
Universidade de Aveiro

2016

Departamento de Eletrónica, Telecomunicações e

Informática

PEDRO MIRASSOL
TOMÉ

PRÉ-DISTORÇÃO NEURONAL ANALÓGICA DE
AMPLIFICADORES DE POTÊNCIA

ANALOG NEURAL PREDISTORTION OF POWER
AMPLIFIERS

Dissertação apresentada à Universidade de Aveiro para cumprimento
dos requisitos necessários à obtenção do grau de Mestre em
Engenharia Eletrónica e Telecomunicações.

In Finlandia, J. Sibelius

o júri

presidente Prof. Doutor Paulo Miguel Nepomuceno Pereira Monteiro
professor associado da Universidade de Aveiro

arguente externo Prof. Doutor Henrique Manuel de Castro Faria Salgado
professor associado da Faculdade de Engenharia da Universidade do Porto

vogal Prof. Doutor Telmo Reis Cunha
professor auxiliar da Universidade de Aveiro

agradecimentos

I would like to express my gratitude to my thesis supervisors, Doctor Mikko
Valkama, from the Tampere University of Technology, Finland, and Doctor
Telmo Cunha, from the University of Aveiro, Portugal, for their always
immediate support and for putting up with my very self-reliant work
methodology.

I would like to thank Doctor Olli-Pekka Lundén, from the Tampere University of
Technology, for his teachings and the interest he showed in my work; Doctor
Tapio Elomaa, from the Tampere University of Technology, for his contribution
to my understanding of the Artificial Intelligence concepts contained within this
thesis; Mahmoud Abdelaziz, doctoral student at the Tampere University of
Technology, for his resources on behavioral modeling; and Doctor Nuno Lau,
from the University of Aveiro, as well as Abbas Abdolmaleki, doctoral student at
the University of Aveiro, for their knowledge on Evolution Strategies.

I would like to acknowledge the Erasmus+ exchange program, without which I
would not have had the opportunity to study at the Tampere University of
Technology and to learn about the Finnish people and their customs.

My most sincere appreciation to the Teekkarikuoro, the student choir of the
Tampere University of Technology. Of all the good things that happened to me
in Finland, being a part of you was the best. There are no words which express
how grateful I am for our time together and the feelings of us, through music,
being one. I hope my playing of Rachmaninoff’s Élégie was to your liking, and I
hope it touched you as you did to me.

To my friends, Diogo Saraiva and William Robert. Keepo

Finally, to my parents and my sister. Thank you.

palavras -chave

linearização, pré-distorção, pré-distorção analógica, pré-distorção neuronal,
rede neuronal, aprendizagem automática, temporal difference, otimização,
estratégias de evolução, cma-es.

resumo

As especificações das redes de telecomunicações de quinta geração
ultrapassam largamente as capacidades das técnicas mais modernas de
linearização de amplificadores de potência como a pré-distorção digital. Por
esta razão, esta tese propõe um método de linearização alternativo: um pré-
distorçor analógico, à banda base, constituído por uma rede neuronal artificial.
A rede foi treinada usando três métodos distintos: avaliação de política através
de TD(λ), otimização por estratégias de evolução como CMA-ES, e um
algoritmo original de aproximações sucessivas. Apesar do TD(λ) não ter
produzido resultados de simulação satisfatórios, os resultados dos outros dois
métodos foram excelentes: um NMSE entre as funções de transferência
pretendida e efetiva do amplificador pré-distorcido até -70 dB, e uma redução
total das componentes de distorção do espetro de frequência de um sinal GSM
de teste. Apesar das estratégias de evolução terem alcançado este nível de
linearização após cerca de 4 horas de execução contínua, o algoritmo original
consegue fazê-lo numa questão de segundos. Desta forma, esta tese abre
caminho para que se cumpram as exigências das redes de nova geração.

keywords

linearization, predistortion, analog predistortion, neural predistortion, neural
network, reinforcement learning, temporal difference, optimization, evolution
strategies, cma-es.

abstract

Fifth-generation telecommunications networks are expected to have technical
requirements which far outpace the capabilities of modern power amplifier (PA)
linearization techniques such as digital predistortion. For this reason, this thesis
proposes an alternative linearization method: a base band analog predistorter
consisting of an artificial neural network. The network was trained through three
very distinct methods: policy evaluation using TD(λ), optimization using
evolution strategies such as CMA-ES, and an original algorithm of successive
approximations. While TD(λ) proved to be unsuccessful, the other two methods
produced excellent simulation results: an NMSE between the target and the
predistorted PA transfer functions up to -70 dB, and the complete elimination of
distortion components in the frequency spectrum of a GSM test signal. While
the evolution strategies achieved this level of linearization after about 4 hours
of continuous work, the original algorithm consistently does so in a matter of
seconds. In effect, this thesis outlines a way towards the meeting of the
specifications of next-generation networks.

i

CONTENTS

1. INTRODUCTION ... 1

1.1. The Dissertation .. 2

2. LINEARITY AND THE LACK THEREOF .. 3

2.1. Linearity: An Intuitive View ... 4

2.2. Effects of Nonlinearity .. 5

2.3. Linearization Techniques .. 6

2.3.1. Power Back Off .. 6

2.3.2. Cartesian Feedback ... 7

2.3.3. Feedforward Linearization .. 9

2.3.4. Predistortion .. 11

3. ANALOG PREDISTORTION .. 13

3.1. Proposed APD System Architecture ... 16

3.2. Development and Test Setup... 18

4. ARTIFICIAL NEURAL NETWORKS .. 22

4.1. ANNs as Analog Control Systems .. 24

4.2. Mathematical Formalization ... 25

4.3. Forward Propagation ... 28

4.3.1. Example .. 29

4.4. Backpropagation .. 29

5. TEMPORAL DIFFERENCE LEARNING ... 32

5.1. Mathematical Formalization ... 33

5.1.1. TD Error .. 33

5.1.2. Weight Update .. 33

5.2. TD(λ) Neural Networks... 34

5.2.1. Mathematical Formalization ... 35

5.2.2. TDNN Algorithm .. 39

5.3. Simulation Results ... 39

ii

6. EVOLUTION STRATEGIES ... 42

6.1. CMA-ES .. 42

6.2. Simulation Results ... 43

7. SUCCESSIVE TARGET APPROXIMATION .. 51

7.1. The Algorithm ... 51

7.2. Simulation Results ... 52

8. CONCLUSION ... 59

8.1. Results Summary ... 59

8.2. Future Work .. 60

8.2.1. Dynamical Systems ... 60

8.2.2. Towards Analog .. 61

9. REFERENCES .. 63

Appendix A: Vectorized TDNN Model and Learning Algorithm (Matlab)

Appendix B: Example Usage of the TDNN Model and Learning Algorithm (Matlab)

Appendix C: Optimization using the CMA-ES Algorithm (Matlab)

Appendix D: Fast Implementation of an Artificial Neural Network (Matlab)

Appendix E: Successive Target Approximation Algorithm (Matlab)

iii

LIST OF SYMBOLS AND ABBREVIATIONS

5G Fifth generation of mobile telecommunications

AM-AM Amplitude-to-Amplitude modulation

AM-PM Amplitude-to-Phase modulation

ANN Artificial Neural Network

APD Analog Predistortion

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CMOS Complementary Metal-Oxide Semiconductor

DC Direct Current

DPD Digital Predistortion

GSM Global System for Mobile Communications

IMD Intermodulation Distortion

NMSE Normalized Mean Square Error

PA Power Amplifier

PD Predistorter

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RC Resistance-Capacitance

RF Radio Frequency

STA Successive Target Approximation

TD Temporal Difference

TD(λ) Generalized Temporal Difference

TDMA Time Division Multiple Access

TDNN TD(λ) Neural Network

VSPA Virtual Static Power Amplifier

iv

LIST OF FIGURES

Figure 2.1 A linear static system.

Figure 2.2 Nonlinear static systems.

Figure 2.3 The spectrum of the input signal of a nonlinear device.

Figure 2.4 The spectrum of the output signal of a nonlinear device.

Figure 2.5 Power back off from the perspective of an amplifier’s normalized voltage

input/output response.

Figure 2.6 Cartesian feedback.

Figure 2.7 Error signal generation through signal cancellation.

Figure 2.8 Feedforward linearization.

Figure 2.9 RF predistortion.

Figure 2.10 Cartesian predistortion.

Figure 3.1 Cubing predistorter.

Figure 3.2 Series diode predistorter.

Figure 3.3 5th-order IMD generating predistorter.

Figure 3.4 The Gilbert cell.

Figure 3.5 Predistortion system architecture.

Figure 3.6 Transfer characteristics of the VSPA: view in the Cartesian space.

Figure 3.7 Transfer characteristics of the VSPA: view in the quadrature plane.

Figure 3.8 Transfer characteristics of the VSPA: gain and phase modulation.

Figure 3.9 The input of the VSPA: a four-carrier GSM signal.

Figure 3.10 The spectrum of the input signal of the VSPA.

Figure 3.11 The output spectrum of the VSPA in response to the four-carrier input signal.

Figure 4.1 A neuron with three inputs.

Figure 4.2 An example feedforward network with three input nodes, one hidden layer

with five nodes, and two output nodes. Displayed as well are the biasing

nodes for the hidden and output layers.

Figure 5.1 Deduction of the matrix form of ���.

Figure 6.1 Three different normal search distributions.

v

Figure 6.2 State of the CMA-ES algorithm: after 100 iterations.

Figure 6.3 State of the CMA-ES algorithm: after 1000 iterations.

Figure 6.4 State of the CMA-ES algorithm: after 10,000 iterations.

Figure 6.5 State of the CMA-ES algorithm: after 300,000 iterations.

Figure 6.6 NMSE vs Time plot of the CMA-ES algorithm.

Figure 6.7 Gain and AM-PM characteristics of the ANN generated using CMA-ES.

Figure 6.8 Gain and AM-PM characteristics of the VSPA linearized using CMA-ES.

Figure 6.9 Output spectrum of the VSPA in response to the GSM signal with (red) and

without (blue) predistortion by the ANN generated using CMA-ES.

Figure 7.1 State of the STA algorithm: initial conditions.

Figure 7.2 State of the STA algorithm: after the first iteration.

Figure 7.3 State of the STA algorithm: after the fourth iteration.

Figure 7.4 State of the STA algorithm: after the ten thousandth iteration.

Figure 7.5 NMSE vs Time plot of the STA algorithm with the random() function

disabled.

Figure 7.6 NMSE vs Time plot of the STA algorithm with the random() function

enabled.

Figure 7.7 Gain and AM-PM characteristics of the ANN PD generated using STA.

Figure 7.8 Gain and AM-PM characteristics of the VSPA linearized using STA.

Figure 7.9 Output spectrum of the VSPA in response to the GSM signal with (red) and

without (blue) predistortion by the ANN generated using STA.

Figure 8.1 Output spectrum of the CMA-ES linearization system with the ANN weights

rounded to three decimal places (1 mV resolution).

Figure 8.2 Output spectrum of the STA linearization system with the ANN weights

rounded to three decimal places (1 mV resolution).

1

1. INTRODUCTION

The work reported in this dissertation was done, in part, under the supervision of Doctor

Mikko Valkama, of the Tampere University of Technology, Finland. A significant portion of

the text within this document was also presented to the same institution as a dissertation [1].

While the requirements and specifications for fifth-generation (5G) mobile systems and

services have yet to be fully defined, some goals of the next generation of mobile networks

are already very clear: a tremendous increase in connection density and speed (over 1 Gb/s

downlink bit rate) and a similarly significant decrease in connection latency (under 1 ms

roundtrip delay) [2].

However desirable, these advancements impose changes not only on the hardware that

constitutes cellular networks, but on their topology as well. To be able to yield such high bit

rates at such low latencies, cellular base station transmitters will need to have wider

operational bandwidths – on the order of 500 to 1000 MHz [3], in contrast to the few tens of

MHz that current base stations possess –, and their center frequencies will have to be adjusted

to higher regions of the spectrum – reportedly as high as 6 to 300 GHz [2].

Radiation at such high frequencies will evidently have limiting effects on the propagation of

radio frequency (RF) signals through buildings and objects, thus leading to a structural

change in network architectures: instead of network coverage being provided by central,

hugely encompassing, high power transmitters, it will instead be done through the

deployment of swarms of small, low power, distributed transmitters [2,4].

Ultimately, all of these changes, from the higher signal bandwidths to the lower power levels

of the transmitting amplifiers, contribute to one critical outcome: the downfall of digital

predistortion (DPD) as a viable linearization technique. Not only will the bandwidth of 5G

power amplifiers (PAs) be too wide for the limited processing speed of state-of-the-art digital

processors, but also their own power consumption (proportional to their switching

frequency) will be too great compared to the power level of the PAs they linearize, thus

defeating any sort of effort for increased power efficiency – in other words, it would not be

sensible to linearize a 1 W power amplifier with a 20 W digital processor.

2

Naturally, the need for a means of PA linearization will remain: without it, achieving any of

the next-generation (or even current-generation) goals would be impossible. New ideas must,

therefore, be proposed and explored, and that is what this dissertation is all about.

1.1. The Dissertation

Extraordinary needs require extraordinary measures, and thus a new line of thinking must

begin. The aim of this dissertation is not to solve the problem of replacing 20 years’ worth

of research and technological development on digital predistortion, but to start the discussion

on one way in which it might be possible to do so – eventually.

This dissertation builds upon analog predistortion (APD), the precursor to digital

predistortion. Due to very significant technical advancements in digital electronics at the

turn of the century, APD has been mostly put aside in favor of DPD. However, a small set

of researchers have realized that the requirements for next-generation telecommunications

will prove to be insurmountable for DPD, thus promoting the authoring of new literature on

APD [5–7], albeit at a still relatively slow pace.

Another topic this dissertation builds upon is the use of artificial neural networks (ANNs) as

predistortion devices, which has also been explored in the past. Most existing publications

on neural predistortion are about DPD [8–10], since only recently has it been possible to

implement ANNs as analog circuits. For this reason, the literature on this topic is still lacking

[11,12].

The headline of this work is the linearization of power amplifiers using the predistortion

technique, performed at base band using analog implementations of artificial neural

networks (ANNs). Three very distinct methods of training the predistorting ANNs were

tested: policy evaluation using TD(λ) learning, which proved to be unsuccessful;

optimization using evolution strategies such as CMA-ES, which proved to be very

successful, yet slow; and a novel, custom-made algorithm which proved to be very

successful and exceptionally fast.

3

2. LINEARITY AND THE LACK THEREOF

Power amplifiers are some of the most fundamentally important devices in radio frequency

telecommunications, since they are that which guarantees an information-carrying signal is

of sufficiently high power level to be successfully transmitted by an antenna as small as a

cell phone's or as large as a broadcasting radio station's.

Power amplifiers typically handle large amounts of power (for varying degrees of “large” –

power ratings can vary by several orders of magnitude depending on the application), which

means that power efficiency is of the highest importance: if efficiency is low, a cell phone's

battery life may be severely compromised or the operational cost of a base station’s cooling

system may become unreasonably high.

On the other hand, if an amplifier is not perfectly linear – that is, if it does anything to the

input signal other than to increase its power level (besides introducing a constant delay) –,

the information that is supposed to be transmitted through the succeeding antenna may be

corrupted.

And therein lies the problem. In general, the more linear an amplifier is, the less efficient it

is [13]. For example, a class A amplifier (such as the textbook common emitter, single

transistor amplifier) has very high linearity, but a theoretical (absolute maximum) efficiency

limit of 50%. This isn't as unintuitive as it might seem – consider a class D amplifier, which

is ideally a switch: because it is a switch, it can either be on or off, making it extremely

nonlinear; but also because it is a switch, its theoretical efficiency is 100%, since “an ideal

switch in its on state conducts all the current but has no voltage loss across it and therefore

no heat is dissipated, and when it is off it has the full supply voltage across it but no leak

current flowing through it, and again no heat is dissipated”.

In short, typical applications demand high efficiency power amplifiers; because they are

highly power efficient, they are very nonlinear, and because they are very nonlinear, the

amplified signals – as well as the information they carry – are distorted. To solve this, these

4

amplifiers are linearized in a variety of ways, resulting in a system that is both highly power

efficient and highly linear: the best of both worlds.

2.1. Linearity: An Intuitive View

Static linearity can be formally defined through two distinct properties: superposition, ���� + �	
 = ����
 + ���	
, and first-degree homogeneity, ����
 = ����
. Essentially,

this means that the net response of a linear system to a number of simultaneous inputs is the

sum of the responses of the system to each individual input.

It is much easier, however, to think of a static linear system as one whose input/output

response is, as the name implies, linear: a line. This line cannot have an offset, however, as

there should be no output when there is no input. See Figures 2.1 and 2.2 for examples of

linear and nonlinear static input/output responses.

On a more general and formal note, a linear system – be it static or dynamical –, is one whose

variation of its state vector � is defined as in (2.1), where
 is a constant matrix, � is a

constant vector, and � is the input vector.

�� = 	
� + ��	 (2.1)

Figure 2.1. A linear static system.

Figure 2.2. Nonlinear static systems.

5

2.2. Effects of Nonlinearity

It has been established that nonlinearity produces distortion in signals and has the potential

to corrupt the information they carry. But how so? How can that be quantified?

Consider an amplifier whose behavior can be modeled by a simple third-order (nonlinear)

polynomial with input ���
 and output �[���
]: �[���
] = �����
 + �	���
	 + �����
�.
Consider also a signal composed of two close tones, one at frequency �� and amplitude ��
and another at frequency �	 and amplitude �	: ���
 = �� cos����
 + �	cos	��	�
. The

response of the amplifier to the signal is the sum of various tones at the following frequencies

[14]:

• Base-band: �	 − ��
• Coincident with the signal: �� , �	
• In-band distortion: �� , �	 , 2�� − �	 , 2�	 − ��
• 2nd harmonic: 2�� , �� + �	 , 2�	
• 3rd harmonic: 3�� , 2�� + �	 , �� + 2�	 , 3�	

Clearly, the response of the amplifier is not an amplified version of its input, otherwise the

output tones would only be those coincident in frequency with the input ones; the spectrum

has, therefore, expanded – see Figures 2.3 and 2.4 for a graphical example of a slightly more

complex PA model (fifth-degree polynomial), showing only the fundamental frequency

band.

High order harmonics and base band distortion are not exactly the problem, because they

can be easily filtered out by the amplifier’s output matching network. The real problem is in

having to deal with spurious (unwanted) tones very near the input tones, because they would

require filters with extremely high Q-factors (sharp frequency responses) to be eliminated,

and those are not at all trivial to design. Also, filtering would not be reasonable for

transceivers operating with multiple channels (at distinct frequency locations, although in

nearby regions of the spectrum). Thus, intermodulation distortion (IMD) tones cannot be

filtered – they have to be suppressed resorting to a variety of linearization techniques.

6

Figure 2.3. The spectrum of the input

signal of a nonlinear device.

Figure 2.4. The spectrum of the output

signal of a nonlinear device.

2.3. Linearization Techniques

Most linearization techniques fall into the four different categories explained in this section.

Naturally, one can take advantage of a combination of them, producing fairly complex

linearization circuits, but each of them may be used separately to great effect.

2.3.1. Power Back Off

Most power amplifiers have three operation regimes: at low powers, the amplifier is linear,

with constant gain; when the amplifier approaches its saturation point, the device starts

behaving nonlinearly and the gain starts decreasing; finally, when either the maximum rail

voltage is reached or the maximum current is drawn, the amplifier fully saturates and its gain

reaches its minimum – the amplifier cannot produce any more output power.

Power back off simply consists in operating an amplifier in its linear regime, “backing off”

(or “away”) from the nonlinear ones; see Figure 2.5. Generally, the amount of back off power

(say, 3 dB) is in respect to the device's 1 dB compression point, which is the point at which

the power gain is 1 dB lower than its maximum value (the gain in the linear region, in the

case of single-transistor class-A amplifiers).

7

The advantage of the employment of this technique is its extreme simplicity: either the input

power is lowered so the amplifier operates exclusively in its linear region, or the supply

voltage is increased so that the amplifier’s linear region is extended. The disadvantage,

however, is that the efficiency rapidly decreases with the increase of the back off power,

since a linear amplifier is (usually) an inefficient one. Also, as a general rule, the higher the

maximum power rating of an amplifier, the more expensive it is, so using a 200 W amplifier

to produce a 100 W signal (3 dB back off) would certainly be more expensive than using a

100 W amplifier to produce the same signal.

Figure 2.5. Power back off from the perspective of an

amplifier's normalized voltage input/output response.

2.3.2. Cartesian Feedback

Most RF signals are generated through the modulation of a high frequency carrier signal

using lower frequency data signals, called the in-phase (I) and quadrature (Q) signals. It is

these I and Q components that define a system as “Cartesian”, since they directly relate to a

Cartesian representation of the transmitted signal (composition of two orthogonal vectors, I

and Q), rather than a polar one (magnitude and phase).

8

The most distinguishing feature of Cartesian feedback [15] – and the fundamental concept

behind it – is the use of a negative feedback loop to control each of the input I and Q

components so that the output I and Q components of the amplifier correspond to an output

composite signal that is a linearly amplified version of the input composite signal. In

Cartesian terms, a system is said to be linear if its output (I, Q) vector is a scaled version of

its input (I, Q) vector – their phases should, therefore, be equal.

The output of an RF amplifier is an RF signal, so, in order to perform the feedback of its I

and Q output components, these must be extracted with a demodulator which reverses the

up-conversion done by the modulator that mixes the input I and Q signals with the carrier

signal. After extracting the output I and Q components, I and Q error signals (the difference

between the respective I and Q input and output components) are fed to control systems that

guarantee the linearity of the overall system. These control systems, represented as “H(s)”

blocks in Figure 2.6, may be designed with classical techniques such as dominant pole

compensation [15].

The advantage of the Cartesian feedback linearization technique is, similarly to the power

back off technique, its fair simplicity and reasonable IMD suppression. Feedback systems

are inherently slow, though, so this technique is only reliable for low base band frequencies

– up to hundreds of kHz at most [16] –, so RF feedback is not even attempted: any phase

shift from the feedback path would ruin the system's stability.

Figure 2.6. Cartesian feedback.

9

2.3.3. Feedforward Linearization

In a feedback loop, a sample of the controlled system's output is subtracted from a reference

input signal, producing an error signal. Likewise, in a feedforward scheme a sample of the

controlled system's output is also subtracted from a reference input signal, producing an error

signal as well. (Naturally, if the system has a gain of A W/W then the sampled output should

be attenuated by A W/W to achieve a proper difference or error signal; see Figure 2.7.)

The difference between the two architectures – feedback and feedforward – is how they use

the error signal which carries the information of how exactly the actual system output differs

from the intended, target output: in a feedback topology, the error signal is used as the input

of a controller which adjusts the controlled system's output so it matches the reference signal,

i.e., the error signal has an indirect consequence on the system's output; in a feedforward

topology, the error signal is directly subtracted from the system's output, producing a new,

error-free signal further down the road.

Consider the following example:

• An amplifier has a power gain of 10 and introduces some spurious signals, whose

power shall be named (“D” for “distortion”). [e.g., = 0.2 W]

• Let � be the input of the amplifier. Then, the output of the amplifier is Y = 10X + D,

that is, a 10 times amplified version of the input signal plus some amount of

distortion. [e.g., � = 7 W;) = 70.2 W]

• Now, to get the error signal, *, the input and output signals are subtracted while

taking into account the gain of the amplifier (so both signals are at the same power

level), so * = � −) 10⁄ = � − �10� +
 10⁄ = − 10⁄ . [* = −0.02 W]

• Finally, the feedforward part: the error signal is coupled (added) to the amplifier's

output; again, the amplifier's gain has to be taken into consideration, so the error

signal has to be multiplied by 10. The overall output of the linearized system is

therefore) + 10* = 10� + − = 10�, a perfectly amplified, distortion-free

version of the input signal. [) + 10* = 70.2 W + 10 × �−0.02 W
 = 70 W]

10

The main advantages of feedforward linearization are the wide operating bandwidth and the

compensation of any sort of distortion produced by an amplifier – even that which is caused

by the device's memory effects. The tradeoff, though, is the high complexity and the

requirement of automatic adaptation to maintain performance specifications [16].

Figure 2.7. Error signal generation through signal cancellation.

A typical feedforward linearization system, schematized in Figure 2.8, consists of two

circuits: a signal cancellation circuit and an error cancellation circuit.

The first circuit implements steps 1 to 3 of the previous example, that is, it produces a signal

that only contains the distortion created by the power amplifier; it does this by attenuating

the output of the amplifier (by an amount equal to the amplifier’s gain) and combining the

resulting signal with a copy of the input signal. Because these two signals have opposite

phases, this essentially results in a subtraction, rather than an addition.

Finally, the second circuit implements step 4 of the previous example, that is, it amplifies

the distortion signal extracted by the first circuit and couples it to the output of the amplifier.

Similarly to the previous case, these two signals have opposite phases, so this essentially

results in a subtraction. This means that the distortion generated by the amplifier is subtracted

from the amplifier’s own output signal, leaving a signal that is free of distortion and, by

definition, a linearly amplified version of the input signal.

11

Figure 2.8. Feedforward linearization [16].

2.3.4. Predistortion

Predistortion [17], illustrated in Figure 2.9, is the act of distorting a signal before it is fed to

a nonlinear system in such a way that the distortion generated by the system is exactly

canceled by the distortion synthesized by the predistorter (PD), resulting in an overall linear

cascade of two devices. As an example, consider a system that has an input/output transfer

function of � = ��, which is clearly nonlinear. If a predistorter with an input/output transfer

function of � = ∛��
 is used, then the cascade of the PD and the system is

� = ./��
0 1� = � and the overall system is perfectly linear.

The main advantage of predistortion is its potential to achieve fantastic intermodulation

distortion suppression, i.e., very high linearity. However, predistortion usually requires the

physical modeling of the amplifier, which is extremely complex, since most amplifiers

exhibit memory effects, that is, their outputs depend not only on the current input, but the

input at previous times as well. These models, as well as the predistortion of the input signals,

are usually implemented using digital processors, which means that the bandwidth of the

input signals is either limited by the sampling rate or the processing speed of the digital

predistorter.

12

A common modification of the basic concept of predistortion is Cartesian predistortion

(Figure 2.10), which is the predistortion of the base band (low frequency) in-phase and

quadrature components (I and Q) instead of the predistortion of the RF (high frequency)

composite signal. Among other things, this greatly reduces the required bandwidth of the

predistorter. While this is a welcome relaxation of performance specifications in the case of

APD, it is the very basis of DPD, since the predistortion of the RF signal would require

extremely fast analog/digital conversion units and even faster processing units.

Finally, a very common way of simplifying the modeling of an amplifier and the resulting

predistortion algorithm is to forgo the modeling of the amplifier's non-electrical

characteristics, like temperature dependence, ageing, and other very slow phenomena. These

can be compensated by recalculating the parameters of the amplifier’s model based on the

measurement of its response to a set of test signals. This way, the slow drifts of the

input/output response of the PA due to changing temperature and other causes can be

compensated. This is called “adaptive predistortion”.

Figure 2.9. RF predistortion.

Figure 2.10. Cartesian predistortion.

13

3. ANALOG PREDISTORTION

Following Arthur C. Clarke’s 1945 article on “Extra-Terrestrial Relays” [18] and John R.

Pierce’s 1955 article on “Orbital Radio Relays” [19], efforts towards global communications

escalated along with a demand for higher transmission bandwidths at lower costs, leading to

an increased interest in high order modulation techniques such as QPSK (Quadrature Phase

Shift Keying) or QAM (Quadrature Amplitude Modulation) and multiple-access schemes

such as TDMA (Time Division Multiple Access).

In order to achieve acceptable bit error rates and to meet the increasingly stringent spectral

purity requirements of these data rate-increasing schemes, much attention was given

between the late 1970s and the early 1980s to problems such as the linearization of high

power microwave amplifiers used in satellite earth stations [20] and traveling wave tube

amplifiers used in satellite transponders [21].

Because of the high power levels of these amplifiers, most linearization circuits consisted in

the analog realization of the predistortion technique, applied not only to the microwave

signals [21], but also (though less frequently) to the base band signals [20]. Regardless of

the idiosyncrasy of each implementation, the great majority of the linearizers adhered to two

main classes of predistortion circuits: cubic predistorters, and series diode predistorters [22].

In essence, cubic predistorters (Figure 3.1) couple the input signal to a distortion generator,

a pair of antiparallel diodes, which produces exclusively odd-order harmonics of the input

signal [23]. A variable phase shifter is used to guarantee a 180º phase difference between

the input signal and the distortion signal, and a delay line is used to equalize the group delays

of the two signals. Finally, a variable attenuator ensures the amplitude of the generated

distortion matches that of the harmonic distortion produced by the predistorted device (such

as an amplifier). This amplitude matching, along with the 180º phase difference between the

clean signal and the generated distortion, results in an appreciable suppression of the

spurious odd-order tones produced by the nonlinear predistorted device.

14

Series diode predistorters (Figure 3.2) consist of a single forward-biased series diode, which

may be modeled as a nonlinear resistor with a parasitic capacitance – an RC phase shift

network. The principle of operation is fairly straightforward: as per Shockley’s diode

equation, an increase in forward (RF) power results in a decrease in the diode’s series

resistance; this, in turn, provided that the series resistance is not too high [23], results in an

expanding gain and a decreasing phase shift, effectively countering the predistorted

amplifier’s undesired AM-AM and AM-PM characteristics: amplitude compression and

phase advance.

Figure 3.1. Cubing predistorter.

Figure 3.2. Series diode predistorter.

With the advent of high speed digital computing, analog predistortion plummeted into near

oblivion and was swiftly replaced by more capable and more configurable digital

predistortion schemes. Still, some research was done, mainly in the early 2000s, and not only

did old analog predistortion technology improve, some new interesting ideas even came to

light.

The first great advancement in analog predistortion was the refinement of the cubing

predistorter, which led to the development of fully configurable, independently controllable

“IMD generators” [24–27], that is, branched versions of the cubing predistorter that generate

3rd- and 5th-order (and higher) intermodulation distortion tones that can be independently

scaled in magnitude and shifted in phase. See Figure 3.3 for an example of such a scheme.

15

The second great advancement – perhaps the most noteworthy, due to its novelty – was the

realization that the AM-AM and AM-PM characteristics of a moderately nonlinear amplifier

can be modelled by complex-valued polynomials of low order [28–30]. These polynomials,

in turn, – or, rather, their inverse – can be approximated by transistor circuits based on the

Gilbert cell [31] (Figure 3.4): a cascode circuit used as an analog four-quadrant multiplier

and frequency mixer. A new class of CMOS circuits was therefore designed to implement

high order polynomials (as high as 11th-order, for instance) with freely configurable

coefficients and thus synthesize the inverse transfer characteristic of an amplifier – an almost

ideal predistorter.

Finally, in the present decade, various novel analog predistortion schemes have surfaced,

possibly in anticipation of the 5G networking challenges already summarized. These

schemes include, among others, the bandwidth reduction of error signals [32], the use of

mirror amplifiers [33], and lookup table-based, combined digital/analog predistortion

systems [34].

Figure 3.3. 5th-order IMD generating predistorter [25].

16

Figure 3.4. The Gilbert cell [31].

3.1. Proposed APD System Architecture

The system architecture of the proposed predistortion solution, schematized in Figure 3.5,

consists of an analog feedforward artificial neural network that predistorts the base band I

and Q components of a complex telecommunications signal. As usual, the predistorted signal

is then transposed to a much higher frequency with an RF modulator and it is then fed to the

PA that should be linearized. Naturally, some additional components – such as filters and

intermediate amplification stages – are required for the successful implementation of the

solution, but Figure 3.5 only illustrates the main blocks of the system for clarity purposes.

This base band architecture is ideal for an analog solution based on an artificial neural

network because the bandwidth requirements of the ANN are much lower than they would

be if it were used as an RF predistorter. An additional reason for having chosen a base band

solution is the fact that the predistortion of the I and Q components of the complex signal is

a matter of amplitude scaling, which means that the function the ANN is supposed to learn

is real-valued. This contributes to a relatively simple model of the ANN-based predistorter

and its learning algorithm. It should be noted that base band control is just as effective as RF

control, because the scaling of the base band I and Q components results in both an amplitude

and a phase change in the complex envelope RF signal that is fed to the PA.

17

The ANN is supposed to predistort the I and Q components of a telecommunications signal,

so it should have at least two input neurons and two output neurons. The number of hidden

neurons and layers can be adjusted to fit a variety of specifications. While only one hidden

layer is required to approximate any function to an arbitrary level of precision [35], the

number of neurons required to do so decreases with the number of layers, since the

connection density (and the network’s expressivity) also increases with the number of layers.

The ANN is intended to be an analog circuit, so the number of neurons and hidden layers

should be carefully managed – not only because the former may be limited, but also because

the number of input or output connections of each neuron may be constrained due to

electrical loading and other practical aspects.

If the PA is assumed to be static, then a simple feedforward ANN with two input nodes

should suffice. However, if the PA is assumed to be dynamic (that is, if it exhibits memory

effects), then the ANN should exhibit a dynamic behavior as well. This can be achieved by

using a recurrent ANN, in which the connections between neurons form directed cycles.

While a recurrent ANN would be able to implement the dynamic R	 → R	 predistortion

function, this is not an absolute necessity. Even though a PA’s transfer function may be

dynamic in an R	 → R	 projection, it is, intuitively, static in an R	×�45�
 → R	 projection,

where M is the memory depth (in samples) of the PA. Thus, the predistortion function can

be a static R	×�45�
 → R	 function [789�:
, 	<89�:
] = =89[7�:
, <�:
, 7�: − 1
,<�:	 − 	1
, ⋯ , 7�: − ?
, <�: − ?
] implemented by a feedforward ANN with a pair of

input neurons for each of the ? + 1 current and previous I and Q input states.

Figure 3.5. Predistortion system architecture.

18

3.2. Development and Test Setup

The proposed predistortion system was entirely simulated in Matlab. All predistortion efforts

went towards the linearization of a model of a PA implemented as an obfuscated (P-code)

Matlab function, called VirtualStaticPA (VSPA), which was provided by a third party.

This function models the static properties of a generic PA, such as gain compression and

phase advance, and it focuses mainly on the distortion introduced by the PA – its maximum

gain is just slightly above 0 dB. Moreover, this is a base band model, which means that the

VirtualStaticPA function accepts the base band I and Q components of a signal as its input,

denoted �7 and �<, and returns the base band I and Q components correspondent to its output

amplified signal, denoted �7 and �<.

Figures 3.6 and 3.7 illustrate the transfer characteristics of the VSPA with respect to its input

and output I and Q components. While both figures represent essentially same thing, the two

distinct representations end up conveying different information.

The first figure makes it immediately clear that the transfer function of the modeled PA is a

smooth R	 → R	 projection, and provides insight into its amplitude modulation behavior:

the PA saturates for values of �7 and �< close to 1 (one), and outputs a maximum value of �7 and �< of 1 (one).

The latter figure shows the same saturation effect, but it mainly addresses the representation

of the phase modulation behavior of the PA, plotting the input and output (I, Q) vectors with

connecting arrows which make the warping effect of the complex signal very noticeable.

Finally, Figure 3.8 illustrates the AM-AM (amplitude modulation) and AM-PM (phase

modulation) behavior of the VSPA with respect to its input power.

19

Figure 3.6. Transfer characteristics of the VSPA: view in the Cartesian space.

Figure 3.7. Transfer characteristics of the VSPA: view in the quadrature plane.

20

Figure 3.8. Transfer characteristics of the VSPA: gain and phase modulation.

As explained in a previous section, the most visible effect of the distortion introduced by a

PA occurs in the frequency spectrum of its output signal. For this reason, a four-carrier GSM

signal was used to monitor the spectral performance of the predistortion system. This signal, @���
, shown in Figures 3.9 and 3.10, is a composition of two base band signals, 7��
 and <��
, and is defined in (3.1).

@���
 = 7��
 ABC�2D=E�
 � <��
	CFG�2D=E�
	 (3.1)

It should be noted that the centering of the signal at =E 	 � 	10	MHz was done merely for

illustrative purposes. As stated, the VSPA is a base band model, so its inputs are the base

band 7��
 and <��
 signals – not the compound @���
 signal. Similarly, its outputs are also

base band quadrature signals; these are also shown modulated by a 10 MHz carrier signal

throughout this document for illustrative purposes. Figure 3.11 contains the output spectrum

of the natural response (i.e., without any sort of predistortion) of the VSPA to the GSM

signal. Notice the presence of significant distortion tones, and the noise floor of –20 dBm.

21

The VSPA function also models the intrinsic noise of the amplifier using a function called

random(), which explains the increased noise floor. This function can be bypassed by

exploiting Matlab’s function precedence order.

Figure 3.9. The input of the VSPA:

a four-carrier GSM signal.

Figure 3.10. The spectrum of the

input signal of the VSPA.

Figure 3.11. The output spectrum of the VSPA in response to the four-carrier input signal.

22

4. ARTIFICIAL NEURAL NETWORKS

Not unlike polynomials or Volterra series, artificial neural networks are a family of nonlinear

function models which consist of a series of basic computational units, the neurons (akin to

polynomials’ power products), that are interconnected by means of model-defining weights

(akin to polynomials’ coefficients). Even though there are metrics such as the Vapnik-

Chervonenkis dimension, the evaluation of the complexity of an ANN (similar to a

polynomial’s degree) has yet to be formally and unequivocally defined [36], though it is

intuitive that it is related to the number of neurons it comprises and the way they are

interconnected.

The basic computational unit of an ANN is the neuron, or node, illustrated in Figure 4.1. A

neuron can have an arbitrary positive number of inputs �, one of which acts as a bias, and

these are processed by an activation function Φ, which is selected by the ANN designer to

calculate the neuron’s activation �: its output. Typical activation functions include a purely

linear transfer function (4.1) and the (logistic) sigmoid function (4.2), and these can be used

at will throughout an ANN. A variety of sigmoid (meaning s-shaped) functions can be used

for different levels of algorithmic optimization.

K�L
 = L (4.1)

K�L
 = 1
1 + �MN (4.2)

Figure 4.1. A neuron with three inputs.

23

Figure 4.2. An example feedforward network with three input nodes,

one hidden layer with five nodes, and two output nodes. Displayed

as well are the biasing nodes for the hidden and output layers.

24

There is a nearly endless number of ways of arranging and interconnecting neurons in an

ANN. There are, however, classical and established ways of doing so, such as the

feedforward network illustrated in Figure 4.2. In a feedforward network, neurons are

distributed between different, sequentially ordered layers: the input layer, a set of hidden

layers, and an output layer. Each neuron in each layer connects to every neuron in the

immediately succeeding layer, and there are no backward or intra-layer connections –

meaning that there are no cyclical connections, hence the network’s designation of

“feedforward”.

Feedforward ANNs are universal approximators [35]. This means that for any given

continuous nonlinear function, there is at least one feedforward ANN that approximates it,

in a closed and bounded input range (a compact set of RO), with an arbitrarily small error.

This was proven for feedforward networks containing a single hidden layer of neurons with

sigmoidal activation functions [37,38], though it stands to reason that more expressive

networks, with more hidden layers, would perform at least as well as ANNs with a single

hidden layer. Naturally, the output layer should have neurons with purely linear activation

functions, otherwise the range of each of the network’s output neurons would be constrained

to the codomain of whatever sigmoidal activation function had been chosen.

4.1. ANNs as Analog Control Systems

Due to their massive expressive ability and structural simplicity, as well as ease of training,

artificial neural networks have been used to solve board games such as backgammon [39]

and Go [40], control physical systems such as inverted pendulums [41], and even predistort

RF power amplifiers [8,9]. Despite their differences, all of these applications of ANNs have

one thing in common: they are digital implementations. Recent technological advances have

brought the possibility of reliably implementing ANNs as analog circuits. Further advances,

such as commercially-available memristors, are expected to lead to even more robust and

higher-performing analog ANNs.

Compared to the analog predistortion schemes presented in section 3, analog

implementations of ANNs provide very substantial advantages. Not only are relatively

simple ANNs much more expressive than 11th-order polynomials (the state-of-the-art

25

predistortion circuits until recently) in terms of function synthesis, but they also have an

increased capability for generalization due to their saturating (sigmoidal) neurons, which is

important when the predistorter’s input range may not be clearly defined – high-order

polynomials grow very quickly towards infinity outside the training sample space.

Furthermore, the bandwidth of each of an ANN’s computational units (neurons) is similar

to that of the predistorted signal, in contrast to the bandwidth of a polynomial’s

computational units (power products), which grows mostly linearly with the degree of each

product (i.e., over an order of magnitude for an 11th-order polynomial predistorter).

4.2. Mathematical Formalization

Figure 4.2 represents a feedforward ANN with three layers: PQ, the input layer;	PR, the

hidden layer; and PS, the output layer. Let there be the following symbols:

 G� : the number of input nodes in PQ (excluding bias) – in this case, G� = 3;

GT : the number of hidden nodes in PR (excluding bias) – in this case, GT = 5;

G) : the number of output nodes in PS – in this case, G) = 2;

 � : a column vector, indexed as �V, holding the node activations of PQ;

ℎ : a column vector, indexed as ℎX, holding the node activations of PR;

� : a column vector, indexed as �Y, holding the node activations of PS;

 Z : a matrix, indexed as ZXV, holding the weights of the connections from PQ to PR;

� : a matrix, indexed as �YX, holding the weights of the connections from PR to PS.

26

These symbols are defined as such, with example values based on Figure 4.2:

27

Thus, �V is the activation of the F-th input node (the i-th input value, for i > 0), ℎX is the activation of the [-th hidden node, �Y is the activation of the k-th output node, ZXV is the weight of the connection between the input node F and the hidden node [, and �YX
is the weight of the connection between the hidden node [and the output node :.

One can read the matrix Z, then, as a series of columns containing the weights of the

connections of each input node to every hidden node (excluding the hidden bias node, which

by definition has constant activation and thus does not have any input connections).

Similarly, the matrix � can be read as a series of columns containing the weights of the

connections of each hidden node (including the hidden bias node) to every output node.

The indexing of the Z and � matrices is intentionally backwards. It would have been more

aesthetic to define them as ZVX and �XY, but this would have required the computation of their

transpose matrices to perform forward propagation (explained below). The algorithmic

performance gain is minimal, but it comes at essentially no cost.

To be precise, the nodes of the input layer aren’t exactly neurons, but mere representations

of the “input ports” of the ANN. There is no data processing or neural activation: input values

just pass on through unchanged. This does not undermine the presented formalization,

however, since it is trivial to devise neurons which would exhibit that exact behavior: a

neuron, with no biasing and one data input with unitary weight, whose activation function is

purely linear.

Furthermore, despite biasing being a property of the neurons and not the network

architecture (even from the original, biological standpoint), it can be abstracted away as a

node with constant activation (eg: � = 1) which connects to each neuron with weights

proportional (or even equal) to the required biasing values. These biasing nodes and their

connections are represented in Figure 4.2 with dashed lines, and they are referred to as the

zeroth (0-th) node in each layer, if applicable. The output layer is the last layer, so, naturally,

it doesn’t contain bias nodes for its (nonexistent) succeeding layer.

28

4.3. Forward Propagation

Having defined a model for the architecture and the constituting parts of an ANN, it is now

possible to model the network’s operation, that is, to define how to determine its output

vector. Forward propagation, the classical algorithm for doing precisely that, consists of

sequentially computing the activations of each layer, from the input to the output layer.

Let the input (column) vector of the ANN – that is, the data being fed to it at a given instant –

be G��7G\��. Then, the vector of input node activations � is the concatenation of the

activation of the input bias node, here defined as a constant 1 (the number one, not the lower

case letter L), and the activations of the externally-stimulated data nodes – that is, G��7G\��.
Similarly, the vector ℎ is the concatenation of the hidden bias node and the activations of the

hidden nodes connected to the input layer; as discussed earlier, each node’s activation is a

function of the weighted sum of its inputs. Finally, because there are no output bias nodes,

the � vector is simply obtained by computing the activations of the output nodes.

It should be noted that the Φ function is to be applied in an element-wise fashion, and it is

not necessarily the same function for every neuron (even in the same layer) – the Φ symbol

is used repeatedly only to simplify the notation.

� =]	 1G��7G\��	^	 ℎ =]	 1K�Z ∙ �
	^	 � = K�� ∙ ℎ
	
(4.3) – Forward Propagation algorithm

29

4.3.1. Example

Let us consider the ANN illustrated in Figure 4.2. The activation function of the hidden

nodes is the sigmoid function (4.2), referred to as sig�∙
, and the activation function of the

output nodes is the purely linear function (4.1), referred to as purelin�∙
.
Let Z = 0.01 × [10	11	12	13; 		20	21	22	23; 		30	31	32	33; 		40	41	42	43; 		50	51	52	53].
Let � = 0.01 × [10	11	12	13	14	15; 		20	21	22	23	24	25].
Let G��7G\�� = [1	2	3]T.
Then, � = [1; 		G��7G\��] = [1	1	2	3]T.
Then, ℎ = [1; 		sig�Z ∙ �
] = [1.0000		0.6985		0.8235		0.9038		0.9498		0.9744]T.
Then, � = purelin�� ∙ ℎ
 = [0.6723		1.2073]T.
4.4. Backpropagation

The Backward Propagation of Errors, or backpropagation, is the most common method of

training artificial neural networks, used typically in conjunction with optimization

algorithms which aim to minimize the cumulative squared error between the ANN’s actual

output and its target output. Such algorithms include the Nelder-Mead method [42] and the

Levenberg-Marquardt algorithm [43].

Backpropagation is typically called a supervised learning algorithm, in which the target

output of the ANN is explicitly specified by the modeler. This, however, is not a precise way

of describing backpropagation. While it is true that it can be used (and is most often used)

to perform supervised learning tasks when coupled with one of the optimization algorithms

enumerated above, the true purpose of backpropagation is to solve the problem of structural

credit assignment, that is, the problem of adjusting the weights in the network to minimize

the error [44]. There is a subtle but important distinction between the two definitions – one

which will be expanded upon further. Meanwhile, let us explore the formalism behind

backpropagation proper, that is, the mechanics of weight adjustment. See [44] for this (and

more) information.

30

Let there be an ANN whose nodes’ activations have been obtained through the forward

propagation of a training input vector and whose output error * has been determined

according to some specific metric. For the purpose of completeness, let this metric be the

sum of the square of the errors between the target output vector � and the actual output vector � of the network:

* = ∑�� − �
	 (4.4)

The global weight update rule is displayed in (4.5). This rule asserts that the change ΔpVX in

every weight pVX of the network (the elements of the Z and � matrices) should be

proportional (with constant �) to the negative of the derivative of the error with respect to

the weight itself:

∆pVX = −� r*
rpVX

 (4.5)

Using the chain rule, the partial derivative of the error with respect to each weight between

the hidden and output layers can be calculated, resulting in (4.6), where G��Y is the net input

(“net” as in “weighted”, not short for “network”) of the output node :, that is, � ∙ ℎ:

r*
r�YX

= r*
r�Y

 ∙ r�Y
rG��Y

 ∙ rG��Y
r�YX

 (4.6)

Simple substitutions lead to (4.7), where ΦYs �G��Y
 is the derivative of the activation

function of the output node : evaluated at G��Y:

r*
r�YX

= −2��Y − �Y
 ∙ KYs �G��Y
 ∙ �X (4.7)

31

We can now use tY to represent ��Y − �Y
 ∙ ΦYs �G��Y
, thus leading to (4.8):

− r*r�YX 	 ∝ 	 tY 	�X 	 (4.8)

Using the chain rule, the partial derivative of the error with respect to each weight between

the input and hidden layers can be calculated, resulting in (4.9), where G��X is the net input

of the output node [, that is, Z ∙ �:

r*rZXV =	 r*r�Y 	 ∙ 	 r�YrG��Y 	 ∙ 	rG��Yr�X 	 ∙ 	 r�XrG��X ∙ 	rG��XrZXV 	 (4.9)

Simple substitutions lead to (4.10), where ΦXsvG��Xw is the derivative of the activation

function of the hidden node [evaluated at G��X:
r*rZXV =	tY ∙ �YX 	 ∙ 	KXs�G��X
 	 ∙ �V 	 (4.10)

Contrary to the weights between the hidden and output layers, the weights between the input

and hidden layers affect all of the output nodes simultaneously. Thus, the partial derivative

of the error across all of the output nodes is defined in (4.11)

tX =		KXs�G��X
xtY ∙ �YXY 	 (4.11)

Finally, the partial derivative of the error with respect to the weights between the input and

hidden layers can be defined as in (4.12):

− r*rZXV =	tX 	�V 	 (4.12)

32

5. TEMPORAL DIFFERENCE LEARNING

Temporal Difference (TD) is a reinforcement learning method, that is, a way of using past

experience with an incompletely known system to predict its future behavior [45]. In a more

mechanistic sense, TD is an algorithm for an agent (like a predistorter) to learn which actions

to take over an environment (like a power amplifier) in order to maximize some notion of

cumulative reward (like a measure of an amplifier’s linearity).

TD is an unsupervised learning algorithm, which means that it does not require the a priori

knowledge of the desired output of the learning agent. This is an exceptionally important

detail: using a supervised learning algorithm to teach an ANN how to predistort a power

amplifier does not make much sense if one does not know the amplifier’s inverse transfer

function to begin with.

This does not mean that it is impossible to do so, as there are a variety of papers on neural

predistortion of power amplifiers [8–10]. These papers, however, either don’t explicitly

specify the learning procedure (only mentioning backpropagation, which, as is hopefully

clear by now, is not a serious answer), or describe a learning procedure consisting of

iteratively training an ANN to be a post-distorter, testing its performance as a predistorter,

and training it again in order to gain some measure of improvement.

While this sort of methodologies may lead to acceptable results, TD provides a learning

solution that is more formal, and it has been used in applications as diverse as solving the

game of Backgammon [39], controlling quadcopter motors and inverted pendulums [41],

simulating the steering of a boat across a river [46], and sensor state prediction [47].

It should be noted that TD is a general learning algorithm, that is, it does not make any

assumptions regarding the learning agent. TD is not, therefore, immediately applicable to

the training of structurally complex constructs such as ANNs, and that means that some sort

of mathematical coupling needs to be devised. Luckily, this problem has already been

solved, and it is explained further.

33

5.1. Mathematical Formalization

5.1.1. TD Error

Let y be the value function an agent is trying to learn. TD learning consists in adjusting y

so that y�Cz
 – where Cz is the input state at time � – approximates the return @z at time �,
defined in (5.1) as a discounted sum of future rewards. { is the discount constant, and it

controls how far the agent should look ahead when making predictions at the current time

step [44]. Equation (5.2) is derived trivially from (5.1).

@z	 	= 		 |z5� 	+ 	{	|z5	 	+ 	{		|z5� 	+ 	⋯ 		= 	x{Y 	|z5Y5�}
Y~� 		 (5.1)

@z	 	= 		 |z5� 	+ 	{	@z5�	 (5.2)

Thus, the TD error *z at time � can defined as in (5.3):

*z 	= 		 @z − y�Cz
 		= 		 �|z5� + {	@z5�
 − 	y�Cz
	 (5.3)

Finally, using y�Cz5�
 as an approximation of @z5�, we obtain the generalized TD error in

(5.4):

*z 	= 		 |z5� + {	y�Cz5�
 − 	y�Cz
	 (5.4)

5.1.2. Weight Update

The derivation of the weight update rule (5.5) is rather involved, and can be found in [44].

∆�z 	= 		�[y�Cz5�
 − 	y�Cz
]	x �zMYz
Y~� ��y�CY
		 (5.5)

34

This is the generalized formula for TD(λ), which is the generalized form of TD itself,

introduced in [25]. � is a learning-rate parameter, y�Cz5�
 − y�Cz
 is the (temporal)

difference between consecutive predictions, ∇�y is the gradient of the value function with
respect to its defining weights, and � is a gradient discount parameter such that

0 ≤ � ≤ 1. � tracks to which extent the prediction values for previous observations are

eligible for updating based on current errors [44]. Therefore, the sum (5.6) is called the

eligibility trace at time �.

�z = x �zMY
z

Y~�
��y�CY
 (5.6)

5.2. TD(λ) Neural Networks

As discussed earlier, backpropagation solves the problem of structural credit assignment.

On the other hand, TD solves the problem of temporal credit assignment, that is, the problem

of attributing credit (or “blame”) for error over the complete history of predictions made by

the learning agent [44], and it does so through the mechanism we’ve just introduced:

eligibility traces.

Through TD(λ) learning, an agent can determine its error based on successive predictions,

and through backpropagation an agent can modify its model of prediction in order to reduce

the error. Thus, combining the two algorithms results in a very powerful coupling: a

universal nonlinear function approximator which learns through acquired experience.

Contrary to other neural predistortion schemes found in the literature, the one proposed in

this section – a TD(λ) Neural Network (TDNN) – is actually capable of learning how to be

a predistorter. Since the learning algorithm does not require the knowledge of the target

output of the ANN, the problem of predistortion may be tackled directly, and not indirectly

by training the network as a post-distorter and hoping it works as a predistorter.

35

5.2.1. Mathematical Formalization

5.2.1.1. Weight Update

The coupling of TD learning and backpropagation is done at the weight update stage of the

algorithms. Thus, and referring back to section 4, the change in the network’s weights Z and � is a function of the TD error * (at each output node :) and their respective eligibility

traces �Z and ��:

∆�YX =		*Y��YX 	 (5.7)

∆ZXV =		x*Y�ZXV�Y
Y 	 (5.8)

From (5.7) it is very apparent that �� should be a matrix with the same size as �: 	vG) × �GT + 1
w. From (5.8) it is apparent that �Z should be, however, a three-dimensional

matrix of size �GT × �G� + 1
 × G)
 – or, rather, a set of G) matrices of size vGT × �G� + 1
w, which is the size of �. The superscript �:
 notation refers to each of the G) matrices.

5.2.1.2. Eligibility Traces

In section 4, a mathematical formalization – a model – of a generic artificial neural network

was proposed. In this section, this model is expanded to include the eligibility traces

introduced by the TD learning method, effectively resulting in a model of a TDNN. The

basis of this work can be found in [44] and [48].

Let ��YX denote the eligibility trace correspondent to the weight of the connection from the

hidden node [to the output node :. Let t�Y denote ΦYs �G��Y
. Then, the update rule for ��YX is (5.9):

36

ew�� ∶= 		λew�� + 	Δew��,
where Δew�� = 	δy�h� (5.9)

The matrix form of (5.9) is self-evident, but the scheme in Figure 5.1 illustrates a simple

way of deducing it:

Figure 5.1. Deduction of the matrix form of ���.

Thus we get the update rule for the matrix form of ��:

ew ∶= 		λew + 	Δew,

where Δew = 	δy ⋅ h�

(5.10)

The activation function of the output nodes of the TDNN is purely linear, so t�Y = 1 for

all :.

Let �ZXV�Y
 denote the derivative of the output unit : with respect to the weight from the input

unit F to the hidden unit [, that is, a partial eligibility trace correspondent to the weight of the

connection from the input node F to the hidden node [.

37

Let �� be the � matrix without its first column. Let tℎ��� be the tℎ vector without its first row.

This removes the elements of these objects correspondent to ℎ�, the hidden bias node. This

is necessary because there are no connections from the input nodes to the hidden bias node,

which means that there are no corresponding weights or eligibility traces.

Then, the update rule for �ZXV�Y
 is (5.11):

�ZXV�Y
 ∶= 		��ZXV�Y
 + 	��ZXV�Y
,	
where		��ZXV�Y
 = t�Y 	��YX 	ℎ�� 	�V	 (5.11)

Let us explore the Δ term of �Z based on Figure 4.2:

Δ�Z����
 = t��	���	tℎ�	�� Δ�Z����
 = t��	���	tℎ�	�� Δ�Z�	��
 = t��	���	tℎ�	�	 Δ�Z����
 = t��	���	tℎ�	��
 Δ�Z	���
 = t��	��		tℎ		�� Δ�Z	���
 = t��	��		tℎ		�� Δ�Z		��
 = t��	��		tℎ		�	 Δ�Z	���
 = t��	��		tℎ		�� ⋮ Δ�Z���	
 = t�		�	�	tℎ�	��
Let (5.12), where ∙ is the matrix multiplication operator and .∗ is the element-wise

multiplication operator:

� = t�	 ∙ 	ℎ�		.∗ 	��		 (5.12)

38

Thus,

ξ�G) × GT
 = �
t�����tℎ� t����	tℎ	 ⋯ t����ORtℎORt�	�	�tℎ� t�	�		tℎ	 ⋯ t�	�	ORtℎOR⋮ ⋮ ⋱ ⋮t�OS�OS�tℎ� t�OS�OS	tℎ	 ⋯ t�OS�OSORtℎOR� (5.13)

Substituting (5.12) in (5.11) we get (5.14):

��ZXV�Y
 = �YX	�V	 (5.14)

Let 	ξ�Y
 denote the :-th row of the � matrix. Then, finally, we get the update rule for the

matrix form of each �Z�Y
:
�Z	�Y
 ∶= 		��Z	�Y
 +	v�	 ∙ ��Y
w�	 (5.15)

As a final note, the approximate derivatives of the activation functions used throughout the

ANN are defined in (5.16) for the sigmoid function and in (5.17) for the purely linear

function.

KXsvG��Xw = 1	 (5.16)

KYs �G��Y
 = �Y�1 − �Y
	 (5.17)

39

5.2.2. TDNN Algorithm

The model for an artificial neural network using temporal differences as a learning method

has been established. Now, let us explain how it can be used. Appendix A contains a class-

based Matlab implementation of the vectorized TDNN model and the learning algorithm

based on Sutton’s (the creator of TD(λ)) own TD/Backpropagation pseudo-code [48], also

used as a reference for the expansion of the model.

In a slightly simplified way, the TDNN algorithm consists of repeatedly iterating over the

following set of steps:

1. Perform the forward propagation of an input vector;

2. Calculate the TD error at the output of the network;

3. Update the network’s weights;

4. Perform the forward propagation of the same input vector with the new weights;

5. Update the eligibility traces of the network.

Forward propagation is explained in section 4.3. The TD error is defined in (5.4); note that

training in the first iteration must be skipped so that the error equation becomes causal. The

changes applied to the weight matrices in order to update them are defined in (5.6) and (5.7).

Finally, the update rules for the eligibility trace matrices are defined in (5.9) and (5.14).

5.3. Simulation Results

Despite our best efforts, TDNN ended up not producing any positive results. Interfacing with

the algorithm requires two signals: the input of the ANN and a reward signal in which the

performance of the ANN is encoded. There are endless ways of defining the reward signal,

so it is not possible to say for sure that the TDNN algorithm does not work – we can only

say that it did not work with the reward definitions that were tested. With that said, our tests

were fairly exhaustive – see Appendix B.

40

Let �
 ¡z be the actual output and �
 ¡z� the target output of the PA for a given input vector.

Let * = �
 ¡z − �
 ¡z� be the error of each sample of the �
 ¡z vector, let ¢*�:
 = *�:
	
be the squared error of each sample of the �
 ¡z vector, and let ?¢* = mean�¢*
 be the

mean squared error of the same vector. By definition, both * and ¢* are vectors with the

same dimension as �
 ¡z and ?¢* is a scalar. Finally, let |���|¤ be the reward vector.

The first tests of the TDNN algorithm used the definitions of reward in (5.17): a null reward

for every input state except the last one, which was rewarded with the negative of the ?¢*

calculated in the previous iteration. We chose the negative of the ?¢* because ?¢* is an

error, and therefore it is a penalization rather than a reward. The idea behind this encoding

is the rewarding based on the compound performance of the predistorting ANN over the

complete input vector.

The result was a very quick divergence of the network weights for many combinations of

the {, �, �, and ¥ parameters of the TDNN – the reward discount rate, the trace decay rate,

and the learning rates of the two weights matrices Z and �.

|���|¤				 = 				 [0				0				0				 ⋯ 				0		 − ?¢*]	 (5.17)

In the second series of tests, the reward signal was defined as in (5.18), that is, similarly to

what was done in the previous tests, but with a reward for every input state instead of only

the last state. Unsurprisingly, this led to the divergence of the network weights.

|���|¤				 = 		−?¢*				 × 				 [1				1				1				 ⋯ 				1]	 (5.18)

The next batch of tests – (5.19) and (5.20) – departed from the previous ones in the sense

that the reward values were not compound, but specific of each input state. Unfortunately,

the results remained not ideal: depending on the configuration parameters, the output of the

ANN either diverged like in the previous cases or oscillated wildly.

|���|¤				 = 		−¢*	 (5.19)

|���|¤				 = 			±* (5.20)

41

Finally, the tests fully degenerated into defining the reward signal as equal to the target

output of the PA (5.21). While this might seem like it does not make much sense, as it is not

a measure of the network’s performance and it defines the reward as a constant vector, it

provided some insight into the TDNN algorithm and confirmed that it was not fully

malfunctioning.

|���|¤				 = 			�
 ¡z� 	 (5.21)

This test revealed that the TDNN algorithm mimics the Backpropagation algorithm in the

sense that it adjusts the weights of the ANN so that the output of the ANN is equal to the

reward signal. This only happens for { = 0 and, to be fair, it is painfully slow – though it

can be accelerated by setting � to a relatively low value, like 0.3.

While this proves that the implementation of TDNN is not completely bug-ridden, as one

might have assumed based only on the diverging tests, it is still not a viable solution for the

training of a predistorting ANN.

In hindsight, it does make sense that the TDNN algorithm was not able to train an ANN as

a predistorting system. Temporal Difference learning is commonly described as a method

for policy evaluation, or prediction, which means that, for a given policy, TD can be used to

iteratively learn the value, or utility, of a given input state.

This does not intuitively translate very well into the predistortion problem, though we could

say that the policy of the PD problem is the transfer function of the ANN, parameterized by

its weights. Now, the whole point of the PD exercise is to change the weights of the ANN in

order to achieve a goal, and changing the weights of the ANN means changing the policy,

which is not what TD learning is about. This might very well be the underlying reason for

the TDNN strategy having failed.

In spite of the lack of success found using TD learning, this was still an important step in

finding a better solution. Many meetings and discussions were held with various professors

and colleagues in doctoral programs, and those resulted – among others – in the pursuit of a

solution based on evolution strategies, expanded upon in the next section.

42

6. EVOLUTION STRATEGIES

The main idea behind the problem of optimization is the iterative improvement of a measure

of the performance or value of a decision [49] – a decision which may be the selection of a

set of weights for a predistorting ANN. This measure is provided by a cost function = ∶ RO → R which summarizes, in a single scalar, the fitness of an individual with G defining

features.

While most common methods of optimization – such as gradient descent and Newton’s

method – may converge to local, non-optimal solutions due to their reliance on the gradient

or higher-order statistics of the cost function, evolution strategies are guaranteed to find the

globally optimal solution due to their stochastic nature, which follows the principles of

natural evolution: mutation, recombination and selection in populations of candidate

solutions [50].

6.1. CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a state-of-the-art

evolutionary algorithm for optimization in continuous domains [50]. Rather than calculating

a metric of the cost function (such as the gradient), as most classical optimization algorithms

do, and choosing the solution that improves it (or, more specifically, minimizes it) in a local

search space, CMA-ES uses a (multi-variate) normal distribution to sample a set (a

population) of new search points [51].

Any normal distribution, §�¨, ©
, can be defined by its mean, ¨ ∈ RO, and its covariance

matrix, © ∈ RO×O, for G equal to the dimension of the solutions [51]. Covariance matrices

can be geometrically interpreted as hyper-ellipsoids, surfaces (in G-dimensional space) of

equal density of the distribution, whose principal axes and their squared lengths correspond,

respectively, to the eigenvectors and the eigenvalues of © [51].

43

The objective of CMA-ES is to fit the search distribution to the contour lines of the cost

function – the lines of equal cost. Figure 6.1 illustrates three different normal search

distributions in thick lines and the contour lines of an example cost function. Clearly, the

distribution on the right side of the figure is the one that follows the contour of the cost

function in the way that will most likely lead to an optimal solution [51].

As the name of the algorithm implies, the fitting of the search distribution is done by adapting

its defining covariance matrix. Exactly how this is done, as well as the more specialized

options of the algorithm, is outside of the scope of this document – to put things in

perspective, the implementation used in the simulations detailed below has more than 3000

lines of code.

Figure 6.1. Three different normal search distributions [51].

6.2. Simulation Results

A free (GNU GPLv3) Matlab implementation [52] of the CMA-ES algorithm was used to

minimize a cost function by adapting the 272 weights and biases of an ANN with two input

nodes, three hidden layers of ten nodes each, and two output nodes – see Appendix C.

The cost function was the Normalized Mean Square Error (NMSE) of the VSPA output,

defined in (6.1), where 7� and <� are the target outputs, and 7 and < are the actual outputs

of the VSPA for a given input (provided by the ANN that is being adapted). All squaring

operations are done in an element-wise fashion.

44

 ¢*	 = 	 [7	 −	 7�]	 	+ 	 [<	 −	<�]	
?*	 = 	 [7	 − 	mean�7�
]	 	+ 	 [<	 − 	mean�<�
]	

«?¢* = ∑¢*∑?*

(6.1)

For every iteration of the CMA-ES algorithm there are twenty evaluations of the cost

function (by default), and for each one of these there is one execution of the forward

propagation function of the ANN and one evaluation of the VSPA. In order to speed up the

processing of the algorithm, a custom implementation of an ANN was created and the noise

generator of the VSPA model was disabled by masking the random() Matlab function.

The custom ANN implementation (Appendix D) performs forward propagation about 100

times faster than the implementation available in Matlab’s Neural Network Toolbox – most

likely due to the processing overhead the latter requires in order to provide the whole

functionality of the toolbox (though, honestly, it is quite surprising how slow it is). The lack

of noise generation by the VSPA model means that the NMSE level reached may be,

potentially, boundlessly negative in dB.

Figures 6.2 to 6.5 show the state of the CMA-ES algorithm at one hundred iterations, one

thousand iterations, ten thousand iterations, and three hundred thousand iterations. These

figures plot four different signals: the natural output of the VSPA (that is, without any sort

of predistortion) as black dots, the target output of the linearized VSPA as red dots, the

output of the predistorting ANN, and the response of the VSPA to that input as blue crosses.

All of these signals are based on a relatively sparse grid of I/Q symbols – the linearization

targets – that cover the complete output range of the VSPA.

The initial state of the weights of the ANN is a random vector of low values. Thus, the output

of the ANN, as well as the output of the VSPA, is a cloud of dots and crosses around the

center of the I/Q plane. Throughout the initial iterations, these expand in a random-looking

way until the whole plane is filled. Then, it becomes clear that the CMA-ES algorithm is

45

slowly bringing the blue crosses closer and closer towards the red dots. Finally, the blue

crosses become coincident with the red dots (linearization achieved) and the green dots end

up warped in a way that is contrary to the warping effect shown in Figure 3.7 (the input of

the VSPA has successfully been predistorted).

Figure 6.6 is a plot of the cost function (or, more correctly, the cost of the ANN selected by

the algorithm among twenty alternatives in each iteration) in respect to time. While the

results are excellent, it must be stated that this method is not very fast at all. Still, it can only

get better: with more research time, it might have been possible to accelerate the algorithm

by finely tuning its configuration parameters.

In any case, a decrease in NMSE of 20 dB per decade of iterations is very acceptable: the

execution time would surely have been lower if the algorithm had been run on a quad-Nvidia

Titan X machine with 64 GB of memory instead of a generic personal laptop.

46

Figure 6.2. State of the CMA-ES algorithm: after 100 iterations.

Figure 6.3. State of the CMA-ES algorithm: after 1000 iterations.

47

Figure 6.4. State of the CMA-ES algorithm: after 10,000 iterations.

Figure 6.5. State of the CMA-ES algorithm: after 300,000 iterations.

48

Figure 6.6. NMSE vs Time plot of the CMA-ES algorithm.

After the close-to-four hours had elapsed, the CMA-ES algorithm had produced an ANN

that was capable of predistorting a grid of I/Q symbols with an NMSE at the output of the

VSPA of –70 dB. Note, again, that this figure is only possible due to the fact that the noise

generator of the VSPA model had been disabled, otherwise the NMSE would have

converged to a higher value (close to –50 dB).

Figure 6.7 shows the AM-AM and AM-PM characteristics of the resulting ANN. Notice how

they are opposite to those of the VSPA (Figure 3.8): at high input power levels, there is an

increase in gain and a negative phase shift.

Figure 6.8 illustrates the AM-AM and AM-PM characteristics of the complete predistortion

system: from the input of the ANN to the output of the VSPA. The gain is constant and there

is no phase shift, so the system is linear. There is some dispersion in the plots due to numeric

errors that occur at low power levels and due to the noise generator of the VSPA that was

re-enabled.

49

Figure 6.7. Gain and AM-PM characteristics of the ANN generated using CMA-ES.

Figure 6.8. Gain and AM-PM characteristics of the VSPA linearized using CMA-ES.

50

The final verification of the developed predistortion system consisted in feeding it the four-

carrier GSM signal described in section 3.2 and observing the frequency spectrum of the

output of the VSPA. This signal is completely uncorrelated with the grid of input I/Q

symbols used in the generation of the predistorting ANN.

This frequency spectrum is plotted in Figure 6.9, and it reveals that the linearization of the

VSPA was nearly flawless: all of the intermodulation distortion tones were not just

attenuated, but completely and utterly eliminated.

While it might have taken nearly four hours to generate an ANN with an NMSE of –70 dB,

the linearization results show that it was worth it. With the possibility of adjusting the

configuration parameters of the algorithm, and with a more capable computing platform, the

CMA-ES algorithm shows great promise in generating an ANN for the linearization of a PA.

Figure 6.9. Output spectrum of the VSPA in response to the GSM signal

with (red) and without (blue) predistortion by the ANN generated using CMA-ES.

51

7. SUCCESSIVE TARGET APPROXIMATION

Successive Target Approximation (STA) is an original, custom-made algorithm that can be

used for the linearization of a PA [53]. STA computes the signal that, when fed to the PA as

an input, results in a PA output signal that matches a specified target PA output signal. If the

target PA output signal features the complete PA output vector space (or a sufficiently

exhaustive sampling of it), then the algorithm effectively computes a mapping of the PA’s

output vector space to its input vector space.

In other words, STA computes the PA input signal correspondent to a given PA output signal

– that is, the output of the PD. It immediately follows, then, that STA solves the problem of

training a predistorting ANN using the Backpropagation algorithm: the lack of a target ANN

output signal. Thus, the process of creating an ANN that predistorts a PA is simple:

1. Generate a vector of target linear PA output symbols;

2. Using the STA algorithm, compute the corresponding vector of predistorted PA input

symbols – the target PD output;

3. Using the Backpropagation algorithm, train an ANN using a vector of linear input

symbols as its input and the vector computed with the STA algorithm as its target.

7.1. The Algorithm

Let �
 ¡z� be the target output of the PA. The goal of the STA algorithm is to find the input

vector of the PA, �
VO, that leads to the target output. Let �
 ¡z be the output of the PA in

response to a given input. Let =8¬�⋅
 be the transfer function (or the model) of the PA.

While it would be possible to start STA with an initial approximation of �
VO as a vector of

zeroes, it is intuitive that, whatever happens during the algorithm, the final outcome should

not be too different from a linear input – that is, the input vector that would lead to �
 ¡z� if

the PA were a linear device. Obviously, this linear input is equal to �
 ¡z� divided by the

target gain of the PA, which is 0 dB, as stated in the section describing the VSPA.

52

Thus, let the initial approximation of �
VO be (7.1):

�
VO 	 ∶=	 �
 ¡z� 	 (7.1)

The algorithm proceeds as follows, with � being a learning rate parameter:

	 Repeat until convergence { �
 ¡z 	 ∶= 	=8¬��
VO
 �
VO 	 ∶= 	�
VO 	+ 	�	��
 ¡z� 	− 	�
 ¡z
 }	
(7.2)

That is it – STA is so simple, it is almost surprising it works. Once convergence is reached, �
VO can be used as the target for the training of an ANN using the Backpropagation

algorithm, with its input being the linear input described just above (�
 ¡z�).

7.2. Simulation Results

The STA algorithm (Appendix E) was used to linearize the VSPA model. This is a base band

model, so �
 ¡z� , �
 ¡z and �
VO are vectors of I/Q symbolic pairs, that is, they are matrices

of size 2 × «, with « being the number of symbols used. �
 ¡z� was defined as a relatively

sparse grid of I/Q symbols that covers the whole output range of the VSPA.

Figures 7.1 to 7.4 show the state of the STA algorithm (with � = 0.5) at zero iterations, one

iteration, four iterations, and ten thousand iterations. These figures plot four different signals:

the natural output of the VSPA (that is, without any sort of predistortion) as black dots, the

target output of the linearized VSPA as red dots, the current state of the computed VSPA

input as green dots, and the response of the VSPA to that input as blue crosses.

Throughout the various iterations, the blue crosses start coincident with the black dots (no

linearization) and end up coincident with the red squares (complete linearization).

Meanwhile, the green dots start coincident with the red dots (equation 7.1) and end up

warped in a way that is contrary to the warping effect shown in Figure 3.7.

53

Figure 7.1. State of the STA algorithm: initial conditions.

Figure 7.2. State of the STA algorithm: after the first iteration.

54

Figure 7.3. State of the STA algorithm: after the fourth iteration.

Figure 7.4. State of the STA algorithm: after the ten thousandth iteration.

55

It is quite the understatement to say that the results of the STA algorithm were unexpectedly

good. Figure 7.5 is a plot of the NMSE at the VSPA output (that is, the error between the

actual and the target outputs of the VSPA). This plot was generated with the noise generator

of the VSPA model disabled – this is useful to get a more accurate measure of the actual

performance of the algorithm itself, without the penalization introduced by the processing

of the VSPA model.

As shown, STA achieves a staggeringly low NMSE in a matter of milliseconds.

Figure 7.5. NMSE vs Time plot of the STA algorithm with the random() function

disabled.

Naturally, enabling the noise generator of the VSPA model increases the processing time

(by four times) and introduces a limit to how low the NMSE can be. Figure 7.6 shows exactly

this.

56

Figure 7.6. NMSE vs Time plot of the STA algorithm with the random() function

enabled.

After the STA algorithm reached convergence (with the noise generator enabled), the

Backpropagation algorithm was used to train the predistorting ANN. It must be noted that

the Backpropagation algorithm minimizes (to a certain extent) the error at the output of the

ANN, and this error is not equal to the error at the output of the VSPA. For this reason, the

ANN training function (from Matlab’s Neural Network Toolbox) must be run inside a loop

in which the error at the output of the VSPA is monitored – otherwise there may be a

significant drop in linearization performance.

Figure 7.7 illustrates the AM-AM and AM-PM characteristics of the generated ANN. Notice

how they are opposite to those of the VSPA (Figure 3.8): at high input power levels, there is

an increase in gain and a negative phase shift.

Figure 7.8 illustrates the AM-AM and AM-PM characteristics of the complete predistortion

system: from the input of the ANN to the output of the VSPA. The gain is constant and there

is no phase shift, so the system is linear. There is some dispersion in the plots due to numeric

errors that occur at low power levels and due to the noise generator of the VSPA.

57

Figure 7.7. Gain and AM-PM characteristics of the ANN PD generated using STA.

Figure 7.8. Gain and AM-PM characteristics of the VSPA linearized using STA.

58

In order to confirm that the predistortion system was in fact linear, the ANN generated using

the STA algorithm (and the Backpropagation algorithm) was fed with the four-carrier GSM

signal described in section 3.2. It must be noted that this signal is completely uncorrelated

with the signals used during the STA algorithm and the training of the ANN.

Figure 7.9 is a plot of the frequency spectrum of the output of the VSPA in response to the

GSM signal with (in red) and without (in blue) the predistorting ANN. It is very clear that

the linearization goal was met: the spurious distortion tones were nearly completely

eliminated. There appear to be some very minor distortion tones between each of the four

GSM carriers, as well as a DC offset that was later modulated to 10 MHz, but these can be

attenuated by making sure the Backpropagation phase of the algorithm does not degrade the

linearization performance by a significant amount.

The STA algorithm has, therefore, been verified as an exceptionally fast and accurate method

of generating a predistorting ANN for a static PA.

Figure 7.9. Output spectrum of the VSPA in response to the GSM signal

with (red) and without (blue) predistortion by the ANN generated using STA.

59

8. CONCLUSION

A new generation of telecommunications networks requires a new generation of linearization

systems for the power amplifiers they rely on. Thus, a base band analog predistorter

implemented as an artificial neural network was proposed as a solution.

Traditionally, ANNs are trained in a supervised manner. This, however, goes against the

very essence of the problem of predistortion: to find the optimal predistortion function.

Roundabout ways of solving this paradox have been documented in the literature, such as

training the ANN as a post-distorter and testing it as a predistorter.

In this dissertation, three different alternative training methods are explored: Temporal

Difference learning, optimization through evolution strategies, and a custom algorithm

which enables the use of the Backpropagation algorithm.

8.1. Results Summary

Despite our best efforts, the Temporal Difference learning method proved to be

unsuccessful. While initially it was thought to be a good candidate for a solution, our results

suggest the opposite, and some later knowledge on the true meaning of “policy evaluation”

confirm that these results were, ultimately, inevitable. Alas, failure is also part of the research

process.

Optimization using CMA-ES produced predistorting ANNs with exceptional performance,

completely erasing any sign of intermodulation distortion introduced by the base band model

of a static PA. The only downside to this method was the processing time, on the order of

minutes to hours – even with a custom-made implementation of an ANN that is 100 times

faster than that of Matlab’s Neural Network Toolbox. Naturally, this can be improved by

resorting to a proper computation platform and by finely tuning some of its configuration

parameters.

60

Finally, the original Successive Target Approximation algorithm proved to be astonishingly

fast and produced excellent results as well, also eliminating all distortion tones. This

algorithm enables the use of the Backpropagation algorithm for the training of the ANN.

While this introduces a penalization in both processing time and linearization performance,

these are still potentially better than those of the CMA-ES algorithm. A tighter integration

of the STA and the Backpropagation algorithms would surely make for a better-performing

solution.

8.2. Future Work

There is still plenty of research left to do, especially concerning the analog implementation

of the predistortion system. Other topics include the determination of the optimal size of the

ANN to be used as a predistorter, as well as the linearization of a dynamical (with memory)

model of a PA, as opposed to a static one.

8.2.1. Dynamical Systems

While the linearization of a static model of a PA is a good start, a more complete solution

would need to be able to linearize a dynamical model, which features the memory effects

present in most real amplifiers.

This problem requires a completely different approach to the training of the networks: for

instance, the order of the input symbols would be one of the many additional factors to take

into consideration. While there are techniques that pretend to solve this issue, they are far

from optimal. Some preliminary original work has been done regarding the generation of an

optimal, minimum-sized input sequence that covers the complete output vector space of a

dynamical PA, but it shall not be published in this document at this stage.

Some brief tests were done on a dynamical base band model of a PA with a one-sample

memory depth, but there was no time to draw definite conclusions – especially because of

the processing time, which increases dramatically for such systems. It is to be expected,

though, that the CMA-ES algorithm should remain a good solution, but the STA algorithm

should fail very quickly without any modifications.

61

8.2.2. Towards Analog

In order to begin the understanding of what an analog implementation of an ANN might

implicate, some modifications were done to the networks generated by the CMA-ES and the

STA algorithms and a brief, final test was conducted. In this test, it was assumed that the

two networks were implemented as analog circuits, and that their weights were set by

external voltages with a 1 mV resolution.

First, it should be noted that this is a perfectly acceptable assumption, because the weights

have relatively low values: the CMA-ES ANN has weights with absolute values between

0.009 and 8.217, and the STA ANN has weights with absolute values between 0.001 and

5.479. If these were voltage, they could be produced by any commercially available DAC.

Figures 8.1 and 8.2 show the frequency spectra of the outputs of the two ANNs with their

weights rounded to three decimal places. It is clear, and expected, that the limiting of the

precision in the definition of the network weights introduces distortion in the system,

especially as a DC (zero Hz) component (that was later modulated to 10 MHz).

This can be easily solved by a low pass filter at the output of the ANN, though it might

actually be possible do it by training the ANN with limited-precision weights – as opposed

to performing the training with double precision weights and later rounding them to three

decimal places. Had we had more time, that would have been an interesting experiment: let

the ANN solve, by itself, the problems introduced by the limited precision of its own weights.

62

Figure 8.1. Output spectrum of the CMA-ES linearization system with

the ANN weights rounded to three decimal places (1 mV resolution).

Figure 8.2. Output spectrum of the STA linearization system with

the ANN weights rounded to three decimal places (1 mV resolution).

63

9. REFERENCES

[1] P. Tomé, Analog Neural Predistortion of Power Amplifiers, Master’s Thesis, Tampere

University of Technology, 2016.

[2] D. Warren, C. Dewar, Understanding 5G: Perspectives on Future Technological

Advancements in Mobile, GSMA Intelligence, 2014. Available:

https://www.gsmaintelligence.com/files/analysis/?file=141208-5g.pdf

[3] H. Wang, X. Zhou, M. Reed, Coverage and Throughput Analysis with a Non-Uniform

Small Cell Deployment, IEEE Transactions on Wireless Communications, 2014, Vol. 13,

pp. 2047–2059.

[4] Samsung, 5G Vision, White Paper, 2015. Available:

http://www.samsung.com/global/business-images/insights/2015/Samsung-5G-Vision-2.pdf

[5] D. Bharadia, E. McMilin, S. Katti, Full Duplex Radios, ACM SIGCOMM Computer

Communication Review, 2013, Vol. 43, pp. 375–386.

[6] M. Cho, J. Kenney, Variable Phase Shifter Design for Analog Predistortion Power

Amplifier Linearization System, Proceedings of Wireless and Microwave Technology

Conference (WAMICON), Orlando, FL, USA, Apr 7–9, 2013, pp. 1–5.

[7] P. Fisher, S. Al-Sarawi, Analog RF Predistorter Simulation using Well-Known

Behavioral Models, Proceedings of 10th Conference on Industrial Electronics and

Applications (ICIEA), Auckland, New Zealand, Jun 15–17, 2015, pp. 1667–1671.

[8] N. Benvenuto, F. Piazza, A. Uncini, A Neural Network Approach to Data Predistortion

with Memory in Digital Radio Systems, IEEE International Conference on Communications,

Geneva, Switzerland, May 23–26, 1993, pp. 232–236.

64

[9] Y. Qian, F. Liu, Neural Network Predistortion Technique for Nonlinear Power

Amplifiers with Memory, First International Conference on Communications and

Networking in China, Beijing, China, Oct 25–27, 2006, pp. 1–5.

[10] B. Watkins, R. North, Predistortion of Nonlinear Amplifiers Using Neural Networks,

Proceedings of Military Communications Conference, McLean, VA, USA, Oct 21–24, 1996,

pp. 316–320.

[11] B. Mulliez, E. Moutaye, H. Tap, L. Gatet, F. Gizard, Predistortion System

Implementation Based on Analog Neural Networks for Linearizing High Power Amplifiers

Transfer Characteristics, Proceedings of the 36th International Conference on

Telecommunications and Signal Processing, Rome, Italy, Jul 2–4, 2013, pp. 412–416.

[12] M. Ngwar, An Analog Neural Network for Wideband Predistortion of Pico-cell Power

Amplifiers, Doctoral Thesis, Carleton University, 2015. Available: https://curve.carleton.ca

/2d167908-4475-4ab3-b192-eeb4c656e2de

[13] A. Katz, J. Wood, D. Chokola, The Evolution of PA Linearization, IEEE Microwave

Magazine, 2016, Vol. 17, pp. 32–40.

[14] N. Carvalho, R. Madureira, Intermodulation Interference in the GSM/UMTS Bands,

Proceedings of 3ª Conferência de Telecomunicações (ConfTele 2001), Figueira da Foz,

Portugal, April 23–24, 2001.

[15] J. Dawson, T. Lee, Cartesian Feedback for RF Power Amplifier Linearization,

Proceedings of 2004 American Control Conference, Boston, MA, USA, Jun 30 – Jul 2, 2004,

Vol. 1, pp. 361–366.

[16] S. Stapleton, Presentation on Adaptive Feedforward Linearization for RF Power

Amplifiers, Agilent Technologies, 2001. Available: http://literature.agilent.com/litweb

/pdf/5989-9106EN.pdf

65

[17] R. Gupta, S. Ahmad, R. Ludwig, J. McNeill, Adaptive Digital Baseband Predistortion

for RF Power Amplifier Linearization, High Frequency Electronics, 2006, Vol. 5, No. 9, pp.

16–25.

[18] A. Clarke, Extra-Terrestrial Relays, Wireless World, No. 10, 1945, pp. 305–308.

[19] J. Pierce, Orbital Radio Relays, Jet Propulsion, 1955, Vol. 25, pp. 153–157.

[20] H. Girard, K. Feher, A New Baseband Linearizer for More Efficient Utilization of Earth

Station Amplifiers Used for QPSK Transmission, IEEE Journal on Selected Areas in

Communications, 1983, Vol. 1, pp. 46–56.

[21] G. Satoh, T. Mizuno, Impact of a New TWTA Linearizer Upon QPSK/TDMA

Transmission Performance, IEEE Journal on Selected Areas in Communications, 1983,

Vol. 1, pp. 39–45.

[22] C. Haskins, Diode Predistortion Linearization for Power Amplifier RFICs in Digital

Radios, Master’s Thesis, Virginia Polytechnic Institute and State University, 2000.

Available: https://theses.lib.vt.edu/theses/available/etd-04252000-16200028/unrestricted

/chaskins_thesis.pdf

[23] K. Yamauchi, K. Mori, M. Nakayama, A Novel Series Diode Linearizer for Mobile

Radio Power Amplifiers, IEEE International Microwave Symposium, S. Francisco, CA,

USA, Jun 17–21, 1996, Vol. 2, pp. 831–834.

[24] J. Yi, M. Park, W. Kang, B. Kim, Analog Predistortion Linearizer for High-Power RF

Amplifiers, IEEE Transactions on Microwave Theory and Techniques, 2000, Vol. 48, pp.

2709–2713.

[25] S. Lee, Y. Lee, S. Hong, H. Choi, Y. Jeong, Independently Controllable 3rd- and 5th-

Order Analog Predistortion Linearizer for RF Power Amplifier in GSM, Proceedings of 2004

IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, Fukuoka, Japan,

Aug 4–5, 2004, pp. 146–149.

66

[26] Y. Lee, M. Lee, S. Jung, Y. Jeong, Analog Predistortion Power Amplifier Using IMD

Sweet Spots for WCDMA Applications, Proceedings of 2007 Asia-Pacific Microwave

Conference, Bangkok, Thailand, Dec 11–14, 2007, pp. 1–4.

[27] X. Sun, S. Cheung, T. Yuk, Design of a Fifth-order Analog Predistorter for Base Station

HPA of Cellular Mobile Systems, Microwave Journal, 2011, Vol. 54, pp. 86–102.

[28] E. Westesson, L. Sundström, A Complex Polynomial Predistorter Chip in CMOS for

Baseband or IF Linearization of RF Power Amplifiers, Proceedings of the 1999 IEEE

International Symposium on Circuits and Systems, Orlando, FL, USA, May 30 – Jun 2,

1999, Vol. 1, pp. 206–209.

[29] E. Westesson, L. Sundström, Low-Power Complex Polynomial Predistorter Circuit in

CMOS for RF Power Amplifier Linearization, Proceeding of the 27th Solid-State Circuits

Conference, Villach, Austria, Sep 18–20, 2001, pp. 486–489.

[30] F. Roger, A 200mW 100MHz-to-4GHz 11th-Order Complex Analog Memory

Polynomial Predistorter for Wireless Infrastructure RF Amplifiers, Proceedings of 2013

IEEE International Solid-State Circuits Conference Digest of Technical Papers, San

Francisco, CA, USA, Feb 17–21, 2013, pp. 94–95.

[31] B. Gilbert, A Precise Four-Quadrant Multiplier with Subnanosecond Response, IEEE

Journal of Solid-State Circuits, 1968, Vol. 3, pp. 365–373.

[32] Y. Lee, M. Lee, S. Kam, Y. Jeong, Analog Predistortion Linearization of Doherty Power

Amplifiers Using Bandwidth Reduction of Error Signal, Microwave and Optical Technology

Letters, 2010, Vol. 52, pp. 1313–1316.

[33] K. Fayed, A. Ezzeddine, H. Huang, Linear Power Amplifier Uses Mirror Predistortion,

High Frequency Electronics, 2011, Vol. 10, No. 6, pp. 18–25.

[34] K. Son, B. Koo, S. Hong, A CMOS Power Amplifier With a Built-In RF Predistorter

for Handset Applications, IEEE Transactions on Microwave Theory and Techniques, 2012,

Vol. 60, pp. 2571–2580.

67

[35] K. Hornik, M. Stinchcombe, H. White, Multilayer Feedforward Networks Are

Universal Approximators, Neural Networks, 1989, Vol. 2, pp. 359–366.

[36] M. Bianchini, F. Scarselli, On the Complexity of Neural Network Classifiers: A

Comparison Between Shallow and Deep Architectures, IEEE Transactions on Neural

Networks and Learning Systems, 2014, Vol. 25, pp. 1553–1565.

[37] G. Cybenko, Approximation by Superposition of a Sigmoidal Function, Mathematics

of Control, Signals and Systems, 1989, Vol. 2, pp. 303–314.

[38] K. Hornik, Approximation Capabilities of Multilayer Feedforward Networks, Neural

Networks, 1991, Vol. 4, pp. 251–257.

[39] G. Tesauro, T. Seinowski, A Parallel Network that Learns to Play Backgammon,

Artificial Intelligence, 1989, Vol. 39, pp. 357–390.

[40] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, et al., Mastering the game of Go

with deep neural networks and tree search, Nature, 2016, Vol. 529, pp. 484–489.

[41] C. Anderson, Learning to Control an Inverted Pendulum Using Neural Networks, IEEE

Control Systems Magazine, 1989, Vol. 9, pp. 31–37.

[42] J. Lagarias, J. Reeds, M. Wright, P. Wright, Convergence Properties of the Nelder-

Mead Simplex Method in Low Dimensions, SIAM Journal of Optimization, 1998, Vol. 9,

pp. 112–147.

[43] M. Hagan, M. Menhaj, Training Feed-Forward Networks with the Marquardt

Algorithm, IEEE Transactions on Neural Networks, 1994, Vol. 5, pp. 989–993

[44] J. McClelland, Explorations in Parallel Distributed Processing: A Handbook of Models,

Programs, and Exercises, Second Edition, DRAFT, 2015.

[45] R. Sutton, Learning to Predict by the Methods of Temporal Differences, Machine

Learning, 1988, Vol. 3, pp. 9–44.

68

[46] A. Lazaric, M. Restelli, A. Bonarini, Reinforcement Learning in Continuous Action

Spaces Through Sequential Monte Carlo Methods, Advances in Neural Information

Processing Systems 20 (NIPS 2007), 2007, pp. 1456–1463.

[47] J. Modayil, A. White, P. Pilarski, R. Sutton, Acquiring a Broad Range of Empirical

Knowledge in Real Time by Temporal-Difference Learning, 2012 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), Seoul, South Korea, Oct 14–17,

2012, pp. 1903–1910.

[48] R. Sutton, A. Bonde, Nonlinear TD/Backprop Pseudo C-code, 1993. Available:

https://webdocs.cs.ualberta.ca/~sutton/td-backprop-pseudo-code.text

[49] D. Fogel, An Introduction to Simulated Evolutionary Optimization, IEEE Transactions

on Neural Networks, 1994, Vol. 5, pp. 3–14.

[50] N. Hansen, D. Arnold, A. Auger, Evolution Strategies, in J. Kacprzyk, W. Pedrycz,

Handbook of Computational Intelligence, Springer, 2015, pp. 871–898.

[51] N. Hansen, The CMA Evolution Strategy: A Comparing Review, in J. Lozano, P.

Larrañga, I. Inza, E. Bengoetxea, Towards a New Evolutionary Computation: Advances in

Estimation of Distribution Algorithms, Springer, 2006, pp. 75–102.

[52] N. Hansen, CMA-ES Source Code, Matlab Production Code, Version 3.61.beta, 2012.

Available: https://www.lri.fr/~hansen/cmaes_inmatlab.html#matlab

[53] During the public defense of this dissertation, the author was informed that the

Successive Target Approximation algorithm had been previously published in a patent

(under another name). It should be stressed, though, that this patent was unknown to the

author prior to the public defense of this dissertation, and that the Successive Target

Approximation algorithm was, in fact, an original effort by the author of this dissertation.

J. Peroulas, A. You, Method and Apparatus for Linearizing a Non-Linear Power Amplifier,

US8482349, 2013.

69

APPENDIX A: VECTORIZED TDNN MODEL AND

LEARNING ALGORITHM (MATLAB)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

% Temporal Difference Neural Network

% File: TDNN.m

% Author: Pedro Tomé (tome.p.m at ua.pt)

%

%

% To be used under the terms of the GNU General Public License:

% http://www.gnu.org/copyleft/gpl.html

%

%

classdef TDNN

 properties (GetAccess = 'public', SetAccess = 'private')

 RAND_INIT_EPSILON;% Random weight initialization scaling factor

 numInputs; % Number of input nodes (excluding bias node)

 numHidden; % Number of hidden nodes (excluding bias node)

 numOutputs; % Number of output nodes

 BIAS; % Activation of the (constant) bias nodes

 GAMMA; % Discount rate parameter (typically 0.9)

 LAMBDA; % Trace decay parameter (should be <= GAMMA)

 ALPHA; % Learning rate of v (typically 1/numInputs)

 BETA; % Learning rate of w (typically 1/numHidden)

 x; h; y; % Neuron activations for layers 1 to 3

 v; w; % Weights between layers 1 and 2 and layers 2 and 3

 oldY; % Last output

 ev; ew; % Eligibility traces of v and w

 error; % TD error

 end

 methods (Access = 'public')

 function self = TDNN(numInputs, numHidden, numOutputs)

 validateattributes(numInputs, ...

 {'numeric'}, {'scalar', 'positive', 'integer'}, '', ...

 'numInputs');

 validateattributes(numHidden, ...

 {'numeric'}, {'scalar', 'positive', 'integer'}, '', ...

 'numHidden');

 validateattributes(numOutputs, ...

 {'numeric'}, {'scalar', 'positive', 'integer'}, '', ...

 'numOutputs');

70

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

 self.numInputs = numInputs;

 self.numHidden = numHidden;

 self.numOutputs = numOutputs;

 self.RAND_INIT_EPSILON = 0.5;

 self.BIAS = 1;

 self.GAMMA = 0;

 self.LAMBDA = 0;

 self.ALPHA = 0;

 self.BETA = 0;

 self = self.init();

 end

 function self = train(self, netInput, reward, gamma, ...

 lambda, alpha, beta)

 validateattributes(self, ...

 {'TDNN'}, {}, '', 'self');

 validateattributes(netInput, ...

 {'numeric'}, {'nrows', self.numInputs},'', 'netInput');

 validateattributes(reward, ...

 {'numeric'}, {'size', size(netInput)}, '', 'reward');

 validateattributes(gamma, ...

 {'numeric'}, {'scalar', 'nonnegative'}, '', 'gamma');

 validateattributes(lambda, ...

 {'numeric'}, {'scalar', 'nonnegative'}, '', 'lambda');

 validateattributes(alpha, ...

 {'numeric'}, {'scalar', 'positive'}, '', 'alpha');

 validateattributes(beta, ...

 {'numeric'}, {'scalar', 'positive'}, '', 'beta');

 self.GAMMA = gamma;

 self.LAMBDA = lambda;

 self.ALPHA = alpha;

 self.BETA = beta;

 t = 1;

 self = self.forwardProp(netInput(:,t));

 self.oldY = self.y;

 self = self.updateEligTraces();

 for t = 2 : size(netInput, 2)

 self = self.forwardProp(netInput(t));

 self.error = reward(t) + self.GAMMA*self.y - self.oldY;

 self = self.updateWeights();

 self = self.forwardProp(netInput(t));

 self.oldY = self.y;

 self = self.updateEligTraces();

 end

 end

71

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

 function netOutput = output(self, netInput)

 validateattributes(self, ...

 {'TDNN'}, {}, '', 'self');

 validateattributes(netInput, ...

 {'numeric'}, {'nrows', self.numInputs},'', 'netInput');

 numSamples = size(netInput, 2);

 netOutput = zeros(self.numOutputs, numSamples);

 for t = 1:numSamples

 [~, tmp] = self.forwardProp(netInput(:,t));

 netOutput(:,t) = tmp;

 end

 end

 % Allows the use of the following syntax

 % netOutput = net(netInput)

 % equivalent to

 % netOutput = net.output(netInput)

 % where 'net' is an object of class TDNN.

 function varargout = subsref(obj, s)

 switch s(1).type

 case '()'

 input = s.subs{:};

 varargout = {obj.output(input)};

 case '.'

 c = class(obj);

 fname = strcat(c, '>', c, '.', s(1).subs);

 n = nargout(fname);

 [varargout{1:n}] = builtin('subsref', obj, s);

 end

 end

 end

 methods (Access = 'private')

 function self = init(self)

 % Neuron Activations Initialization

 self.x = [self.BIAS ; zeros(self.numInputs, 1)];

 self.h = [self.BIAS ; zeros(self.numHidden, 1)];

 self.y = zeros(self.numOutputs, 1);

 self.oldY = zeros(self.numOutputs, 1);

 self.error = 0;

 % Random Weight Initialization

 self.v = rand(self.numHidden, self.numInputs + 1) * 2 * ...

 self.RAND_INIT_EPSILON - self.RAND_INIT_EPSILON;

 self.w = rand(self.numOutputs, self.numHidden + 1)* 2 * ...

 self.RAND_INIT_EPSILON - self.RAND_INIT_EPSILON;

 % Eligibility Traces Initialization

 self.ev = zeros(self.numHidden, self.numInputs + 1, ...

 self.numOutputs);

 self.ew = zeros(self.numOutputs, self.numHidden + 1);

 end

72

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

 function [self, output] = forwardProp(self, input)

 self.x(2:end) = input;

 self.h(2:end) = tansig(self.v * self.x);

 %self.h(2:end) = 1 ./ (1 + exp(-(self.v * self.x)));

 self.y = purelin(self.w * self.h);

 %self.y = tansig(self.w * self.h);

 output = self.y;

 end

 function self = updateWeights(self)

 self.w = self.w + self.BETA * repmat(self.error, 1, ...

 self.numHidden + 1) .* self.ew;

 dv = zeros(size(self.v));

 for k = 1 : self.numOutputs

 dv = dv + self.error(k) * self.ev(:,:,k);

 end

 self.v = self.v + self.ALPHA * dv;

 end

 function self = updateEligTraces(self)

 deltaY = ones(size(self.y)); % Output nodes: purelin()

 %deltaY = self.y .* (1 - self.y); % Output nodes: tansig()

 deltaH = self.h .* (1 - self.h); % Hidden nodes: tansig()

 self.ew = self.LAMBDA * self.ew + deltaY * self.h';

 tmp = deltaY * deltaH(2:end)' .* self.w(:,2:end);

 for k = 1 : self.numOutputs

 self.ev(:,:,k) = self.LAMBDA * self.ev(:,:,k) + ...

 (self.x * tmp(k,:))';

 end

 end

 end

end

73

APPENDIX B: EXAMPLE USAGE OF THE TDNN

MODEL AND LEARNING ALGORITHM (MATLAB)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

% Example Usage of the TDNN Class

% File: Test_TDNN.m

% Author: Pedro Tomé (tome.p.m at ua.pt)

%

%

% To be used under the terms of the GNU General Public License:

% http://www.gnu.org/copyleft/gpl.html

%

%

close all;

%% Define the PA's transfer function, input range and target output

PA = @(x) tanh(3 * x);

input = linspace(-1, 1, 100);

targetOutput = input;

% Try this with reward = targetOutput, gamma = 0, and lambda = 0.

% Backpropagation at a snail's pace.

% targetOutput = 0.75*sin(pi*input) + 0.25*sin(3*pi*input);

%% Prepare figures

figure();

subplot(1,5,[1 3]);

plot(input, PA(input), 'b'); hold on;

plot(input, targetOutput, 'k--');

h_netOut = plot(input, nan(size(input)), 'g');

h_PAout = plot(input, nan(size(input)), 'r');

h_reward = plot(input, nan(size(input)), 'k');

xlabel('Inputs'); ylabel('Outputs'); grid on;

legend('Default PAout', 'Target PAout', 'PDout', ...

 'Linearized PAout', 'Reward', 'Location', 'SouthEast');

subplot(1,5,4);

netOut_error_history = NaN;

h_netOutError = plot(netOut_error_history); grid on;

xlabel('Iteration'); ylabel('MSE(reward - netOut) (dB)');

subplot(1,5,5);

PAout_error_history = NaN;

h_PAoutError = plot(PAout_error_history); grid on;

xlabel('Iteration'); ylabel('MSE(targetOutput - PAout)(dB)');

74

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

%% Create and train the PD

TDnet = TDNN(1, 10, 1);

netOut = TDnet(input);

PAout = PA(netOut);

iteration = 0;

while (true)

 iteration = iteration + 1;

 E = targetOutput - PAout;

 SE = E .^ 2;

 MSE = mean(SE);

 % Pick your poison:

 %reward = [zeros(1, length(input) - 1) , +1 * MSE];

 %reward = [zeros(1, length(input) - 1) , -1 * MSE];

 %reward = +1 * MSE * ones(1, length(input));

 %reward = -1 * MSE * ones(1, length(input));

 %reward = +1 * SE;

 %reward = -1 * SE;

 reward = E;

 %reward = targetOutput;

 % Train the network gamma,lambda alpha,beta

 TDnet = TDnet.train(input, reward, 0.0,0.3, 0.1,0.1);

 % Calculate performance measures

 netOut = TDnet(input);

 PAout = PA(netOut);

 netOut_error = mean((reward - netOut) .^ 2);

 netOut_error_history(iteration) = netOut_error;

 PAout_error = mean((targetOutput - PAout) .^ 2);

 PAout_error_history(iteration) = PAout_error;

 % Refresh figures

 if (mod(iteration,10) == 0)

 set(h_netOut, 'YData', netOut);

 set(h_PAout, 'YData', PAout);

 set(h_reward, 'YData', reward);

 set(h_netOutError,'YData', 10*log10(abs(netOut_error_history)));

 set(h_PAoutError, 'YData', 10*log10(abs(PAout_error_history)));

 drawnow();

 end

end

75

APPENDIX C: OPTIMIZATION USING THE CMA-ES

ALGORITHM (MATLAB)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

% Example Usage of the CMA-ES Algorithm

% File: Test_CMAES.m

% Author: Pedro Tomé (tome.p.m at ua.pt)

%

%

% Uses cmaes.m, version 3.61.beta, by Nikolaus Hansen,

% with slight modifications for monitoring purposes.

%

%

% To be used under the terms of the GNU General Public License:

% http://www.gnu.org/copyleft/gpl.html

%

%

function Test_CMAES()

 %% Program setup

 netHiddenSize = [10 10 10];

 maxInputAmplitude = 1;

 close all;

 %% Define the input and target output signals

 [netInput_I, netInput_Q] = iqGrid(maxInputAmplitude, 0.1);

 netInput = [netInput_I' ; netInput_Q'];

 ampOutput_targetI = netInput_I;

 ampOutput_targetQ = netInput_Q;

 ampOutput_target = [ampOutput_targetI , ampOutput_targetQ];

 %% Create Artificial Neural Network

 net = FastANN(2, netHiddenSize, 2);

 startingWeights = getwb(net);

 %% Create IQ monitoring figure

 handles = createMonitoringFigure(net, netInput, ampOutput_target);

 %% Run Optimization Algorithm

 projectSettings.net = net;

 projectSettings.netInput = netInput;

 projectSettings.ampOutput_target = ampOutput_target;

 projectSettings.handles = handles;

76

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

% The cmaes function was modified a bit for monitoring purposes

 [xmin, fmin, counteval, stopflag, out, bestever] = cmaes(...

 'CMAES_costFunction', ...

 startingWeights, ...

 0.1, ...

 [], projectSettings ...

);

end

function [I, Q] = iqGrid(maxAmplitude, delta)

 %% Create grid of (I,Q) points

 [I, Q] = meshgrid([-1 : delta : 1], [-1 : delta : 1]);

 I = I(:) * maxAmplitude;

 Q = Q(:) * maxAmplitude;

 %% Exclude points outside the maxAmplitude radius

 indices = sqrt(I.^2 + Q.^2) < maxAmplitude;

 I = I(indices);

 Q = Q(indices);

end

function handles = createMonitoringFigure(net,netInput,ampOutput_target)

 [ampOutput_I, ampOutput_Q] = VirtualStaticPA(netInput(1,:)', ...

 netInput(2,:)');

 netOut = net(netInput);

 [ampOutput_Ipd, ampOutput_Qpd] = VirtualStaticPA(netOut(1,:)', ...

 netOut(2,:)');

 %% IQ Mapping

 figure();

 plot(ampOutput_I, ampOutput_Q, 'k.'); hold on;

 plot(ampOutput_target(:,1), ampOutput_target(:,2), 'r.');

 handles.ampOutput = plot(ampOutput_Ipd, ampOutput_Qpd, 'b+');

 handles.netOutput = plot(netOut(1,:), netOut(2,:), 'g.');

 xlabel('I Component'); ylabel('Q Component');

 legend('Default PAout', 'Target PAout', 'Linearized PAout', ...

 'PDout', 'Location', 'SouthEast');

 %% IQ Mapping Error

 figure();

 handles.perf = plot(NaN, NaN);

 xlabel('Iteration'); ylabel('Function Value (dB)');

 drawnow();

end

77

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

% Cost Function (NMSE) for CMA-ES Optimization

% File: CMAES_costFunction.m

% Author: Pedro Tome' (tome.p.m at ua.pt)

%

%

% To be used under the terms of the GNU General Public License:

% http://www.gnu.org/copyleft/gpl.html

%

%

function netFitness = CMAES_costFunction(netWeights, options)

 %% Parse input options

 net = options.net;

 netInput = options.netInput;

 ampOutput_target = options.ampOutput_target;

 PAout_It = ampOutput_target(:,1);

 PAout_Qt = ampOutput_target(:,2);

 %% Configure ANN with input weights

 net = setwb(net, netWeights);

 %% Compute ANN output

 netOut = net(netInput);

 netOut_I = netOut(1,:)';

 netOut_Q = netOut(2,:)';

 %% Compute Linearized PA output

 [PAout_Ipd, PAout_Qpd] = VirtualStaticPA(netOut_I, netOut_Q);

 %% Compute ANN fitness

 squareError = (PAout_Ipd - PAout_It).^2 + (PAout_Qpd - PAout_Qt).^2;

 meanError = (PAout_Ipd - mean(PAout_It)).^2 + ...

 (PAout_Qpd - mean(PAout_Qt)).^2;

 NMSE = sum(squareError) / sum(meanError);

 netFitness = NMSE;

end

78

APPENDIX D: FAST IMPLEMENTATION OF AN

ARTIFICIAL NEURAL NETWORK (MATLAB)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

% Fast Implementation of an Artificial Neural Network

% File: FastANN.m

% Author: Pedro Tomé (tome.p.m at ua.pt)

%

%

% Example Usage:

% 1. Create an ANN with 2 input nodes, three hidden layers

% of 10 nodes each, and 2 output nodes:

% net = FastANN(2, [10 10 10], 2);

% 2. Extract the number of weights and biases of the network:

% numWeights = length(getwb(net));

% 3. Set the weights and biases to whatever:

% net = setwb(net, rand(1, numWeights));

% 4. Calculate the network's output using Forward Propagation:

% netInput = rand(2, 1000);

% netOutput = net(netInput);

%

%

% To be used under the terms of the GNU General Public License:

% http://www.gnu.org/copyleft/gpl.html

%

%

classdef FastANN

 properties (GetAccess = 'public', SetAccess = 'public')

 RAND_INIT_EPSILON;

 BIAS; % Activation of the (constant) bias nodes

 numInputs; % Number of input nodes (excluding bias node)

 numHidden; % Number of hidden nodes (excluding bias node)

 numOutputs; % Number of output nodes

 numLayers; % Number of layers, including input and output

 weights; % The defining parameters of the network

 end

 methods (Access = 'public')

 function self = FastANN(numInputs, numHidden, numOutputs)

 validateattributes(numInputs, ...

 {'numeric'}, {'scalar', 'positive', 'integer'}, '', ...

 'numInputs');

 validateattributes(numHidden, ...

 {'numeric'}, {'vector', 'positive', 'integer'}, '', ...

 'numHidden');

79

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

 validateattributes(numOutputs, ...

 {'numeric'}, {'scalar', 'positive', 'integer'}, '', ...

 'numOutputs');

 self.numInputs = numInputs;

 self.numHidden = numHidden;

 self.numOutputs = numOutputs;

 self.numLayers = 1 + length(numHidden) + 1;

 self.RAND_INIT_EPSILON = 0.5;

 self.BIAS = 1;

 self = self.init();

 end

 function netOutput = output(self, netInput)

 [~, netOutput] = self.forwardProp(netInput);

 end

 % Allows the use of the following syntax

 % netOutput = net(netInput)

 % equivalent to

 % netOutput = net.output(netInput)

 % where 'net' is an object of class TDNN.

 function varargout = subsref(obj, s)

 switch s(1).type

 case '()'

 input = s.subs{:};

 varargout = {obj.output(input)};

 case '.'

 c = class(obj);

 fname = strcat(c, '>', c, '.', s(1).subs);

 n = nargout(fname);

 [varargout{1:n}] = builtin('subsref', obj, s);

 end

 end

 % Set network weights externally

 function self = setwb(self, weights)

 wVector = weights(1 : numel(self.weights{1}));

 self.weights{1} = reshape(wVector, size(self.weights{1}));

 pointer = numel(self.weights{1});

 for i = 2 : length(self.weights);

 wVector = weights([1:numel(self.weights{i})]+pointer);

 self.weights{i}=reshape(wVector,size(self.weights{i}));

 pointer = pointer + numel(self.weights{i});

 end

 end

80

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

 % Get network weights

 function weightsOut = getwb(self)

 weightsOut = [];

 for i = 1 : length(self.weights)

 tmpW = self.weights{i};

 weightsOut = [weightsOut ; tmpW(:)];

 end

 end

 end

 methods (Access = 'private')

 function self = init(self)

 % Random Weight Initialization

 self.weights = cell(1, self.numLayers-1);

 self.weights{1} = rand(self.numHidden(1), ...

 self.numInputs + 1) * ...

 (2 * self.RAND_INIT_EPSILON) - self.RAND_INIT_EPSILON;

 for i = 2 : self.numLayers - 2

 self.weights{i} = rand(self.numHidden(i), ...

 self.numHidden(i-1) + 1) * ...

 (2 * self.RAND_INIT_EPSILON)-self.RAND_INIT_EPSILON;

 end

 self.weights{end} = rand(self.numOutputs, ...

 self.numHidden(end) + 1) * ...

 (2 * self.RAND_INIT_EPSILON) - self.RAND_INIT_EPSILON;

 end

 function [self, output] = forwardProp(self, input)

 N = size(input,2);

 b = self.BIAS * ones(1,N);

 x = [b ; input];

 h = tansig([b ; self.weights{1} * x]);

 for i = 2 : self.numLayers - 2

 h = tansig([b ; self.weights{i} * h]);

 end

 y = purelin(self.weights{end} * h);

 output = y;

 end

 end

end

81

APPENDIX E: SUCCESSIVE TARGET

APPROXIMATION ALGORITHM (MATLAB)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

% Successive Target Approximation (STA) Algorithm and Example Usage

% File: SuccessiveTargetApproximation.m

% Author: Pedro Tomé (tome.p.m at ua.pt)

%

%

% To be used under the terms of the GNU General Public License:

% http://www.gnu.org/copyleft/gpl.html

%

%

function SuccessiveTargetApproximation()

 %% Program setup

 maxIterations = 250; % Target Approximation stop condition

 learningRate = 0.5; % Learning rate of the STA algorithm

 netHiddenSize = [10 10 10]; % Number of neurons per hidden layer

 maxNetPerformanceLoss_dB = 1; % Maximum performance loss allowed

 % when synthesizing the ANN

 maxInputAmplitude = 1;

 targetAmplifierGain = 1;

 close all;

 %% Define the input and target output signals

 [netInput_I, netInput_Q] = iqGrid(maxInputAmplitude, 0.1);

 netInput = [netInput_I' ; netInput_Q'];

 ampOutput_targetI = netInput_I * targetAmplifierGain;

 ampOutput_targetQ = netInput_Q * targetAmplifierGain;

 ampOutput_target = [ampOutput_targetI , ampOutput_targetQ];

 %% Create IQ monitoring figure

 handles = createMonitoringFigure(netInput, ampOutput_target, ...

 maxIterations);

 %% STA Algorithm

 netTarget = netInput;

 bestError = Inf;

 errorHistory = nan(1, maxIterations);

 iteration = 0;

82

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

 while (iteration < maxIterations)

 iteration = iteration + 1;

 % Calculate target performance

 [trained_ampOutput_I, trained_ampOutput_Q] = ...

 PA(netTarget(1,:)', netTarget(2,:)');

 ampOutput = [trained_ampOutput_I , trained_ampOutput_Q];

 error = costFunction(ampOutput_target, ampOutput);

 if (iteration == 1)

 errorHistory(iteration) = error;

 else

 errorHistory(iteration) = bestError;

 end

 % Accept new target if there was a performance increase

 if (error < bestError)

 bestError = error;

 % This is the learning trick!

 netTarget = netTarget + ...

 learningRate * (ampOutput_target - ampOutput)';

 end

 % Update figures

 if (mod(iteration,10) == 0)

 set(handles.netOutput, 'XData', netTarget(1,:), ...

 'YData', netTarget(2,:));

 set(handles.ampOutput, 'XData', ampOutput(:,1), ...

 'YData', ampOutput(:,2));

 set(handles.error, 'XData', 1:maxIterations, ...

 'YData', 10*log10(errorHistory));

 drawnow();

 end

 end

 fprintf('Target NMSE: %g dB\n', 10*log10(bestError));

 %% Create the predistorting Artificial Neural Network

 net = feedforwardnet(netHiddenSize);

 %net.trainParam.showWindow = 0;

 net = configure(net, 'inputs', netInput);

 net = configure(net, 'outputs', netInput);

 % Allow for a loss of 'maxNetPerformanceLoss_dB' dB in policy

 % performance when synthesizing it as an artificial neural network

 trained_error = Inf;

 training_iterations = 0;

 while (10*log10(trained_error) > 10*log10(bestError) + ...

 maxNetPerformanceLoss_dB)

 training_iterations = training_iterations + 1;

 if (mod(training_iterations, 50) == 0)

 net = init(net); % Hack in case it hangs

 end

83

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

 net = train(net, netInput, netTarget);

 netOutput = net(netInput);

 [trained_ampOutput_I, trained_ampOutput_Q] = ...

 PA(netOutput(1,:)', netOutput(2,:)');

 trained_ampOutput = [trained_ampOutput_I trained_ampOutput_Q];

 trained_error=costFunction(ampOutput_target,trained_ampOutput);

 end

 fprintf('Neural Network NMSE: %g dB\n', 10*log10(trained_error));

 fprintf('Absolute values of ANN weights range from %g to %g\n', ...

 min(abs(getwb(net))), max(abs(getwb(net))));

 %% Round network weights

 decimalPlaces = 3; % Akin to an implementation with 1 mV precision

 round_net = setwb(net, round(getwb(net), decimalPlaces));

 round_netOutput = round_net(netInput);

 [round_ampOutput_I, round_ampOutput_Q] = ...

 PA(round_netOutput(1,:)', round_netOutput(2,:)');

 round_ampOutput = [round_ampOutput_I , round_ampOutput_Q];

 round_error = costFunction(ampOutput_target, round_ampOutput);

 fprintf('Rounded Neural Network NMSE: %g dB',10*log10(round_error));

 fprintf(' (weights rounded to %d decimal places)\n', decimalPlaces);

end

function [yI, yQ] = PA(xI, xQ)

 [yI, yQ] = VirtualStaticPA(xI(:), xQ(:));

 gain = 1;

 yI = gain * yI;

 yQ = gain * yQ;

end

function cost = costFunction(ampOutput_target, ampOutput)

 I = ampOutput(:,1);

 Q = ampOutput(:,2);

 It = ampOutput_target(:,1);

 Qt = ampOutput_target(:,2);

 squareError = (I - It).^2 + (Q - Qt).^2;

 meanError = (I - mean(It)).^2 + (Q - mean(Qt)).^2;

 NMSE = sum(squareError) / sum(meanError);

 cost = NMSE;

end

function [I, Q] = iqGrid(maxAmplitude, delta)

 %% Create grid of (I,Q) points

 [I, Q] = meshgrid([-1 : delta : 1], [-1 : delta : 1]);

 I = I(:) * maxAmplitude;

 Q = Q(:) * maxAmplitude;

84

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

 %% Exclude points outside the maxAmplitude radius

 indices = sqrt(I.^2 + Q.^2) < maxAmplitude;

 I = I(indices);

 Q = Q(indices);

end

function handles = createMonitoringFigure(netInput, ...

 ampOutput_target, maxIterations)

 figure();

 %% IQ Mapping

 [defaultAmpOutput_I, defaultAmpOutput_Q] = ...

 PA(netInput(1,:)', netInput(2,:)');

 subplot(1, 4, [1:3]);

 handles.netOutput = plot(nan(size(netInput, 2),1), ...

 nan(size(netInput, 2),1), 'g.');

 hold on;

 plot(defaultAmpOutput_I, defaultAmpOutput_Q, 'k.');

 plot(ampOutput_target(:,1), ampOutput_target(:,2), 'r.');

 handles.ampOutput = plot(nan(size(netInput, 2),1), ...

 nan(size(netInput, 2),1), 'b+');

 axis([-1 1 -1 1]);

 xlabel('I Component'); ylabel('Q Component');

 legend('ANN Output', 'Default PA Output', 'Target PA Output', ...

 'Linearized PA Output', 'Location', 'SouthEast');

 %% IQ Mapping Error

 subplot(1, 4, 4);

 handles.error = plot(nan, nan);

 xlim([1 maxIterations]);

 xlabel('Iteration'); ylabel('NMSE (dB)');

end

