
Chapter 1
Spectral bounds for the k-regular induced
subgraph problem

Domingos Moreira Cardoso and Sofia J. Pinheiro

Abstract Many optimization problems on graphs are reduced to the determination
of a subset of vertices of maximum cardinality which inducesa k-regular subgraph.
For example, a maximum independent set, a maximum induced matching and a
maximum clique is a maximum cardinality 0-regular, 1-regular and(ω(G)− 1)-
regular induced subgraph, respectively, wereω(G) denotes the clique number of
the graphG. The determination of the order of ak-regular induced subgraph of
highest order is in general an NP-hard problem. This paper isdevoted to the study
of spectral upper bounds on the order of these subgraphs which are determined
in polynomial time and in many cases are good approximationsof the respective
optimal solutions. The introduced upper bounds are deducedbased on adjacency,
Laplacian and signless Laplacian spectra. Some analyticalcomparisons between
them are presented. Finally, all of the studied upper boundsare tested and compared
through several computational experiments.

1.1 Introduction

Throughout the paper, we deal with simple undirected graphsG, with vertex set
V (G) = {1, . . . ,n} and edge setE(G) 6= /0. Since this graph hasn vertices, we say
that the graph hasorder n. We writeu∼ v whenever the verticesu andv are adjacent.
The neighborhood of a vertexi ∈ V (G), that is, the set of vertices adjacent toi,
is denoted byNG(i), the degree ofi is dG(i) = |NG(i)|, ∆(G) = maxi∈V (G) dG(i)
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andδ (G) = mini∈V (G) dG(i). The subgraph ofG induced by the vertex subsetS ⊂
V (G) is denoted byG[S]. The graphG is p-regular when all vertices have the same
degree equal top. A vertex subsetS ⊆V (G) is (k,τ)-regular if it induces ak-regular
subgraph and∀v /∈ S, |NG(v)∩S|= τ. The adjacency matrixAG = (ai, j) is then×n
matrix defined by

ai, j =

{

1 if i ∼ j,
0 otherwise.

The Laplacian matrixLG = (li, j) and the signless Laplacian matrixQG = (qi, j) of
the graphG, are the matricesLG =DG−AG andQG =DG+AG, respectively, where
DG stands for the diagonal matrix of ordern with the i-th entry equal to the vertex
degreedG(i). Therefore,AG, LG andQG are real symmetric matrices and then all
their eigenvalues are real. These eigenvalues are herein denoted, in nonincreasing
order, respectively byλ1 ≥ ·· · ≥ λn, µ1 ≥ ·· · ≥ µn andq1 ≥ ·· · ≥ qn. If G has at
least one edge, thenλ1 > 0> λn. From now on we consider only simple undirected
graphs with at least one edge which will be called graphs.
Each adjacency eigenvalue of a graphG is main if the corresponding eigenspace
contains an eigenvector which is not orthogonal to the all ones vector, otherwise is
non-main. From Geršgorin’s theorem, the eigenvalues ofLG andQG are nonnega-
tive real numbers and since the entries of each row ofLG sum 0, then the eigenvalue
µn = 0 is associated to the all ones eigenvector ˆe. The multiplicity of 0, as an eigen-
value ofLG, is equal to the number of connected components ofG. Furthermore,
G is bipartite if and only ifqn = 0. Further basic details about graph spectra can be
found in [6, 8]. A vertex subset inducing a 0-regular subgraph is called an indepen-
dent (or stable) set. A maximum independent set is an independent set of maximum
cardinality and its cardinality is called independence number and it is denoted by
α(G).

In [3] it was proved that the problem of finding a maximum cardinality subset
of vertices inducing ak-regular subgraph is NP-hard. Throughout this paper, this
maximum is denoted byαk(G). Note that in the particular case ofk = 0, α0(G) =
α(G).

The study of spectral upper bounds on the order ofk-regular induced subgraphs
(it should be noted that the independent sets are 0-regular induced subgraphs) ap-
pear in [3, 4, 5]. In [1] (see also [11]) an upper bound on the order of induced
subgraphs with average degreed (based on adjacency eigenvalues) was obtained for
regular graphs, extending the ratio bound (1.7) to the general case of maximumk-
regular induced subgraphs (whenk = 0, this bound coincide with the ratio bound). A
similar result was obtained in [3], using convex quadratic programming techniques.
In [4, 5] the arbitrary graph case is analyzed and upper bounds on the order ofk-
regular induced subgraphs are presented. In [4], the upper bounds are obtained using
adjacency eigenvalues and eigenvectors, namely the least eigenvalue (whether it is
non-main) and the corresponding eigenspace. In [5], the upper bound is obtained
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using a quadratic programming technique jointly with the main angles (see [8] for
details) and the induced subgraph just must have average degreed.

The main goal of this paper is to introduce some new spectral upper bounds on
the order ofk-regular induced subgraphs, making an analytic comparisonbetween
them when possible. These new upper bounds are based on adjacency, Laplacian
and signless Laplacian eigenvalues. Finally, a few computational experiments are
presented.

1.2 Concepts and fundamental results

In this section, we introduce some definitions and we recall the previously obtained
results needed for the deductions in the next section. In particular, we survey results
concerning to spectral upper bounds on the order ofk-regular induced subgraphs.

For arbitrary graphs, consider a graphG of ordern with V (G) = S∪ Sc, where
S ⊆ V (G) denotes a vertex subset inducing ak-regular subgraph andSc is its com-
plement. The set of edges with just one end vertex inS, that is, the cut set defined
by S is denoted∂ (S). Hence,|∂ (S)|= |S|(d̄S − k), whered̄S =

1
|S|∑

i∈S

dG(i).

The next result relates the cardinality of the cut set∂ (S) to the largest eigenvalue
of the Laplacian matrix of a graphG.

Lemma 1. [16] Let G be a graph of order n and S ⊆V (G). Then

|∂ (S)| ≤ µ1
|S|(n−|S|)

n
. (1.1)

Another relationship involving the largest Laplacian eigenvalue and the least ad-
jacency eingenvalue of a graphG is (see [8]).

δ (G)−λn ≤ µ1 ≤ ∆(G)−λn. (1.2)

Now we consider some relationships involving signless Laplacian eigenvalues.
Assuming thatG is a connected graph of ordern, according to [7], the least eigen-
value ofQG is zero if and only ifG is bipartite and, in that case, zero is a simple
eigenvalue. They also proved that

2δ (G)≤ q1 ≤ 2∆(G). (1.3)

Moreover, according to [9],
qn < δ (G). (1.4)

From Weyl’s inequalities we have an improvement of inequalities (1.3) and we
state relationships between signless Laplacian and adjacency eigenvalues.

δ (G)+λ1 ≤ q1 ≤ ∆(G)+λ1 (1.5)
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and
δ (G)+λn ≤ qn ≤ ∆(G)+λn. (1.6)

We now present some spectral upper bounds on the size ofk-regular induced
subgraphs starting with the particular case ofk = 0, for which we consider only the
ones most related with this work.

1.2.1 Bounds on α(G)

In the case of regular graphs, the well known ratio bound, obtained by Hoffman (un-
published) and presented by Lovász in [14] can be stated by the following theorem
where, for the last statement, the necessary condition was proved in [12] and the
sufficient condition was proved in [2].

Theorem 1. [2, 12, 14] If G is a regular graph of order n, then

α(G)≤ n
−λn

λ1−λn
. (1.7)

Furthermore, the cardinality of an independent set S attains the upper bound if and
only if S is (0,τ)-regular, with τ =−λn.

The ratio bound (1.7) was extended by Haemers for arbitrary graphs, according
to the following theorem.

Theorem 2. [11] If G is a graph of order n, then

α(G)≤
−n λn λ1

δ 2(G)−λn λ1
. (1.8)

The next spectral upper bound based on the largest Laplacianeigenvalue was
independently deduced in [15] and [10].

Theorem 3. [15, 10] If G is a graph of order n, then

α(G)≤ n
µ1− δ (G)

µ1
. (1.9)

1.2.2 Bounds on αk(G)

Cardoso, Kamińsky and Lozin in [3] introduced the following family of convex
quadratic programming problems:
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υk(G) = max
x≥0

2êT x−
τ

k+ τ
xT

(

AG

τ
+ In

)

x, (1.10)

where ˆe is the all ones vector,In the identity matrix of ordern, k ∈ N∪ {0} and
τ = −λn and they proved thatαk(G) ≤ υk(G), whereαk(G) is the cardinality of a
vertex subset inducing ak-regular subgraph of maximum order. In fact, in [3], the
obtained result was stated as follows.

Theorem 4. [3] Let G be a graph and k a non-negative integer. If S ⊆V (G) induces
a subgraph of G with average degree k, then |S| ≤ υk(G). The equality holds if and
only if τ + k ≤ |NG(v)∩S| ∀v /∈ S.

Considering the particular case of regular graphs we have the following theorem,
where the upper bound was obtained in [11] and the last statement was proved in
[3].

Theorem 5. [3, 11] If G is a p-regular graph of order n, then

αk(G)≤ n
k−λn

p−λn
. (1.11)

Furthermore, the equality holds if and only if there exists S ⊆V (G) which (k,k+τ)-
regular, with τ =−λn. In this case, αk(G) = |S|= n k−λn

p−λn
.

In [4], considering the quadratic program not necessary convex (1.10), withτ >
0, it was proved that

αk(G)≤ λmax(AGc)+ k+1, (1.12)

whereGc denotes the complement of the graphG, that is, the graph such that
V (Gc) = V (G) andE(Gc) = {i j : i j /∈ E(G)}. Furthermore, the following upper
bound was obtained.

Theorem 6. [4] Consider a graph G such that λmin(AG) = λn = . . .= λn−(p−1) is a
non-main eigenvalue with multiplicity p. Assuming that the eigenvectors û1, . . . , ûn,
associated to the eigenvalues λ1, . . . ,λn, respectively, are unitary and pairwise or-
thogonal, then

αk(G) ≤
n−p

∑
j=1

−λn + k
−λn +λ j

(êT û j)
2. (1.13)

Later, in [5], using a quadratic programming technique jointly with the main
angles ofG, the upper bound (1.13) was improved as follows.

Theorem 7. [5] Let G be a graph of order n, and let S be a set of vertices which
induces a k-regular subgraph of G (0≤ k ≤ n−1). If t >−λn then

αk(G)≤ hG
k (t), (1.14)

where hG
k (t) = (k+ t)

(

1− PGc (t−1)
(−1)nPG(−t)

)

and PG(x) = det(xI−A).
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1.3 Upper bounds based on the spectrum of AG, LG and QG

Now it is worth to recall the following theorem obtained by Haemers.

Theorem 8. [11] Let G be a graph on n vertices of average degree d and let the
vertex set of G be partitioned into two sets such that G1 and G2 are the subgraphs
induced by these two sets. For i = 1,2 let ni be the number of vertices of Gi, di be
the average of vertex degrees of Gi and let d̄i be the average of vertex degrees in G
over the vertices of Gi. Then

(i) λ1λ2 ≥
ndid−nid̄i

2

n−ni
≥ λ1λn.

(ii)If the equality holds on one of the sides, then G1 and G2 are regular and also the
degrees in G are constant over the vertices of G1 and G2.

As a consequence of this theorem, we have the following corollary.

Corollary 1. If G is a graph of order n, then,

αk(G)≤
2k|E(G)|− nλ1λn

δ (G)2−λ1λn
. (1.15)

Proof. Let us consider the vertex partitionV (G) = S∪Sc, whereS induces ak reg-
ular subgraph ofG. Applying Theorem 8-(i), settingn1 = |S| andd1 = k, we have,

nkd − d̄1
2
|S|

n−|S|
≥ λ1λn ⇔ λ1λn(n−|S|)≤ nkd− d̄1

2
|S|

⇔ |S|(d̄1
2
−λ1λn)≤ nkd− nλ1λn

⇔ |S| ≤
nkd− nλ1λn

d̄1
2
−λ1λn

.

Sinced̄1 ≥ δ andd = 2|E(G)|
n , the inequality (1.15) follows.

Notice that, whenG is p-regular,λ1 = δ (G) and|E(G)|= np
2 whereby the upper

bound (1.15) is equal to (1.11).
The next corollary is a consequence of Lemma 1.

Corollary 2. If G is a graph of order n, then

αk(G)≤ n
k+ µ1− δ (G)

µ1
. (1.16)

Proof. Considering a vertex subsetS ⊆ V (G) inducing ak-regular subgraph and
taking into account that (as defined before)dS = 1

|S| ∑i∈S dG(i), it follows that

|∂ (S)|= |S|(d̄S − k). Then applying Lemma 1 we have



1 Spectral bounds for thek-regular induced subgraph problem 7

|S|(d̄S − k)≤ µ1
|S|(n−|S|)

n
⇔

n(d̄S − k)
n−|S|

≤ µ1

⇔ µ1|S| ≤ nµ1− n(d̄S − k)

⇔ |S| ≤ n
k+ µ1− d̄S

µ1
.

Sinced̄S ≥ δ (G), the inequality (1.16) follows.

If a graphG is p-regular, from (1.2)µ1+λn = p and we may conclude that the
upper bound (1.16) is equal to (1.11).

Before the introduction of a new upper bound on the order ofk-regular induced
subgraphs in function of the largest and the least eigenvalues of the signless Lapla-
cian matrix, it is worth to introduce the following lemma.

Lemma 2. Let G be a graph of order n without isolated vertices. If G is bipartite or
δ (G)≥ ∆ (G)

2 or q1 < 4δ (G), then 4δ (G)2− qnq1 > 0.

Proof. Let δ = δ (G) and∆ = ∆(G).

1. If G is bipartite without isolated vertices, thenqn = 0,δ > 0 and therefore, 4δ 2−
qnq1 > 0.

2. If δ ≥ ∆
2 , we haveδ 2 ≥ δ∆

2 ⇔ 4δ 2 ≥ 2δ∆ and, taking into account (1.3) and
(1.4), sinceq1 ≤ 2∆ andδ > qn it follows 4δ 2− qnq1 > 0.

3. Finally, if q1 < 4δ , thenq1qn ≤ 4δqn < 4δ 2, that is,q1qn < 4δ 2 and so 4δ 2−
qnq1 > 0.

Notice that there are graphsG, with δ = δ (G), such that 4δ 2 − qnq1 ≤ 0, as it
is the case of the graph depicted in Figure 1.1 which hasδ = 2, qn = 1.4991 and
q1 = 10.8517.

Fig. 1.1: GraphG, with 4δ (G)2− qnq1 ≤ 0.

Theorem 9. Let G be a graph of order n such that 4δ 2(G)− qnq1 > 0. Then

2k|E(G)|− nλ1λn

δ 2(G)−λ1λn
≤

4|E(G)|(∆(G)+ k)− nqnq1

4δ 2(G)− qnq1
. (1.17)
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Proof. Consideringε = |E(G)|, δ = δ (G), ∆ = ∆(G) and assuming that the in-
equality of (1.17) holds, we have

2kε −nλ1λn

δ 2−λ1λn
−

ε(∆ + k)−n q1
4 qn

δ 2− q1
4 qn

≤ 0

m

2kεδ 2−
q1

2
qnkε −nδ 2λ1λn −δ 2∆ε −δ 2kε +nδ 2 q1

4
qn +λ1λnε∆ +λ1λnεk ≤ 0

m

k(δ 2ε −
q1

2
qnε +λ1λnε)−nδ 2λ1λn −δ 2∆ε +nδ 2 q1

4
qn +λ1λnε∆ ≤ 0

Let f (k) = k(δ 2ε− q1
2 qnε+λ1λnε)−nδ 2λ1λn−δ 2∆ε+nδ 2 q1

4 qn+λ1λnε∆ . Then,

f ′(k) = δ 2ε −
q1

2
qnε +λ1λnε

= ε(δ 2−
q1

2
qn +λ1λn).

From (1.6),

δ +λn < qn ⇔ δ 2+ δλn < δqn ⇔ δ 2− δqn + δλn < 0.

Since, from (1.3),q1
2 ≥ δ and, as it is well known,λ1 ≥ δ , it follows that δ 2 −

q1
2 qn +λ1λn ≤ δ 2− δqn + δλn < 0, that is,f ′(k) < 0. Therefore,f (k) is a decreas-

ing function.

Considering the functionf (k) and settingk = 0 and∆ = δ +ξ with ξ a nonneg-
ative integer we may define the function

g(δ ,ξ ) =−nδ 2λ1λn − δ 2(δ + ξ )ε + nδ 2 q1

4
qn +λ1λnε(δ + ξ ).

Then

∂g(δ ,ξ )
∂ξ

= −δ 2ε +λ1λnε

= ε(−δ 2+λ1λn)

< 0.

Therefore,g(δ ,ξ ) is a decreasing function with respect toξ . Since g(δ ,0) =
−nδ 2λ1λn − δ 3ε + nδ 2 q1

4 qn +λ1λnεδ andδ = ∆ it follows that λ1 = δ . Further-
more, from (1.3),q1

2 = δ and from (1.6),qn = δ +λn. Therefore,

g(δ ,0) = −nδ 3λn − δ 3ε + n
δ 3

2
(δ +λn)+λnεδ 2

= −nδ 3λn − δ 3ε + n
δ 4

2
+ n

δ 3

2
λn +λnεδ 2.
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Finally, sinceε = nδ
2 we obtaing(δ ,0) =−nδ 3λn−n δ 4

2 +n δ 4

2 +n δ 3

2 λn+n δ 3

2 λn = 0
and thus, for all nonnegative integersδ andξ , g(δ ,ξ )≤ 0. Therefore,f (0)≤ 0 and,
since f (k) is a decreasing function, we may conclude thatf (k) ≤ 0 for all k.

As immediate consequence of Corollary 1 and Theorem 9 we havethe following
corollary.

Corollary 3. If G is a graph of order n, ε edges, ∆ = ∆(G) and δ = δ (G), such that
4δ 2− qnq1 > 0, then

αk(G)≤
4ε(∆ + k)− nqnq1

4δ 2− qnq1
. (1.18)

According to [7], a graphG with n vertices andε edges is regular if and only if
4ε = nq1. Furthermore, whenG is regular its degree is equal toq1

2 . Thus, assum-
ing thatG is p-regular, hasn vertices andε edges, by Lemma 2 the hypothesis of
Corollary 3 is fulfilled and then we may write

αk(G) ≤
nq1(p+ k− qn)

2pq1− qnq1
(since∆(G) = δ (G) = p =

q1

2
and 4ε = nq1)

=
n(p+ k− qn)

2p− qn
= n

k−λn

p−λn
(sinceqn −λn = p).

Therefore, for regular graphs, all the upper bounds (1.18),(1.16), (1.15) and (1.11)
are equal. Notice that there are graphs for which these upperbounds are tight. For in-
stance, ifG = Kn (a complete graph of ordern), thenλ1 = n−1 andλn =−1. Thus,
if S ⊆ V (Kn) induces ak-regular subgraph, thenn k−λn

λ1−λn
= k+ 1 = |S|. Therefore,

whenG is a complete graph, for eachk, the upper bounds (1.15), (1.16) and (1.18)
on the cardinality of vertex subsets inducingk-regular subgraphs are all reached.
More generally, according to Theorem 5, ifG is a regular graph andS ⊂ V (G) is
a (k,k+ τ)-regular set, withτ = −λn, then all the above referred upper bounds are
reached.

Throughout the paper, in all the proofs of the presented results, only the average
degree inS is used and then, in all the obtained results we may replacek-regular
induced subgraph by induced subgraph with average degreek. Moreover, all the
obtained results remain valid when we consider positive weights on the edges, as-
suming in that case that the degree of a vertexv is then the sum of the weights of
the edges incident tov.

1.4 Computational experiments and conclusions

In this section, several computational experiments with the upper bounds (1.15),
(1.16) and (1.18) are presented in Table 4.1 In each row of this Table appears the
ordern, the maximum degree∆ , the minimum degreeδ , the degree of a regular
induced subgraphk and the computed upper bounds on the order of this induced
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subgraphs for some of the graphs of the family considered in the Second DIMACS
Implementation Challenge (see [13]).

Notice that for the particular case of regular graphs the upper bounds (1.15),
(1.16) and (1.18) are all equal. Moreover since, according to the Theorem 9, the
upper bound (1.15) is less or equal than the upper bound (1.18), it follows that

4|E(G)|(∆(G)+ k)− nqnq1

4δ (G)2− qnq1
≥ min

{

2k|E(G)|− nλ1λn

δ 2−λ1λn
,n

k+ µ1− δ
µ1

}

.

Concerning the comparison between the upper bounds (1.15) and (1.16) and also
between (1.16) and (1.18), the computational results presented in the Table 4.1 show
that none of them is always better than the others.
In fact, regarding the upper bounds (1.15) and (1.16), fork = 0,1,2, the former is
better than the later. However, for much greater values ofk, there are several graphs
for which the upper bound (1.16) is better than (1.15). Finally, it should be noted
that for the graphs MANN-a9 and MANN-a27 fork = 0,1,2 the upper bound (1.18)
is better than the upper bound (1.16).
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Graph n ∆(G) δ (G) k (1.15) (1.16) (1.18)
0 74.01 82.31 97.27
1 83.87 90.72 109.28

c-fat200-1 200 17 14 2 93.73 99.13 121.29
6 133.18132.75 169.33
7 143.04141.16 181.34
0 55.72 57.29 63.19
1 60.28 61.75 67.86

c-fat200-2 200 34 32 2 64.83 66.21 72.53
16 128.65128.65 137.88
17 133.21133.10 142.55
0 45.85 48.56 50.10
1 47.74 50.39 52.06

c-fat200-5 200 86 83 2 49.64 52.21 54.01
39 119.79119.72 126.41
40 121.69121.55 128.36
0 3.76 4.46 4.23
1 4.81 5.47 5.32

MANN-a9 45 41 40 2 5.86 6.48 6.41
18 22.69 22.70 23.84
19 23.74 23.72 24.93
0 5.17 13.43 13.19
1 6.22 14.43 14.27

MANN-a27 378 374 364 2 7.27 15.43 15.36
3 8.32 16.44 16.45
4 9.37 17.44 17.53
0 34.76 45.74 109.56
1 36.20 46.96 110.51

Keller4 171 124 102 2 37.65 48.19 111.47
51 108.46108.37 158.11
0 20.25 44.83 75.10
1 21.82 46.02 77.09
2 23.40 47.22 79.08

brock200-1 200 165 130 64 121.22 121.22 202.28
65 122.80122.41 204.26
0 37.48 69.19 161.29
1 40.12 70.87 165.49
2 42.75 72.54 169.69

brock200-2 200 114 78 33 124.54124.53 300.04
34 127.18126.21 304.24
0 29.41 57.79 113.35
1 31.51 59.23 116.37
2 33.61 60.66 119.39

brock200-3 200 134 99 43 119.58119.56 243.18
44 121.68121.00 246.20
0 24.94 51.73 91.73
1 26.76 53.05 94.15
2 28.59 54.38 96.58

brock200-4 200 147 112 54 123.58123.22 222.61
55 125.40124.54 225.03

TABLE 4.1. Computational experiments with the upper bounds (1.15), (1.16) and (1.18).
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