way of simplifying the moitigl of an amplifier and the resulting
predistortion algorithm is to forgo the modeling tfie amplifier's non-electrical
characteristics, like temperature dependence, ggana other very slow phenomena. These
can be compensated by recalculating the paramaft¢ine amplifier's model based on the
measurement of its response to a set of test sigiais way, the slow drifts of the
input/output response of the PA due to changingptature and other causes can be
compensated. This is called “adaptive predistottion

PD PA ;
’ . I — L1 Josc
— 7‘4 AV‘ S PD : | 0 <+ ) RF Out

Q— — [
-

Figure 2.9. RF predistortion. Figure2.10. Cartesian predistortion.

Y
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3. ANALOG PREDISTORTION

Following Arthur C. Clarke’s 1945 article on “Exifi@rrestrial Relays” [18] and John R.
Pierce’s 1955 article on “Orbital Radio Relays” [ 1&fforts towards global communications
escalated along with a demand for higher transondsandwidths at lower costs, leading to
an increased interest in high order modulationriggles such as QPSK (Quadrature Phase
Shift Keying) or QAM (Quadrature Amplitude Modulat)) and multiple-access schemes
such as TDMA (Time Division Multiple Access).

In order to achieve acceptable bit error ratestandeet the increasingly stringent spectral
purity requirements of these data rate-increasicigermes, much attention was given
between the late 1970s and the early 1980s to garabbkuch as the linearization of high
power microwave amplifiers used in satellite eatidtions [20] and traveling wave tube

amplifiers used in satellite transponders [21].

Because of the high power levels of these ampdifigrost linearization circuits consisted in
the analog realization of the predistortion techeigapplied not only to the microwave
signals [21], but also (though less frequentlyjhie base band signals [20]. Regardless of
the idiosyncrasy of each implementation, the gmegbrity of the linearizers adhered to two

main classes of predistortion circuits: cubic pseafiers, and series diode predistorters [22].

In essence, cubic predistorters (Figure 3.1) cotlif@enput signal to a distortion generator,
a pair of antiparallel diodes, which produces esiglely odd-order harmonics of the input
signal [23]. A variable phase shifter is used targntee a 180° phase difference between
the input signal and the distortion signal, anelaylline is used to equalize the group delays
of the two signals. Finally, a variable attenuatosures the amplitude of the generated
distortion matches that of the harmonic distorpooduced by the predistorted device (such
as an amplifier). This amplitude matching, alonthwine 180° phase difference between the
clean signal and the generated distortion, resoltan appreciable suppression of the

spurious odd-order tones produced by the nonlipestistorted device.

13



Series diode predistorters (Figure 3.2) consistsihgle forward-biased series diode, which
may be modeled as a nonlinear resistor with a pigraapacitance — an RC phase shift
network. The principle of operation is fairly styhiforward: as per Shockley's diode
equation, an increase in forward (RF) power resulta decrease in the diode’s series
resistance; this, in turn, provided that the sa®ssstance is not too high [23], results in an
expanding gain and a decreasing phase shift, mictcountering the predistorted

amplifier's undesired AM-AM and AM-PM characteristi amplitude compression and

phase advance.

Phase Shifter
p Delay

@
}/ I—|i; Cp

/

PD In ) C PD Out m—
RFC R
< Odd-ord >
Disto(;trioenr DC Block E / ’ DC Block

Generator ] |

O 11

RFC

Attenuator

Figure 3.1. Cubing predistorter. Figure 3.2. Series diode predistorter.

With the advent of high speed digital computingalag predistortion plummeted into near
oblivion and was swiftly replaced by more capabled anore configurable digital
predistortion schemes. Still, some research was,doainly in the early 2000s, and not only
did old analog predistortion technology improvensonew interesting ideas even came to
light.

The first great advancement in analog predistorid@as the refinement of the cubing
predistorter, which led to the development of fubnfigurable, independently controllable
“IMD generators” [24—27], that is, branched versiaf the cubing predistorter that generate
3rd- and 5th-order (and higher) intermodulatiortadison tones that can be independently

scaled in magnitude and shifted in phase. See &®3rfor an example of such a scheme.

14



The second great advancement — perhaps the mestaortiy, due to its novelty — was the

realization that the AM-AM and AM-PM characteristiof a moderately nonlinear amplifier

can be modelled by complex-valued polynomials of twder [28—30]. These polynomials,

in turn, — or, rather, their inverse — can be apipnated by transistor circuits based on the

Gilbert cell [31] (Figure 3.4): a cascode circused as an analog four-quadrant multiplier

and frequency mixer. A new class of CMOS circuitsswvtherefore designed to implement

high order polynomials (as high as 11lth-order, iftstance) with freely configurable

coefficients and thus synthesize the inverse teart$faracteristic of an amplifier — an almost

ideal predistorter.

Finally, in the present decade, various novel apal@distortion schemes have surfaced,

possibly in anticipation of the 5G networking ckalljes already summarized. These

schemes include, among others, the bandwidth reduof error signals [32], the use of

mirror amplifiers [33], and lookup table-based, doned digital/analog predistortion

systems [34].

IM3

generator

delay

fixed atten.

3rd crder ;Ja-t-l:l"!"::""1 """"" g
- 6 |

] 0
L |

3rd order control
vector modulator

................

*—5th order path

{IM5

5th order control
vector modulator

IM3 power
cancellation

generator

Figure 3.3. 5th-order IMD generating predistorter [25].
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Figure 3.4. The Gilbert cell [31].

3.1. Proposed APD System Architecture

The system architecture of the proposed predistogolution, schematized in Figure 3.5,
consists of an analog feedforward artificial neuretwork that predistorts the base band

andQ components of a complex telecommunications sigxglisual, the predistorted signal
is then transposed to a much higher frequencyantRF modulator and it is then fed to the
PA that should be linearized. Naturally, some add# components — such as filters and
intermediate amplification stages — are requiradttie successful implementation of the

solution, but Figure 3.5 only illustrates the mhliacks of the system for clarity purposes.

This base band architecture is ideal for an anatmgtion based on an artificial neural
network because the bandwidth requirements of thil Are much lower than they would
be if it were used as an RF predistorter. An addéi reason for having chosen a base band
solution is the fact that the predistortion of trendQ components of the complex signal is
a matter of amplitude scaling, which means thafuhetion the ANN is supposed to learn
is real-valued. This contributes to a relativeipgie model of the ANN-based predistorter
and its learning algorithm. It should be noted thade band control is just as effective as RF
control, because the scaling of the base bandQ components results in both an amplitude
and a phase change in the complex envelope RH $iigtas fed to the PA.

16



The ANN is supposed to predistort thendQ components of a telecommunications signal,
so it should have at least two input neurons ammdawput neurons. The number of hidden
neurons and layers can be adjusted to fit a vaokspecifications. While only one hidden
layer is required to approximate any function toaabitrary level of precision [35], the
number of neurons required to do so decreases twehnumber of layers, since the
connection density (and the network’s expressitgd increases with the number of layers.

The ANN is intended to be an analog circuit, sortheber of neurons and hidden layers
should be carefully managed — not only becauséotheer may be limited, but also because
the number of input or output connections of eaebron may be constrained due to

electrical loading and other practical aspects.

If the PA is assumed to be static, then a simpdelfteward ANN with two input nodes
should suffice. However, if the PA is assumed talyaeamic (that is, if it exhibits memory
effects), then the ANN should exhibit a dynamicdebr as well. This can be achieved by
using a recurrent ANN, in which the connectionsiaein neurons form directed cycles.

While a recurrent ANN would be able to implemerg thynamicR* — R? predistortion
function, this is not an absolute necessity. Eveugh a PA’s transfer function may be
dynamic in arR? - R? projection, it is, intuitively, static in aR>*M+D — R? projection,
where M is the memory depth (in samples) of the PA. Thues, predistortion function can
be a static R*M*D 5 R2 function [Ipp(k), Qpp (k)] = feplI(k), Q(k), I(k — 1),
Q(k — 1), -+, I(k—M), Q(k — M)] implemented by a feedforward ANN with a pair of

input neurons for each of ti#¢ + 1 current and previousandQ input states.

@
lPD
] O— Oic ("‘ RF In RF Out
Q O 3 90
ANN PD ® Power Amplifier

Modulator

Figure 3.5. Predistortion system architecture.
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3.2. Development and Test Setup

The proposed predistortion system was entirely kited in Matlab. All predistortion efforts
went towards the linearization of a model of a B#lemented as an obfuscated (P-code)
Matlab function, called VirtualStaticPA (VSPA), vehi was provided by a third party.

This function models the static properties of aggenPA, such as gain compression and
phase advance, and it focuses mainly on the dstaritroduced by the PA — its maximum
gain is just slightly above 0 dB. Moreover, thisibase band model, which means that the
VirtualStaticPA function accepts the base bhaddQ components of a signal as its input,
denotedc/ andxQ, and returns the base bdrahdQ components correspondent to its output

amplified signal, denotegl andyQ.

Figures 3.6 and 3.7 illustrate the transfer charasttcs of the VSPA with respect to its input
and output andQ components. While both figures represent essgnsaime thing, the two

distinct representations end up conveying diffenefarmation.

The first figure makes it immediately clear that thransfer function of the modeled PA is a
smoothR? — R? projection, and provides insight into its ampliuchodulation behavior:
the PA saturates for valuesxaf andxQ close to 1 (one), and outputs a maximum value of

yI andyQ of 1 (one).

The latter figure shows the same saturation effrdtit mainly addresses the representation
of the phase modulation behavior of the PA, plgttime input and outpul,(Q) vectors with
connecting arrows which make the warping effedhefcomplex signal very noticeable.

Finally, Figure 3.8 illustrates the AM-AM (amplitadmodulation) and AM-PM (phase
modulation) behavior of the VSPA with respect fiftput power.
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Figure 3.8. Transfer characteristics of the VSPA: gain anasghmodulation.

As explained in a previous section, the most wsédfect of the distortion introduced by a
PA occurs in the frequency spectrum of its outpyria. For this reason, a four-carrier GSM
signal was used to monitor the spectral performahtee predistortion system. This signal,
RF(t), shown in Figures 3.9 and 3.10, is a compositionvo base band signal&it) and
Q(t), and is defined in (3.1).

RE(t) = I(t) cos(2rf,t) — Q(t) sin(2mf,t) (3.1)

It should be noted that the centering of the sigitgl = 10 MHz was done merely for
illustrative purposes. As stated, the VSPA is ali@@nd model, so its inputs are the base
bandI(t) andQ(t) signals — not the compouid (t) signal. Similarly, its outputs are also
base band quadrature signals; these are also snodulated by a 10 MHz carrier signal
throughout this document for illustrative purpodégure 3.11 contains the output spectrum
of the natural response (i.e., without any sorpi&distortion) of the VSPA to the GSM

signal. Notice the presence of significant distortiones, and the noise floor of —20 dBm.
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The VSPA function also models the intrinsic nois¢he amplifier using a function called

random(), which explains the increased

noise flddris function can be bypassed by

exploiting Matlab’s function precedence order.

Amplitude
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1 . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1
Time (ms)

Figure3.9. The input of the VSPA:
a four-carrier GSM signal.
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Figure3.11. The output spectrum of the VSPA in responseeadahr-carrier input signal.
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4. ARTIFICIAL NEURAL NETWORKS

Not unlike polynomials or Volterra series, artifitheural networks are a family of nonlinear
function models which consist of a series of basimputational units, the neurons (akin to
polynomials’ power products), that are interconaddiy means of model-defining weights
(akin to polynomials’ coefficients). Even thoughetl are metrics such as the Vapnik-
Chervonenkis dimension, the evaluation of the cexipl of an ANN (similar to a

polynomial’s degree) has yet to be formally andquieocally defined [36], though it is

intuitive that it is related to the number of newsat comprises and the way they are

interconnected.

The basic computational unit of an ANN is the neyr node, illustrated in Figure 4.1. A
neuron can have an arbitrary positive number ofitsip, one of which acts as a bias, and
these are processed by an activation funchomwhich is selected by the ANN designer to
calculate the neuron’s activatian its output. Typical activation functions includegurely
linear transfer function (4.1) and the (logistigrsoid function (4.2), and these can be used
at will throughout an ANN. A variety of sigmoid (lmw@ng s-shaped) functions can be used

for different levels of algorithmic optimization.

®(z) =z 4.1)
1
¢(z) = 1+e2 (4.2)

Jx) =a

Figure4.1. A neuron with three inputs.
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Figure4.2. An example feedforward network with three inpades,
one hidden layer with five nodes, and two outpudeso Displayed

as well are the biasing nodes for the hidden ampublayers.
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There is a nearly endless number of ways of arngngnd interconnecting neurons in an
ANN. There are, however, classical and establisivagls of doing so, such as the
feedforward network illustrated in Figure 4.2. Infeedforward network, neurons are
distributed between different, sequentially ordel@gers: the input layer, a set of hidden
layers, and an output layer. Each neuron in eagér laonnects to every neuron in the
immediately succeeding layer, and there are novback or intra-layer connections —
meaning that there are no cyclical connections,céethe network’s designation of

“feedforward”.

Feedforward ANNs are universal approximators [3Hjis means that for any given
continuous nonlinear function, there is at leas faedforward ANN that approximates it,
in a closed and bounded input range (a compadaf®t), with an arbitrarily small error.
This was proven for feedforward networks contairargingle hidden layer of neurons with
sigmoidal activation functions [37,38], though tarsds to reason that more expressive
networks, with more hidden layers, would perfornieaist as well as ANNs with a single
hidden layer. Naturally, the output layer shoulg@éhnaeurons with purely linear activation
functions, otherwise the range of each of the netis@utput neurons would be constrained

to the codomain of whatever sigmoidal activationction had been chosen.

4.1. ANNs as Analog Control Systems

Due to their massive expressive ability and stmattsimplicity, as well as ease of training,
artificial neural networks have been used to sblward games such as backgammon [39]
and Go [40], control physical systems such as tedgnendulums [41], and even predistort
RF power amplifiers [8,9]. Despite their differeacall of these applications of ANNs have
one thing in common: they are digital implementasicRecent technological advances have
brought the possibility of reliably implementing AN as analog circuits. Further advances,
such as commercially-available memristors, are etepeto lead to even more robust and
higher-performing analog ANNSs.

Compared to the analog predistortion schemes pex$eim section 3, analog
implementations of ANNs provide very substantialattages. Not only are relatively

simple ANNs much more expressive than 11th-orddynmmnials (the state-of-the-art
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predistortion circuits until recently) in terms fainction synthesis, but they also have an
increased capability for generalization due torteaturating (sigmoidal) neurons, which is
important when the predistorter's input range may Ine clearly defined — high-order

polynomials grow very quickly towards infinity oude the training sample space.

Furthermore, the bandwidth of each of an ANN’s cataponal units (neurons) is similar
to that of the predistorted signal, in contrast the bandwidth of a polynomial's
computational units (power products), which growsstty linearly with the degree of each

product (i.e., over an order of magnitude for athddrder polynomial predistorter).

4.2. Mathematical Formalization

Figure 4.2 represents a feedforward ANN with thieeers: Ly, the input layerLy, the
hidden layer; andy, the output layer. Let there be the following sytsb

nX . the number of input nodes Iy (excluding bias) — in this caseX = 3;
nH : the number of hidden nodesliip (excluding bias) — in this casel{ = 5;

nY : the number of output nodesiin — in this casenY = 2;

x . acolumn vector, indexed ag holding the node activations @f;
h : acolumn vector, indexed &g, holding the node activations a@f;;

y : acolumn vector, indexed &g, holding the node activations df;

v : amatrix, indexed as;;, holding the weights of the connections frogmto Ly;

w : amatrix, indexed a®,;, holding the weights of the connections fropnto Ly .
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These symbols are defined as such, with exampleesddased on Figure 4.2:

X =
(nX+1) x 1)

h =

(nH+1) x 1)

(nYx1)

A% =
(nH % (nX+1))

W —_
(Y x (nH+1))

Vi
3Z)

an

- Wovan

Winn
Wonn
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Thus, x; is the activation of th€-th input node (the-th input value, fori > 0),
h; is the activation of thg¢-th hidden nodey, is the activation of thé&-th output node,
v;; is the weight of the connection between the immaei and the hidden noge andw,;

is the weight of the connection between the hiddede j and the output nodé.
One can read the matrix, then, as a series of columns containing the v®igh the
connections of each input node to every hidden exiduding the hidden bias node, which
by definition has constant activation and thus does have any input connections).
Similarly, the matrixw can be read as a series of columns containingvéights of the

connections of each hidden node (including thedmdaias node) to every output node.

The indexing of thes andw matrices is intentionally backwards. It would hdee=n more
aesthetic to define them ag andw;,,, but this would have required the computatiorhefit
transpose matrices to perform forward propagatexpl@ined below). The algorithmic

performance gain is minimal, but it comes at esalyno cost.

To be precise, the nodes of the input layer amxeictly neurons, but mere representations
of the “input ports” of the ANN. There is no dat@pessing or neural activation: input values
just pass on through unchanged. This does not omiderthe presented formalization,
however, since it is trivial to devise neurons whigould exhibit that exact behavior: a
neuron, with no biasing and one data input withargiweight, whose activation function is

purely linear.

Furthermore, despite biasing being a property & tieurons and not the network

architecture (even from the original, biologicarsdpoint), it can be abstracted away as a
node with constant activation (eg:= 1) which connects to each neuron with weights
proportional (or even equal) to the required bigsialues. These biasing nodes and their
connections are represented in Figure 4.2 withaethshes, and they are referred to as the
zeroth (0-th) node in each layer, if applicablee Dtput layer is the last layer, so, naturally,
it doesn’t contain bias nodes for its (nonexistentceeding layer.

27



4.3. Forward Propagation

Having defined a model for the architecture andctrestituting parts of an ANN, it is now
possible to model the network’s operation, thatasgdefine how to determine its output
vector. Forward propagation, the classical algoritfor doing precisely that, consists of
sequentially computing the activations of eachiafyem the input to the output layer.

Let the input (column) vector of the ANN — thattise data being fed to it at a given instant —
be netinput. Then, the vector of input node activationss the concatenation of the
activation of the input bias node, here defined asnstant 1 (the number one, not the lower
case letter L), and the activations of the extéyrstimulated data nodes — thatngtInput.
Similarly, the vectoh is the concatenation of the hidden bias node lamddtivations of the
hidden nodes connected to the input layer; as sisstliearlier, each node’s activation is a
function of the weighted sum of its inputs. Finalhgcause there are no output bias nodes,

they vector is simply obtained by computing the actosd of the output nodes.

It should be noted that thk function is to be applied in an element-wise fashand it is
not necessarily the same function for every ne@eoen in the same layer) — tthesymbol

is used repeatedly only to simplify the notation.

= lnetlilput] h= lfb(vl- x)l y=®Ww:h)

(4.3) — Forward Propagation algorithm
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4.3.1. Example

Let us consider the ANN illustrated in Figure 4The activation function of the hidden
nodes is the sigmoid function (4.2), referred taigé), and the activation function of the

output nodes is the purely linear function (4.&jerred to apurelin(-).

Letv = 0.01 X [1011 12 13; 2021 22 23; 30313233; 40414243; 50515253].
Letw = 0.01 X [10 1112 13 14 15; 20 21 22 23 24 25].

Let netInput = [1 2 3]".

Then,x = [1; netInput] =[112 3]".

Then,h = [1; sig(v - x)] = [1.0000 0.6985 0.8235 0.9038 0.9498 0.9744]".
Then,y = purelin(w - h) = [0.6723 1.2073]".

4.4. Backpropagation

The Backward Propagation of Errors, or backpropagats the most common method of
training artificial neural networks, used typicalip conjunction with optimization
algorithms which aim to minimize the cumulative amed error between the ANN'’s actual
output and its target output. Such algorithms idelthe Nelder-Mead method [42] and the
Levenberg-Marquardt algorithm [43].

Backpropagation is typically called a supervisearieng algorithm, in which the target
output of the ANN is explicitly specified by the aeer. This, however, is not a precise way
of describing backpropagation. While it is truettitacan be used (and is most often used)
to perform supervised learning tasks when coupliglal @ne of the optimization algorithms
enumerated above, the true purpose of backpropagatio solve the problem stuctural
credit assignment, that is, the problem of adjusting the weightshi@ network to minimize
the error [44]. There is a subtle but importantideion between the two definitions — one
which will be expanded upon further. Meanwhile, st explore the formalism behind
backpropagation proper, that is, the mechanics of weight adjustment.[8&Ffor this (and

more) information.
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Let there be an ANN whose nodes’ activations haaenbobtained through the forward
propagation of a training input vector and whosépouerror E has been determined
according to some specific metric. For the purpafseompleteness, let this metric be the
sum of the square of the errors between the targptt vectot and the actual output vector

y of the network:

E =Y(t—-y)* (4.4)

The global weight update rule is displayed in (4T)is rule asserts that the chadgg; in
every weight§;; of the network (the elements of the and w matrices) should be
proportional (with constant) to the negative of the derivative of the errothwiespect to

the weight itself:

oE
a0

AHU = —a (4.5)

ij
Using the chain rule, the partial derivative of #reor with respect to each weight between

the hidden and output layers can be calculatedltieg in (4.6), whereret,, is the net input

(“net” as in “weighted”, not short for “network”)f ¢he output nodé, that is,w - h:

0E 0E da, Onety

aij 6ak . Bnetk aWk] (4.6)

Simple substitutions lead to (4.7), whebg (net,) is the derivative of the activation

function of the output nodee evaluated atet,,:

0F
aij

= —2(ty — ay) - Pr(nety) - q; (4.7)
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We can now us8, to represenft, — a;) - @, (nety), thus leading to (4.8):

0FE
aij

X O aj (4.8)

Using the chain rule, the partial derivative of #reor with respect to each weight between

the input and hidden layers can be calculated/tregun (4.9), wherenet; is the net input

of the output nodg, that is,v - x:

0E 0E day, Onet, 0da; OJnet;

dvj; ~ day . dnet,  0da;  Onet; 0vj 4-9)

Simple substitutions lead to (4.10), Whebé(net]-) is the derivative of the activation

function of the hidden nodeevaluated atet;:

0F
avji

= O wyj * Pj(net)) - q; (4.10)

Contrary to the weights between the hidden andutlagers, the weights between the input
and hidden layers affect all of the output nodesuianeously. Thus, the partial derivative

of the erroracross all of the output nodes is defined in (4.11)
— ’ [l .
5= @jnety) ) 8w @i
k

Finally, the partial derivative of the error witkspect to the weights between the input and
hidden layers can be defined as in (4.12):

oF _
avji = 05 q; (4.12)
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5. TEMPORAL DIFFERENCE LEARNING

Temporal Difference (TD) is a reinforcement leaghmethod, that is, a way of using past
experience with an incompletely known system taljotets future behavior [45]. In a more
mechanistic sense, TD is an algorithm for an afiiéeta predistorter) to learn which actions
to take over an environment (like a power ampljfiarorder to maximize some notion of

cumulative reward (like a measure of an amplifiéirisarity).

TD is an unsupervised learning algorithm, which nsethat it doesot require thea priori

knowledge of the desired output of the learningnag€his is an exceptionally important
detail: using a supervised learning algorithm tckean ANN how to predistort a power
amplifier does not make much sense if one doekmoi the amplifier’'s inverse transfer

function to begin with.

This does not mean that it is impossible to doasathere are a variety of papers on neural
predistortion of power amplifiers [8—10]. These @&y however, either don't explicitly
specify the learning procedure (only mentioningkpagpagation, which, as is hopefully
clear by now, is not a serious answer), or descaidearning procedure consisting of
iteratively training an ANN to be a post-distortessting its performance as a predistorter,

and training it again in order to gain some measfirmprovement.

While this sort of methodologies may lead to acablat results, TD provides a learning
solution that is more formal, and it has been usegpplications as diverse as solving the
game of Backgammon [39], controlling quadcopterarotand inverted pendulums [41],

simulating the steering of a boat across a rivé}, [dnd sensor state prediction [47].

It should be noted that TD is a general learnirgp@hm, that is, it does not make any
assumptions regarding the learning agent. TD isthetefore, immediately applicable to
the training of structurally complex constructstsas ANNs, and that means that some sort
of mathematical coupling needs to be devised. Uuckhis problem has already been
solved, and it is explained further.
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5.1. Mathematical Formalization

5.1.1. TD Error

Let V be the value function an agent is trying to lediD.learning consists in adjustirigy
so thatV (s;) — wheres, is the input state at time— approximates the retuR) at timet,
defined in (5.1) as a discounted sum of future rdeig is the discount constant, and it
controls how far the agent should look ahead whakimg predictions at the current time
step [44]. Equation (5.2) is derived trivially frof®.1).

R = Tpyq + Vg2 + Vogs + 0 = ZVR Terk+1 (B1)
k=0

Ry = 141 + Y Rea (5.2)
Thus, the TD erroE; at timet can defined as in (5.3):
Ei = R =V(st) = (41 +V Rey1) — V(sp) (5.3)

Finally, usingV (s;,,) as an approximation &;,,, we obtain the generalized TD error in
(5.4):

Et = 1441+ v V(se41) — V(se) (5.4)

5.1.2. Weight Update

The derivation of the weight update rule (5.5)ather involved, and can be found in [44].

t

Aw;, = alV(see1) — V(sp)] zlt"k V.,V (si) (5.5)
k=1
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This is the generalized formula for TD( which is the generalized form of TD itself,
introduced in [25].a is a learning-rate parametdf(s;,,) —V(s;) is the (temporal)
difference between consecutive predictiGhgl is the gradient of the value function with
respect to its defining weights, and A is a gradient discount parameter such that
0 < 4 < 1. A tracks to which extent the prediction values foevppus observations are
eligible for updating based on current errors [4djerefore, the sum (5.6) is called the
eligibility trace at timet.

t

e, = zat-k 7,V (se) 5.6
k=1

5.2. TD(A) Neural Networks

As discussed earlier, backpropagation solves tbblgm ofstructural credit assignment.

On the other hand, TD solves the problerteaiporal credit assignment, that is, the problem
of attributing credit (or “blame”) for error ovene complete history of predictions made by
the learning agent [44], and it does so through rtfeehanism we’ve just introduced:

eligibility traces.

Through TDR) learning, an agent can determine its error basesuccessive predictions,
and through backpropagation an agent can modifpaidel of prediction in order to reduce
the error. Thus, combining the two algorithms ressuh a very powerful coupling: a

universal nonlinear function approximator whichrieathrough acquired experience.

Contrary to other neural predistortion schemes dourthe literature, the one proposed in
this section — a TDJ) Neural Network (TDNN) — is actually capable adileing how to be

a predistorter. Since the learning algorithm doessraquire the knowledge of the target
output of the ANN, the problem of predistortion niaytackled directly, and not indirectly

by training the network as a post-distorter andimpt works as a predistorter.
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5.2.1. Mathematical Formalization

5.2.1.1. Weight Update

The coupling of TD learning and backpropagatiodase at the weight update stage of the
algorithms. Thus, and referring back to sectiotnd,change in the network’s weightand
w is a function of the TD erraf (at each output node) and their respective eligibility

tracesev andew:

Aij = Ekeij (5.7)

— (k)
Avy; = Z Exevy; (5.8)
K

From (5.7) it is very apparent thatv should be a matrix with the same sizevas
(nY X (nH + 1)). From (5.8) it is apparent that should be, however, a three-dimensional
matrix of size (nH X (nX +1) xnY) — or, rather, a set ohY matrices of size
(nH X (nX + 1)), which is the size ab. The superscriptk) notation refers to each of the

nY matrices.

5.2.1.2. Eligibility Traces

In section 4, a mathematical formalization — a nhedaf a generic artificial neural network
was proposed. In this section, this model is expdntdb include the eligibility traces
introduced by the TD learning method, effectivadgulting in a model of a TDNN. The
basis of this work can be found in [44] and [48].

Let ew,; denote the eligibility trace correspondent towheght of the connection from the

hidden nodg to the output nodé&. Let 6y, denoted, (net;). Then, the update rule for

ewy; is (5.9):
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eWyj = Aewy; + Aewy,
(5.9)
where Aewy; = Oyyh

The matrix form of (5.9) is self-evident, but theheme in Figure 5.1 illustrates a simple

way of deducing it:

hT — h() h] hz h3 h4 h5

v, | [ oviho oy oy, Svihs vihs Syihs

<
[

0y, 0y.ho Oyhi Oyh: Ov.hs Oyhs O

N —

Aew

Figure5.1. Deduction of the matrix form afew.

Thus we get the update rule for the matrix fornevef

ew := Aew + Aew,
(5.10)
where Aew = 8y - hT

The activation function of the output nodes of TR2NN is purely linear, s@y, = 1 for
all k.

Let ev].(ik) denote the derivative of the output univith respect to the weight from the input

uniti to the hidden unit, that is, a partial eligibility trace corresponttmthe weight of the

connection from the input nodeo the hidden nodg
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Let w be thew matrix without its first column. Lefh be theSh vector without its first row.
This removes the elements of these objects comelgmb toh,, the hidden bias node. This
is necessary because there are no connectiongtimput nodes to the hidden bias node,

which means that there are no corresponding weagtgsgibility traces.

(F) - .
Then, the update rule few;; is (5.11):

(k) ._ (k) (k)
ev;;” = Aevji + Aevji ,
(5.11)

k _ —
where Aevj(i ) = SYi Wi hy x;

Let us explore th& term ofev based on Figure 4.2:

Aev (1) = 8y, wig 6hy X

Aev =6y, Wi1 0hy x4
Aev (1) = 8y, wi1 6hy X,
Aev (1) = 8y, wi1 6hy X3
Aev = 6y, W2 6hy X
Aev = 6y, Wiz Ohy Xy
Aev = 6y, Wiz Ohy Xy

Aev. (1) = 8y, Wiy 6hy x5

Aev = 8y, Wy1 6hy X,

Let (5.12), where- is the matrix multiplication operator and is the element-wise

multiplication operator:

E=6y-h *xw (5.12)
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Thus,

8y,wy116hy 6y1w126h,
3 — 8y,w216hy 8y,W226h,
(nY x nH) : :
aanWnYl 5h1 aanWnYz 5h2

Substituting (5.12) in (5.11) we get (5.14):

k
Aevj(. ) — Ekj X;

5}’1 Winng ahnH
6y2W27-1H6hnH (5.13)

5anWnYnH 5hnH

(5.14)

Let £®) denote the-th row of the matrix. Then, finally, we get the update rule floe

matrix form of eactev®:

ev® := 2ev® 4 (x -£®)" (5.15)

As a final note, the approximate derivatives ofdlgvation functions used throughout the

ANN are defined in (5.16) for the sigmoid functiand in (5.17) for the purely linear

function.

ijf(netj) =1

?y (nety) = ar (1 — ay)
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5.2.2. TDNN Algorithm

The model for an artificial neural network usingfeoral differences as a learning method
has been established. Now, let us explain hownitbeaused. Appendix A contains a class-
based Matlab implementation of the vectorized TDiNdel and the learning algorithm

based on Sutton’s (the creator of KP(own TD/Backpropagation pseudo-code [48], also

used as a reference for the expansion of the model.

In a slightly simplified way, the TDNN algorithm @sists of repeatedly iterating over the

following set of steps:

Perform the forward propagation of an input vector;
Calculate the TD error at the output of the network
Update the network’s weights;

Perform the forward propagation of the same ingatar with the new weights;

o bk~ 0N PR

Update the eligibility traces of the network.

Forward propagation is explained in section 4.3 Tb error is defined in (5.4); note that
training in the first iteration must be skippedtlsat the error equation becomes causal. The
changes applied to the weight matrices in ordeptiate them are defined in (5.6) and (5.7).
Finally, the update rules for the eligibility trag®trices are defined in (5.9) and (5.14).

5.3. Simulation Results

Despite our best efforts, TDNN ended up not praggieny positive results. Interfacing with
the algorithm requires two signals: the input &f &NN and a reward signal in which the
performance of the ANN is encoded. There are endieys of defining the reward signal,
So it is not possible to say for sure that the TD&gbrithm does not work — we can only
say that it did not work with the reward definitgothat were tested. With that said, our tests

were fairly exhaustive — see Appendix B.
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Let PA,,; be the actual output a1’ ,, the target output of the PA for a given input wect
LetE = PA,,: — PAT ,, be the error of each sample of B, vector, letSE (k) = E (k)?
be the squared error of each sample ofPtAg,; vector, and leMSE = mean(SE) be the
mean squared error of the same vector. By defmitimthE andSE are vectors with the

same dimension d&4,,; andMSE is a scalar. Finally, leteward be the reward vector.

The first tests of the TDNN algorithm used the kigthns of reward in (5.17): a null reward
for every input state except the last one, whick veavarded with the negative of theSE
calculated in the previous iteration. We chosenbgative of theSE becausé/SE is an
error, and therefore it is@enalization rather than aeward. The idea behind this encoding
is the rewarding based on the compound performahtiee predistorting ANN over the

complete input vector.

The result was a very quick divergence of the ndtweeights for many combinations of
they, 4, a, andg parameters of the TDNN — the reward discount tagefrace decay rate,

and the learning rates of the two weights matricaadw.

reward = [0 0 0 --- 0 — MSE] (5.17)

In the second series of tests, the reward signaldeéined as in (5.18), that is, similarly to
what was done in the previous tests, but with ardvior every input state instead of only
the last state. Unsurprisingly, this led to theedgence of the network weights.

reward = —-MSE x [1 1 1 .- 1] (5.18)

The next batch of tests — (5.19) and (5.20) — degdrom the previous ones in the sense
that the reward values were not compound, but Spefieach input state. Unfortunately,
the results remained not ideal: depending on tnéiguration parameters, the output of the
ANN either diverged like in the previous cases sxiltated wildly.

reward = -—SE (5.19)

reward = =+E (5.20)
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Finally, the tests fully degenerated into definihg reward signal as equal to the target
output of the PA (5.21). While this might seem likdoes not make much sense, as it is not
a measure of the network’s performance and it dsfthe reward as a constant vector, it
provided some insight into the TDNN algorithm anshfirmed that it was not fully

malfunctioning.
reward = PAL, (5.21)

This test revealed that the TDNN algorithm mimies Backpropagation algorithm in the
sense that it adjusts the weights of the ANN so ttie output of the ANN is equal to the
reward signal. This only happens foe= 0 and, to be fair, it is painfully slow — though it

can be accelerated by settibtp a relatively low value, lik@.3.

While this proves that the implementation of TDNdNniot completely bug-ridden, as one
might have assumed based only on the diverging, tés$s$ still not a viable solution for the

training of a predistorting ANN.

In hindsight, it does make sense that the TDNNralgm was not able to train an ANN as
a predistorting system. Temporal Difference leagnsxcommonly described as a method
for policy evaluation, or prediction, which meahatt for a given policy, TD can be used to

iteratively learn the value, or utility, of a giverput state.

This does not intuitively translate very well iritee predistortion problem, though we could
say that the policy of the PD problem is the tranfinction of the ANN, parameterized by
its weights. Now, the whole point of the PD exezdstochange the weights of the ANN in

order to achieve a goal, and changing the weightise)ANN means changing the policy,
which is not what TD learning is about. This migkty well be the underlying reason for

the TDNN strategy having failed.

In spite of the lack of success found using TDrlewy, this was still an important step in
finding a better solution. Many meetings and diseauss were held with various professors
and colleagues in doctoral programs, and thosdteesd among others — in the pursuit of a

solution based on evolution strategies, expanded upthe next section.
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6. EVOLUTION STRATEGIES

The main idea behind the problem of optimizatiothesiterative improvement of a measure
of the performance or value of a decision [49]deaision which may be the selection of a
set of weights for a predistorting ANN. This measius provided by a cost function
f : R® = Rwhich summarizes, in a single scalar, the fitréss individual withn defining

features.

While most common methods of optimization — suclglient descent and Newton’s
method — may converge to local, non-optimal sohgidue to their reliance on the gradient
or higher-order statistics of the cost functiomlation strategies are guaranteed to find the
globally optimal solution due to their stochastature, which follows the principles of
natural evolution: mutation, recombination and c#b® in populations of candidate

solutions [50].

6.1. CMA-ES

The Covariance Matrix Adaptation Evolution Strate@@MA-ES) is a state-of-the-art
evolutionary algorithm for optimization in continumdomains [50]. Rather than calculating
a metric of the cost function (such as the grajli@stmost classical optimization algorithms
do, and choosing the solution that improves itif@ore specifically, minimizes it) in a local
search space, CMA-ES uses a (multi-variate) nordistribution to sample a set (a

population) of new search points [51].

Any normal distribution):(m, C), can be defined by its mean,€ R", and its covariance
matrix, C € R™*", for n equal to the dimension of the solutions [51]. G@mrece matrices
can be geometrically interpreted as hyper-ellipsogiirfaces (im-dimensional space) of
equal density of the distribution, whose princigaés and their squared lengths correspond,

respectively, to the eigenvectors and the eigemgatdiC [51].
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The objective of CMA-ES is to fit the search distiion to the contour lines of the cost
function — the lines of equal cost. Figure 6.1silates three different normal search
distributions in thick lines and the contour lirefsan example cost function. Clearly, the
distribution on the right side of the figure is tbee that follows the contour of the cost

function in the way that will most likely lead ta aptimal solution [51].

As the name of the algorithm implies, the fittirfdlee search distribution is done by adapting
its defining covariance matrix. Exactly how thisdsne, as well as the more specialized
options of the algorithm, is outside of the scopethis document — to put things in

perspective, the implementation used in the sinaratdetailed below has more than 3000

N @
I P

Figure6.1. Three different normal search distributions [51].

lines of code.

6.2. Simulation Results

A free (GNU GPLv3) Matlab implementation [52] ofetlCMA-ES algorithm was used to
minimize a cost function by adapting the 272 wesginid biases of an ANN with two input
nodes, three hidden layers of ten nodes eachyandutput nodes — see Appendix C.

The cost function was the Normalized Mean SquarerENMSE) of the VSPA output,
defined in (6.1), wheré&" andQ” are the target outputs, ah@ndQ are the actual outputs
of the VSPA for a given input (provided by the ANihat is being adapted). All squaring

operations are done in an element-wise fashion.
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SE = 1[I —I"? + [Q — Q"]

ME = [I — mean(I")]* + [Q — mean(Q")]? 6.1)

NMSE = 25E
~ YME

For every iteration of the CMA-ES algorithm thene dwenty evaluations of the cost
function (by default), and for each one of theseraghis one execution of the forward
propagation function of the ANN and one evaluatdthe VSPA. In order to speed up the
processing of the algorithm, a custom implementadioan ANN was created and the noise

generator of the VSPA model was disabled by maskiagandom() Matlab function.

The custom ANN implementation (Appendix D) perforfosvard propagation about 100
times faster than the implementation available atl&b’s Neural Network Toolbox — most
likely due to the processing overhead the lattguires in order to provide the whole
functionality of the toolbox (though, honestlyistquite surprising how slow it is). The lack
of noise generation by the VSPA model means thatNMSE level reached may be,

potentially, boundlessly negative in dB.

Figures 6.2 to 6.5 show the state of the CMA-E®rdlgm at one hundred iterations, one
thousand iterations, ten thousand iterations, Areethundred thousand iterations. These
figures plot four different signals: the naturatmut of the VSPA (that is, without any sort
of predistortion) as black dots, the target outpluthe linearized VSPA as red dots, the
output of the predistorting ANN, and the resporist® VSPA to that input as blue crosses.
All of these signals are based on a relatively spagrid ofl/Q symbols — the linearization

targets — that cover the complete output rangheMSPA.

The initial state of the weights of the ANN is adam vector of low values. Thus, the output
of the ANN, as well as the output of the VSPA, isleud of dots and crosses around the
center of théd/Q plane. Throughout the initial iterations, thespand in a random-looking

way until the whole plane is filled. Then, it becesnclear that the CMA-ES algorithm is
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slowly bringing the blue crosses closer and cloesesards the red dots. Finally, the blue
crosses become coincident with the red dots (lina@on achieved) and the green dots end
up warped in a way that is contrary to the warpffgct shown in Figure 3.7 (the input of

the VSPA has successfully been predistorted).

Figure 6.6 is a plot of the cost function (or, mooerectly, the cost of the ANN selected by
the algorithm among twenty alternatives in eachaiten) in respect to time. While the
results are excellent, it must be stated thattig#hod is not very fast at all. Still, it can only
get better: with more research time, it might hagen possible to accelerate the algorithm

by finely tuning its configuration parameters.

In any case, a decrease in NMSE of 20 dB per desfderations is very acceptable: the
execution time would surely have been lower ifalgorithm had been run on a quad-Nvidia

Titan X machine with 64 GB of memory instead ofemeric personal laptop.
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Figure 6.6. NMSE vs Time plot of the CMA-ES algorithm.

After the close-to-four hours had elapsed, the CEB\algorithm had produced an ANN
that was capable of predistorting a grid/&Q symbols with an NMSE at the output of the
VSPA of —70 dB. Note, again, that this figure isygmossible due to the fact that the noise
generator of the VSPA model had been disabled,notbe the NMSE would have

converged to a higher value (close to —50 dB).

Figure 6.7 shows the AM-AM and AM-PM characteristit the resulting ANN. Notice how
they are opposite to those of the VSPA (Figure: &Bhigh input power levels, there is an

increase in gain and a negative phase shift.

Figure 6.8 illustrates the AM-AM and AM-PM charatséics of the complete predistortion

system: from the input of the ANN to the outputlté VSPA. The gain is constant and there
is no phase shift, so the system is linear. Treeseime dispersion in the plots due to numeric
errors that occur at low power levels and due éonbise generator of the VSPA that was

re-enabled.
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The final verification of the developed predistortisystem consisted in feeding it the four-
carrier GSM signal described in section 3.2 ancenlisg the frequency spectrum of the
output of the VSPA. This signal is completely umetated with the grid of input/Q

symbols used in the generation of the predistorN\.

This frequency spectrum is plotted in Figure 6r8] d reveals that the linearization of the
VSPA was nearly flawless: all of the intermodulatidistortion tones were not just

attenuated, but completely and utterly eliminated.

While it might have taken nearly four hours to gate an ANN with an NMSE of —70 dB,
the linearization results show that it was worthVitith the possibility of adjusting the
configuration parameters of the algorithm, and \aithore capable computing platform, the

CMA-ES algorithm shows great promise in generaaim@\NN for the linearization of a PA.
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Figure 6.9. Output spectrum of the VSPA in response to th&Ggnal
with (red) and without (blue) predistortion by tABIN generated using CMA-ES.
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/. SUCCESSIVE TARGET APPROXIMATION

Successive Target Approximation (STA) is an origjinastom-made algorithm that can be
used for the linearization of a PA [53]. STA congaithe signal that, when fed to the PA as
an input, results in a PA output signal that matchspecified target PA output signal. If the
target PA output signal features the complete Pfouwiuvector space (or a sufficiently
exhaustive sampling of it), then the algorithm efifieely computes a mapping of the PA’s

output vector space to its input vector space.

In other words, STA computes the PA input signategpondent to a given PA output signal
— that is, the output of the PD. It immediatelyidals, then, that STA solves the problem of
training a predistorting ANN using the Backpropagatlgorithm: the lack of a target ANN

output signal. Thus, the process of creating an Ahdtl predistorts a PA is simple:

1. Generate a vector of target linear PA output sysibol

2. Using the STA algorithm, compute the correspondigor of predistorted PA input
symbols — the target PD output;

3. Using the Backpropagation algorithm, train an AN&ing a vector of linear input

symbols as its input and the vector computed ii¢hSTA algorithm as its target.

7.1. The Algorithm

Let PAT,,, be the target output of the PA. The goal of thé &lgorithm is to find the input
vector of the PAPA,;,, that leads to the target output. [Pet,,; be the output of the PA in

response to a given input. L&t (-) be the transfer function (or the model) of the PA.

While it would be possible to start STA with antiali approximation oPA;,, as a vector of
zeroes, it is intuitive that, whatever happensmuthe algorithm, the final outcome should
not be too different from a linear input — thattie input vector that would lead PA7,, if
the PA were a linear device. Obviously, this linggout is equal taPA? . divided by the
target gain of the PA, which is 0 dB, as statethensection describing the VSPA.
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Thus, let the initial approximation &4;,, be (7.1):
P— T
PA;, = PAyyut (7.1)
The algorithm proceeds as follows, wittbeing a learning rate parameter:

Repeat until convergence {

PAyy: = fPA(PAin)

(7.2)
PAy, = PAyy + (PAgut - PAout)

That is it — STA is so simple, it is almost surprgsit works. Once convergence is reached,
PA;, can be used as the target for the training of &N Aising the Backpropagation

algorithm, with its input being the linear inputsdebed just aboveP@?,,,).

7.2. Simulation Results

The STA algorithm (Appendix E) was used to lineatize VSPA model. This is a base band
model, saPAT,,, PA,,: andPA;, are vectors dffQ symbolic pairs, that is, they are matrices
of size2 x N, with N being the number of symbols us@d’ ,, was defined as a relatively

sparse grid of/Q symbols that covers the whole output range oMBEA.

Figures 7.1 to 7.4 show the state of the STA allgori(witha = 0.5) at zero iterations, one

iteration, four iterations, and ten thousand iteret. These figures plot four different signals:
the natural output of the VSPA (that is, withouy @ort of predistortion) as black dots, the
target output of the linearized VSPA as red ddts,durrent state of the computed VSPA

input as green dots, and the response of the V8R#at input as blue crosses.

Throughout the various iterations, the blue crossas coincident with the black dots (no
linearization) and end up coincident with the reguases (complete linearization).
Meanwhile, the green dots start coincident with tbe dots (equation 7.1) and end up

warped in a way that is contrary to the warpinge&fthown in Figure 3.7.
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Figure7.2. State of the STA algorithm: after the first itéoa.

53



— T T
m_.uw# u_..._s..._s......w. N
! R R T S 2o B
+.u_"..+¢.._..+.+.+“_.4_..._”._. _EES
L) o 0| = o ~
- p kT F P r P E e {5 <3
BRI AR R G Y
2 BT PR tehd bt & 28 & 5]
..r.._u.+.+w+.+.+w+++++ o o +f
..u_..._..+.++++++++++++++.._a 1
oh et 4 UL A T A I ._..4..
EP e 2R R L F A 4
R A R T S e SE NS
-”_qp_..++w++++++++.+++.+.+..+..
WE R P A by
AR A ik ok TR SUNE SPPRT L
&.._s+._"._..+.+q++++.++._“+.++..
- ._..._..._.+.++++++++++..._.._..+ 1
+.+.._-._.++++++..~.*++.+
- ._.++.+.+._.++$._.. ¥ ¥ y
.+ﬁﬁ%$%whﬁ
1 1 1 .-ouoo. 1 1 1
- ®» 9 ¥ o ° o % 9 o =

jusuodwo)) O

0.6 0.8

0.4

0.2

-08 -06 -04 -02

I Component

Figure7.3. State of the STA algorithm: after the fourth dgon.

b

— T
.+++++++++. -
- +.++«+++++++ -
: £%3
.+.+.++++++++++ mmmm
T TR R KA -
R R A R A I o ks mmmm
ERChInat ah AL R T SRR IRl
N R A S e b e * o+
LA F R E LR T A
L et h b 4t ek e 24 4]
B A AR F F A WHEF A+ Y
R o R il e de = A
A R e e g
B N N LT Y
F et e w4
R TR T e
BRI AR T T arae dh AR 25 St S S
uf.+.+.++++++++++.+..+.
! +.++++..T+++ AR hd ]
+.++++L.T+t+.
1 1 1 .-o.n o. 1 1 1
L S~ S SN B E SN S

= <

jusuodwo)) O

0.6 0.8

0.4

0.2

-08 -06 -04 -02

I Component

Figure7.4. State of the STA algorithm: after the ten thoashnteration.

54



It is quite the understatement to say that theltestithe STA algorithm were unexpectedly
good. Figure 7.5 is a plot of the NMSE at the VS#aput (that is, the error between the
actual and the target outputs of the VSPA). Thi$ wias generated with the noise generator
of the VSPA model disabled — this is useful to gehore accurate measure of the actual
performance of the algorithm itself, without thenpkzation introduced by the processing
of the VSPA model.

As shown, STA achieves a staggeringly low NMSE madter of milliseconds.
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Figure7.5. NMSE vs Time plot of the STA algorithm with thendom() function
disabled.

Naturally, enabling the noise generator of the V3R@ddel increases the processing time
(by four times) and introduces a limit to how |[dve NMSE can be. Figure 7.6 shows exactly

this.
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Figure7.6. NMSE vs Time plot of the STA algorithm with thendom() function
enabled.

After the STA algorithm reached convergence (whk hoise generator enabled), the
Backpropagation algorithm was used to train thelipterting ANN. It must be noted that
the Backpropagation algorithm minimizes (to a ¢eréxtent) the error at the output of the
ANN, and this error is not equal to the error & tlutput of the VSPA. For this reason, the
ANN training function (from Matlab’s Neural Networkoolbox) must be run inside a loop
in which the error at the output of the VSPA is monmed — otherwise there may be a

significant drop in linearization performance.

Figure 7.7 illustrates the AM-AM and AM-PM charautsécs of the generated ANN. Notice
how they are opposite to those of the VSPA (Fi@udg: at high input power levels, there is
an increase in gain and a negative phase shift.

Figure 7.8 illustrates the AM-AM and AM-PM charatséics of the complete predistortion
system: from the input of the ANN to the outputltd VSPA. The gain is constant and there
Is no phase shift, so the system is linear. Theeseme dispersion in the plots due to numeric
errors that occur at low power levels and due ¢onthise generator of the VSPA.

56



[Pout| - |Pin| (dB)

0 50 510 15 20 25 30
IPin| (dBm)

20 T T T T T T T

_20 1 1 1 1 1 1 1
10 15 20 25 30

IPin| (dBm)

®(Pout) - (Pin) (degrees)
S
On
o
9

Figure7.7. Gain and AM-PM characteristics of the ANN PD gaed using STA.

[Pout| - |Pin| (dB)

_20 . "I ] ] ] ] ] ]

0 50 510 15 20 25 30
IPin| (dBm)

®(Pout) - (Pin) (degrees)
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In order to confirm that the predistortion systeaswn fact linear, the ANN generated using
the STA algorithm (and the Backpropagation algaomithvas fed with the four-carrier GSM
signal described in section 3.2. It must be nolted this signal is completely uncorrelated

with the signals used during the STA algorithm #redtraining of the ANN.

Figure 7.9 is a plot of the frequency spectrumhefautput of the VSPA in response to the
GSM signal with (in red) and without (in blue) theedistorting ANN. It is very clear that
the linearization goal was met: the spurious digtortones were nearly completely
eliminated. There appear to be some very minoodish tones between each of the four
GSM carriers, as well as a DC offset that was latedulated to 10 MHz, but these can be
attenuated by making sure the Backpropagation pifabe algorithm does not degrade the
linearization performance by a significant amount.

The STA algorithm has, therefore, been verifiedraexceptionally fast and accurate method
of generating a predistorting ANN for a static PA.
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Figure 7.9. Output spectrum of the VSPA in response to th®IGIgnal
with (red) and without (blue) predistortion by tABIN generated using STA.
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8. CONCLUSION

A new generation of telecommunications networksiireg a new generation of linearization
systems for the power amplifiers they rely on. Thasbase band analog predistorter

implemented as an artificial neural network waspps®d as a solution.

Traditionally, ANNs are trained in a supervised mam This, however, goes against the
very essence of the problem of predistortionfitol the optimal predistortion function.
Roundabout ways of solving this paradox have besumented in the literature, such as

training the ANN as a post-distorter and testirggita predistorter.

In this dissertation, three different alternativairiing methods are explored: Temporal
Difference learning, optimization through evolutigirategies, and a custom algorithm

which enables the use of the Backpropagation dtguori

8.1. Results Summary

Despite our best efforts, the Temporal Differenearming method proved to be
unsuccessful. While initially it was thought todgood candidate for a solution, our results
suggest the opposite, and some later knowledgkeotiie meaning of “policy evaluation”
confirm that these results were, ultimately, ingbiée. Alas, failure is also part of the research

process.

Optimization using CMA-ES produced predistorting Ré&with exceptional performance,
completely erasing any sign of intermodulationatisbn introduced by the base band model
of a static PA. The only downside to this method wWee processing time, on the order of
minutes to hours — even with a custom-made impléatien of an ANN that is 100 times
faster than that of Matlab’s Neural Network Toolbddaturally, this can be improved by
resorting to a proper computation platform andibglf tuning some of its configuration

parameters.
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Finally, the original Successive Target Approxiraatalgorithm proved to be astonishingly
fast and produced excellent results as well, alsuireating all distortion tones. This
algorithm enables the use of the Backpropagatigar@hm for the training of the ANN.
While this introduces a penalization in both preoeg time and linearization performance,
these are still potentially better than those ef @MA-ES algorithm. A tighter integration
of the STA and the Backpropagation algorithms wauictly make for a better-performing

solution.

8.2. Future Work

There is still plenty of research left to do, esak concerning the analog implementation
of the predistortion system. Other topics inclutedetermination of the optimal size of the
ANN to be used as a predistorter, as well as tiealization of a dynamical (with memory)

model of a PA, as opposed to a static one.

8.2.1. Dynamical Systems

While the linearization of a static model of a BAai good start, a more complete solution
would need to be able to linearize a dynamical momdeich features the memory effects

present in most real amplifiers.

This problem requires a completely different apphoto the training of the networks: for

instance, the order of the input symbols would e af the many additional factors to take
into consideration. While there are techniques ginatend to solve this issue, they are far
from optimal. Some preliminary original work hashelone regarding the generation of an
optimal, minimume-sized input sequence that covieescomplete output vector space of a

dynamical PA, but it shall not be published in hi&€ument at this stage.

Some brief tests were done on a dynamical base ivanie| of a PA with a one-sample
memory depth, but there was no time to draw de&fiodnclusions — especially because of
the processing time, which increases dramaticaltystich systems. It is to be expected,
though, that the CMA-ES algorithm should remairoadysolution, but the STA algorithm

should fail very quickly without any modifications.
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8.2.2. Towards Analog

In order to begin the understanding of what anapahplementation of an ANN might

implicate, some modifications were done to the oetw generated by the CMA-ES and the
STA algorithms and a brief, final test was conddcte this test, it was assumed that the
two networks were implemented as analog circuitg] #hat their weights were set by

external voltages with a 1 mV resolution.

First, it should be noted that this is a perfeettgeptable assumption, because the weights
have relatively low values: the CMA-ES ANN has wegwith absolute values between
0.009 and 8.217, and the STA ANN has weights witkolute values between 0.001 and
5.479. If these were voltage, they could be produmeany commercially available DAC.

Figures 8.1 and 8.2 show the frequency spectrheocbutputs of the two ANNs with their
weights rounded to three decimal places. It isrclaad expected, that the limiting of the
precision in the definition of the network weightgroduces distortion in the system,

especially as a DC (zero Hz) component (that wies faodulated to 10 MHz).

This can be easily solved by a low pass filterhat output of the ANN, though it might

actually be possible do it by training the ANN witimited-precision weights — as opposed
to performing the training with double precisionigigs and later rounding them to three
decimal places. Had we had more time, that woule teeen an interesting experiment: let

the ANN solve, by itself, the problems introducgdhre limited precision of its own weights.
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APPENDIX A: VECTORIZED TDNN MODEL AND
LEARNING ALGORITHM (MATLAB)

% Temporal Difference Neural Network
% File: TDNN.m
Author: Pedro Tomé (tome.p.m at ua.pt)

% To be used under the terms of the GNU General Public License:
% http://www.gnu.org/copyleft/gpl.html

coNOUVTh WNBR
3R ¥ R

9 %
10 classdef TDNN
11 properties (GetAccess = 'public', SetAccess = 'private')
12 RAND_INIT_EPSILON;% Random weight initialization scaling factor
13
14 numInputs; % Number of input nodes (excluding bias node)
15 numHidden; % Number of hidden nodes (excluding bias node)
16 numOutputs; % Number of output nodes
17
18 BIAS; % Activation of the (constant) bias nodes
19 GAMMA; % Discount rate parameter (typically ©.9)
20 LAMBDA; % Trace decay parameter (should be <= GAMMA)
21 ALPHA; % Learning rate of v (typically 1/numInputs)
22 BETA; % Learning rate of w (typically 1/numHidden)
23
24 x; h; y; % Neuron activations for layers 1 to 3
25 V; W; % Weights between layers 1 and 2 and layers 2 and 3
26
27 oldy; % Last output
28 ev; ew; % Eligibility traces of v and w
29 error; % TD error
30 end
31
32
33 methods (Access = 'public')
34 function self = TDNN(numInputs, numHidden, numOutputs)
35 validateattributes(numInputs, ...
36 {"'numeric'}, {'scalar', 'positive', 'integer'}, '',
37 "numInputs');
38 validateattributes(numHidden, ...
39 {'numeric'}, {'scalar', 'positive', 'integer'}, '', ...
40 "numHidden');
41 validateattributes(numOutputs,
42 {"'numeric'}, {'scalar', 'positive', 'integer'}, '',
43 "numOutputs');
44
45
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79
80
81
82
83
84
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86
87
88
89
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self.numInputs = numInputs;
self.numHidden = numHidden;
self.numOutputs = numOutputs;

self.RAND_INIT_EPSILON = 0.5;
self.BIAS =
self.GAMMA
self.LAMBDA =
self.ALPHA
self.BETA

J
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mn 1
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e Lo W .

self = self.init();
end

function self = train(self, netInput, reward, gamma, ...
lambda, alpha, beta)
validateattributes(self,
{"TDNN"}, {}, "', 'self');
validateattributes(netInput, ...

{"'numeric'}, {'nrows', self.numInputs},'', 'netInput');

validateattributes(reward,

{"'numeric'}, {'size', size(netInput)}, '', 'reward');

validateattributes(gamma,

{'numeric'}, {'scalar', 'nonnegative'}, , 'gamma');

validateattributes(lambda, ...

{"'numeric'}, {'scalar', 'nonnegative'}, '', 'lambda');

validateattributes(alpha,

{"'numeric'}, {'scalar', 'positive'}, '', 'alpha');
validateattributes(beta, ...

{'numeric'}, {'scalar', 'positive'}, '', 'beta');

self.GAMMA = gamma;
self.LAMBDA = lambda;
self.ALPHA = alpha;
self.BETA = beta;

t =1;

self = self.forwardProp(netInput(:,t));
self.oldY = self.y;

self = self.updateEligTraces();

for t = 2 : size(netInput, 2)
self = self.forwardProp(netInput(t));

self.error = reward(t) + self.GAMMA*self.y - self.oldyY;

self = self.updateWeights();

self = self.forwardProp(netInput(t));
self.oldY = self.y;
self = self.updateEligTraces();
end
end
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103 function netOutput = output(self, netInput)

104 validateattributes(self, ...

105 {'TDNN"}, {3}, '', 'self');

106 validateattributes(netInput,

107 {"'numeric'}, {'nrows', self.numInputs},'’', "netInput');
108

109 numSamples = size(netInput, 2);

110 netOutput = zeros(self.numOutputs, numSamples);
111

112 for t = 1:numSamples

113 [~, tmp] = self.forwardProp(netInput(:,t));
114 netOutput(:,t) = tmp;

115 end

116 end

117

118

119 Allows the use of the following syntax

R ¥ X

120 netOutput = net(netInput)

121 equivalent to

122 % netOutput = net.output(netInput)

123 % where 'net' is an object of class TDNN.

124 function varargout = subsref(obj, s)

125 switch s(1).type

126 case '()'

127 input = s.subs{:};

128 varargout = {obj.output(input)};

129 case '.'

130 c = class(obj);

131 fname = strcat(c, '>', ¢, '.', s(1).subs);

132 n = nargout(fname);

133 [varargout{1:n}] = builtin('subsref', obj, s);
134 end

135 end

136 end

137

138

139 methods (Access = 'private')

140 function self = init(self)

141 % Neuron Activations Initialization

142 self.x = [self.BIAS ; zeros(self.numInputs, 1)];

143 self.h = [self.BIAS ; zeros(self.numHidden, 1)];

144 self.y = zeros(self.numOutputs, 1);

145 self.oldY = zeros(self.numOutputs, 1);

146

147 self.error = 0;

148

149 % Random Weight Initialization

150 self.v = rand(self.numHidden, self.numInputs + 1) * 2 * ...
151 self.RAND_INIT_EPSILON - self.RAND_INIT EPSILON;
152 self.w = rand(self.numOutputs, self.numHidden + 1)* 2 * ...
153 self.RAND_INIT_EPSILON - self.RAND_INIT_EPSILON;
154

155 % Eligibility Traces Initialization

156 self.ev = zeros(self.numHidden, self.numInputs + 1, ...
157 self.numOutputs);

158 self.ew = zeros(self.numOutputs, self.numHidden + 1);

159 end
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160

161

162 function [self, output] = forwardProp(self, input)

163 self.x(2:end) = input;

164

165 self.h(2:end) = tansig(self.v * self.x);

166 %self.h(2:end) = 1 ./ (1 + exp(-(self.v * self.x)));
167

168 self.y = purelin(self.w * self.h);

169 %self.y = tansig(self.w * self.h);

170 output = self.y;

171 end

172

173

174 function self = updateWeights(self)

175 self.w = self.w + self.BETA * repmat(self.error, 1, ...
176 self.numHidden + 1) .* self.ew;

177

178 dv = zeros(size(self.v));

179 for k = 1 : self.numOutputs

180 dv = dv + self.error(k) * self.ev(:,:,k);

181 end

182 self.v = self.v + self.ALPHA * dv;

183 end

184

185

186 function self = updateEligTraces(self)

187 deltaY = ones(size(self.y)); % Output nodes: purelin()
188 %deltaYy = self.y .* (1 - self.y); % Output nodes: tansig()
189 deltaH = self.h .* (1 - self.h); % Hidden nodes: tansig()
190

191 self.ew = self.LAMBDA * self.ew + deltaY * self.h';

192

193 tmp = deltaY * deltaH(2:end)' .* self.w(:,2:end);

194 for k = 1 : self.numOutputs

195 self.ev(:,:,k) = self.LAMBDA * self.ev(:,:,k) + ...
196 (self.x * tmp(k,:))";

197 end

198 end

199 end

200 end
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APPENDIX B: EXAMPLE USAGE OF THE TDNN
MODEL AND LEARNING ALGORITHM (MATLAB)

coNOUVTh WNBR
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% Example Usage of the TDNN Class
% File: Test TDNN.m
4 Author: Pedro Tomé (tome.p.m at ua.pt)

32 3 3%

% To be used under the terms of the GNU General Public License:
% http://www.gnu.org/copyleft/gpl.html

%

%

close all;

%% Define the PA's transfer function, input range and target output
PA = @(x) tanh(3 * x);

input = linspace(-1, 1, 100);

targetOutput = input;

% Try this with reward = targetOutput, gamma = @, and lambda = O.
% Backpropagation at a snail's pace.
% targetOutput = 0.75*sin(pi*input) + 0.25*sin(3*pi*input);

%% Prepare figures
figure();

subplot(1,5,[1 3]);
plot(input, PA(input), 'b'); hold on;
plot(input, targetOutput, 'k--');
h_netOut = plot(input, nan(size(input)), 'g');
h_PAout = plot(input, nan(size(input)), 'r');
h_reward = plot(input, nan(size(input)), 'k');
xlabel('Inputs'); ylabel('Outputs'); grid on;
legend('Default PAout', 'Target PAout', 'PDout’,
'Linearized PAout', 'Reward', 'Location', 'SouthEast');

subplot(1,5,4);

netOut_error_history = NaN;

h_netOutError = plot(netOut_error_history); grid on;
xlabel('Iteration'); ylabel('MSE(reward - netOut) (dB)');

subplot(1,5,5);

PAout_error_history = NaN;

h_PAoutError = plot(PAout_error_history); grid on;
xlabel('Iteration'); ylabel('MSE(targetOutput - PAout)(dB)');
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%% Create and train the PD
TDnet = TDNN(1, 10, 1);
netOut = TDnet(input);
PAout = PA(netOut);

iteration = 0;
while (true)

end

iteration = iteration + 1;

E = targetOutput - PAout;
SE = E .7 2;

MSE = mean(SE);

% Pick your poison:

%reward = [zeros(1l, length(input) - 1)
%reward = [zeros(1l, length(input) - 1)

J

J

+1 * MSE];
-1 * MSE];

%reward = +1 * MSE * ones(1, length(input));

%reward = -1 *
%reward = +1 * SE;
%reward = -1 * SE;

reward = E;
%reward = targetOutput;

% Train the network

TDnet = TDnet.train(input, reward,

% Calculate performance measures

netOut = TDnet(input);
PAout = PA(netOut);

MSE * ones(1, length(input));

gamma, lambda
0.0,0.3,

netOut_error = mean((reward - netOut) .~ 2);

netOut_error_history(iteration)

netOut_error;

PAout_error = mean((targetOutput - PAout) .~ 2);
PAout_error_history(iteration)

% Refresh figures
if (mod(iteration,10) == 0)

set(h_netOut, 'YData', netOut);
set(h_PAout, 'YData', PAout);
set(h_reward, 'YData', reward);
set(h_netOutError, 'YData', 10*logl@(abs(netOut_error_history)));
set(h_PAoutError, 'YData', 10*logl@(abs(PAout_error_history)));

drawnow();
end
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APPENDIX C: OPTIMIZATION USING THE CMA-ES
ALGORITHM (MATLAB)

coNOUVTh WNBR
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44

Example Usage of the CMA-ES Algorithm
File: Test CMAES.m
Author: Pedro Tomé (tome.p.m at ua.pt)

Uses cmaes.m, version 3.61.beta, by Nikolaus Hansen,
with slight modifications for monitoring purposes.

To be used under the terms of the GNU General Public License:
http://www.gnu.org/copyleft/gpl.html

function Test CMAES()

%% Program setup
netHiddenSize = [10 10 10];
maxInputAmplitude = 1;

close all;

%% Define the input and target output signals

[netInput_I, netInput_Q] = iqGrid(maxInputAmplitude, ©.1);
netInput = [netInput_I' ; netInput Q'];

ampOutput_targetI netInput_T;
ampOutput_targetQ = netInput_Q;
ampOutput_target = [ampOutput_targetI , ampOutput_targetQ];

%% Create Artificial Neural Network
net = FastANN(2, netHiddenSize, 2);
startingWeights = getwb(net);

%% Create IQ monitoring figure
handles = createMonitoringFigure(net, netInput, ampOutput_target);

%% Run Optimization Algorithm

projectSettings.net = net;

projectSettings.netInput = netInput;
projectSettings.ampOutput_target = ampOutput_target;
projectSettings.handles = handles;
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45 % The cmaes function was modified a bit for monitoring purposes

46 [xmin, fmin, counteval, stopflag, out, bestever] = cmaes( ...
47 'CMAES_costFunction', .o
48 startingWeights,

49 0.1,

50 [], projectSettings

51 )5

52 end

53

54

55 function [I, Q] = iqGrid(maxAmplitude, delta)

56 %% Create grid of (I,Q) points

57 [I, Q] = meshgrid([-1 : delta : 1], [-1 : delta : 1]);

58 I =1I(:) * maxAmplitude;

59 Q = Q(:) * maxAmplitude;

60

61

62 %% Exclude points outside the maxAmplitude radius

63 indices = sqrt(I.”2 + Q.”2) < maxAmplitude;

64 I = I(indices);

65 Q = Q(indices);

66 end

67

68

69 function handles = createMonitoringFigure(net,netInput,ampOutput_target)
70 [ampOutput_TI, ampOutput_Q] = VirtualStaticPA(netInput(1,:)', ...
71 netInput(2,:)");
72 netOut = net(netInput);

73 [ampOutput_Ipd, ampOutput_Qpd] = VirtualStaticPA(netOut(1,:)', ...
74 netOut(2,:)');
75

76 %% IQ Mapping

77 figure();

78 plot(ampOutput_I, ampOutput_Q, 'k.'); hold on;

79 plot(ampOutput_target(:,1), ampOutput_target(:,2), 'r.');

80 handles.ampOutput = plot(ampOutput_Ipd, ampOutput_Qpd, 'b+');
81 handles.netOutput = plot(netOut(1,:), netOut(2,:), 'g."');

82 xlabel('I Component'); ylabel('Q Component');

83 legend( 'Default PAout', 'Target PAout', 'Linearized PAout’',
84 'PDout', 'Location', 'SouthEast');

85

86

87 %% IQ Mapping Error

88 figure();

89 handles.perf = plot(NaN, NaN);

90 xlabel('Iteration'); ylabel('Function Value (dB)');

91

92 drawnow();

93 end
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40 end

% Cost Function (NMSE) for CMA-ES Optimization
% File: CMAES_costFunction.m
% Author: Pedro Tome' (tome.p.m at ua.pt)

To be used under the terms of the GNU General Public License:
5 http://www.gnu.org/copyleft/gpl.html

function netFitness = CMAES_costFunction(netWeights, options)

%% Parse input options

net = options.net;

netInput = options.netInput;
ampOutput_target = options.ampOutput_target;
PAout_Tt ampOutput_target(:,1);

PAout_Qt = ampOutput_target(:,2);

%% Configure ANN with input weights
net = setwb(net, netWeights);

%% Compute ANN output

netOut = net(netInput);
netOut_I = netOut(1,:)';
netOut_Q = netOut(2,:)"';

%% Compute Linearized PA output
[PAout_Ipd, PAout Qpd] = VirtualStaticPA(netOut I, netOut_Q);

%% Compute ANN fitness
squareError = (PAout_Ipd - PAout_It).”2 + (PAout_Qpd - PAout_Qt)."2;
meanError = (PAout_Ipd - mean(PAout_It)).”2 + ...
(PAout_Qpd - mean(PAout_Qt)).~2;
NMSE = sum(squareError) / sum(meanError);

netFitness = NMSE;
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APPENDIX D: FAST IMPLEMENTATION OF
ARTIFICIAL NEURAL NETWORK (MATLAB)

OVCoOoNOOTUVTE WN R

10

(]

(]

NN

%
%

(]

3R 3R X

%

3% 3R 3R X

%

3R 3R X

%

(]

3% 3R X X

Fast
File:
Autho

Examp
1.

To be
http:

Implementation of an Artificial Neural Network
FastANN.m
r: Pedro Tomé (tome.p.m at ua.pt)

le Usage:
Create an ANN with 2 input nodes, three hidden layers
of 10 nodes each, and 2 output nodes:
net = FastANN(2, [10 10 10], 2);
Extract the number of weights and biases of the network:
numWeights = length( getwb(net) );

. Set the weights and biases to whatever:

net = setwb(net, rand(1, numWeights));

. Calculate the network's output using Forward Propagation:

netInput = rand(2, 1000);
netOutput = net(netInput);

used under the terms of the GNU General Public License:
//www.gnu.org/copyleft/gpl.html

classdef FastANN

pro

end

met

perties (GetAccess = 'public', SetAccess = 'public')
RAND_INIT_EPSILON;
BIAS; % Activation of the (constant) bias nodes

numInputs; % Number of input nodes (excluding bias node)

numHidden; % Number of hidden nodes (excluding bias node)

numOutputs; % Number of output nodes

numLayers; % Number of layers, including input and output

weights; % The defining parameters of the network

hods (Access = 'public')
function self = FastANN(numInputs, numHidden, numOutputs)
validateattributes(numInputs, ...
{"'numeric'}, {'scalar', 'positive', 'integer'},
"numInputs');
validateattributes(numHidden, ...
{'numeric'}, {'vector', 'positive', 'integer'},
"numHidden');
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end

function
[~J

end

Allows

ne
equiva
A ne
5 where
function
swit

32 3¢ 3¢

3R R

end
end

% Set ne
function
wVec
self

poin
for

end
end

dateattributes(numOutputs,
{'numeric'}, {'scalar', 'positive', 'integer'}, s eee
"numOutputs’');

.numInputs = numInputs;
numHidden = numHidden;
numOutputs = numOutputs;

.numLayers = 1 + length(numHidden) + 1;

RAND_INIT_EPSILON = 0.5;

BIAS = 1;

= self.init();

netOutput = output(self, netInput)
netOutput] = self.forwardProp(netInput);
the use of the following syntax

tOutput = net(netInput)
lent to
tOutput = net.output(netInput)
'net' is an object of class TDNN.
varargout = subsref(obj, s)
ch s(1).type
case '()'
input = s.subs{:};
varargout = {obj.output(input)};
case '.'
c = class(obj);
fname = strcat(c,
n = nargout(fname);
[varargout{1l:n}] = builtin('subsref', obj, s);

>', ¢, ".', s(1).subs);

twork weights externally
self = setwb(self, weights)
tor = weights(1 : numel(self.weights{1}));
.weights{1} = reshape(wVector, size(self.weights{1}));

ter = numel(self.weights{1});

i =2 : length(self.weights);

wVector = weights([1:numel(self.weights{i})]+pointer);
self.weights{i}=reshape(wVector,size(self.weights{i}));
pointer = pointer + numel(self.weights{i});
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101 % Get network weights

102 function weightsOut = getwb(self)

103 weightsout = [];

104 for i = 1 : length(self.weights)

105 tmpW = self.weights{i};

106 weightsOut = [weightsOut ; tmpW(:)];

107 end

108 end

109 end

110

111

112 methods (Access = 'private')

113 function self = init(self)

114 % Random Weight Initialization

115 self.weights = cell(1, self.numLayers-1);

116

117 self.weights{1} = rand(self.numHidden(1), ...

118 self.numInputs + 1) * .

119 (2 * self.RAND_INIT_EPSILON) - self.RAND INIT_EPSILON;
120 for i = 2 : self.numLayers - 2

121 self.weights{i} = rand(self.numHidden(i), ...
122 self.numHidden(i-1) + 1) * ces
123 (2 * self.RAND_INIT_EPSILON)-self.RAND INIT EPSILON;
124 end

125 self.weights{end} = rand(self.numOutputs,

126 self.numHidden(end) + 1) * .

127 (2 * self.RAND_INIT EPSILON) - self.RAND INIT EPSILON;
128 end

129

130

131 function [self, output] = forwardProp(self, input)
132 N = size(input,2);

133 b = self.BIAS * ones(1,N);

134

135 x = [b ; input];

136 h = tansig( [b ; self.weights{1} * x] );

137 for i = 2 : self.numLayers - 2

138 h = tansig( [b ; self.weights{i} * h] );

139 end

140 y = purelin( self.weights{end} * h );

141

142 output = y;

143 end

144 end

145 end
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APPENDIX E: SUCCESSIVE TARGET
APPROXIMATION ALGORITHM (MATLAB)

% Successive Target Approximation (STA) Algorithm and Example Usage
File: SuccessiveTargetApproximation.m
Author: Pedro Tomé (tome.p.m at ua.pt)

% To be used under the terms of the GNU General Public License:
% http://www.gnu.org/copyleft/gpl.html

0NV WN R
R 3R R X

9 %
10 function SuccessiveTargetApproximation()
11 %% Program setup
12 maxIterations = 250; % Target Approximation stop condition
13 learningRate = 0.5; % Learning rate of the STA algorithm
14 netHiddenSize = [10 10 10]; % Number of neurons per hidden layer
15 maxNetPerformancelLoss_dB = 1; % Maximum performance loss allowed
16 % when synthesizing the ANN
17
18 maxInputAmplitude = 1;
19 targetAmplifierGain = 1;
20
21
22 close all;
23 %% Define the input and target output signals
24 [netInput_I, netInput Q] = iqGrid(maxInputAmplitude, ©0.1);
25 netInput = [netInput_I' ; netInput_Q'];
26
27 ampOutput_targetI = netInput_I * targetAmplifierGain;
28 ampOutput_targetQ = netInput_Q * targetAmplifierGain;
29 ampOutput_target = [ampOutput_targetI , ampOutput_targetQ];
30
31
32 %% Create IQ monitoring figure
33 handles = createMonitoringFigure(netInput, ampOutput_target,
34 maxIterations);
35
36
37 %% STA Algorithm
38 netTarget = netInput;
39
40 bestError = Inf;
41 errorHistory = nan(1l, maxIterations);
42 iteration = 9;
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43 while (iteration < maxIterations)

44 iteration = iteration + 1;

45

46 % Calculate target performance

47 [trained_ampOutput_I, trained_ampOutput_Q] = ...

48 PA(netTarget(1,:)"', netTarget(2,:)');

49 ampOutput = [trained_ampOutput_I , trained_ampOutput_Q];
50

51 error = costFunction(ampOutput_target, ampOutput);

52 if (iteration == 1)

53 errorHistory(iteration) = error;

54 else

55 errorHistory(iteration) = bestError;

56 end

57

58

59 % Accept new target if there was a performance increase
60 if (error < bestError)

61 bestError = error;

62

63 % This is the learning trick!

64 netTarget = netTarget + ...

65 learningRate * (ampOutput_target - ampOutput)';
66 end

67

68

69 % Update figures

70 if (mod(iteration,10) == 0)

71 set(handles.netOutput, 'XData', netTarget(1,:),

72 'YData', netTarget(2,:));

73 set(handles.ampOutput, 'XData', ampOutput(:,1), ...
74 ‘YData', ampOutput(:,2));

75 set(handles.error, 'XData', 1l:maxIterations,

76 'YData', 10*logl@(errorHistory));
77 drawnow();

78 end

79 end

80 fprintf('Target NMSE: %g dB\n', 10*logl@(bestError));

81

82

83

84 %% Create the predistorting Artificial Neural Network

85 net = feedforwardnet(netHiddenSize);

86 %net.trainParam.showhWindow = 9;

87 net = configure(net, 'inputs', netInput);

88 net = configure(net, 'outputs', netInput);

89

90 % Allow for a loss of 'maxNetPerformancelLoss_dB' dB in policy
91 % performance when synthesizing it as an artificial neural network
92 trained_error = Inf;

93 training_iterations = 0;

94 while (10*loglo(trained_error) > 10*logle(bestError) + ...
95 maxNetPerformancelLoss_dB)
96 training_iterations = training_iterations + 1;

97 if (mod(training_iterations, 50) == @)

98 net = init(net); % Hack in case it hangs

99 end
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156

end

net = train(net, netInput, netTarget);

netOutput = net(netInput);

[trained_ampOutput_I, trained_ampOutput_Q] = ...
PA(netOutput(1,:)', netOutput(2,:)");

trained_ampOutput = [trained_ampOutput_I trained_ampOutput_Q];

trained_error=costFunction(ampOutput_target,trained_ampOutput);
end
fprintf('Neural Network NMSE: %g dB\n', 10*logl@(trained_error));
fprintf('Absolute values of ANN weights range from %g to %g\n', ...
min(abs(getwb(net))), max(abs(getwb(net))));

%% Round network weights
decimalPlaces = 3; % Akin to an implementation with 1 mV precision
round_net = setwb(net, round(getwb(net), decimalPlaces));

round_netOutput = round_net(netInput);

[round_ampOutput_I, round_ampOutput Q] = ...
PA(round_netOutput(l,:)', round_netOutput(2,:)');

round_ampOutput = [round_ampOutput_I , round_ampOutput_Q];

round_error = costFunction(ampOutput_target, round_ampOutput);
fprintf('Rounded Neural Network NMSE: %g dB',1@0*logl@(round_error));
fprintf(' (weights rounded to %d decimal places)\n', decimalPlaces);

function [yI, yQ] = PA(xI, xQ)

end

[yI, yQ] = VirtualStaticPA(xI(:), xQ(:));

gain = 1;
yI = gain * yI;
yQ = gain * yQ;

function cost = costFunction(ampOutput_target, ampOutput)

end

I = ampOutput(:,1);
Q = ampOutput(:,2);
It = ampOutput_target(:,1);
Qt = ampOutput_target(:,2);

squareError = (I - It).”2 + (Q - Qt).”2;
meanError = (I - mean(It)).”2 + (Q - mean(Qt))."2;
NMSE = sum(squareError) / sum(meanError);

cost = NMSE;

function [I, Q] = iqGrid(maxAmplitude, delta)

%% Create grid of (I,Q) points

[I, Q] = meshgrid([-1 : delta : 1], [-1 : delta : 1]);
I =1I(:) * maxAmplitude;

Q = Q(:) * maxAmplitude;
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157 %% Exclude points outside the maxAmplitude radius

158 indices = sqrt(I.”2 + Q.72) < maxAmplitude;

159 I = I(indices);

160 Q = Q(indices);

161 end

162

163 function handles = createMonitoringFigure(netInput, ...

164 ampOutput_target, maxIterations)
165 figure();

166 %% IQ Mapping

167 [defaultAmpOutput_I, defaultAmpOutput Q] = ...

168 PA(netInput(1,:)', netInput(2,:)');

169 subplot(1, 4, [1:3]);

170

171 handles.netOutput = plot(nan(size(netInput, 2),1),

172 nan(size(netInput, 2),1), 'g.");
173 hold on;

174 plot(defaultAmpOutput_ I, defaultAmpOutput Q, 'k."');

175 plot(ampOutput_target(:,1), ampOutput_target(:,2), 'r.');
176 handles.ampOutput = plot(nan(size(netInput, 2),1),

177 nan(size(netInput, 2),1), 'b+');
178 axis([-11 -1 1]);

179 xlabel('I Component'); ylabel('Q Component');

180 legend('ANN Output', 'Default PA Output', 'Target PA Output',
181 ‘Linearized PA Output', 'Location', 'SouthEast');
182

183

184 %% IQ Mapping Error

185 subplot(1, 4, 4);

186 handles.error = plot(nan, nan);

187 x1lim([1 maxIterations]);

188 xlabel('Iteration'); ylabel('NMSE (dB)');

189 end



