
Universidade de Aveiro  

2016  

Departamento de Eletrónica, Telecomunicações e 

Informática 

PEDRO MIRASSOL 
TOMÉ 

PRÉ-DISTORÇÃO NEURONAL ANALÓGICA DE 
AMPLIFICADORES DE POTÊNCIA 

 

ANALOG NEURAL PREDISTORTION OF POWER 
AMPLIFIERS 

 

 

 

  
Dissertação apresentada à Universidade de Aveiro para cumprimento 
dos requisitos necessários à obtenção do grau de Mestre em 
Engenharia Eletrónica e Telecomunicações. 
 

  
 

 

  



 

 

 

In Finlandia, J. Sibelius 



 

 

  
 

 
 
 

 
 

o júri    
 

presidente Prof. Doutor Paulo Miguel Nepomuceno Pereira Monteiro 
professor associado da Universidade de Aveiro 

  
 

arguente externo Prof. Doutor Henrique Manuel de Castro Faria Salgado 
professor associado da Faculdade de Engenharia da Universidade do Porto 

  
 

vogal Prof. Doutor Telmo Reis Cunha 
professor auxiliar da Universidade de Aveiro 

 

 

 

  



  

  
 

agradecimentos  

 

I would like to express my gratitude to my thesis supervisors, Doctor Mikko 
Valkama, from the Tampere University of Technology, Finland, and Doctor 
Telmo Cunha, from the University of Aveiro, Portugal, for their always 
immediate support and for putting up with my very self-reliant work 
methodology. 
 
 
I would like to thank Doctor Olli-Pekka Lundén, from the Tampere University of 
Technology, for his teachings and the interest he showed in my work; Doctor 
Tapio Elomaa, from the Tampere University of Technology, for his contribution 
to my understanding of the Artificial Intelligence concepts contained within this 
thesis; Mahmoud Abdelaziz, doctoral student at the Tampere University of 
Technology, for his resources on behavioral modeling; and Doctor Nuno Lau, 
from the University of Aveiro, as well as Abbas Abdolmaleki, doctoral student at 
the University of Aveiro, for their knowledge on Evolution Strategies. 
 
I would like to acknowledge the Erasmus+ exchange program, without which I 
would not have had the opportunity to study at the Tampere University of 
Technology and to learn about the Finnish people and their customs. 
 
 
My most sincere appreciation to the Teekkarikuoro, the student choir of the 
Tampere University of Technology. Of all the good things that happened to me 
in Finland, being a part of you was the best. There are no words which express 
how grateful I am for our time together and the feelings of us, through music, 
being one. I hope my playing of Rachmaninoff’s Élégie was to your liking, and I 
hope it touched you as you did to me. 
 
To my friends, Diogo Saraiva and William Robert. Keepo 
 
 
Finally, to my parents and my sister. Thank you. 

 

  



  

 

 

 

 

 

 

 

  

palavras -chave  

 

linearização, pré-distorção, pré-distorção analógica, pré-distorção neuronal, 
rede neuronal, aprendizagem automática, temporal difference, otimização, 
estratégias de evolução, cma-es. 
 

resumo  

 

 

As especificações das redes de telecomunicações de quinta geração 
ultrapassam largamente as capacidades das técnicas mais modernas de 
linearização de amplificadores de potência como a pré-distorção digital. Por 
esta razão, esta tese propõe um método de linearização alternativo: um pré-
distorçor analógico, à banda base, constituído por uma rede neuronal artificial. 
A rede foi treinada usando três métodos distintos: avaliação de política através 
de TD(λ), otimização por estratégias de evolução como CMA-ES, e um 
algoritmo original de aproximações sucessivas. Apesar do TD(λ) não ter 
produzido resultados de simulação satisfatórios, os resultados dos outros dois 
métodos foram excelentes: um NMSE entre as funções de transferência 
pretendida e efetiva do amplificador pré-distorcido até -70 dB, e uma redução 
total das componentes de distorção do espetro de frequência de um sinal GSM 
de teste. Apesar das estratégias de evolução terem alcançado este nível de 
linearização após cerca de 4 horas de execução contínua, o algoritmo original 
consegue fazê-lo numa questão de segundos. Desta forma, esta tese abre 
caminho para que se cumpram as exigências das redes de nova geração. 
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abstract  

 

Fifth-generation telecommunications networks are expected to have technical 
requirements which far outpace the capabilities of modern power amplifier (PA) 
linearization techniques such as digital predistortion. For this reason, this thesis 
proposes an alternative linearization method: a base band analog predistorter 
consisting of an artificial neural network. The network was trained through three 
very distinct methods: policy evaluation using TD(λ), optimization using 
evolution strategies such as CMA-ES, and an original algorithm of successive 
approximations. While TD(λ) proved to be unsuccessful, the other two methods 
produced excellent simulation results: an NMSE between the target and the 
predistorted PA transfer functions up to -70 dB, and the complete elimination of 
distortion components in the frequency spectrum of a GSM test signal. While 
the evolution strategies achieved this level of linearization after about 4 hours 
of continuous work, the original algorithm consistently does so in a matter of 
seconds. In effect, this thesis outlines a way towards the meeting of the 
specifications of next-generation networks. 
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1.  INTRODUCTION 

The work reported in this dissertation was done, in part, under the supervision of Doctor 

Mikko Valkama, of the Tampere University of Technology, Finland. A significant portion of 

the text within this document was also presented to the same institution as a dissertation [1]. 

While the requirements and specifications for fifth-generation (5G) mobile systems and 

services have yet to be fully defined, some goals of the next generation of mobile networks 

are already very clear: a tremendous increase in connection density and speed (over 1 Gb/s 

downlink bit rate) and a similarly significant decrease in connection latency (under 1 ms 

roundtrip delay) [2]. 

However desirable, these advancements impose changes not only on the hardware that 

constitutes cellular networks, but on their topology as well. To be able to yield such high bit 

rates at such low latencies, cellular base station transmitters will need to have wider 

operational bandwidths – on the order of 500 to 1000 MHz [3], in contrast to the few tens of 

MHz that current base stations possess –, and their center frequencies will have to be adjusted 

to higher regions of the spectrum – reportedly as high as 6 to 300 GHz [2]. 

Radiation at such high frequencies will evidently have limiting effects on the propagation of 

radio frequency (RF) signals through buildings and objects, thus leading to a structural 

change in network architectures: instead of network coverage being provided by central, 

hugely encompassing, high power transmitters, it will instead be done through the 

deployment of swarms of small, low power, distributed transmitters [2,4]. 

Ultimately, all of these changes, from the higher signal bandwidths to the lower power levels 

of the transmitting amplifiers, contribute to one critical outcome: the downfall of digital 

predistortion (DPD) as a viable linearization technique. Not only will the bandwidth of 5G 

power amplifiers (PAs) be too wide for the limited processing speed of state-of-the-art digital 

processors, but also their own power consumption (proportional to their switching 

frequency) will be too great compared to the power level of the PAs they linearize, thus 

defeating any sort of effort for increased power efficiency – in other words, it would not be 

sensible to linearize a 1 W power amplifier with a 20 W digital processor. 
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Naturally, the need for a means of PA linearization will remain: without it, achieving any of 

the next-generation (or even current-generation) goals would be impossible. New ideas must, 

therefore, be proposed and explored, and that is what this dissertation is all about. 

1.1.  The Dissertation 

Extraordinary needs require extraordinary measures, and thus a new line of thinking must 

begin. The aim of this dissertation is not to solve the problem of replacing 20 years’ worth 

of research and technological development on digital predistortion, but to start the discussion 

on one way in which it might be possible to do so – eventually. 

This dissertation builds upon analog predistortion (APD), the precursor to digital 

predistortion. Due to very significant technical advancements in digital electronics at the 

turn of the century, APD has been mostly put aside in favor of DPD. However, a small set 

of researchers have realized that the requirements for next-generation telecommunications 

will prove to be insurmountable for DPD, thus promoting the authoring of new literature on 

APD [5–7], albeit at a still relatively slow pace. 

Another topic this dissertation builds upon is the use of artificial neural networks (ANNs) as 

predistortion devices, which has also been explored in the past. Most existing publications 

on neural predistortion are about DPD [8–10], since only recently has it been possible to 

implement ANNs as analog circuits. For this reason, the literature on this topic is still lacking 

[11,12].  

The headline of this work is the linearization of power amplifiers using the predistortion 

technique, performed at base band using analog implementations of artificial neural 

networks (ANNs). Three very distinct methods of training the predistorting ANNs were 

tested: policy evaluation using TD(λ) learning, which proved to be unsuccessful; 

optimization using evolution strategies such as CMA-ES, which proved to be very 

successful, yet slow; and a novel, custom-made algorithm which proved to be very 

successful and exceptionally fast. 
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2.  LINEARITY AND THE LACK THEREOF 

Power amplifiers are some of the most fundamentally important devices in radio frequency 

telecommunications, since they are that which guarantees an information-carrying signal is 

of sufficiently high power level to be successfully transmitted by an antenna as small as a 

cell phone's or as large as a broadcasting radio station's. 

Power amplifiers typically handle large amounts of power (for varying degrees of “large” – 

power ratings can vary by several orders of magnitude depending on the application), which 

means that power efficiency is of the highest importance: if efficiency is low, a cell phone's 

battery life may be severely compromised or the operational cost of a base station’s cooling 

system may become unreasonably high. 

On the other hand, if an amplifier is not perfectly linear – that is, if it does anything to the 

input signal other than to increase its power level (besides introducing a constant delay) –, 

the information that is supposed to be transmitted through the succeeding antenna may be 

corrupted. 

And therein lies the problem. In general, the more linear an amplifier is, the less efficient it 

is [13]. For example, a class A amplifier (such as the textbook common emitter, single 

transistor amplifier) has very high linearity, but a theoretical (absolute maximum) efficiency 

limit of 50%. This isn't as unintuitive as it might seem – consider a class D amplifier, which 

is ideally a switch: because it is a switch, it can either be on or off, making it extremely 

nonlinear; but also because it is a switch, its theoretical efficiency is 100%, since “an ideal 

switch in its on state conducts all the current but has no voltage loss across it and therefore 

no heat is dissipated, and when it is off it has the full supply voltage across it but no leak 

current flowing through it, and again no heat is dissipated”. 

In short, typical applications demand high efficiency power amplifiers; because they are 

highly power efficient, they are very nonlinear, and because they are very nonlinear, the 

amplified signals – as well as the information they carry – are distorted. To solve this, these 
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amplifiers are linearized in a variety of ways, resulting in a system that is both highly power 

efficient and highly linear: the best of both worlds. 

2.1.  Linearity: An Intuitive View 

Static linearity can be formally defined through two distinct properties: superposition, ���� + �	
 = ����
 + ���	
, and first-degree homogeneity, ����
 = ����
. Essentially, 

this means that the net response of a linear system to a number of simultaneous inputs is the 

sum of the responses of the system to each individual input. 

It is much easier, however, to think of a static linear system as one whose input/output 

response is, as the name implies, linear: a line. This line cannot have an offset, however, as 

there should be no output when there is no input. See Figures 2.1 and 2.2 for examples of 

linear and nonlinear static input/output responses. 

On a more general and formal note, a linear system – be it static or dynamical –, is one whose 

variation of its state vector � is defined as in (2.1), where 
 is a constant matrix, � is a 

constant vector, and � is the input vector. 

�� = 	
� + ��	 (2.1) 

 

 

Figure 2.1.  A linear static system. 

 

Figure 2.2.  Nonlinear static systems. 
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2.2.  Effects of Nonlinearity 

It has been established that nonlinearity produces distortion in signals and has the potential 

to corrupt the information they carry. But how so? How can that be quantified? 

Consider an amplifier whose behavior can be modeled by a simple third-order (nonlinear) 

polynomial with input ���
 and output �[���
]: �[���
] = �����
 + �	���
	 + �����
�. 
Consider also a signal composed of two close tones, one at frequency �� and amplitude �� 
and another at frequency �	 and amplitude �	: ���
 = �� cos����
 + �	cos	��	�
. The 

response of the amplifier to the signal is the sum of various tones at the following frequencies 

[14]: 

• Base-band:  �	 − �� 
• Coincident with the signal:  ��  ,  �	 
• In-band distortion:  ��  ,  �	  ,  2�� − �	  ,  2�	 − �� 
• 2nd harmonic:  2��  ,  �� + �	  ,  2�	 
• 3rd harmonic:  3��  ,  2�� + �	  ,  �� + 2�	  ,  3�	 

Clearly, the response of the amplifier is not an amplified version of its input, otherwise the 

output tones would only be those coincident in frequency with the input ones; the spectrum 

has, therefore, expanded – see Figures 2.3 and 2.4 for a graphical example of a slightly more 

complex PA model (fifth-degree polynomial), showing only the fundamental frequency 

band. 

High order harmonics and base band distortion are not exactly the problem, because they 

can be easily filtered out by the amplifier’s output matching network. The real problem is in 

having to deal with spurious (unwanted) tones very near the input tones, because they would 

require filters with extremely high Q-factors (sharp frequency responses) to be eliminated, 

and those are not at all trivial to design. Also, filtering would not be reasonable for 

transceivers operating with multiple channels (at distinct frequency locations, although in 

nearby regions of the spectrum). Thus, intermodulation distortion (IMD) tones cannot be 

filtered – they have to be suppressed resorting to a variety of linearization techniques. 
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Figure 2.3.  The spectrum of the input 

signal of a nonlinear device. 

 

Figure 2.4.  The spectrum of the output 

signal of a nonlinear device. 

2.3.  Linearization Techniques 

Most linearization techniques fall into the four different categories explained in this section. 

Naturally, one can take advantage of a combination of them, producing fairly complex 

linearization circuits, but each of them may be used separately to great effect. 

2.3.1.  Power Back Off 

Most power amplifiers have three operation regimes: at low powers, the amplifier is linear, 

with constant gain; when the amplifier approaches its saturation point, the device starts 

behaving nonlinearly and the gain starts decreasing; finally, when either the maximum rail 

voltage is reached or the maximum current is drawn, the amplifier fully saturates and its gain 

reaches its minimum – the amplifier cannot produce any more output power. 

Power back off simply consists in operating an amplifier in its linear regime, “backing off” 

(or “away”) from the nonlinear ones; see Figure 2.5. Generally, the amount of back off power 

(say, 3 dB) is in respect to the device's 1 dB compression point, which is the point at which 

the power gain is 1 dB lower than its maximum value (the gain in the linear region, in the 

case of single-transistor class-A amplifiers). 
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The advantage of the employment of this technique is its extreme simplicity: either the input 

power is lowered so the amplifier operates exclusively in its linear region, or the supply 

voltage is increased so that the amplifier’s linear region is extended. The disadvantage, 

however, is that the efficiency rapidly decreases with the increase of the back off power, 

since a linear amplifier is (usually) an inefficient one. Also, as a general rule, the higher the 

maximum power rating of an amplifier, the more expensive it is, so using a 200 W amplifier 

to produce a 100 W signal (3 dB back off) would certainly be more expensive than using a 

100 W amplifier to produce the same signal. 

 

 

Figure 2.5.  Power back off from the perspective of an 

amplifier's normalized voltage input/output response. 

2.3.2.  Cartesian Feedback 

Most RF signals are generated through the modulation of a high frequency carrier signal 

using lower frequency data signals, called the in-phase (I) and quadrature (Q) signals. It is 

these I and Q components that define a system as “Cartesian”, since they directly relate to a 

Cartesian representation of the transmitted signal (composition of two orthogonal vectors, I 

and Q), rather than a polar one (magnitude and phase). 
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The most distinguishing feature of Cartesian feedback [15] – and the fundamental concept 

behind it – is the use of a negative feedback loop to control each of the input I and Q 

components so that the output I and Q components of the amplifier correspond to an output 

composite signal that is a linearly amplified version of the input composite signal. In 

Cartesian terms, a system is said to be linear if its output (I, Q) vector is a scaled version of 

its input (I, Q) vector – their phases should, therefore, be equal. 

The output of an RF amplifier is an RF signal, so, in order to perform the feedback of its I 

and Q output components, these must be extracted with a demodulator which reverses the 

up-conversion done by the modulator that mixes the input I and Q signals with the carrier 

signal. After extracting the output I and Q components, I and Q error signals (the difference 

between the respective I and Q input and output components) are fed to control systems that 

guarantee the linearity of the overall system. These control systems, represented as “H(s)” 

blocks in Figure 2.6, may be designed with classical techniques such as dominant pole 

compensation [15]. 

The advantage of the Cartesian feedback linearization technique is, similarly to the power 

back off technique, its fair simplicity and reasonable IMD suppression. Feedback systems 

are inherently slow, though, so this technique is only reliable for low base band frequencies 

– up to hundreds of kHz at most [16] –, so RF feedback is not even attempted: any phase 

shift from the feedback path would ruin the system's stability. 

 

Figure 2.6.  Cartesian feedback. 
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2.3.3.  Feedforward Linearization 

In a feedback loop, a sample of the controlled system's output is subtracted from a reference 

input signal, producing an error signal. Likewise, in a feedforward scheme a sample of the 

controlled system's output is also subtracted from a reference input signal, producing an error 

signal as well. (Naturally, if the system has a gain of A W/W then the sampled output should 

be attenuated by A W/W to achieve a proper difference or error signal; see Figure 2.7.) 

The difference between the two architectures – feedback and feedforward – is how they use 

the error signal which carries the information of how exactly the actual system output differs 

from the intended, target output: in a feedback topology, the error signal is used as the input 

of a controller which adjusts the controlled system's output so it matches the reference signal, 

i.e., the error signal has an indirect consequence on the system's output; in a feedforward 

topology, the error signal is directly subtracted from the system's output, producing a new, 

error-free signal further down the road. 

Consider the following example: 

• An amplifier has a power gain of 10 and introduces some spurious signals, whose 

power shall be named   (“D” for “distortion”). [e.g.,  = 0.2 W] 

• Let � be the input of the amplifier. Then, the output of the amplifier is Y = 10X + D, 

that is, a 10 times amplified version of the input signal plus some   amount of 

distortion. [e.g., � = 7 W; ) = 70.2 W] 

• Now, to get the error signal, *, the input and output signals are subtracted while 

taking into account the gain of the amplifier (so both signals are at the same power 

level), so * = � − ) 10⁄ = � − �10� +  
 10⁄ = − 10⁄ . [* = −0.02 W] 

• Finally, the feedforward part: the error signal is coupled (added) to the amplifier's 

output; again, the amplifier's gain has to be taken into consideration, so the error 

signal has to be multiplied by 10. The overall output of the linearized system is 

therefore ) + 10* = 10� +  −  = 10�, a perfectly amplified, distortion-free 

version of the input signal. [) + 10* = 70.2 W + 10 × �−0.02 W
 = 70 W] 
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The main advantages of feedforward linearization are the wide operating bandwidth and the 

compensation of any sort of distortion produced by an amplifier – even that which is caused 

by the device's memory effects. The tradeoff, though, is the high complexity and the 

requirement of automatic adaptation to maintain performance specifications [16]. 

 

 

Figure 2.7.  Error signal generation through signal cancellation. 

 

A typical feedforward linearization system, schematized in Figure 2.8, consists of two 

circuits: a signal cancellation circuit and an error cancellation circuit. 

The first circuit implements steps 1 to 3 of the previous example, that is, it produces a signal 

that only contains the distortion created by the power amplifier; it does this by attenuating 

the output of the amplifier (by an amount equal to the amplifier’s gain) and combining the 

resulting signal with a copy of the input signal. Because these two signals have opposite 

phases, this essentially results in a subtraction, rather than an addition. 

Finally, the second circuit implements step 4 of the previous example, that is, it amplifies 

the distortion signal extracted by the first circuit and couples it to the output of the amplifier. 

Similarly to the previous case, these two signals have opposite phases, so this essentially 

results in a subtraction. This means that the distortion generated by the amplifier is subtracted 

from the amplifier’s own output signal, leaving a signal that is free of distortion and, by 

definition, a linearly amplified version of the input signal. 
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Figure 2.8.  Feedforward linearization [16]. 

2.3.4.  Predistortion 

Predistortion [17], illustrated in Figure 2.9, is the act of distorting a signal before it is fed to 

a nonlinear system in such a way that the distortion generated by the system is exactly 

canceled by the distortion synthesized by the predistorter (PD), resulting in an overall linear 

cascade of two devices. As an example, consider a system that has an input/output transfer 

function of � = ��, which is clearly nonlinear. If a predistorter with an input/output transfer 

function of � = ∛��
 is used, then the cascade of the PD and the system is 

� =  ./��
0 1� =  � and the overall system is perfectly linear. 

The main advantage of predistortion is its potential to achieve fantastic intermodulation 

distortion suppression, i.e., very high linearity. However, predistortion usually requires the 

physical modeling of the amplifier, which is extremely complex, since most amplifiers 

exhibit memory effects, that is, their outputs depend not only on the current input, but the 

input at previous times as well. These models, as well as the predistortion of the input signals, 

are usually implemented using digital processors, which means that the bandwidth of the 

input signals is either limited by the sampling rate or the processing speed of the digital 

predistorter. 
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A common modification of the basic concept of predistortion is Cartesian predistortion 

(Figure 2.10), which is the predistortion of the base band (low frequency) in-phase and 

quadrature components (I and Q) instead of the predistortion of the RF (high frequency) 

composite signal. Among other things, this greatly reduces the required bandwidth of the 

predistorter. While this is a welcome relaxation of performance specifications in the case of 

APD, it is the very basis of DPD, since the predistortion of the RF signal would require 

extremely fast analog/digital conversion units and even faster processing units. 

Finally, a very common way of simplifying the modeling of an amplifier and the resulting 

predistortion algorithm is to forgo the modeling of the amplifier's non-electrical 

characteristics, like temperature dependence, ageing, and other very slow phenomena. These 

can be compensated by recalculating the parameters of the amplifier’s model based on the 

measurement of its response to a set of test signals. This way, the slow drifts of the 

input/output response of the PA due to changing temperature and other causes can be 

compensated. This is called “adaptive predistortion”. 

 

 

 

 

Figure 2.9.  RF predistortion. 

 

Figure 2.10.  Cartesian predistortion. 
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3.  ANALOG PREDISTORTION 

Following Arthur C. Clarke’s 1945 article on “Extra-Terrestrial Relays” [18] and John R. 

Pierce’s 1955 article on “Orbital Radio Relays” [19], efforts towards global communications 

escalated along with a demand for higher transmission bandwidths at lower costs, leading to 

an increased interest in high order modulation techniques such as QPSK (Quadrature Phase 

Shift Keying) or QAM (Quadrature Amplitude Modulation) and multiple-access schemes 

such as TDMA (Time Division Multiple Access). 

In order to achieve acceptable bit error rates and to meet the increasingly stringent spectral 

purity requirements of these data rate-increasing schemes, much attention was given 

between the late 1970s and the early 1980s to problems such as the linearization of high 

power microwave amplifiers used in satellite earth stations [20] and traveling wave tube 

amplifiers used in satellite transponders [21]. 

Because of the high power levels of these amplifiers, most linearization circuits consisted in 

the analog realization of the predistortion technique, applied not only to the microwave 

signals [21], but also (though less frequently) to the base band signals [20]. Regardless of 

the idiosyncrasy of each implementation, the great majority of the linearizers adhered to two 

main classes of predistortion circuits: cubic predistorters, and series diode predistorters [22]. 

In essence, cubic predistorters (Figure 3.1) couple the input signal to a distortion generator, 

a pair of antiparallel diodes, which produces exclusively odd-order harmonics of the input 

signal [23]. A variable phase shifter is used to guarantee a 180º phase difference between 

the input signal and the distortion signal, and a delay line is used to equalize the group delays 

of the two signals. Finally, a variable attenuator ensures the amplitude of the generated 

distortion matches that of the harmonic distortion produced by the predistorted device (such 

as an amplifier). This amplitude matching, along with the 180º phase difference between the 

clean signal and the generated distortion, results in an appreciable suppression of the 

spurious odd-order tones produced by the nonlinear predistorted device. 
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Series diode predistorters (Figure 3.2) consist of a single forward-biased series diode, which 

may be modeled as a nonlinear resistor with a parasitic capacitance – an RC phase shift 

network. The principle of operation is fairly straightforward: as per Shockley’s diode 

equation, an increase in forward (RF) power results in a decrease in the diode’s series 

resistance; this, in turn, provided that the series resistance is not too high [23], results in an 

expanding gain and a decreasing phase shift, effectively countering the predistorted 

amplifier’s undesired AM-AM and AM-PM characteristics: amplitude compression and 

phase advance. 

 

 

Figure 3.1.  Cubing predistorter. 

 

 

Figure 3.2.  Series diode predistorter. 

 

With the advent of high speed digital computing, analog predistortion plummeted into near 

oblivion and was swiftly replaced by more capable and more configurable digital 

predistortion schemes. Still, some research was done, mainly in the early 2000s, and not only 

did old analog predistortion technology improve, some new interesting ideas even came to 

light. 

The first great advancement in analog predistortion was the refinement of the cubing 

predistorter, which led to the development of fully configurable, independently controllable 

“IMD generators” [24–27], that is, branched versions of the cubing predistorter that generate 

3rd- and 5th-order (and higher) intermodulation distortion tones that can be independently 

scaled in magnitude and shifted in phase. See Figure 3.3 for an example of such a scheme. 
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The second great advancement – perhaps the most noteworthy, due to its novelty – was the 

realization that the AM-AM and AM-PM characteristics of a moderately nonlinear amplifier 

can be modelled by complex-valued polynomials of low order [28–30]. These polynomials, 

in turn, – or, rather, their inverse – can be approximated by transistor circuits based on the 

Gilbert cell [31] (Figure 3.4): a cascode circuit used as an analog four-quadrant multiplier 

and frequency mixer. A new class of CMOS circuits was therefore designed to implement 

high order polynomials (as high as 11th-order, for instance) with freely configurable 

coefficients and thus synthesize the inverse transfer characteristic of an amplifier – an almost 

ideal predistorter. 

Finally, in the present decade, various novel analog predistortion schemes have surfaced, 

possibly in anticipation of the 5G networking challenges already summarized. These 

schemes include, among others, the bandwidth reduction of error signals [32], the use of 

mirror amplifiers [33], and lookup table-based, combined digital/analog predistortion 

systems [34]. 

 

 

Figure 3.3.  5th-order IMD generating predistorter [25]. 
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Figure 3.4.  The Gilbert cell [31]. 

3.1.  Proposed APD System Architecture 

The system architecture of the proposed predistortion solution, schematized in Figure 3.5, 

consists of an analog feedforward artificial neural network that predistorts the base band I 

and Q components of a complex telecommunications signal. As usual, the predistorted signal 

is then transposed to a much higher frequency with an RF modulator and it is then fed to the 

PA that should be linearized. Naturally, some additional components – such as filters and 

intermediate amplification stages – are required for the successful implementation of the 

solution, but Figure 3.5 only illustrates the main blocks of the system for clarity purposes. 

This base band architecture is ideal for an analog solution based on an artificial neural 

network because the bandwidth requirements of the ANN are much lower than they would 

be if it were used as an RF predistorter. An additional reason for having chosen a base band 

solution is the fact that the predistortion of the I and Q components of the complex signal is 

a matter of amplitude scaling, which means that the function the ANN is supposed to learn 

is real-valued. This contributes to a relatively simple model of the ANN-based predistorter 

and its learning algorithm. It should be noted that base band control is just as effective as RF 

control, because the scaling of the base band I and Q components results in both an amplitude 

and a phase change in the complex envelope RF signal that is fed to the PA. 
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The ANN is supposed to predistort the I and Q components of a telecommunications signal, 

so it should have at least two input neurons and two output neurons. The number of hidden 

neurons and layers can be adjusted to fit a variety of specifications. While only one hidden 

layer is required to approximate any function to an arbitrary level of precision [35], the 

number of neurons required to do so decreases with the number of layers, since the 

connection density (and the network’s expressivity) also increases with the number of layers. 

The ANN is intended to be an analog circuit, so the number of neurons and hidden layers 

should be carefully managed – not only because the former may be limited, but also because 

the number of input or output connections of each neuron may be constrained due to 

electrical loading and other practical aspects. 

If the PA is assumed to be static, then a simple feedforward ANN with two input nodes 

should suffice. However, if the PA is assumed to be dynamic (that is, if it exhibits memory 

effects), then the ANN should exhibit a dynamic behavior as well. This can be achieved by 

using a recurrent ANN, in which the connections between neurons form directed cycles. 

While a recurrent ANN would be able to implement the dynamic R	 → R	 predistortion 

function, this is not an absolute necessity. Even though a PA’s transfer function may be 

dynamic in an R	 → R	 projection, it is, intuitively, static in an R	×�45�
 → R	 projection, 

where M is the memory depth (in samples) of the PA. Thus, the predistortion function can 

be a static R	×�45�
 → R	 function [789�:
, 	<89�:
] = =89[7�:
, <�:
, 7�: − 1
,<�:	 − 	1
, ⋯ , 7�: − ?
, <�: − ?
] implemented by a feedforward ANN with a pair of 

input neurons for each of the ? + 1 current and previous I and Q input states. 

 

 

Figure 3.5.  Predistortion system architecture. 
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3.2.  Development and Test Setup 

The proposed predistortion system was entirely simulated in Matlab. All predistortion efforts 

went towards the linearization of a model of a PA implemented as an obfuscated (P-code) 

Matlab function, called VirtualStaticPA (VSPA), which was provided by a third party. 

This function models the static properties of a generic PA, such as gain compression and 

phase advance, and it focuses mainly on the distortion introduced by the PA – its maximum 

gain is just slightly above 0 dB. Moreover, this is a base band model, which means that the 

VirtualStaticPA function accepts the base band I and Q components of a signal as its input, 

denoted �7 and �<, and returns the base band I and Q components correspondent to its output 

amplified signal, denoted �7 and �<. 

Figures 3.6 and 3.7 illustrate the transfer characteristics of the VSPA with respect to its input 

and output I and Q components. While both figures represent essentially same thing, the two 

distinct representations end up conveying different information. 

The first figure makes it immediately clear that the transfer function of the modeled PA is a 

smooth R	 → R	 projection, and provides insight into its amplitude modulation behavior: 

the PA saturates for values of �7 and �< close to 1 (one), and outputs a maximum value of �7 and �< of 1 (one). 

The latter figure shows the same saturation effect, but it mainly addresses the representation 

of the phase modulation behavior of the PA, plotting the input and output (I, Q) vectors with 

connecting arrows which make the warping effect of the complex signal very noticeable. 

Finally, Figure 3.8 illustrates the AM-AM (amplitude modulation) and AM-PM (phase 

modulation) behavior of the VSPA with respect to its input power. 
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Figure 3.6.  Transfer characteristics of the VSPA: view in the Cartesian space. 

 

 

Figure 3.7.  Transfer characteristics of the VSPA: view in the quadrature plane. 
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Figure 3.8.  Transfer characteristics of the VSPA: gain and phase modulation. 

 

As explained in a previous section, the most visible effect of the distortion introduced by a 

PA occurs in the frequency spectrum of its output signal. For this reason, a four-carrier GSM 

signal was used to monitor the spectral performance of the predistortion system. This signal, @���
, shown in Figures 3.9 and 3.10, is a composition of two base band signals, 7��
 and <��
, and is defined in (3.1). 

@���
 = 7��
 ABC�2D=E�
 � <��
	CFG�2D=E�
	 (3.1) 

It should be noted that the centering of the signal at =E 	 � 	10	MHz was done merely for 

illustrative purposes. As stated, the VSPA is a base band model, so its inputs are the base 

band 7��
 and <��
 signals – not the compound @���
 signal. Similarly, its outputs are also 

base band quadrature signals; these are also shown modulated by a 10 MHz carrier signal 

throughout this document for illustrative purposes. Figure 3.11 contains the output spectrum 

of the natural response (i.e., without any sort of predistortion) of the VSPA to the GSM 

signal. Notice the presence of significant distortion tones, and the noise floor of –20 dBm. 
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The VSPA function also models the intrinsic noise of the amplifier using a function called 

random(), which explains the increased noise floor. This function can be bypassed by 

exploiting Matlab’s function precedence order. 

 

Figure 3.9.  The input of the VSPA: 

a four-carrier GSM signal. 

 

Figure 3.10.  The spectrum of the 

input signal of the VSPA. 

 

 

Figure 3.11.  The output spectrum of the VSPA in response to the four-carrier input signal. 
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4.  ARTIFICIAL NEURAL NETWORKS 

Not unlike polynomials or Volterra series, artificial neural networks are a family of nonlinear 

function models which consist of a series of basic computational units, the neurons (akin to 

polynomials’ power products), that are interconnected by means of model-defining weights 

(akin to polynomials’ coefficients). Even though there are metrics such as the Vapnik-

Chervonenkis dimension, the evaluation of the complexity of an ANN (similar to a 

polynomial’s degree) has yet to be formally and unequivocally defined [36], though it is 

intuitive that it is related to the number of neurons it comprises and the way they are 

interconnected. 

The basic computational unit of an ANN is the neuron, or node, illustrated in Figure 4.1. A 

neuron can have an arbitrary positive number of inputs �, one of which acts as a bias, and 

these are processed by an activation function Φ, which is selected by the ANN designer to 

calculate the neuron’s activation �: its output. Typical activation functions include a purely 

linear transfer function (4.1) and the (logistic) sigmoid function (4.2), and these can be used 

at will throughout an ANN. A variety of sigmoid (meaning s-shaped) functions can be used 

for different levels of algorithmic optimization. 

K�L
 = L (4.1) 

K�L
 = 1
1 + �MN (4.2) 

 

Figure 4.1.  A neuron with three inputs. 
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Figure 4.2.  An example feedforward network with three input nodes, 

one hidden layer with five nodes, and two output nodes. Displayed 

as well are the biasing nodes for the hidden and output layers. 
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There is a nearly endless number of ways of arranging and interconnecting neurons in an 

ANN. There are, however, classical and established ways of doing so, such as the 

feedforward network illustrated in Figure 4.2. In a feedforward network, neurons are 

distributed between different, sequentially ordered layers: the input layer, a set of hidden 

layers, and an output layer. Each neuron in each layer connects to every neuron in the 

immediately succeeding layer, and there are no backward or intra-layer connections – 

meaning that there are no cyclical connections, hence the network’s designation of 

“feedforward”. 

Feedforward ANNs are universal approximators [35]. This means that for any given 

continuous nonlinear function, there is at least one feedforward ANN that approximates it, 

in a closed and bounded input range (a compact set of RO), with an arbitrarily small error. 

This was proven for feedforward networks containing a single hidden layer of neurons with 

sigmoidal activation functions [37,38], though it stands to reason that more expressive 

networks, with more hidden layers, would perform at least as well as ANNs with a single 

hidden layer. Naturally, the output layer should have neurons with purely linear activation 

functions, otherwise the range of each of the network’s output neurons would be constrained 

to the codomain of whatever sigmoidal activation function had been chosen. 

4.1.  ANNs as Analog Control Systems 

Due to their massive expressive ability and structural simplicity, as well as ease of training, 

artificial neural networks have been used to solve board games such as backgammon [39]  

and Go [40], control physical systems such as inverted pendulums [41], and even predistort 

RF power amplifiers [8,9]. Despite their differences, all of these applications of ANNs have 

one thing in common: they are digital implementations. Recent technological advances have 

brought the possibility of reliably implementing ANNs as analog circuits. Further advances, 

such as commercially-available memristors, are expected to lead to even more robust and 

higher-performing analog ANNs. 

Compared to the analog predistortion schemes presented in section 3, analog 

implementations of ANNs provide very substantial advantages. Not only are relatively 

simple ANNs much more expressive than 11th-order polynomials (the state-of-the-art 
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predistortion circuits until recently) in terms of function synthesis, but they also have an 

increased capability for generalization due to their saturating (sigmoidal) neurons, which is 

important when the predistorter’s input range may not be clearly defined – high-order 

polynomials grow very quickly towards infinity outside the training sample space. 

Furthermore, the bandwidth of each of an ANN’s computational units (neurons) is similar 

to that of the predistorted signal, in contrast to the bandwidth of a polynomial’s 

computational units (power products), which grows mostly linearly with the degree of each 

product (i.e., over an order of magnitude for an 11th-order polynomial predistorter). 

4.2.  Mathematical Formalization 

Figure 4.2 represents a feedforward ANN with three layers: PQ, the input layer;	PR, the 

hidden layer; and PS, the output layer. Let there be the following symbols: 

 G� : the number of input nodes in PQ (excluding bias) – in this case, G� = 3; 

GT : the number of hidden nodes in PR (excluding bias) – in this case, GT = 5; 

G) : the number of output nodes in PS – in this case, G) = 2; 

   � : a column vector, indexed as �V, holding the node activations of  PQ; 

ℎ : a column vector, indexed as ℎX, holding the node activations of  PR; 

� : a column vector, indexed as �Y, holding the node activations of  PS; 

   Z : a matrix, indexed as ZXV, holding the weights of the connections from PQ to PR; 

� : a matrix, indexed as �YX, holding the weights of the connections from PR to PS.
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These symbols are defined as such, with example values based on Figure 4.2: 
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Thus, �V is the activation of the F-th input node (the i-th input value, for i > 0), ℎX is the activation of the [-th hidden node, �Y is the activation of the k-th output node, ZXV is the weight of the connection between the input node F and the hidden node [, and �YX 
is the weight of the connection between the hidden node [ and the output node :. 

One can read the matrix Z, then, as a series of columns containing the weights of the 

connections of each input node to every hidden node (excluding the hidden bias node, which 

by definition has constant activation and thus does not have any input connections). 

Similarly, the matrix � can be read as a series of columns containing the weights of the 

connections of each hidden node (including the hidden bias node) to every output node. 

The indexing of the Z and � matrices is intentionally backwards. It would have been more 

aesthetic to define them as ZVX and �XY, but this would have required the computation of their 

transpose matrices to perform forward propagation (explained below). The algorithmic 

performance gain is minimal, but it comes at essentially no cost. 

To be precise, the nodes of the input layer aren’t exactly neurons, but mere representations 

of the “input ports” of the ANN. There is no data processing or neural activation: input values 

just pass on through unchanged. This does not undermine the presented formalization, 

however, since it is trivial to devise neurons which would exhibit that exact behavior: a 

neuron, with no biasing and one data input with unitary weight, whose activation function is 

purely linear. 

Furthermore, despite biasing being a property of the neurons and not the network 

architecture (even from the original, biological standpoint), it can be abstracted away as a 

node with constant activation (eg: � = 1) which connects to each neuron with weights 

proportional (or even equal) to the required biasing values. These biasing nodes and their 

connections are represented in Figure 4.2 with dashed lines, and they are referred to as the 

zeroth (0-th) node in each layer, if applicable. The output layer is the last layer, so, naturally, 

it doesn’t contain bias nodes for its (nonexistent) succeeding layer. 
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4.3.  Forward Propagation 

Having defined a model for the architecture and the constituting parts of an ANN, it is now 

possible to model the network’s operation, that is, to define how to determine its output 

vector. Forward propagation, the classical algorithm for doing precisely that, consists of 

sequentially computing the activations of each layer, from the input to the output layer. 

Let the input (column) vector of the ANN – that is, the data being fed to it at a given instant – 

be G��7G\��. Then, the vector of input node activations � is the concatenation of the 

activation of the input bias node, here defined as a constant 1 (the number one, not the lower 

case letter L), and the activations of the externally-stimulated data nodes – that is, G��7G\��. 
Similarly, the vector ℎ is the concatenation of the hidden bias node and the activations of the 

hidden nodes connected to the input layer; as discussed earlier, each node’s activation is a 

function of the weighted sum of its inputs. Finally, because there are no output bias nodes, 

the � vector is simply obtained by computing the activations of the output nodes. 

It should be noted that the Φ function is to be applied in an element-wise fashion, and it is 

not necessarily the same function for every neuron (even in the same layer) – the Φ symbol 

is used repeatedly only to simplify the notation. 

 

 

� = ]	 1G��7G\��	^	 ℎ = ]	 1K�Z ∙ �
	^	 � = K�� ∙ ℎ
	
(4.3) – Forward Propagation algorithm 
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4.3.1.  Example 

Let us consider the ANN illustrated in Figure 4.2. The activation function of the hidden 

nodes is the sigmoid function (4.2), referred to as sig�∙
, and the activation function of the 

output nodes is the purely linear function (4.1), referred to as purelin�∙
. 
Let Z = 0.01 × [10	11	12	13; 		20	21	22	23; 		30	31	32	33; 		40	41	42	43; 		50	51	52	53]. 
Let � = 0.01 × [10	11	12	13	14	15; 		20	21	22	23	24	25]. 
Let G��7G\�� = [1	2	3]T. 
Then, � = [1; 		G��7G\��] = [1	1	2	3]T. 
Then, ℎ = [1; 		sig�Z ∙ �
] = [1.0000		0.6985		0.8235		0.9038		0.9498		0.9744]T. 
Then, � = purelin�� ∙ ℎ
 = [0.6723		1.2073]T. 
4.4.  Backpropagation 

The Backward Propagation of Errors, or backpropagation, is the most common method of 

training artificial neural networks, used typically in conjunction with optimization 

algorithms which aim to minimize the cumulative squared error between the ANN’s actual 

output and its target output. Such algorithms include the Nelder-Mead method [42] and the 

Levenberg-Marquardt algorithm [43]. 

Backpropagation is typically called a supervised learning algorithm, in which the target 

output of the ANN is explicitly specified by the modeler. This, however, is not a precise way 

of describing backpropagation. While it is true that it can be used (and is most often used) 

to perform supervised learning tasks when coupled with one of the optimization algorithms 

enumerated above, the true purpose of backpropagation is to solve the problem of structural 

credit assignment, that is, the problem of adjusting the weights in the network to minimize 

the error [44]. There is a subtle but important distinction between the two definitions – one 

which will be expanded upon further. Meanwhile, let us explore the formalism behind 

backpropagation proper, that is, the mechanics of weight adjustment. See [44] for this (and 

more) information. 
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Let there be an ANN whose nodes’ activations have been obtained through the forward 

propagation of a training input vector and whose output error * has been determined 

according to some specific metric. For the purpose of completeness, let this metric be the 

sum of the square of the errors between the target output vector � and the actual output vector � of the network: 

* = ∑�� − �
	 (4.4) 

The global weight update rule is displayed in (4.5). This rule asserts that the change ΔpVX in 

every weight pVX of the network (the elements of the Z and � matrices) should be 

proportional (with constant �) to the negative of the derivative of the error with respect to 

the weight itself: 

∆pVX =  −� r*
rpVX

 (4.5) 

Using the chain rule, the partial derivative of the error with respect to each weight between 

the hidden and output layers can be calculated, resulting in (4.6), where G��Y is the net input 

(“net” as in “weighted”, not short for “network”) of the output node :, that is, � ∙ ℎ: 

r*
r�YX

=  r*
r�Y

 ∙  r�Y
rG��Y

 ∙  rG��Y
r�YX

 (4.6) 

Simple substitutions lead to (4.7), where ΦYs �G��Y
  is the derivative of the activation 

function of the output node : evaluated at G��Y: 

r*
r�YX

=  −2��Y − �Y
  ∙  KYs �G��Y
  ∙ �X  (4.7) 
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We can now use tY to represent ��Y − �Y
 ∙ ΦYs �G��Y
, thus leading to (4.8): 

− r*r�YX 	 ∝ 	 tY 	�X 	 (4.8) 

Using the chain rule, the partial derivative of the error with respect to each weight between 

the input and hidden layers can be calculated, resulting in (4.9), where G��X is the net input 

of the output node [, that is, Z ∙ �: 

r*rZXV =	 r*r�Y 	 ∙ 	 r�YrG��Y 	 ∙ 	rG��Yr�X 	 ∙ 	 r�XrG��X ∙ 	rG��XrZXV 	 (4.9) 

Simple substitutions lead to (4.10), where ΦXsvG��Xw is the derivative of the activation 

function of the hidden node [ evaluated at G��X: 
r*rZXV =	tY ∙ �YX 	 ∙ 	KXs�G��X
 	 ∙ �V 	 (4.10) 

Contrary to the weights between the hidden and output layers, the weights between the input 

and hidden layers affect all of the output nodes simultaneously. Thus, the partial derivative 

of the error across all of the output nodes is defined in (4.11)  

tX =		KXs�G��X
xtY ∙ �YXY 	 (4.11) 

Finally, the partial derivative of the error with respect to the weights between the input and 

hidden layers can be defined as in (4.12): 

− r*rZXV =	tX 	�V 	 (4.12) 
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5.  TEMPORAL DIFFERENCE LEARNING 

Temporal Difference (TD) is a reinforcement learning method, that is, a way of using past 

experience with an incompletely known system to predict its future behavior [45]. In a more 

mechanistic sense, TD is an algorithm for an agent (like a predistorter) to learn which actions 

to take over an environment (like a power amplifier) in order to maximize some notion of 

cumulative reward (like a measure of an amplifier’s linearity). 

TD is an unsupervised learning algorithm, which means that it does not require the a priori 

knowledge of the desired output of the learning agent. This is an exceptionally important 

detail: using a supervised learning algorithm to teach an ANN how to predistort a power 

amplifier does not make much sense if one does not know the amplifier’s inverse transfer 

function to begin with. 

This does not mean that it is impossible to do so, as there are a variety of papers on neural 

predistortion of power amplifiers [8–10]. These papers, however, either don’t explicitly 

specify the learning procedure (only mentioning backpropagation, which, as is hopefully 

clear by now, is not a serious answer), or describe a learning procedure consisting of 

iteratively training an ANN to be a post-distorter, testing its performance as a predistorter, 

and training it again in order to gain some measure of improvement. 

While this sort of methodologies may lead to acceptable results, TD provides a learning 

solution that is more formal, and it has been used in applications as diverse as solving the 

game of Backgammon [39], controlling quadcopter motors and inverted pendulums [41], 

simulating the steering of a boat across a river [46], and sensor state prediction [47]. 

It should be noted that TD is a general learning algorithm, that is, it does not make any 

assumptions regarding the learning agent. TD is not, therefore, immediately applicable to 

the training of structurally complex constructs such as ANNs, and that means that some sort 

of mathematical coupling needs to be devised. Luckily, this problem has already been 

solved, and it is explained further. 
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5.1.  Mathematical Formalization 

5.1.1.  TD Error 

Let y be the value function an agent is trying to learn. TD learning consists in adjusting y 

so that y�Cz
 – where Cz is the input state at time � – approximates the return @z at time �, 
defined in (5.1) as a discounted sum of future rewards. { is the discount constant, and it 

controls how far the agent should look ahead when making predictions at the current time 

step [44]. Equation (5.2) is derived trivially from (5.1).  

@z	 	= 		 |z5� 	+ 	{	|z5	 	+ 	{		|z5� 	+ 	⋯ 		= 	x{Y 	|z5Y5�}
Y~� 		 (5.1) 

@z	 	= 		 |z5� 	+ 	{	@z5�	 (5.2) 

Thus, the TD error *z at time � can defined as in (5.3): 

*z 	= 		 @z − y�Cz
 		= 		 �|z5� + {	@z5�
 − 	y�Cz
	 (5.3) 

Finally, using y�Cz5�
 as an approximation of @z5�, we obtain the generalized TD error in 

(5.4): 

*z 	= 		 |z5� + {	y�Cz5�
 − 	y�Cz
	 (5.4) 

5.1.2.  Weight Update 

The derivation of the weight update rule (5.5) is rather involved, and can be found in [44].  

∆�z 	= 		�[y�Cz5�
 − 	y�Cz
]	x �zMYz
Y~� ��y�CY
		 (5.5) 
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This is the generalized formula for TD(λ), which is the generalized form of TD itself, 

introduced in [25]. � is a learning-rate parameter, y�Cz5�
 − y�Cz
 is the (temporal) 

difference between consecutive predictions, ∇�y is the gradient of the value function with 
respect to its defining weights, and � is a gradient discount parameter such that 

0 ≤  � ≤  1. � tracks to which extent the prediction values for previous observations are 

eligible for updating based on current errors [44]. Therefore, the sum (5.6) is called the 

eligibility trace at time �. 

�z  =  x �zMY
z

Y~�
��y�CY
  (5.6) 

5.2.  TD(λ) Neural Networks 

As discussed earlier, backpropagation solves the problem of structural credit assignment. 

On the other hand, TD solves the problem of temporal credit assignment, that is, the problem 

of attributing credit (or “blame”) for error over the complete history of predictions made by 

the learning agent [44], and it does so through the mechanism we’ve just introduced: 

eligibility traces. 

Through TD(λ) learning, an agent can determine its error based on successive predictions, 

and through backpropagation an agent can modify its model of prediction in order to reduce 

the error. Thus, combining the two algorithms results in a very powerful coupling: a 

universal nonlinear function approximator which learns through acquired experience. 

Contrary to other neural predistortion schemes found in the literature, the one proposed in 

this section – a TD(λ) Neural Network (TDNN) – is actually capable of learning how to be 

a predistorter. Since the learning algorithm does not require the knowledge of the target 

output of the ANN, the problem of predistortion may be tackled directly, and not indirectly 

by training the network as a post-distorter and hoping it works as a predistorter. 
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5.2.1.  Mathematical Formalization 

5.2.1.1.  Weight Update 

The coupling of TD learning and backpropagation is done at the weight update stage of the 

algorithms. Thus, and referring back to section 4, the change in the network’s weights Z and � is a function of the TD error * (at each output node :) and their respective eligibility 

traces �Z and ��: 

∆�YX =		*Y��YX 	 (5.7) 

∆ZXV =		x*Y�ZXV�Y
Y 	 (5.8) 

From (5.7) it is very apparent that �� should be a matrix with the same size as �: 	vG) × �GT + 1
w. From (5.8) it is apparent that �Z should be, however, a three-dimensional 

matrix of size �GT × �G� + 1
 × G)
 – or, rather, a set of G) matrices of size vGT × �G� + 1
w, which is the size of �. The superscript �:
 notation refers to each of the G) matrices. 

5.2.1.2.  Eligibility Traces 

In section 4, a mathematical formalization – a model – of a generic artificial neural network 

was proposed. In this section, this model is expanded to include the eligibility traces 

introduced by the TD learning method, effectively resulting in a model of a TDNN. The 

basis of this work can be found in [44] and [48]. 

Let ��YX denote the eligibility trace correspondent to the weight of the connection from the 

hidden node [ to the output node :. Let t�Y denote ΦYs �G��Y
. Then, the update rule for ��YX is (5.9): 
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ew�� ∶= 		λew�� + 	Δew��, 
where  Δew�� = 	δy�h� (5.9) 

The matrix form of (5.9) is self-evident, but the scheme in Figure 5.1 illustrates a simple 

way of deducing it: 

 

 

Figure 5.1.  Deduction of the matrix form of ���. 

Thus we get the update rule for the matrix form of ��: 

ew ∶= 		λew + 	Δew, 

where  Δew = 	δy ⋅ h� 

(5.10) 

The activation function of the output nodes of the TDNN is purely linear, so t�Y = 1 for 

all :. 

Let �ZXV�Y
 denote the derivative of the output unit : with respect to the weight from the input 

unit F to the hidden unit [, that is, a partial eligibility trace correspondent to the weight of the 

connection from the input node F to the hidden node [. 
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Let ��  be the � matrix without its first column. Let tℎ��� be the tℎ vector without its first row. 

This removes the elements of these objects correspondent to ℎ�, the hidden bias node. This 

is necessary because there are no connections from the input nodes to the hidden bias node, 

which means that there are no corresponding weights or eligibility traces. 

Then, the update rule for �ZXV�Y
 is (5.11): 

�ZXV�Y
 ∶= 		��ZXV�Y
 + 	��ZXV�Y
,	
where		��ZXV�Y
 = t�Y 	��YX 	ℎ�� 	�V	 (5.11) 

Let us explore the Δ term of �Z based on Figure 4.2: 

Δ�Z����
 = t��	���	tℎ�	�� Δ�Z����
 = t��	���	tℎ�	�� Δ�Z�	��
 = t��	���	tℎ�	�	 Δ�Z����
 = t��	���	tℎ�	�� 
 Δ�Z	���
 = t��	��		tℎ		�� Δ�Z	���
 = t��	��		tℎ		�� Δ�Z		��
 = t��	��		tℎ		�	 Δ�Z	���
 = t��	��		tℎ		�� ⋮ Δ�Z���	
 = t�		�	�	tℎ�	�� 
Let (5.12), where ∙ is the matrix multiplication operator and .∗ is the element-wise 

multiplication operator: 

� = t�	 ∙ 	ℎ�		.∗ 	��		 (5.12) 
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Thus, 

ξ�G) × GT
 = �
t�����tℎ� t����	tℎ	 ⋯ t����ORtℎORt�	�	�tℎ� t�	�		tℎ	 ⋯ t�	�	ORtℎOR⋮ ⋮ ⋱ ⋮t�OS�OS�tℎ� t�OS�OS	tℎ	 ⋯ t�OS�OSORtℎOR� (5.13) 

Substituting (5.12) in (5.11) we get (5.14): 

��ZXV�Y
 = �YX	�V	 (5.14) 

Let 	ξ�Y
 denote the :-th row of the � matrix. Then, finally, we get the update rule for the 

matrix form of each �Z�Y
: 
�Z	�Y
 ∶= 		��Z	�Y
 +	v�	 ∙ ��Y
w�	 (5.15) 

 

As a final note, the approximate derivatives of the activation functions used throughout the 

ANN are defined in (5.16) for the sigmoid function and in (5.17) for the purely linear 

function. 

KXsvG��Xw = 1	 (5.16) 

KYs �G��Y
 = �Y�1 − �Y
	 (5.17) 
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5.2.2.  TDNN Algorithm 

The model for an artificial neural network using temporal differences as a learning method 

has been established. Now, let us explain how it can be used. Appendix A contains a class-

based Matlab implementation of the vectorized TDNN model and the learning algorithm 

based on Sutton’s (the creator of TD(λ)) own TD/Backpropagation pseudo-code [48], also 

used as a reference for the expansion of the model. 

In a slightly simplified way, the TDNN algorithm consists of repeatedly iterating over the 

following set of steps: 

1. Perform the forward propagation of an input vector; 

2. Calculate the TD error at the output of the network; 

3. Update the network’s weights; 

4. Perform the forward propagation of the same input vector with the new weights; 

5. Update the eligibility traces of the network. 

Forward propagation is explained in section 4.3. The TD error is defined in (5.4); note that 

training in the first iteration must be skipped so that the error equation becomes causal. The 

changes applied to the weight matrices in order to update them are defined in (5.6) and (5.7). 

Finally, the update rules for the eligibility trace matrices are defined in (5.9) and (5.14). 

5.3.  Simulation Results 

Despite our best efforts, TDNN ended up not producing any positive results. Interfacing with 

the algorithm requires two signals: the input of the ANN and a reward signal in which the 

performance of the ANN is encoded. There are endless ways of defining the reward signal, 

so it is not possible to say for sure that the TDNN algorithm does not work – we can only 

say that it did not work with the reward definitions that were tested. With that said, our tests 

were fairly exhaustive – see Appendix B. 
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Let �
 ¡z be the actual output and �
 ¡z�  the target output of the PA for a given input vector. 

Let * = �
 ¡z − �
 ¡z�  be the error of each sample of the �
 ¡z vector, let ¢*�:
 = *�:
	 
be the squared error of each sample of the �
 ¡z vector, and let ?¢* = mean�¢*
 be the 

mean squared error of the same vector. By definition, both * and ¢* are vectors with the 

same dimension as �
 ¡z and ?¢* is a scalar. Finally, let |���|¤ be the reward vector. 

The first tests of the TDNN algorithm used the definitions of reward in (5.17): a null reward 

for every input state except the last one, which was rewarded with the negative of the ?¢* 

calculated in the previous iteration. We chose the negative of the ?¢* because ?¢* is an 

error, and therefore it is a penalization rather than a reward. The idea behind this encoding 

is the rewarding based on the compound performance of the predistorting ANN over the 

complete input vector. 

The result was a very quick divergence of the network weights for many combinations of 

the {, �, �, and ¥ parameters of the TDNN – the reward discount rate, the trace decay rate, 

and the learning rates of the two weights matrices Z and �. 

|���|¤				 = 				 [0				0				0				 ⋯ 				0		 − ?¢*]	 (5.17) 

In the second series of tests, the reward signal was defined as in (5.18), that is, similarly to 

what was done in the previous tests, but with a reward for every input state instead of only 

the last state. Unsurprisingly, this led to the divergence of the network weights. 

|���|¤				 = 		−?¢*				 × 				 [1				1				1				 ⋯ 				1]	 (5.18) 

The next batch of tests – (5.19) and (5.20) – departed from the previous ones in the sense 

that the reward values were not compound, but specific of each input state. Unfortunately, 

the results remained not ideal: depending on the configuration parameters, the output of the 

ANN either diverged like in the previous cases or oscillated wildly. 

|���|¤				 = 		−¢*	 (5.19) 

|���|¤				 = 			±* (5.20) 
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Finally, the tests fully degenerated into defining the reward signal as equal to the target 

output of the PA (5.21). While this might seem like it does not make much sense, as it is not 

a measure of the network’s performance and it defines the reward as a constant vector, it 

provided some insight into the TDNN algorithm and confirmed that it was not fully 

malfunctioning. 

|���|¤				 = 			�
 ¡z� 	 (5.21) 

This test revealed that the TDNN algorithm mimics the Backpropagation algorithm in the 

sense that it adjusts the weights of the ANN so that the output of the ANN is equal to the 

reward signal. This only happens for { = 0 and, to be fair, it is painfully slow – though it 

can be accelerated by setting � to a relatively low value, like 0.3. 

While this proves that the implementation of TDNN is not completely bug-ridden, as one 

might have assumed based only on the diverging tests, it is still not a viable solution for the 

training of a predistorting ANN. 

In hindsight, it does make sense that the TDNN algorithm was not able to train an ANN as 

a predistorting system. Temporal Difference learning is commonly described as a method 

for policy evaluation, or prediction, which means that, for a given policy, TD can be used to 

iteratively learn the value, or utility, of a given input state. 

This does not intuitively translate very well into the predistortion problem, though we could 

say that the policy of the PD problem is the transfer function of the ANN, parameterized by 

its weights. Now, the whole point of the PD exercise is to change the weights of the ANN in 

order to achieve a goal, and changing the weights of the ANN means changing the policy, 

which is not what TD learning is about. This might very well be the underlying reason for 

the TDNN strategy having failed. 

In spite of the lack of success found using TD learning, this was still an important step in 

finding a better solution. Many meetings and discussions were held with various professors 

and colleagues in doctoral programs, and those resulted – among others – in the pursuit of a 

solution based on evolution strategies, expanded upon in the next section. 
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6.  EVOLUTION STRATEGIES 

The main idea behind the problem of optimization is the iterative improvement of a measure 

of the performance or value of a decision [49] – a decision which may be the selection of a 

set of weights for a predistorting ANN. This measure is provided by a cost function  = ∶ RO → R which summarizes, in a single scalar, the fitness of an individual with G defining 

features. 

While most common methods of optimization – such as gradient descent and Newton’s 

method – may converge to local, non-optimal solutions due to their reliance on the gradient 

or higher-order statistics of the cost function, evolution strategies are guaranteed to find the 

globally optimal solution due to their stochastic nature, which follows the principles of 

natural evolution: mutation, recombination and selection in populations of candidate 

solutions [50]. 

6.1.  CMA-ES 

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a state-of-the-art 

evolutionary algorithm for optimization in continuous domains [50]. Rather than calculating 

a metric of the cost function (such as the gradient), as most classical optimization algorithms 

do, and choosing the solution that improves it (or, more specifically, minimizes it) in a local 

search space, CMA-ES uses a (multi-variate) normal distribution to sample a set (a 

population) of new search points [51]. 

Any normal distribution, §�¨, ©
, can be defined by its mean, ¨ ∈ RO, and its covariance 

matrix, © ∈ RO×O, for G equal to the dimension of the solutions [51]. Covariance matrices 

can be geometrically interpreted as hyper-ellipsoids, surfaces (in G-dimensional space) of 

equal density of the distribution, whose principal axes and their squared lengths correspond, 

respectively, to the eigenvectors and the eigenvalues of © [51]. 
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The objective of CMA-ES is to fit the search distribution to the contour lines of the cost 

function – the lines of equal cost. Figure 6.1 illustrates three different normal search 

distributions in thick lines and the contour lines of an example cost function. Clearly, the 

distribution on the right side of the figure is the one that follows the contour of the cost 

function in the way that will most likely lead to an optimal solution [51]. 

As the name of the algorithm implies, the fitting of the search distribution is done by adapting 

its defining covariance matrix. Exactly how this is done, as well as the more specialized 

options of the algorithm, is outside of the scope of this document – to put things in 

perspective, the implementation used in the simulations detailed below has more than 3000 

lines of code. 

 

Figure 6.1.  Three different normal search distributions [51]. 

6.2.  Simulation Results 

A free (GNU GPLv3) Matlab implementation [52] of the CMA-ES algorithm was used to 

minimize a cost function by adapting the 272 weights and biases of an ANN with two input 

nodes, three hidden layers of ten nodes each, and two output nodes – see Appendix C. 

The cost function was the Normalized Mean Square Error (NMSE) of the VSPA output, 

defined in (6.1), where 7� and <� are the target outputs, and 7 and < are the actual outputs 

of the VSPA for a given input (provided by the ANN that is being adapted). All squaring 

operations are done in an element-wise fashion. 
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 ¢*	 = 	 [7	 −	 7�]	 	+ 	 [<	 −	<�]	 
?*	 = 	 [7	 − 	mean�7�
]	 	+ 	 [<	 − 	mean�<�
]	 

«?¢* = ∑¢*∑?* 

(6.1) 

 

For every iteration of the CMA-ES algorithm there are twenty evaluations of the cost 

function (by default), and for each one of these there is one execution of the forward 

propagation function of the ANN and one evaluation of the VSPA. In order to speed up the 

processing of the algorithm, a custom implementation of an ANN was created and the noise 

generator of the VSPA model was disabled by masking the random() Matlab function. 

The custom ANN implementation (Appendix D) performs forward propagation about 100 

times faster than the implementation available in Matlab’s Neural Network Toolbox – most 

likely due to the processing overhead the latter requires in order to provide the whole 

functionality of the toolbox (though, honestly, it is quite surprising how slow it is). The lack 

of noise generation by the VSPA model means that the NMSE level reached may be, 

potentially, boundlessly negative in dB. 

Figures 6.2 to 6.5 show the state of the CMA-ES algorithm at one hundred iterations, one 

thousand iterations, ten thousand iterations, and three hundred thousand iterations. These 

figures plot four different signals: the natural output of the VSPA (that is, without any sort 

of predistortion) as black dots, the target output of the linearized VSPA as red dots, the 

output of the predistorting ANN, and the response of the VSPA to that input as blue crosses. 

All of these signals are based on a relatively sparse grid of I/Q symbols – the linearization 

targets – that cover the complete output range of the VSPA. 

The initial state of the weights of the ANN is a random vector of low values. Thus, the output 

of the ANN, as well as the output of the VSPA, is a cloud of dots and crosses around the 

center of the I/Q plane. Throughout the initial iterations, these expand in a random-looking 

way until the whole plane is filled. Then, it becomes clear that the CMA-ES algorithm is 
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slowly bringing the blue crosses closer and closer towards the red dots. Finally, the blue 

crosses become coincident with the red dots (linearization achieved) and the green dots end 

up warped in a way that is contrary to the warping effect shown in Figure 3.7 (the input of 

the VSPA has successfully been predistorted). 

Figure 6.6 is a plot of the cost function (or, more correctly, the cost of the ANN selected by 

the algorithm among twenty alternatives in each iteration) in respect to time. While the 

results are excellent, it must be stated that this method is not very fast at all. Still, it can only 

get better: with more research time, it might have been possible to accelerate the algorithm 

by finely tuning its configuration parameters. 

In any case, a decrease in NMSE of 20 dB per decade of iterations is very acceptable: the 

execution time would surely have been lower if the algorithm had been run on a quad-Nvidia 

Titan X machine with 64 GB of memory instead of a generic personal laptop. 
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Figure 6.2.  State of the CMA-ES algorithm: after 100 iterations. 

 

 

Figure 6.3.  State of the CMA-ES algorithm: after 1000 iterations. 
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Figure 6.4.  State of the CMA-ES algorithm: after 10,000 iterations. 

 

 

Figure 6.5.  State of the CMA-ES algorithm: after 300,000 iterations. 
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Figure 6.6.  NMSE vs Time plot of the CMA-ES algorithm. 

After the close-to-four hours had elapsed, the CMA-ES algorithm had produced an ANN 

that was capable of predistorting a grid of I/Q symbols with an NMSE at the output of the 

VSPA of –70 dB. Note, again, that this figure is only possible due to the fact that the noise 

generator of the VSPA model had been disabled, otherwise the NMSE would have 

converged to a higher value (close to –50 dB). 

Figure 6.7 shows the AM-AM and AM-PM characteristics of the resulting ANN. Notice how 

they are opposite to those of the VSPA (Figure 3.8): at high input power levels, there is an 

increase in gain and a negative phase shift. 

Figure 6.8 illustrates the AM-AM and AM-PM characteristics of the complete predistortion 

system: from the input of the ANN to the output of the VSPA. The gain is constant and there 

is no phase shift, so the system is linear. There is some dispersion in the plots due to numeric 

errors that occur at low power levels and due to the noise generator of the VSPA that was 

re-enabled. 
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Figure 6.7.  Gain and AM-PM characteristics of the ANN generated using CMA-ES. 

 

 

Figure 6.8.  Gain and AM-PM characteristics of the VSPA linearized using CMA-ES. 
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The final verification of the developed predistortion system consisted in feeding it the four-

carrier GSM signal described in section 3.2 and observing the frequency spectrum of the 

output of the VSPA. This signal is completely uncorrelated with the grid of input I/Q 

symbols used in the generation of the predistorting ANN. 

This frequency spectrum is plotted in Figure 6.9, and it reveals that the linearization of the 

VSPA was nearly flawless: all of the intermodulation distortion tones were not just 

attenuated, but completely and utterly eliminated. 

While it might have taken nearly four hours to generate an ANN with an NMSE of –70 dB, 

the linearization results show that it was worth it. With the possibility of adjusting the 

configuration parameters of the algorithm, and with a more capable computing platform, the 

CMA-ES algorithm shows great promise in generating an ANN for the linearization of a PA. 

 

 

Figure 6.9.  Output spectrum of the VSPA in response to the GSM signal 

with (red) and without (blue) predistortion by the ANN generated using CMA-ES. 
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7.  SUCCESSIVE TARGET APPROXIMATION 

Successive Target Approximation (STA) is an original, custom-made algorithm that can be 

used for the linearization of a PA [53]. STA computes the signal that, when fed to the PA as 

an input, results in a PA output signal that matches a specified target PA output signal. If the 

target PA output signal features the complete PA output vector space (or a sufficiently 

exhaustive sampling of it), then the algorithm effectively computes a mapping of the PA’s 

output vector space to its input vector space. 

In other words, STA computes the PA input signal correspondent to a given PA output signal 

– that is, the output of the PD. It immediately follows, then, that STA solves the problem of 

training a predistorting ANN using the Backpropagation algorithm: the lack of a target ANN 

output signal. Thus, the process of creating an ANN that predistorts a PA is simple: 

1. Generate a vector of target linear PA output symbols; 

2. Using the STA algorithm, compute the corresponding vector of predistorted PA input 

symbols – the target PD output; 

3. Using the Backpropagation algorithm, train an ANN using a vector of linear input 

symbols as its input and the vector computed with the STA algorithm as its target. 

7.1.  The Algorithm 

Let �
 ¡z�  be the target output of the PA. The goal of the STA algorithm is to find the input 

vector of the PA, �
VO, that leads to the target output. Let �
 ¡z be the output of the PA in 

response to a given input. Let =8¬�⋅
 be the transfer function (or the model) of the PA. 

While it would be possible to start STA with an initial approximation of �
VO as a vector of 

zeroes, it is intuitive that, whatever happens during the algorithm, the final outcome should 

not be too different from a linear input – that is, the input vector that would lead to �
 ¡z�  if 

the PA were a linear device. Obviously, this linear input is equal to �
 ¡z�  divided by the 

target gain of the PA, which is 0 dB, as stated in the section describing the VSPA. 
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Thus, let the initial approximation of �
VO be (7.1): 

�
VO 	 ∶=	 �
 ¡z� 	 (7.1) 

The algorithm proceeds as follows, with � being a learning rate parameter: 

	 Repeat until convergence { �
 ¡z 	 ∶= 	=8¬��
VO
 �
VO 	 ∶= 	�
VO 	+ 	�	��
 ¡z� 	− 	�
 ¡z
 }	
(7.2) 

That is it – STA is so simple, it is almost surprising it works. Once convergence is reached, �
VO can be used as the target for the training of an ANN using the Backpropagation 

algorithm, with its input being the linear input described just above (�
 ¡z� ). 

7.2.  Simulation Results 

The STA algorithm (Appendix E) was used to linearize the VSPA model. This is a base band 

model, so �
 ¡z� , �
 ¡z and �
VO are vectors of I/Q symbolic pairs, that is, they are matrices 

of size 2 × «, with « being the number of symbols used. �
 ¡z�  was defined as a relatively 

sparse grid of I/Q symbols that covers the whole output range of the VSPA. 

Figures 7.1 to 7.4 show the state of the STA algorithm (with � = 0.5) at zero iterations, one 

iteration, four iterations, and ten thousand iterations. These figures plot four different signals: 

the natural output of the VSPA (that is, without any sort of predistortion) as black dots, the 

target output of the linearized VSPA as red dots, the current state of the computed VSPA 

input as green dots, and the response of the VSPA to that input as blue crosses. 

Throughout the various iterations, the blue crosses start coincident with the black dots (no 

linearization) and end up coincident with the red squares (complete linearization). 

Meanwhile, the green dots start coincident with the red dots (equation 7.1) and end up 

warped in a way that is contrary to the warping effect shown in Figure 3.7. 
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Figure 7.1.  State of the STA algorithm: initial conditions. 

 

 

Figure 7.2.  State of the STA algorithm: after the first iteration. 
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Figure 7.3.  State of the STA algorithm: after the fourth iteration. 

 

 

Figure 7.4.  State of the STA algorithm: after the ten thousandth iteration. 
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It is quite the understatement to say that the results of the STA algorithm were unexpectedly 

good. Figure 7.5 is a plot of the NMSE at the VSPA output (that is, the error between the 

actual and the target outputs of the VSPA). This plot was generated with the noise generator 

of the VSPA model disabled – this is useful to get a more accurate measure of the actual 

performance of the algorithm itself, without the penalization introduced by the processing 

of the VSPA model. 

As shown, STA achieves a staggeringly low NMSE in a matter of milliseconds. 

 

Figure 7.5.  NMSE vs Time plot of the STA algorithm with the random() function 

disabled. 

 

Naturally, enabling the noise generator of the VSPA model increases the processing time 

(by four times) and introduces a limit to how low the NMSE can be. Figure 7.6 shows exactly 

this. 
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Figure 7.6.  NMSE vs Time plot of the STA algorithm with the random() function 

enabled. 

After the STA algorithm reached convergence (with the noise generator enabled), the 

Backpropagation algorithm was used to train the predistorting ANN. It must be noted that 

the Backpropagation algorithm minimizes (to a certain extent) the error at the output of the 

ANN, and this error is not equal to the error at the output of the VSPA. For this reason, the 

ANN training function (from Matlab’s Neural Network Toolbox) must be run inside a loop 

in which the error at the output of the VSPA is monitored – otherwise there may be a 

significant drop in linearization performance. 

Figure 7.7 illustrates the AM-AM and AM-PM characteristics of the generated ANN. Notice 

how they are opposite to those of the VSPA (Figure 3.8): at high input power levels, there is 

an increase in gain and a negative phase shift. 

Figure 7.8 illustrates the AM-AM and AM-PM characteristics of the complete predistortion 

system: from the input of the ANN to the output of the VSPA. The gain is constant and there 

is no phase shift, so the system is linear. There is some dispersion in the plots due to numeric 

errors that occur at low power levels and due to the noise generator of the VSPA. 
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Figure 7.7.  Gain and AM-PM characteristics of the ANN PD generated using STA. 

 

 

Figure 7.8.  Gain and AM-PM characteristics of the VSPA linearized using STA. 
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In order to confirm that the predistortion system was in fact linear, the ANN generated using 

the STA algorithm (and the Backpropagation algorithm) was fed with the four-carrier GSM 

signal described in section 3.2. It must be noted that this signal is completely uncorrelated 

with the signals used during the STA algorithm and the training of the ANN. 

Figure 7.9 is a plot of the frequency spectrum of the output of the VSPA in response to the 

GSM signal with (in red) and without (in blue) the predistorting ANN. It is very clear that 

the linearization goal was met: the spurious distortion tones were nearly completely 

eliminated. There appear to be some very minor distortion tones between each of the four 

GSM carriers, as well as a DC offset that was later modulated to 10 MHz, but these can be 

attenuated by making sure the Backpropagation phase of the algorithm does not degrade the 

linearization performance by a significant amount. 

The STA algorithm has, therefore, been verified as an exceptionally fast and accurate method 

of generating a predistorting ANN for a static PA. 

 

Figure 7.9.  Output spectrum of the VSPA in response to the GSM signal 

with (red) and without (blue) predistortion by the ANN generated using STA. 



59 

8.  CONCLUSION 

A new generation of telecommunications networks requires a new generation of linearization 

systems for the power amplifiers they rely on. Thus, a base band analog predistorter 

implemented as an artificial neural network was proposed as a solution. 

Traditionally, ANNs are trained in a supervised manner. This, however, goes against the 

very essence of the problem of predistortion: to find the optimal predistortion function. 

Roundabout ways of solving this paradox have been documented in the literature, such as 

training the ANN as a post-distorter and testing it as a predistorter. 

In this dissertation, three different alternative training methods are explored: Temporal 

Difference learning, optimization through evolution strategies, and a custom algorithm 

which enables the use of the Backpropagation algorithm. 

8.1.  Results Summary 

Despite our best efforts, the Temporal Difference learning method proved to be 

unsuccessful. While initially it was thought to be a good candidate for a solution, our results 

suggest the opposite, and some later knowledge on the true meaning of “policy evaluation” 

confirm that these results were, ultimately, inevitable. Alas, failure is also part of the research 

process. 

Optimization using CMA-ES produced predistorting ANNs with exceptional performance, 

completely erasing any sign of intermodulation distortion introduced by the base band model 

of a static PA. The only downside to this method was the processing time, on the order of 

minutes to hours – even with a custom-made implementation of an ANN that is 100 times 

faster than that of Matlab’s Neural Network Toolbox. Naturally, this can be improved by 

resorting to a proper computation platform and by finely tuning some of its configuration 

parameters. 
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Finally, the original Successive Target Approximation algorithm proved to be astonishingly 

fast and produced excellent results as well, also eliminating all distortion tones. This 

algorithm enables the use of the Backpropagation algorithm for the training of the ANN. 

While this introduces a penalization in both processing time and linearization performance, 

these are still potentially better than those of the CMA-ES algorithm. A tighter integration 

of the STA and the Backpropagation algorithms would surely make for a better-performing 

solution. 

8.2.  Future Work 

There is still plenty of research left to do, especially concerning the analog implementation 

of the predistortion system. Other topics include the determination of the optimal size of the 

ANN to be used as a predistorter, as well as the linearization of a dynamical (with memory) 

model of a PA, as opposed to a static one. 

8.2.1.  Dynamical Systems 

While the linearization of a static model of a PA is a good start, a more complete solution 

would need to be able to linearize a dynamical model, which features the memory effects 

present in most real amplifiers. 

This problem requires a completely different approach to the training of the networks: for 

instance, the order of the input symbols would be one of the many additional factors to take 

into consideration. While there are techniques that pretend to solve this issue, they are far 

from optimal. Some preliminary original work has been done regarding the generation of an 

optimal, minimum-sized input sequence that covers the complete output vector space of a 

dynamical PA, but it shall not be published in this document at this stage. 

Some brief tests were done on a dynamical base band model of a PA with a one-sample 

memory depth, but there was no time to draw definite conclusions – especially because of 

the processing time, which increases dramatically for such systems. It is to be expected, 

though, that the CMA-ES algorithm should remain a good solution, but the STA algorithm 

should fail very quickly without any modifications. 
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8.2.2.  Towards Analog 

In order to begin the understanding of what an analog implementation of an ANN might 

implicate, some modifications were done to the networks generated by the CMA-ES and the 

STA algorithms and a brief, final test was conducted. In this test, it was assumed that the 

two networks were implemented as analog circuits, and that their weights were set by 

external voltages with a 1 mV resolution. 

First, it should be noted that this is a perfectly acceptable assumption, because the weights 

have relatively low values: the CMA-ES ANN has weights with absolute values between 

0.009 and 8.217, and the STA ANN has weights with absolute values between 0.001 and 

5.479. If these were voltage, they could be produced by any commercially available DAC. 

Figures 8.1 and 8.2 show the frequency spectra of the outputs of the two ANNs with their 

weights rounded to three decimal places. It is clear, and expected, that the limiting of the 

precision in the definition of the network weights introduces distortion in the system, 

especially as a DC (zero Hz) component (that was later modulated to 10 MHz). 

This can be easily solved by a low pass filter at the output of the ANN, though it might 

actually be possible do it by training the ANN with limited-precision weights – as opposed 

to performing the training with double precision weights and later rounding them to three 

decimal places. Had we had more time, that would have been an interesting experiment: let 

the ANN solve, by itself, the problems introduced by the limited precision of its own weights. 
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Figure 8.1.  Output spectrum of the CMA-ES linearization system with 

the ANN weights rounded to three decimal places (1 mV resolution). 

 

Figure 8.2.  Output spectrum of the STA linearization system with 

the ANN weights rounded to three decimal places (1 mV resolution). 
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APPENDIX A: VECTORIZED TDNN MODEL AND 

LEARNING ALGORITHM (MATLAB) 
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% Temporal Difference Neural Network 

% File: TDNN.m 

% Author: Pedro Tomé (tome.p.m at ua.pt) 

%  

%  

% To be used under the terms of the GNU General Public License: 

% http://www.gnu.org/copyleft/gpl.html 

%  

%  

classdef TDNN 

    properties (GetAccess = 'public', SetAccess = 'private') 

        RAND_INIT_EPSILON;% Random weight initialization scaling factor 

         

        numInputs;  % Number of input nodes (excluding bias node) 

        numHidden;  % Number of hidden nodes (excluding bias node) 

        numOutputs; % Number of output nodes 

         

        BIAS;       % Activation of the (constant) bias nodes 

        GAMMA;      % Discount rate parameter (typically 0.9) 

        LAMBDA;     % Trace decay parameter (should be <= GAMMA) 

        ALPHA;      % Learning rate of v (typically 1/numInputs) 

        BETA;       % Learning rate of w (typically 1/numHidden) 

         

        x; h; y;    % Neuron activations for layers 1 to 3 

        v; w;       % Weights between layers 1 and 2 and layers 2 and 3 

         

        oldY;       % Last output 

        ev; ew;     % Eligibility traces of v and w 

        error;      % TD error 

    end 

     

     

    methods (Access = 'public') 

        function self = TDNN(numInputs, numHidden, numOutputs) 

            validateattributes(numInputs, ... 

                {'numeric'}, {'scalar', 'positive', 'integer'}, '', ... 

                'numInputs'); 

            validateattributes(numHidden, ... 

                {'numeric'}, {'scalar', 'positive', 'integer'}, '', ... 

                'numHidden'); 

            validateattributes(numOutputs, ... 

                {'numeric'}, {'scalar', 'positive', 'integer'}, '', ... 

                'numOutputs'); 
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            self.numInputs = numInputs; 

            self.numHidden = numHidden; 

            self.numOutputs = numOutputs; 

             

             

            self.RAND_INIT_EPSILON = 0.5; 

            self.BIAS   = 1; 

            self.GAMMA  = 0; 

            self.LAMBDA = 0; 

            self.ALPHA  = 0; 

            self.BETA   = 0; 

             

            self = self.init(); 

        end 

         

         

        function self = train(self, netInput, reward, gamma, ... 

                              lambda, alpha, beta) 

            validateattributes(self, ... 

                {'TDNN'}, {}, '', 'self'); 

            validateattributes(netInput, ... 

                {'numeric'}, {'nrows', self.numInputs},'', 'netInput'); 

            validateattributes(reward, ... 

                {'numeric'}, {'size', size(netInput)}, '', 'reward'); 

            validateattributes(gamma, ... 

                {'numeric'}, {'scalar', 'nonnegative'}, '', 'gamma'); 

            validateattributes(lambda, ... 

                {'numeric'}, {'scalar', 'nonnegative'}, '', 'lambda'); 

            validateattributes(alpha, ... 

                {'numeric'}, {'scalar', 'positive'}, '', 'alpha'); 

            validateattributes(beta, ... 

                {'numeric'}, {'scalar', 'positive'}, '', 'beta'); 

             

             

            self.GAMMA = gamma; 

            self.LAMBDA = lambda; 

            self.ALPHA = alpha; 

            self.BETA = beta; 

             

             

            t = 1; 

            self = self.forwardProp(netInput(:,t)); 

            self.oldY = self.y; 

            self = self.updateEligTraces(); 

             

            for t = 2 : size(netInput, 2) 

                self = self.forwardProp(netInput(t)); 

                self.error = reward(t) + self.GAMMA*self.y - self.oldY; 

                self = self.updateWeights(); 

                 

                self = self.forwardProp(netInput(t)); 

                self.oldY = self.y; 

                self = self.updateEligTraces(); 

            end 

        end 
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        function netOutput = output(self, netInput) 

            validateattributes(self, ... 

                {'TDNN'}, {}, '', 'self'); 

            validateattributes(netInput, ... 

                {'numeric'}, {'nrows', self.numInputs},'', 'netInput'); 

             

            numSamples = size(netInput, 2); 

            netOutput = zeros(self.numOutputs, numSamples); 

             

            for t = 1:numSamples 

                [~, tmp] = self.forwardProp(netInput(:,t)); 

                netOutput(:,t) = tmp; 

            end 

        end 

         

         

        % Allows the use of the following syntax 

        %     netOutput = net(netInput) 

        % equivalent to 

        %     netOutput = net.output(netInput) 

        % where 'net' is an object of class TDNN. 

        function varargout = subsref(obj, s) 

            switch s(1).type 

                case '()' 

                    input = s.subs{:}; 

                    varargout = {obj.output(input)}; 

                case '.' 

                    c = class(obj); 

                    fname = strcat(c, '>', c, '.', s(1).subs); 

                    n = nargout(fname); 

                    [varargout{1:n}] = builtin('subsref', obj, s); 

            end 

        end 

    end 

     

     

    methods (Access = 'private')       

        function self = init(self) 

            % Neuron Activations Initialization 

            self.x = [self.BIAS ; zeros(self.numInputs, 1)]; 

            self.h = [self.BIAS ; zeros(self.numHidden, 1)]; 

            self.y = zeros(self.numOutputs, 1); 

            self.oldY = zeros(self.numOutputs, 1); 

             

            self.error = 0; 

             

            % Random Weight Initialization 

            self.v = rand(self.numHidden, self.numInputs + 1) * 2 * ... 

                     self.RAND_INIT_EPSILON - self.RAND_INIT_EPSILON; 

            self.w = rand(self.numOutputs, self.numHidden + 1)* 2 * ... 

                     self.RAND_INIT_EPSILON - self.RAND_INIT_EPSILON; 

             

            % Eligibility Traces Initialization 

            self.ev = zeros(self.numHidden, self.numInputs + 1, ... 

                            self.numOutputs); 

            self.ew = zeros(self.numOutputs, self.numHidden + 1); 

        end 
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        function [self, output] = forwardProp(self, input) 

            self.x(2:end) = input; 

             

            self.h(2:end) = tansig(self.v * self.x); 

            %self.h(2:end) = 1 ./ (1 + exp(-(self.v * self.x))); 

             

            self.y = purelin(self.w * self.h); 

            %self.y = tansig(self.w * self.h); 

            output = self.y; 

        end 

         

         

        function self = updateWeights(self) 

            self.w = self.w + self.BETA * repmat(self.error, 1, ... 

                     self.numHidden + 1) .* self.ew; 

             

            dv = zeros(size(self.v)); 

            for k = 1 : self.numOutputs 

                dv = dv + self.error(k) * self.ev(:,:,k); 

            end 

            self.v = self.v + self.ALPHA * dv; 

        end 

         

         

        function self = updateEligTraces(self) 

            deltaY = ones(size(self.y));      % Output nodes: purelin() 

            %deltaY = self.y .* (1 - self.y); % Output nodes: tansig() 

            deltaH = self.h .* (1 - self.h);  % Hidden nodes: tansig() 

             

            self.ew = self.LAMBDA * self.ew + deltaY * self.h'; 

             

            tmp = deltaY * deltaH(2:end)' .* self.w(:,2:end); 

            for k = 1 : self.numOutputs 

                self.ev(:,:,k) = self.LAMBDA * self.ev(:,:,k) + ... 

                                 (self.x * tmp(k,:))'; 

            end 

        end 

    end 

end 
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APPENDIX B: EXAMPLE USAGE OF THE TDNN 

MODEL AND LEARNING ALGORITHM (MATLAB) 
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% Example Usage of the TDNN Class 

% File: Test_TDNN.m 

% Author: Pedro Tomé (tome.p.m at ua.pt) 

%  

%  

% To be used under the terms of the GNU General Public License: 

% http://www.gnu.org/copyleft/gpl.html 

%  

%  

close all; 

  

%% Define the PA's transfer function, input range and target output 

PA = @(x) tanh(3 * x); 

input = linspace(-1, 1, 100); 

targetOutput = input; 

  

% Try this with reward = targetOutput, gamma = 0, and lambda = 0. 

% Backpropagation at a snail's pace. 

% targetOutput = 0.75*sin(pi*input) + 0.25*sin(3*pi*input); 

  

  

%% Prepare figures 

figure(); 

  

subplot(1,5,[1 3]); 

plot(input, PA(input), 'b'); hold on; 

plot(input, targetOutput, 'k--'); 

h_netOut = plot(input, nan(size(input)), 'g'); 

h_PAout = plot(input, nan(size(input)), 'r'); 

h_reward = plot(input, nan(size(input)), 'k'); 

xlabel('Inputs'); ylabel('Outputs'); grid on; 

legend('Default PAout', 'Target PAout', 'PDout', ... 

       'Linearized PAout', 'Reward', 'Location', 'SouthEast'); 

  

subplot(1,5,4); 

netOut_error_history = NaN; 

h_netOutError = plot(netOut_error_history); grid on; 

xlabel('Iteration'); ylabel('MSE(reward - netOut) (dB)'); 

  

subplot(1,5,5); 

PAout_error_history = NaN; 

h_PAoutError = plot(PAout_error_history); grid on; 

xlabel('Iteration'); ylabel('MSE(targetOutput - PAout)(dB)'); 
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%% Create and train the PD 

TDnet = TDNN(1, 10, 1); 

netOut = TDnet(input); 

PAout = PA(netOut); 

  

iteration = 0; 

while (true) 

    iteration = iteration + 1; 

     

    E = targetOutput - PAout; 

    SE = E .^ 2; 

    MSE = mean(SE); 

    % Pick your poison: 

    %reward = [zeros(1, length(input) - 1)  ,  +1 * MSE]; 

    %reward = [zeros(1, length(input) - 1)  ,  -1 * MSE]; 

    %reward = +1 * MSE * ones(1, length(input)); 

    %reward = -1 * MSE * ones(1, length(input)); 

    %reward = +1 * SE; 

    %reward = -1 * SE; 

    reward = E; 

    %reward = targetOutput; 

     

     

    % Train the network                   gamma,lambda   alpha,beta 

    TDnet = TDnet.train(input, reward,      0.0,0.3,       0.1,0.1); 

     

     

    % Calculate performance measures 

    netOut = TDnet(input); 

    PAout = PA(netOut); 

     

    netOut_error = mean((reward - netOut) .^ 2); 

    netOut_error_history(iteration) = netOut_error; 

    PAout_error = mean((targetOutput - PAout) .^ 2); 

    PAout_error_history(iteration) = PAout_error; 

     

     

    % Refresh figures 

    if (mod(iteration,10) == 0) 

        set(h_netOut, 'YData', netOut); 

        set(h_PAout,  'YData', PAout); 

        set(h_reward, 'YData', reward); 

        set(h_netOutError,'YData', 10*log10(abs(netOut_error_history))); 

        set(h_PAoutError, 'YData', 10*log10(abs(PAout_error_history))); 

        drawnow(); 

    end 

end 
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% Example Usage of the CMA-ES Algorithm 

% File: Test_CMAES.m 

% Author: Pedro Tomé (tome.p.m at ua.pt) 

%  

%  

% Uses cmaes.m, version 3.61.beta, by Nikolaus Hansen, 

% with slight modifications for monitoring purposes. 

%  

%  

% To be used under the terms of the GNU General Public License: 

% http://www.gnu.org/copyleft/gpl.html 

%  

%  

function Test_CMAES() 

    %% Program setup 

    netHiddenSize = [10 10 10]; 

    maxInputAmplitude = 1; 

     

     

    close all; 

    %% Define the input and target output signals 

    [netInput_I, netInput_Q] = iqGrid(maxInputAmplitude, 0.1); 

    netInput = [netInput_I' ; netInput_Q']; 

     

    ampOutput_targetI = netInput_I; 

    ampOutput_targetQ = netInput_Q; 

    ampOutput_target = [ampOutput_targetI , ampOutput_targetQ]; 

     

     

    %% Create Artificial Neural Network 

    net = FastANN(2, netHiddenSize, 2); 

    startingWeights = getwb(net); 

     

     

    %% Create IQ monitoring figure 

    handles = createMonitoringFigure(net, netInput, ampOutput_target); 

     

     

    %% Run Optimization Algorithm 

    projectSettings.net = net; 

    projectSettings.netInput = netInput; 

    projectSettings.ampOutput_target = ampOutput_target; 

    projectSettings.handles = handles; 
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% The cmaes function was modified a bit for monitoring purposes 

    [xmin, fmin, counteval, stopflag, out, bestever] = cmaes( ... 

        'CMAES_costFunction',                                 ... 

        startingWeights,                                      ... 

        0.1,                                                  ... 

        [], projectSettings                                   ... 

    ); 

end 

  

  

function [I, Q] = iqGrid(maxAmplitude, delta) 

    %% Create grid of (I,Q) points 

    [I, Q] = meshgrid([-1 : delta : 1], [-1 : delta : 1]); 

    I = I(:) * maxAmplitude; 

    Q = Q(:) * maxAmplitude; 

     

     

    %% Exclude points outside the maxAmplitude radius 

    indices = sqrt(I.^2 + Q.^2) < maxAmplitude; 

    I = I(indices); 

    Q = Q(indices); 

end 

  

  

function handles = createMonitoringFigure(net,netInput,ampOutput_target) 

    [ampOutput_I, ampOutput_Q] = VirtualStaticPA(netInput(1,:)', ... 

                                                 netInput(2,:)'); 

    netOut = net(netInput); 

    [ampOutput_Ipd, ampOutput_Qpd] = VirtualStaticPA(netOut(1,:)', ... 

                                                     netOut(2,:)'); 

     

    %% IQ Mapping 

    figure(); 

    plot(ampOutput_I, ampOutput_Q, 'k.'); hold on; 

    plot(ampOutput_target(:,1), ampOutput_target(:,2), 'r.'); 

    handles.ampOutput = plot(ampOutput_Ipd, ampOutput_Qpd, 'b+'); 

    handles.netOutput = plot(netOut(1,:), netOut(2,:), 'g.'); 

    xlabel('I Component'); ylabel('Q Component'); 

    legend('Default PAout', 'Target PAout', 'Linearized PAout', ... 

           'PDout', 'Location', 'SouthEast'); 

     

     

    %% IQ Mapping Error 

    figure(); 

    handles.perf = plot(NaN, NaN); 

    xlabel('Iteration'); ylabel('Function Value (dB)'); 

     

    drawnow(); 

end 
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% Cost Function (NMSE) for CMA-ES Optimization 

% File: CMAES_costFunction.m 

% Author: Pedro Tome' (tome.p.m at ua.pt) 

%  

%  

% To be used under the terms of the GNU General Public License: 

% http://www.gnu.org/copyleft/gpl.html 

%  

%  

function netFitness = CMAES_costFunction(netWeights, options) 

    %% Parse input options 

    net = options.net; 

    netInput = options.netInput; 

    ampOutput_target = options.ampOutput_target; 

    PAout_It = ampOutput_target(:,1); 

    PAout_Qt = ampOutput_target(:,2); 

     

     

    %% Configure ANN with input weights 

    net = setwb(net, netWeights); 

     

     

    %% Compute ANN output 

    netOut = net(netInput); 

    netOut_I = netOut(1,:)'; 

    netOut_Q = netOut(2,:)'; 

     

     

    %% Compute Linearized PA output 

    [PAout_Ipd, PAout_Qpd] = VirtualStaticPA(netOut_I, netOut_Q); 

     

     

    %% Compute ANN fitness 

    squareError = (PAout_Ipd - PAout_It).^2 + (PAout_Qpd - PAout_Qt).^2; 

    meanError = (PAout_Ipd - mean(PAout_It)).^2 + ... 

                (PAout_Qpd - mean(PAout_Qt)).^2; 

    NMSE = sum(squareError) / sum(meanError); 

     

    netFitness = NMSE; 

end 
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% Fast Implementation of an Artificial Neural Network 

% File: FastANN.m 

% Author: Pedro Tomé (tome.p.m at ua.pt) 

%  

%  

% Example Usage: 

%   1. Create an ANN with 2 input nodes, three hidden layers 

%      of 10 nodes each, and 2 output nodes: 

%          net = FastANN(2, [10 10 10], 2); 

%   2. Extract the number of weights and biases of the network: 

%          numWeights = length( getwb(net) ); 

%   3. Set the weights and biases to whatever: 

%          net = setwb(net, rand(1, numWeights)); 

%   4. Calculate the network's output using Forward Propagation: 

%          netInput = rand(2, 1000); 

%          netOutput = net(netInput); 

%  

%  

% To be used under the terms of the GNU General Public License: 

% http://www.gnu.org/copyleft/gpl.html 

%  

%  

classdef FastANN 

    properties (GetAccess = 'public', SetAccess = 'public') 

        RAND_INIT_EPSILON; 

        BIAS;        % Activation of the (constant) bias nodes 

         

        numInputs;   % Number of input nodes (excluding bias node) 

        numHidden;   % Number of hidden nodes (excluding bias node) 

        numOutputs;  % Number of output nodes 

         

        numLayers;   % Number of layers, including input and output 

         

        weights;     % The defining parameters of the network 

    end 

     

     

    methods (Access = 'public') 

        function self = FastANN(numInputs, numHidden, numOutputs) 

            validateattributes(numInputs, ... 

                {'numeric'}, {'scalar', 'positive', 'integer'}, '', ... 

                'numInputs'); 

            validateattributes(numHidden, ... 

                {'numeric'}, {'vector', 'positive', 'integer'}, '', ... 

                'numHidden'); 
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            validateattributes(numOutputs, ... 

                {'numeric'}, {'scalar', 'positive', 'integer'}, '', ... 

                'numOutputs'); 

             

            self.numInputs = numInputs; 

            self.numHidden = numHidden; 

            self.numOutputs = numOutputs; 

             

            self.numLayers = 1 + length(numHidden) + 1; 

             

            self.RAND_INIT_EPSILON = 0.5; 

            self.BIAS = 1; 

             

            self = self.init(); 

        end 

         

         

        function netOutput = output(self, netInput) 

            [~, netOutput] = self.forwardProp(netInput); 

        end 

         

         

        % Allows the use of the following syntax 

        %     netOutput = net(netInput) 

        % equivalent to 

        %     netOutput = net.output(netInput) 

        % where 'net' is an object of class TDNN. 

        function varargout = subsref(obj, s) 

            switch s(1).type 

                case '()' 

                    input = s.subs{:}; 

                    varargout = {obj.output(input)}; 

                case '.' 

                    c = class(obj); 

                    fname = strcat(c, '>', c, '.', s(1).subs); 

                    n = nargout(fname); 

                    [varargout{1:n}] = builtin('subsref', obj, s); 

            end 

        end 

         

         

        % Set network weights externally 

        function self = setwb(self, weights) 

            wVector = weights(1 : numel(self.weights{1})); 

            self.weights{1} = reshape(wVector, size(self.weights{1})); 

             

            pointer = numel(self.weights{1}); 

            for i = 2 : length(self.weights); 

                wVector = weights([1:numel(self.weights{i})]+pointer); 

                self.weights{i}=reshape(wVector,size(self.weights{i})); 

                pointer = pointer + numel(self.weights{i}); 

            end 

        end 

         

         

 

 



 

80 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

        % Get network weights 

        function weightsOut = getwb(self) 

            weightsOut = []; 

            for i = 1 : length(self.weights) 

                tmpW = self.weights{i}; 

                weightsOut = [weightsOut ; tmpW(:)]; 

            end 

        end 

    end 

     

     

    methods (Access = 'private')         

        function self = init(self) 

            % Random Weight Initialization 

            self.weights = cell(1, self.numLayers-1); 

             

            self.weights{1} = rand(self.numHidden(1), ... 

                self.numInputs + 1) *                 ... 

                (2 * self.RAND_INIT_EPSILON) - self.RAND_INIT_EPSILON; 

            for i = 2 : self.numLayers - 2 

                self.weights{i} = rand(self.numHidden(i), ... 

                    self.numHidden(i-1) + 1) *            ... 

                    (2 * self.RAND_INIT_EPSILON)-self.RAND_INIT_EPSILON; 

            end 

            self.weights{end} = rand(self.numOutputs, ... 

                self.numHidden(end) + 1) *            ... 

                (2 * self.RAND_INIT_EPSILON) - self.RAND_INIT_EPSILON; 

        end 

         

         

        function [self, output] = forwardProp(self, input) 

            N = size(input,2); 

            b = self.BIAS * ones(1,N); 

             

            x = [b ; input]; 

            h = tansig( [b ; self.weights{1} * x] ); 

            for i = 2 : self.numLayers - 2 

                h = tansig( [b ; self.weights{i} * h] ); 

            end 

            y = purelin( self.weights{end} * h ); 

             

            output = y; 

        end 

    end 

end 

 

 



 

81 

APPENDIX E: SUCCESSIVE TARGET 

APPROXIMATION ALGORITHM (MATLAB) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

 

 

 

 

% Successive Target Approximation (STA) Algorithm and Example Usage 

% File: SuccessiveTargetApproximation.m 

% Author: Pedro Tomé (tome.p.m at ua.pt) 

%  

%  

% To be used under the terms of the GNU General Public License: 

% http://www.gnu.org/copyleft/gpl.html 

%  

%  

function SuccessiveTargetApproximation()  

    %% Program setup 

    maxIterations = 250;          % Target Approximation stop condition 

    learningRate  = 0.5;          % Learning rate of the STA algorithm 

    netHiddenSize = [10 10 10];   % Number of neurons per hidden layer 

    maxNetPerformanceLoss_dB = 1; % Maximum performance loss allowed 

                                  % when synthesizing the ANN 

  

    maxInputAmplitude = 1; 

    targetAmplifierGain = 1; 

     

     

    close all; 

    %% Define the input and target output signals 

    [netInput_I, netInput_Q] = iqGrid(maxInputAmplitude, 0.1); 

    netInput = [netInput_I' ; netInput_Q']; 

     

    ampOutput_targetI = netInput_I * targetAmplifierGain; 

    ampOutput_targetQ = netInput_Q * targetAmplifierGain; 

    ampOutput_target = [ampOutput_targetI , ampOutput_targetQ]; 

     

     

    %% Create IQ monitoring figure 

    handles = createMonitoringFigure(netInput, ampOutput_target, ... 

                                     maxIterations); 

     

     

    %% STA Algorithm 

    netTarget = netInput; 

     

    bestError = Inf; 

    errorHistory = nan(1, maxIterations); 

    iteration = 0; 
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    while (iteration < maxIterations) 

        iteration = iteration + 1; 

         

        % Calculate target performance 

        [trained_ampOutput_I, trained_ampOutput_Q] = ... 

            PA(netTarget(1,:)', netTarget(2,:)'); 

        ampOutput = [trained_ampOutput_I , trained_ampOutput_Q]; 

         

        error = costFunction(ampOutput_target, ampOutput); 

        if (iteration == 1) 

            errorHistory(iteration) = error; 

        else 

            errorHistory(iteration) = bestError; 

        end 

         

         

        % Accept new target if there was a performance increase 

        if (error < bestError) 

            bestError = error; 

             

            % This is the learning trick! 

            netTarget = netTarget  +  ... 

                        learningRate * (ampOutput_target - ampOutput)'; 

        end 

         

         

        % Update figures 

        if (mod(iteration,10) == 0) 

            set(handles.netOutput, 'XData', netTarget(1,:), ... 

                                   'YData', netTarget(2,:)); 

            set(handles.ampOutput, 'XData', ampOutput(:,1), ... 

                                   'YData', ampOutput(:,2)); 

            set(handles.error, 'XData', 1:maxIterations, ... 

                               'YData', 10*log10(errorHistory)); 

            drawnow(); 

        end 

    end 

    fprintf('Target NMSE: %g dB\n', 10*log10(bestError)); 

     

     

     

    %% Create the predistorting Artificial Neural Network 

    net = feedforwardnet(netHiddenSize); 

    %net.trainParam.showWindow = 0; 

    net = configure(net, 'inputs', netInput); 

    net = configure(net, 'outputs', netInput); 

     

    % Allow for a loss of 'maxNetPerformanceLoss_dB' dB in policy 

    % performance when synthesizing it as an artificial neural network 

    trained_error = Inf; 

    training_iterations = 0; 

    while (10*log10(trained_error) > 10*log10(bestError) + ... 

                                     maxNetPerformanceLoss_dB) 

        training_iterations = training_iterations + 1; 

        if (mod(training_iterations, 50) == 0) 

            net = init(net);  % Hack in case it hangs 

        end 



 

83 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

        net = train(net, netInput, netTarget); 

  

        netOutput = net(netInput); 

        [trained_ampOutput_I, trained_ampOutput_Q] = ... 

            PA(netOutput(1,:)', netOutput(2,:)'); 

        trained_ampOutput = [trained_ampOutput_I trained_ampOutput_Q]; 

  

        trained_error=costFunction(ampOutput_target,trained_ampOutput); 

    end 

    fprintf('Neural Network NMSE: %g dB\n', 10*log10(trained_error)); 

    fprintf('Absolute values of ANN weights range from %g to %g\n', ... 

        min(abs(getwb(net))), max(abs(getwb(net)))); 

     

     

     

    %% Round network weights 

    decimalPlaces = 3;  % Akin to an implementation with 1 mV precision 

    round_net = setwb(net, round(getwb(net), decimalPlaces)); 

  

    round_netOutput = round_net(netInput); 

    [round_ampOutput_I, round_ampOutput_Q] = ... 

        PA(round_netOutput(1,:)', round_netOutput(2,:)'); 

    round_ampOutput = [round_ampOutput_I , round_ampOutput_Q]; 

     

    round_error = costFunction(ampOutput_target, round_ampOutput); 

    fprintf('Rounded Neural Network NMSE: %g dB',10*log10(round_error)); 

    fprintf(' (weights rounded to %d decimal places)\n', decimalPlaces); 

end 

  

  

function [yI, yQ] = PA(xI, xQ) 

    [yI, yQ] = VirtualStaticPA(xI(:), xQ(:)); 

     

    gain = 1; 

    yI = gain * yI; 

    yQ = gain * yQ; 

end 

function cost = costFunction(ampOutput_target, ampOutput) 

    I = ampOutput(:,1); 

    Q = ampOutput(:,2); 

    It = ampOutput_target(:,1); 

    Qt = ampOutput_target(:,2); 

     

    squareError = (I - It).^2 + (Q - Qt).^2; 

    meanError = (I - mean(It)).^2 + (Q - mean(Qt)).^2; 

    NMSE = sum(squareError) / sum(meanError); 

     

    cost = NMSE; 

end 

  

function [I, Q] = iqGrid(maxAmplitude, delta) 

    %% Create grid of (I,Q) points 

    [I, Q] = meshgrid([-1 : delta : 1], [-1 : delta : 1]); 

    I = I(:) * maxAmplitude; 

    Q = Q(:) * maxAmplitude; 

     

     



 

84 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

    %% Exclude points outside the maxAmplitude radius 

    indices = sqrt(I.^2 + Q.^2) < maxAmplitude; 

    I = I(indices); 

    Q = Q(indices); 

end 

  

function handles = createMonitoringFigure(netInput, ... 

                                        ampOutput_target, maxIterations) 

    figure(); 

    %% IQ Mapping 

    [defaultAmpOutput_I, defaultAmpOutput_Q] = ... 

        PA(netInput(1,:)', netInput(2,:)'); 

    subplot(1, 4, [1:3]); 

     

    handles.netOutput = plot(nan(size(netInput, 2),1), ... 

                             nan(size(netInput, 2),1), 'g.'); 

    hold on; 

    plot(defaultAmpOutput_I, defaultAmpOutput_Q, 'k.'); 

    plot(ampOutput_target(:,1), ampOutput_target(:,2), 'r.'); 

    handles.ampOutput = plot(nan(size(netInput, 2),1), ... 

                             nan(size(netInput, 2),1), 'b+'); 

    axis([-1 1 -1 1]); 

    xlabel('I Component'); ylabel('Q Component'); 

    legend('ANN Output', 'Default PA Output', 'Target PA Output', ... 

           'Linearized PA Output', 'Location', 'SouthEast'); 

     

     

    %% IQ Mapping Error 

    subplot(1, 4, 4); 

    handles.error = plot(nan, nan); 

    xlim([1 maxIterations]); 

    xlabel('Iteration'); ylabel('NMSE (dB)'); 

end 

 


