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Abstract

The Minimum Weighted Tree Reconstruction (MWTR) problem consists of finding a min-

imum length weighted tree connecting a set of terminal nodes in such a way that the length

of the path between each pair of terminal nodes is greater than or equal to a given distance

between the considered pair of terminal nodes. This problem has applications in several areas,

namely, the inference of phylogenetic trees, the modeling of traffic networks and the analysis

of internet infrastructures. In this paper, we investigate the MWTR problem and we present

two compact mixed-integer linear programming models to solve the problem. Computational

results using two different sets of instances, one from the phylogenetic area and another from

the telecommunications area, show that the best of the two models is able to solve instances

of the problem having up to 15 terminal nodes.

Keywords: mixed integer linear programming, distance matrix, tree realization, topology

discovery, routing topology inference, minimum evolution problem, balanced minimum evolution

problem

1 Introduction

We address the problem of reconstructing a weighted tree T = (V,E) by knowing only pairwise

distances dij , for all i, j ∈ Vt, between a set of terminal nodes Vt ⊂ V . Given a set Vt of n terminal

nodes and an n×n distance matrix D, find a tree T = (V,E) spanning V = Vt∪Va, where Va is a

subset of n−2 additional nodes, and associate edge weights we, e ∈ E, such that the weight of the

unique path Pij between any two terminal nodes i and j ∈ Vt is at least dij , i.e.
∑

e∈Pij
we ≥ dij ,

and such that the total sum of the edge weights
∑
{i,j}∈E wij is minimized. This problem is the

Minimum Weighted Tree Reconstruction (MWTR) Problem.

The MWTR problem is a specific version of the distance realization problem (which is a graph

realization problem), namely a tree realization problem for a distance matrix. Several authors

studied the tree realization problem for a distance matrix and this class of combinatorial problems
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was proved to be NP-complete [10, 15, 25]. Fiorini and Joret [28] and Catanzaro et al. [6] discuss

the NP-hardness of two related optimization problems, the minimum evolution problem (MEP)

and the balanced minimum evolution problem (BMEP). These two problems are very well known

distance realization problems from the computational biology area.

The MWTR arises in a number of areas, such as telecommunications and computational

biology. All the applications we consider have in common the notion of a graph realization of a

distance matrix and more specific of a tree realization of an additive distance matrix. A distance

matrix has a tree realization, if it is an additive matrix and can be embedded into a tree. Abdi [1]

mentions several applications from these “additive trees that are used to represent objects as leaves

such that the distance on the tree between two leaves reflects the similarity between the objects”.

Probably the most well know application is, in computational biology, the reconstruction of

phylogenetic trees [5, 26, 37]. There are also applications in psychology [13, 14, 30, 50, 55] to

represent cognitive processes or proximity and similarity relations. There are applications in

information security for the detection and recognition of documents duplications [16, 30]. And

there are applications in telecommunications, namely in network tomography to discover the

logical underlying network [10, 12, 18, 47] and the routing topology of a network [2, 10, 18, 34].

In this work we use data from the two applications, the phylogenetics application and the network

application, that will be described.

An application of the MWTR includes in computational biology the reconstruction of phy-

logenetic trees. A phylogenetic tree represents the evolutionary relationships of a set of species,

where terminal nodes represent the observed species, additional nodes represent common an-

cestors, edges represent the evolutionary relationships between pairs of nodes and edge weights

represent the quantification of this evolutionary relationship [26, 43, 44]. It is worth noting that

phylogenetic trees allow understanding of the evolutionary history of species and can assist in

the development of vaccines [29] and the study of biodiversity [40]. In computational biology

inferring a phylogenetic tree is one of the steps of the phylogenetic reconstruction. As part of

such inference is the determination of the tree topology and the determination of the branch

lengths, which requires further analysis methods. Such analysis methods includes parsimony

methods, distance methods, and probabilistic methods arising from the maximum likelihood ap-

proach. These methods make specific assumptions about evolution. Distance methods exploit

the existence of a measure of dissimilarity (also called distance) among pairs of species and aim

at determining the tree topology together with branch lengths. Examples of distance methods

assumptions are the minimum evolution principle and the balanced minimum evolution princi-

ple. In the minimum evolution principle the sum of all branch lengths is minimized [44]. This

is the principle used in MEP. The balanced minimum evolution principle is a new version of the

minimum evolution principle. This new version was first introduced by Pauplin [49] to simplify

tree length computations. Within this principle sibling subtrees have equal weight, as opposed

to the standard version where all terminal nodes have the same weight and thus the weight of a

subtree is equal to the number of its terminal nodes. This is the principle used in BMEP.

Another application of the MWTR includes in telecommunications the inference of the under-

lying network. The reconstruction of the telecommunications network includes the determination

of the underlying network topology as part of the network tomography process. The internet is

a collection of interconnected networks, and its topology is unknown because of its decentralized
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and unregulated growth. In network tomography the knowledge of the underlying routing within

some (unknown) network topology is important to develop more sophisticated and ambitious

traffic control protocols and dynamic routing algorithms. Ni and Tatikonda [46] propose “a gen-

eral framework for designing and analyzing topology and link performance inference algorithms

using ideas and tools from phylogenetic inference in evolutionary biology. The framework is built

upon additive metrics. Under an additive metric the path metric (path length) is expressed as the

summation of the link metrics (link lengths) along the path. The basic idea is to use (estimated)

distances between the terminal nodes (end hosts) to infer the routing tree topology and link met-

rics”. Chung et al. [10] investigate distance realization problems, a class of problems which, in

their words, arise in the study of internet data traffic models and refer the construction of trees

to infer the logical network topology.

There are several techniques to reconstruct a network topology. For instance, one such tech-

nique can use ICMP (Internet Control Message Protocol) commands such as ping and tracer-

oute [17, 19, 33]. However, these techniques require the cooperation of all the internal network

devices, which is, most of the time, not possible, due to political and security issues. Another

way to infer the routing network topology is to use tomographic techniques. These techniques

only use end-to-end network measurements, such as loss measurements or delay variance. The

end-to-end network measurements can be obtained using multicast [21, 22, 47] or unicast prob-

ing [11, 24, 51]. With this limited information only the logical topology can be inferred. The

logical topology is obtained from the physical topology, representing only the physical devices on

the network where traffic branching occurs and joining all the connections between these devices

by a single logical link. The key idea is to use measurements at pairs of receivers to identify

the logical topology defined by the branching points between paths to different receivers. In

network design the terminal nodes represent the receivers, additional nodes represent physical

devices where traffic branching occurs, edges represent relationships between pair of nodes and

edges weights represent the quantification of some evolving connection property, like the delay

or packet losses, for which end-to-end network measurements can be obtained.

As already mentioned, all these applications have in common the notion of a graph realization

of a distance matrix [1]. Over the years several authors studied the characteristics of the distance

matrix and its graph and tree realization [23, 35, 39, 52, 53, 54, 56, 57].

Hakimi and Yau [36] were the first to refer, in 1965, the graph realization problem of a

distance matrix and presented an algorithm for the special case where the realization of the

matrix is a tree. Consider a n × n positive, symmetric matrix D, where the diagonal elements

are zero, and every entry dij > 0, ∀i, j ∈ Vt, i 6= j, represents the distance between terminal

node i and terminal node j. In addition, if the elements of the matrix satisfy the triangle

inequality dij ≤ dik + dkj , ∀i, j, k ∈ Vt, then the matrix D is called a distance matrix and has a

graph realization [38, 56]. The graph realization problem [10] can be stated as follows. Given a

distance matrix D of dimension n, representing distances between a set of n objects, determine

a edge-weighted connected graph G = (V,E) with node set V , |V | > n, containing a subset

Vt ⊂ V , with |Vt| = n terminal nodes (each node representing an object), and the value dij in

matrix D satisfying dGij = dij , where dGij denotes the length of the shortest path in G between

terminal node i and terminal node j, i, j ∈ Vt. If such a graph exists then the distance matrix D

has a realization. This means a metric given by the distance matrix D must be embedded into
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(a) Distance matrix. (b) Graph realization.

Figure 1: A distance matrix and its graph realization.

a graph. Associated with this existence problem is the optimization problem that determines a

graph such that the sum of all edge weights of G is minimized. Among all the realizations of the

distance matrix D, the one having the minimum total length is optimal [10].

For a general distance matrix an optimal realization exists [20], however computing optimal

realizations is hard, even for a small number of terminal nodes [10]. Chung et al. [10] formulate

several versions of the distance matrix realization problem, mention relevant results, discuss

their algorithmic implications, present approximation results and several heuristics. Because the

realization problem is hard even to approximate, Chung et al. [10] and Farach et al. [25] introduce

a weak realization of a distance matrix. A distance matrix D has a weak realization if there is a

graph G whose node set contains node set Vt and the distance dGij in the graph G between nodes

i and j is greater than or equal to dij . For a given distance matrix with n terminal nodes, the

distance, in the graph to be built, between two terminal nodes must be the minimal possible. Such

a graph which is a weak realization for D must be a tree [10]. Since the weak realization is a tree,

for a set of n terminal nodes, there can be at most n−2 additional nodes of degree exactly three.

Even when restricting the topologies to binary unrooted trees, there are (2n − 5)!! = (2n−5)!
2n−3(n−3)!

different possible topologies [9, 44]. Hence there are finitely many topologies for a weak realization

for D, and for each topology the problem of determining a weak realization can be formulated

as a linear programming problem. To the best of our knowledge Cantanzaro et al. [6, 7] are the

only authors to present (mixed integer) linear programming models for solving the problem.

It is worth noting that although a distance matrix has a graph realization, not all distance

matrices describe trees. To describe a tree the distance matrix must also be additive [3], i.e. satisfy

the four-point condition. In Figure 1 we present a distance matrix and its graph realization. This

distance matrix has no tree realization.

Distances that fit exactly on a tree can be characterized by the following four-point condition

that generalizes the triangle inequality (take k = `)

dij + dk` ≤ max{dik + dj`, di` + djk}, ∀i, j, k, ` ∈ Vt. (1.1)

As a consequence of this condition, on any quartet i, j, k, ` we have that of the three sums dij+dk`,

dik + dj` and di` + djk, the largest two are equal. Distance matrices with this property are called

additive, because the weights on the paths along the tree add up to the values in the distance

matrix. The distance matrix represented in Figure 1 does not satisfy the four-point condition,

it is not additive. Buneman [3] proved that a distance matrix can be represented by a tree if it

is additive. For a tree with 4 terminal nodes, i, j, k, ` (e.g. Figure 2), it can be checked that the
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four-point condition (1.1) holds

wi1 + w1j + wk2 + w2` ≤

max{wi1 + w12 + w2k + wj1 + w12 + w2`, wi1 + w12 + w2` + wj1 + w12 + w2k}.

with wij being the weights associate to each edge in the tree solution.

1 2

i j k `

Figure 2: A possible topology for a tree with 4 terminal nodes.

The constructed trees can either be rooted or unrooted. We consider unrooted trees and all

the contents in this work can be adapted to a rooted tree. Therefore, and for modeling purposes,

we force the tree structure to be a unrooted binary tree, all the additional nodes to have degree

exactly three and the terminal nodes to be the leaves. Restricting ourselves to such topologies will

help us to deal with this combinatorial problem which is a weak realization problem. Enforcing

this tree structure is not a restriction to the problem as any tree can be converted into a rooted

binary tree, and vice-versa. Byun and Yoo [4] present an algorithm to convert a tree into a binary

tree by including dummy nodes. The root node can then be added at the middle point in the

longest path of the tree. If this point is in the edge {i, j}, remove edge {i, j}, add the dummy

root node r and edges {i, r} and {j, r}, one new edge inherits the weight of edge {i, j} and the

other new edge has weight 0. If this point is in the node i, consider the edge {i, j} connecting

two nodes and proceed as before.

In this work we contribute with two compact mixed integer linear programming (MILP)

formulations of the MWTR problem. Both formulations use flows to help with the definition of

the tree topology, however each with a different underlying reconstructing idea. One formulation,

the Path-weight formulation, produces a tree solution and the other formulation, the Path-edges

formulation, constructs a balanced tree. A balanced tree is a tree with minimal diameter. The

matrix defined using the obtained branch weights is such that its submatrix corresponding to

the terminal nodes dominates the given distance matrix. The Path-weight formulation produces

a tree solution to the MWTR problem, using additional flow variables to ensure connectivity.

This formulation is inspired from Model 4 in Catanzaro et al. [7]. As reported in [7], the linear

relaxation of this model has an objective value of zero. We strengthen the formulation by adding

valid inequalities that cut off the zero-objective solutions.

The Path-edges formulation produces a balanced tree solution of the MWTR problem and

flows are defined between every pair of terminal nodes. In Catanzaro et al. [8] a balanced tree

is also considered. However, we use multicommodity flows to deal with connectivity and path

lengths. Instead of minimizing the total sum of all edge weights, the objective function deals with

the minimization of the total tree length. Comparatively to the formulations presented in [8],

formulation Path-edges solves more instances to optimality and, for the instances not solved to

optimality, obtains a better lower bound value in smaller computational time. This paper aims
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at developing tighter compact MILP formulations for the MWTR problem, without requiring

the development of specialized algorithms. Our aim is not to compete with the state-of-the-art

algorithms which is a very specialized branch-and-cut-and-price algorithm based on a formulation

with an exponential number of variables.

In Section 2, we present and discuss two mixed integer linear programming formulations for

the MWTR problem and include valid equalities and inequalities which improve the performance

of the second formulation. Section 3 is devoted to computational results and Section 4 concludes

the paper.

2 Formulations

In this section we present two Mixed Integer Linear Programming formulations of the MWTR

problem. Consider a tree T = (V,E) spanning the set of nodes V = Va ∪ Vt. Va is the set

of additional or internal nodes and Vt is the set of terminal or external nodes. The pairwise

distances between terminal nodes in Vt are given in distance matrix D. The tree topologies we

consider are such that the additional nodes of the tree all have degree three. Any tree can be

transformed into a tree where every additional node has degree three by adding ”dummy” nodes

and edges, as described in [4]. When |Vt| = n, an unrooted tree has n− 2 additional nodes and

2n− 3 edges. Without loss of generality, let Va = {1, . . . , n− 2} be the additional node set and

Vt = {n− 1, . . . , 2n− 2} be the terminal node set.

In feasible trees, the length of a path varies between the length of a caterpillar tree (the most

imbalanced tree) and the length of the most balanced tree. In a caterpillar tree all additional

nodes are consecutively connected forming the central path (e.g. Figure 3). Thus all the additional

nodes, but two, are connected to exactly one terminal node, and those two additional nodes are

connected exactly to two terminal nodes. A binary balanced tree has the minimum possible

maximum height (depth) and is such that the heights of the left and right subtrees differ by at

most one and the left and the right subtrees are balanced. A balanced tree is a binary tree having

the smallest diameter (e.g. Figure 4) and therefore the shortest path length with consecutive

additional nodes. This tree has the n terminal nodes pairwise connected to bn2 c additional nodes,

if n is even (e.g. Figure 4, on the right), and if n is odd n− 1 terminal nodes pairwise connected

to bn2 c additional nodes and 1 terminal node connected to an additional node (e.g. Figure 4, on

the left). Eliminating the terminal nodes from this balanced tree we obtain a tree with only

additional nodes. The degree of the nodes of this new tree are distributed as follows: bn2 c nodes

have degree one, dn2 e -bn2 c nodes have degree two and n− 2− dn2 e nodes have degree three. The

shortest path with consecutive additional nodes is obtained by binding consecutively a node with

degree one, to the nodes with degree three, to the node of degree two, if it exits, and to a node

with degree one. The obtained path uses 1 + (n− 2− dn2 e) + (dn2 e − b
n
2 c) + 1 = n− bn2 c = dn2 e

additional nodes. Therefore any feasible solution contains a path with at least dn2 e consecutive

additional nodes.

Additional nodes can be arbitrarily interchanged in a solution to our problem, without mod-

ifying the tree topology. This introduces a lot of symmetry in the problem. As any feasible

solution to the problem contains a path with at least dn2 e consecutive additional nodes, the num-

bering of additional nodes is arbitrary. To break some of that symmetry, we can assume this
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7 8 9 10 11 12 13 14

Figure 3: A caterpillar tree. A possible topology for a tree with 8 terminal nodes.

6 7 8 9 10 11 12 7 8 9 10 11 12 13 14

Figure 4: Two balanced trees. On the left, a possible topology for a tree with 7 terminal nodes.

On the right, a possible topology for a tree with 8 terminal nodes.

path is composed of edges {i, i+ 1} for additional nodes i = 1, . . . , dn2 e− 1, and force these edges

to be present in any solution.

Both formulations use the following variables. Binary variables xij , i ∈ Va, j ∈ V , i < j

indicate whether edge {i, j} belongs to the tree solution, while continuous variables wij ≥ 0

represent the weight associated to edge {i, j}.

2.1 Path-weight formulation

We seek a tree T and associated weights we, e ∈ T , that provide a weak realization of distance

matrix D. Consider the path Pij that connects terminal nodes i and j, i, j ∈ Vt. By definition

of a weak realization, ∑
e∈Pij

we ≥ dij (2.1)

must hold. To ensure this, consider additional continuous variables uij , for all i, j ∈ V, i 6= j,

which indicate the length of the path between nodes i and j.

In order to impose connectivity several approaches can be used. Usual approaches consists

either in the inclusion of the subtour elimination inequalities∑
i,j∈S

xij ≤ |S| − 1, S ⊂ V, S 6= ∅, |S| > 1 (2.2)

or in the inclusion of the cut-set inequalities∑
i∈S,j∈Sc

xij ≥ 1, S ⊂ V, S 6= ∅, 0 ∈ S. (2.3)

The linear relaxation of both models provide the same bound, however the number of inequalities

increase exponentially with the size of the model. It is well known that in order to ensure

connectivity/prevent circuits, instead of using one of the families of inequalities (2.2) and (2.3)

with an exponential number of inequalities, one can use compact extended formulations [41]. The

most common are derived using either the well-known Miller-Tucker-Zemlin inequalities [42, 31]
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or using stronger multicommodity flow formulations [32, 41]. In the formulation presented below

we use multicommodity flows. Fixing additional node 1 as the root of the flow, we introduce

binary flow variables ykij for all k ∈ Vt, i ∈ Va, j ∈ V with i < j, indicating whether edge {i, j} is

used from i to j in the path from root node 1 to terminal node k.

Let dmax := max{dij : i, j ∈ Vt}. The formulation that minimizes the total edges weights and

reconstructs an unrooted tree for the MWTR problem is as follows.
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Path-weight formulation

min
∑
i∈Va

∑
j∈V
j>i

wij

subject to∑
i∈Va

∑
j∈V
j>i

xij = 2n− 3 (2.4)

∑
j∈V
j>i

xij +
∑
j∈Va
i>j

xji = 3, ∀i ∈ Va (2.5)

∑
i∈Va
j>i

xij = 1, ∀j ∈ Vt (2.6)

xi,i+1 = 1 ∀i ∈ Va, i = 1, ..., (dn/2e − 1) (2.7)∑
j∈Va∪{k}

j 6=1

yk1j = 1, ∀k ∈ Vt (2.8)

∑
i∈Va

ykik = 1, ∀k ∈ Vt (2.9)

∑
i∈Va
i<j

ykij =
∑

i∈Va∪{k}
i>j

ykji, ∀k ∈ Vt, ∀j ∈ Va \ {1} (2.10)

ykij ≤ xij , ∀k ∈ Vt, ∀i ∈ Va,∀j ∈ V \ {1}, j > i (2.11)

uij ≥ dij ∀i, j ∈ Vt, i < j (2.12)

uij ≥ wij ∀i ∈ Va,∀j ∈ Vt, i < j (2.13)

dmaxxij ≥ wij ∀i ∈ Va,∀j ∈ V, i < j (2.14)

wij ≥ uij − dmax(1− xij) ∀i ∈ Va,∀j ∈ V, i < j (2.15)

wij ≥ uik − ujk − dmax(1− xij) ∀i ∈ Va,∀j, k ∈ V, i < j, j < k (2.16)

wij ≥ ujk − uik − dmax(1− xij) ∀i ∈ Va,∀j, k ∈ V, i < j, j < k (2.17)

wij ≥ uik − ukj − dmax(1− xij) ∀i ∈ Va,∀j, k ∈ V, i < k, k < j (2.18)

wij ≥ ukj − uik − dmax(1− xij) ∀i ∈ Va,∀j, k ∈ V, i < k, k < j (2.19)

wij ≥ uki − ukj − dmax(1− xij) ∀i, k ∈ Va,∀j ∈ V, i < j, k < i (2.20)

wij ≥ ukj − uki − dmax(1− xij) ∀i, k ∈ Va,∀j ∈ V, i < j, k < i (2.21)

xij ∈ {0, 1} ∀i ∈ Va,∀j ∈ V, i < j (2.22)

ykij ∈ {0, 1} ∀k ∈ Vt, ∀i ∈ Va,∀j ∈ V, i < j (2.23)

wij ≥ 0 ∀i ∈ Va,∀j ∈ V, i < j (2.24)

uij ≥ 0 ∀i, j ∈ V, i < j (2.25)

Constraints (2.4)-(2.7) define a spanning tree with all additional nodes with degree three and

all terminal nodes with degree one. The cardinality constraints (2.4) ensure that there are 2n−3

edges in the solution. Constraints (2.5) ensure that all additional nodes have degree three. Con-

straints (2.6) ensure that all terminal nodes have degree one. As already mentioned, to reduce the

symmetry, we fix a path between the first additional nodes with constraints (2.7). Constraints
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(2.8)-(2.10) are flow conservation constraints and constraints (2.11) are linking constraints be-

tween flow variables ykij and topology variables xij . Constraints (2.12) - (2.21) link edge weight

variables wij and path length variables uij . Constraints (2.12) ensure a weak realization of the

distance matrix. Constraints (2.13) establish a lower bound for variables uij , associated to the

length of the path between an additional node i and an external node j, to be the value of the

corresponding (edge) weight wij . Constraints (2.14) fix wij to 0 when edge {i, j} does not belong

to the tree. Together with (2.13), constraints (2.15) impose that wij is equal to uij if edge {i, j}
belongs to the tree. Constraints (2.16)-(2.21) impose the triangle inequality for any order of

the nodes i, j and k. The index specifications included in the constraints (2.16)-(2.21) improve

the performance of our formulation as they impose an order on the variables index. Constraints

(2.22) to (2.25) are integrality and non-negativity constraints.

Our formulation strengthens the Flow Model proposed in [7] by including lower bounds on

the wij variables.

2.2 Path-edges formulation

Pauplin [49] developed a method to directly calculate the sum of all weights of a tree (the

length of the tree) without having to explicitly determine its edge-weights. According to this

method the tree length is given by
∑

i,j∈Vt
dij 2−zij where zij indicates the number of edges in

the path Pij between terminal nodes i and j. When dij =
∑

e∈Pij
we, we have

∑
i,j∈Vt

dij 2−zij =∑
i,j∈Vt

∑
e∈Pij

we 2−zij . As the weight we appears as many times as the number of paths Pij to

which the edge e belongs to, it holds
∑

i,j∈Vt
dij 2−zij =

∑
e∈E we and for a weak realization we

have
∑

i,j∈Vt
dij 2−zij ≤

∑
e∈E we and min

∑
i,j∈Vt

dij 2−zij ≤ min
∑

e∈E we.

Using binary variables p`ij , for all i, j ∈ Vt, i < j and ` ∈ {2, 3, ..., (n − 1)}, specifying the

number of edges of a path Pij between terminal nodes i and j, the expression
∑

i,j∈Vt
dij 2−zij

can be linearized. This relation and linearization process was already used in [8]. The binary

decision variables p`ij indicating whether the path Pij connecting terminal node i to terminal

node j has (exactly) ` edges. Therefore
∑

i,j∈Vt
dij 2−zij =

∑
i,j∈Vt

dij
∑n−1

`=2 2−`p`ij . Variables

p`ij have the same interpretation as variables x`ij in [8].

Besides these path variables p`ij , the binary topology variables xij and the weight variables wij ,

we consider flow variables. The binary flow variables fk`
ij , for all i, j ∈ Va ∪ {k, `}, k, ` ∈ Vt, i 6= j

and k < `, indicate whether the flow traverses the edge {i, j} belonging to the path connecting

terminal node k to terminal node ` in the direction from node i to node j.

The formulation that specifies the number of edges of a path between terminal nodes and

reconstructs an unrooted tree for the MWTR problem is as follows.
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Path-edges formulation

min
∑
i∈Vt

∑
j∈Vt
j>i

dij

n−1∑
`=2

2−` · p`ij

subject to∑
i∈Va

∑
j∈V
j>i

xij = 2n− 3 (2.26)

∑
i∈Va

xij = 1, ∀j ∈ Vt (2.27)

∑
j∈V
j>i

xij +
∑
j∈Va
j<i

xji = 3, ∀i ∈ Va (2.28)

xi,i+1 = 1 ∀i ∈ Va, i = 1, ..., (dn/2e − 1) (2.29)∑
j∈Vt

x1j = 2 (2.30)

∑
j∈Vt

x(n−2)j = 2 (2.31)

∑
j∈Vt

xij ≤ 2 ∀i ∈ Va (2.32)

∑
i∈Va

fk`
ki = 1 ∀k, ` ∈ Vt, k < ` (2.33)

∑
j∈{`}∪Va\{i}

fk`
ij −

∑
j∈{k}∪Va\{i}

fk`
ji = 0 ∀i ∈ Va, k, ` ∈ Vt, k < ` (2.34)

∑
i∈Va

fk`
i` = 1 ∀k, ` ∈ Vt, k < ` (2.35)

∑
h∈{`}∪Va\{i}

fk`
jh − fk`

ij ≥ 0 ∀i ∈ Va ∪ {k}, j ∈ Va, k, ` ∈ Vt, k < ` (2.36)

fk`
ij + fk`

ji ≤ xij ∀i, j ∈ V,∀k, ` ∈ Vt, i < j, k < ` (2.37)

n−1∑
`=2

p`ij = 1 ∀i, j ∈ Vt, i < j (2.38)

2 +
∑
i∈Va

∑
j∈Va
j 6=i

fk`
ij =

n−1∑
i=2

i · pik` ∀k, ` ∈ Vt, k < ` (2.39)

xij ∈ {0, 1} ∀i ∈ Va, ∀j ∈ V, i < j (2.40)

p`ij ∈ {0, 1} ∀` ∈ {2, 3, ..., n− 1}, ∀i, j ∈ Vt, i < j (2.41)

fk`
ij ∈ {0, 1} ∀i, j ∈ Va ∪ {k, `}∀k, ` ∈ Vt, i 6= j, k < ` (2.42)

Constraint (2.26) is the tree cardinality constraint and establishes that the number of edges in

the tree is 2n − 3. Constraints (2.27) establish that all the terminal nodes have degree one and

constraints (2.28) force the additional nodes degree to be three. As above, we fix a path of

additional nodes with constraints (2.29). Since the tree is unrooted, we know that there are

two additional nodes which are adjacent to two terminal nodes. Therefore, to reduce symmetry,

constraints (2.30) and (2.31) enforce those two additional nodes to be node 1 and node (n− 2).
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Constraints (2.32) impose that an additional node is connected to, at most, two terminal nodes.

Constraints (2.33)–(2.35) are flow conservation constraints. Constraints (2.36) establish that if

the flow sent from terminal node k to terminal node ` passes through edge {i, j}, in the direction

from node i to node j, then the flow passes through, at least, one edge between node j and a node

different than node i. Constraints (2.37) are linking constraints between variables and impose

that there can be no flow in edge {i, j} if it does not belong to the tree. Constraints (2.38)

impose that variables p`ij assume value one for exactly one ` in {2, 3, ..., (n − 1)} corresponding

to the number of edges in the path between terminal nodes i and j. Constraints (2.39) relate

variables fk`
ij with variables p`ij . Using variables fk`

ij we know exactly the number of edges in the

path between terminal nodes k and `. Using variables pik` we also know exactly the number of

edges in the path between terminal nodes k and ` and that number must be exactly the same.

Constraints (2.40), (2.41) and (2.42) are the integrality constraints.

This second formulation uses the same idea in [8] to obtain the total tree edges length by the

formulation designated by the authors as the Path-Length-4-Point (PL4). In Section 3 we will

compare the formulations presented in this section with this PL4 formulation.

After having reconstructed a unrooted tree with this formulation, the weights have to be

assigned to the tree edges. This is accomplished by solving the following simple linear program.

min
∑
i∈Va

∑
j∈V
j>i

wij

subject to∑
i∈Va

∑
j∈V
i<j

wij(f
k`
ij + fk`

ji ) ≥ dk` ∀k, ` ∈ Vt, k < `

wij ≥ 0 ∀i, j ∈ V, i < j

Using the flow variables, the path between each pair of terminal nodes is exactly known. This

information is used to associate weights to the edges such that the total sum of the edges weights

is minimized and the tree length between every pair of terminal nodes dominates (is greater than)

the corresponding distance from the distance matrix D.

In a tree there is exactly one path between every pair of terminal nodes and the path variables

p`ij state there are `, for some unique ` ≥ 2, edges in the path between terminal nodes i and j.

Therefore
∑n−1

`=2 `p`ij is the number of edges in the path between terminal nodes i and j. By

summing the number of edges of all paths and taking into account that some edges belong to

more than one path we must have

2
∑
i∈Vt

∑
j∈Vt
j>i

n−1∑
`=2

2−` ` p`ij = 2n− 3, (2.43)

as the number of edges in the tree is 2n − 3. This is already stated in the formulation through

constraint (2.26), however this equality reinforces this condition using the path variables.

Huffman codes are optimal path-length sequences whose corresponding rooted binary tree

determines a code. When producing optimal Huffman codes the key idea are these rooted binary

trees represented as sequences of ascending path-lengths. A sequence of n path-lengths represents

a binary tree with n leaves where each leaf represents a symbol in the code. Parker and Ram [48]

12



characterize these path-length sequences by establishing that these binary trees obey the property

established by the Kraft equality, a special case of the Kraft inequality. These path-lengths can

be compared to the distances from the tree realization problem. Therefore the nontrivial property

of the path-length sequences in a rooted binary tree characterized with the Kraft equality can be

borrowed by the MWTR problem and the following equality can be established:

n−1∑
`=2

∑
j∈Vt
j>i

2−`p`ij +

n−1∑
`=2

∑
j∈Vt
j<i

2−`p`ji =
1

2
∀i ∈ Vt (2.44)

The inclusion of the two equalities (2.43) and (2.44) improved the performance of the Path-

edges formulation.

Beside these two equalities the following valid inequalities presented in [8] can also be in-

cluded.∑
j∈Vt
i<j

pn−1ij +
∑
j∈Vt
j<i

pn−1ji ≤ 2
∑
j∈Vt
i<j

p`ij + 2
∑
j∈Vt
j<i

p`ji ∀i ∈ Vt,∀` ∈ {2, 3, ..., n− 2} (2.45)

∑
i∈Vt

∑
j∈Vt
j>i

pn−1ij ≤ 4 (2.46)

∑
j∈Vt
i<j

∑̀
q=2

2`−qpqij ≤ 2`−1 − 1 ∀i ∈ Vt,∀` ∈ {2, 3, ..., b
n

2
c}, n > 2`−1 + 1 (2.47)

Inequalities (2.45) state that if a tree has a path of length n− 1 then it also has a path of length

n− 2, n− 3, . . . , 2, inequality (2.46) indicates that a tree has at most four paths of length n− 1

and inequalities (2.47) are a consequence of the Kraft equality.

3 Computational Results

Computational results will assess the quality of the Linear Programming (LP) solutions ob-

tained with each formulation from Section 2 and the best lower and upper bounds achieved. The

computational tests were performed on an Intel(R) Core(TM) i7-3770 CPU 3.40 GHz processor

and 16.0 Gb of RAM. We present computational results for instances of the problem with a

number of terminal nodes varying between 5 and 15, for a total of 55 instances.

We use two sets of data instances, one set coming from a phylogenetics application, and

the other one from a networking application. The first set of instances is available from http:

//pubsonline.informs.org/doi/\-suppl\-/10.1287/ijoc.1110.0455 [8]. From this set we

use three phylogenetic distance matrices, matrices M391, Primate and M887, with t = 15, t = 12

and t = 15 taxa, respectively, and for each we vary the number of terminal nodes (taxa) between

5 and t, obtaining 30 instances. The data for the second set of instances were generated using

the network-level simulator NS-3 [45]. We performed three simulations named Sim7, Sim15 and

Sim20 with t = 7, t = 15 and t = 15 terminal nodes, varying the number of terminal nodes

between 5 and t obtaining 25 instances.

The two formulations from Section 2 were implemented using the Mosel language and solved

with FICO Xpress 7.1 [27] (Xpress-IVE 1.23.00 64 bit, Xpress-Optimizer 23.01.03 and Xpress-

Mosel 3.4.0). Path-edges formulation used together with the valid equalities (2.43) and (2.44)

13
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and inequalities (2.45), (2.46), (2.47) presented at the end of Section 2 is designated Path-edges+

formulation. We compare the performance of the two formulations introduced in Section 2,

Path-weight formulation and Path-edges formulation, and the Path-edges+ formulation with

the formulation PL4 from [8]. Our implementation of PL4 considers all the valid inequalities

presented in [8].

The computational results are summarized in Tables 1 and 2 in which the first column,

labelled Matrix, indicates the name of the matrix instance used and the second column, labelled

|Vt|, indicates the size of the instance. The third, forth and fifth columns concern the results

of the Path-weight formulation, from the sixth to the eleventh columns the results of the Path-

edges formulation are presented, from the twelfth to the seventeenth columns are the results of

the Path-edges+ formulation and the eighteenth, nineteenth, twentieth and twenty-first columns

concern PL4 formulation. The columns labelled T show the execution time, in seconds, used

to solve the instance and having a maximum runtime of 7200 seconds and for the Path-edges

formulation and Path-edges+ formulation, the columns labelled Tw shows the execution time

of the linear program solved to assign the weights. The columns labelled W and DZ present

the optimum value obtained or the best value obtained having a runtime limit of 7200 seconds,

where DZ stands for
∑
k∈Vt

∑
`∈Vt
`>k

dk`

n−1∑
i=2

2−i ·pik` and W stands for
∑
i∈Va

∑
j∈V
j>i

wij . The columns labelled

GAP present the LP solution gap which is obtained as follows: GAP =
UB − PL

UB
× 100,

where UB represents the best upper bound value obtained (or the optimum value) within the

runtime of 7200 seconds and PL represents the value of the corresponding linear programming

relaxation. The columns labelled GAPLB present the lower bound gap and is obtained as follows:

GAPLB =
UB − LB

UB
× 100, where UB represents the best upper bound value obtained (or the

optimum value) and LB the best lower bound value obtained within the runtime of 7200 seconds.
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The optimum solution within the time limit imposed is obtained in the following cases:

• by the Path-weight formulation for all instances with n < 10 terminal nodes and for instance

Sim15 with n = 10;

• by the Path-edges formulation for all instances with n < 10 terminal nodes;

• by the Path-edges+ formulation for all instances with n < 12 terminal nodes;

• by the PL4 formulation for all instances with n < 8 terminal nodes.

To better check the improvements achieved we display in Table 3 the number of instances,

among the total of 55 instances, for which the optimal solution was obtained, within the time

limit imposed, when the model indicated is used.

Path-weight Path-edges Path-edges+ PL4

28 29 38 18

Table 3: Number of instances solved within the time limit imposed.

The Path-edges+ formulation solves the instances substantially faster than the other formu-

lations. In Figure 5, we compare the computational times in the form of a profile graph that

displays the number of solved instances in a given time by each formulation.

Figure 5: Performance profile.

Comparing, in Tables 1 and 2, the columns labelled with W of the Path-weight formulation

and of the Path-edges formulation we notice that for some instances from the phylogenetics

application the values obtained are different. This is due to the fact that the obtained trees are

different. The tree we obtain when minimizing
∑

k∈Vt

∑
`∈Vt
`>k

dk`
∑n−1

i=2 2−i ·pik` is such that, when

assigning its edges weights the equality
∑

e∈Pij
we = dij does not hold. In that case we obtain a

17



Table 4: Average and standard deviation values for the computational time.

n Path-weight Path-edges Path-edges+ PL4

5
average 0.25 0.28 0 0.42

standard deviation 0.04 0.14 0.01 0.52

6
average 0.38 0.71 0.12 51.54

standard deviation 0.15 0.26 0.29 45.58

7
average 1.87 2.13 0.72 940.63

standard deviation 0.34 0.52 0.73 1607.35

8
average 48.46 34.56 6.51 -

standard deviation 20.51 15.97 2.77 -

9
average 572.97 386.62 21.51 -

standard deviation 316.93 240.81 7.14 -

tree that minimizes
∑

k∈Vt

∑
`∈Vt
`>k

dk`
∑n−1

i=2 2−i · pik` but does not minimizes
∑

i∈Va

∑
j∈V
j>i

wij (see

column labelled DZ), as in this case it holds
∑

k∈Vt

∑
`∈Vt
`>k

dk`
∑n−1

i=2 2−i · pik` <
∑

i∈Va

∑
j∈V
j>i

wij .

When the optimal solution can not be found within the runtime limit imposed the Path-weight

formulation obtains, on average, ten feasible solutions, the Path-edges+ formulation obtains, on

average, three feasible solutions and the PL4 formulation is unable to obtain feasible solutions

within the runtime limit imposed, except for matrix M887 where for n = 8 this formulation

obtained one feasible solution. The difference between the number of feasible solutions of the

Path-weight formulation and of the Path-edges formulation is due to the fact that the only integer

(binary) variables of the Path-weight formulation are those which identify the tree, whereas the

Path-edges formulation only has integer (binary) variables.

For instances with the same number of terminal nodes, Tables 4, 5 and 6 display the average

time, the average GAP and the average GAPLB, respectively, and their corresponding standard

deviation values. Table 4 presents the values for instances with n ≤ 9, since for n > 9 only the

Path-edges+ obtains a feasible solution within the runtime limit imposed. Table 6 displays the

values for the formulations Path-weight, Path-edges and Path-edge+, since the formulation PL4

does not obtain feasible solutions for n ≥ 10, and for instances with n ≥ 10 because for n < 10

the GAPLB is equal to zero (the optimal solution is achieved).

Now we compare the results between the Path-edges formulation and the Path-edges+ formu-

lation.The Path-edges+ formulation is substantially faster, for example for n = 9 it is eighteen

times faster. The average GAP of the Path-edges formulation varies from 25.93%, for n = 5, to

99.65%, for n = 15, while the average GAP of the Path-edges+ formulation does not exceed 9%.

Finally, the average GAPLB of the Path-edges formulation is over 90% while for the Path-edges+

formulation it does not exceed 9%. We may conclude that the equalities and inequalities included

in the Path-edges formulation considerably improve the formulation.

4 Conclusion

In this paper, we introduce two formulations for the minimum weighted tree reconstruc-

tion (MWTR) problem: the Path-weight formulation and the Path-edges formulation. Some

18



Table 5: Average and standard deviation values for the GAP.

n Path-edges Path-edges+ PL4

5
average 25.93 0.31 0

standard deviation 12.88 0.77 0

6
average 57.03 0.27 0.08

standard deviation 3.8 0.51 0.17

7
average 70.42 1.31 0.6

standard deviation 2.71 1.33 1.3

8
average 81.36 1.81 -

standard deviation 1.52 1.31 -

9
average 88.3 2.63 -

standard deviation 1.52 0.54 -

10
average 92.96 2.42 -

standard deviation 1.08 0.82 -

11
average 96.16 2.23 -

standard deviation 0.45 0.63 -

12
average 97.99 2.52 -

standard deviation 0.6 1.2 -

13
average 98.79 4.95 -

standard deviation 0.21 3.11 -

14
average 99.37 8.52 -

standard deviation 0.09 6.63 -

15
average 99.65 5.85 -

standard deviation 0.02 6.59 -

Table 6: Average and standard deviation values for the GAPLB.

n Path-weight Path-edges Path-edges+

10
average 40.04 92.96 0

standard deviation 21.15 1.08 0

11
average 73.47 96.16 0

standard deviation 9.3 0.45 0

12
average 96.62 97.99 2.52

standard deviation 1.85 0.6 1.2

13
average - 98.79 4.95

standard deviation - 0.21 3.11

14
average - 99.37 8.52

standard deviation - 0.09 6.63

15
average - 99.65 5.85

standard deviation - 0.02 6.59
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valid equalities and inequalities are also introduced to strengthen the Path-edges formulation.

Computational experiments performed on data sets coming from phylogenetics and networking

applications show that the strengthened Path-edges formulation outperforms the previous for-

mulations proposed in the literature. Several strategies could be applied to both formulations to

improve their performance. Among them is the strategy proposed in [8]. Generally the applica-

tion of these strategies is not straightforward. We leave this approach for future work.
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