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1 Introduction

There exist two generalizations of classical complex analysis to higher dimensions using geometric algebras. The

first one is the theory of monogenic functions introduced R. Delanghe in [1] based on Euclidian metric, and

further developed in [2]. In [7] the solutions of the Dirac equation were obtained by considering functions of

axial type. This indeed gave rise to Vekua-type systems that was solved in terms of special functions.

The second one is the theory of hypermonogenic functions based on the hyperbolic model. The advantage

of hypermonogenic functions is that the positive and negative powers of hypercomplex variables are included

into the theory, which is not in the monogenic case. Hence elementary functions can be defined similarly

as in the classical complex case. In [4]-[6], H. Leutwiler and S.L. Eriksson introduced hypermonogenic and

κ−hypermonogenic functions, and studied some of their properties in Clifford analysis. Hypermonogenic func-

tions are generalizations of the monogenic functions and the κ−monogenic functions are extensions of the

hypermonogenic functions. When κ = n− 1, a κ−hypermonogenic function is a hypermonogenic function, and

when κ = 0, a κ−hypermonogenic function is a monogenic function.

The aim of this paper is to introduce a similar class of the axial two-sided monogenic functions presented

in [7] for the case of κ−hypermonogenic functions, and hence to provide new characteristics of the two-sided

κ−monogenic functions. In order to do that we structured the paper as follows: in the Preliminaries section

we recall some basic notions about Clifford analysis and κ−hypermonogenic functions. In Section 3, we study

the generalized Cauchy-Riemann -system for two-sided κ−hypermonogenic functions. In the last section we

investigate axial symmetry for the solutions of the two-sided κ−hypermonogenic system in terms of Bessel

functions.
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2 Preliminaries

2.1 Theory of monogenic functions based in the Euclidian metric

We consider the n-dimensional vector space Rn endowed with an orthonormal basis {e1, · · · , en}. We define the

universal real Clifford algebra C`0,n as the 2n-dimensional associative algebra which obeys the multiplication

rules eiej+ejei = −2δi,j . A vector space basis for C`0,n is generated by the elements e0 = 1 and eA = eh1 · · · ehk
,

where A = {h1, . . . , hk} ⊂ M = {1, . . . , n}, for 1 ≤ h1 < · · · < hk ≤ n. Each element x ∈ C`0,n can be

represented by x =
∑
A xAeA, xA ∈ R. The main involution is defined by 1′ = 1, e′j = −ej for all j = 1, . . . , n,

and we have (ab)′ = a′b′.

A function u : U → C`0,n has a representation u =
∑
A uAeA with C`0,n-valued components uA. Properties

such as continuity will be understood component-wisely. Consider the null solutions of the so-called generalized

Cauchy-Riemann or Dirac operator ∂x =
∑n
j=1 ej∂xj in Rn. More precisely, a C`0,n−valued function u defined

on a open set U ⊆ Rn, continuous and differentiable, is said to be left (resp. right) monogenic in U if ∂xu = 0

(resp. u∂x = 0). Furthermore, functions which are both left and right monogenic are called two-sided monogenic,

i.e., functions that satisfy ∂xu = 0 = u∂x. An important application of this class of functions is in the resolution

of many important systems such as the Riesz system, the Maxwell equations and the Hodge system. For more

details about Clifford analysis we refer [1, 2].

In this paper we study the theory related to case Rn−1. Let x ∈ Rn−1, f : Ω → C`0,n−1 a differentiable

function, where Ω ⊂ Rn−1. For the Dirac operator the so-called commutator relations are

∂x(xf) = −(n− 1)f − 2Ef − x∂xf,
(fx)∂x = −(n− 1)f − 2Ef − (f∂x)x,

where Ef =
∑n−1
j=1 xj∂xj

is the Euler operator and the Dirac operator is decomposed as ∂x = ∂x + en∂xn
=∑n

j=1 ej∂xj
+ en∂xn

.

One of standard class of monogenic functions are so called spherical monogenics. We denote by Pk,l(x) a

k-homogeneous monogenic polynomial with l-multivector values, i.e., ∂xPk,l(x) = Pk,l(x)∂x = 0, Pk,l(x)′ =

(−1)lPk,l(x) and EPk,l(x) = kPk,l(x). We will also consider the following formula presented in [7]

∂x(Pk,l(x)x) = (xPk,l(x))∂x = (−1)l(2l − n+ 1)Pk,l(x). (1)

Also if r = |x| and B is a real valued differentiable function, then ∂xB(r2, xn) = 2x∂1B(r2, xn).

Suppose that Pk(x), k ∈ N0, is a left monogenic homogeneous polynomial of degree k in Rn and with values in

the real Clifford algebra C`0,n. A remarkable class of monogenic functions are the so-called axial left monogenic

functions of degree k (see [9, 10]). These are left monogenic functions of the form
(
A(x0, r) + x

r B(x0, r)
)
Pk(x),

with A and B being R−valued and continuously differentiable functions depending on the two variables (x0, r).

The functions A and B satisfy the Vekua system (see [11]){
∂x0

A− ∂rB = 3k+m−1
r B

∂x0
B + ∂rA = 0

.

We point out that every left monogenic function u defined in a open set of Rn+1 invariant under SO(n) may be

written as u =
∑∞
k=0Mk, where Mk is an axial left monogenic functions of degree k (see [9]). In [7] the authors

introduced a similar class in the space of two-sided monogenic functions, which they called axial two-sided

monogenic functions.

2.2 Theory of hypermonogenic functions based on the hyperbolic metric

In the case of hypermonogenic functions we deal with the modified Dirac operator ∂xu + κ
xn
Qu, functions

f : Ω → C`0,n and Ω ⊂ Rn+1, where ′ is the main involution such that Q′f := (Qf)′ and Qu is given by the

decomposition u = Pu+Quen with Pu,Qu ∈ C`0,n. The functions satisfying the preceding equation are called

κ−hypermonogenic functions. In the case k = n− 1 they called hypermonogenic functions. The Dirac operator

is defined by ∂x = ∂x0
+ e1∂x1

+ · · · + en∂xn
and functions are with the paravector variable f = f(x) with

x = x0 + x1e1 + · · · + xnen. In this paper we consider theory, which based vector variables and derivates. In

this case we will talk hypergenic functions instead of hypermonogenic functions.
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3 Generalized Cauchy-Riemann -systems

Consider a functions f : Ω→ C`0,n. We may always write these functions on the form f = Pf + enQf , where

Pf,Qf : Ω→ C`0,n−1. In the hyperbolic function theory the fundamental operators are

M l
κf = ∂xf +

κ

xn
Qf, Mr

κf = f∂x +
κ

xn
Q′f.

These operators act on differentiable functions f : Ω → C`0,n and they are called modified Dirac operators. If

M l
κf = 0 (or Mr

κf = 0) a function is called left (or right) κ-hypergenic function. If M l
κf = Mr

κf = 0 is f called

two-sided κ-hypergenic . Let us first prove some formulae related to P and Q operators.

Proposition 3.1 If x ∈ Rn−1 and f : Ω→ C`0,n, then

(a) P (xf) = xPf and P (fx) = Pfx

(b) Q(xf) = −xQf and Q(fx) = Qfx

(c) P (enf) = −Qf and Q(enf) = Pf .

(d) P (enxf) = xQf and Q(enxf) = xPf

(e) P (enxfx) = xQfx and Q(enxfx) = xPfx.

Proof: All the properties follow from straightforward calculations. For example, for the second property we

have

xf = xPf + xenQf = xPf − enxQf, fx = Pfx+ enQfx.

From the previous equalities follows the second property. In a similar way we proceed for the other cases.

�

Theorem 3.2 (Generalized Cauchy-Riemann -system for two-sided κ-hypermonogenic functions)

If f = Pf + enQf is differentiable function then M l
κf = Mr

κf = 0 if and only if

∂xPf − ∂xnQf +
κ

xn
Qf = 0,

∂xnPf − ∂xQf = 0,

(Pf)∂x − ∂xnQ
′f +

κ

xn
Q′f = 0,

∂xnP
′f + (Qf)∂x = 0.

Proof: We compute

M l
κf = (∂x +

κ

xn
Q)(Pf + enQf) = ∂xPf − en∂xQf − ∂xnQf +

κ

xn
Qf.

Since enA = A′en, if A ∈ C`n−1, we have

Mr
κf = Mr

κ(Pf + enQf) = (Pf)∂x + en(Qf)∂x − ∂xn
Q′f +

κ

xn
Q′f.

Hence, we obtain

P (M l
κf) = ∂xPf − ∂xnQf +

κ

xn
Qf,

Q(M l
κf) = ∂xnPf − ∂xQf,

P (Mr
κf) = (Pf)∂x − ∂xnQ

′f +
κ

xn
Q′f,

Q(Mr
κf) = ∂xnP

′f + (Qf)∂x.

�

Let us also derive some formulae for modified Dirac operators.

Proposition 3.3 Let f : Ω→ C`0,n is a differentiable function. Then

3



(a) M l
κ(xf) = −(n− 1)f − 2Ef − xM l

κf ,

(b) Mr
κ(fx) = −(n− 1)f − 2Ef − (Mr

κf)x,

(c) M l
κ(enf) + enM

l
κf = −2∂xn

f + κ
xn
f ,

(d) Mr
κ(enf) + enM

r
κf = 2enf∂x + κ

xn
f ′.

Proof: We have

M l
κ(xf) = ∂x(xf) +

κ

xn
Q(xf)

= ∂x(xf) + en∂xn
(xf) +

κ

xn
Q(xf)

= −(n− 1)f − 2Ef − x∂xf + en∂xn
(xf)− κ

xn
xQf

= −(n− 1)f − 2Ef − xM l
κf.

In a very similar way

Mr
κ(fx) = −(n− 1)f − 2Ef − (Mr

κf)x.

We have also that

M l
κ(enf) = M l

κ(enPf −Qf) = ∂x(enf) +
κ

xn
Pf

= ∂x(enf) + en∂xn
(enf) +

κ

xn
Pf

= −en∂xf − ∂xn
f +

κ

xn
Pf,

and

enM
l
κf = en∂xf +

κ

xn
enQf = en∂xf − ∂xn

f +
κ

xn
enQf.

Combining the previous equalities we obtain

M l
κ(enf) + enM

l
κf = −2∂xnf +

κ

xn
f.

For the terms in the right-hand side of the last equality we have

Mr
κ(enf) = Mr

κ(enPf −Qf) = enf∂x +
κ

xn
P ′f

and

enM
r
κf = enf∂x +

κ

xn
enQ

′f,

which implies

Mr
κ(enf) + enM

r
κf = enf∂x +

κ

xn
P ′f + enf∂x +

κ

xn
enQ

′f = 2enf∂x +
κ

xn
f ′.

�

We look for solutions which are invariant around xn-axis, i.e., depend only coordinates (r, xn), where r = |x|.
Therefore we consider only the functions of the form

G = PG+ enQG, (2)

where

PG = A2(r2, xn)xPk,l(x) +A3(r2, xn)Pk,l(x)x,

QG = A1(r2, xn)Pk,l(x) +A4(r2, xn)xPk,l(x)x,

and Pk,l is k-homogeneous l-multivector valued spherical monogenic. We want to find the functions Ai such

that G is a two-sided κ-hypergenic. In order to proceed we need to prove the following technical lemmata.
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Lemma 3.4 If B = B(r2, xn) is an arbitrary differentiable function, then

∂x(BxPk,l(x)) = (BPk,l(x)x)∂x

=
(
− 2∂1B(r2, xn)r2 − (n+ 2k − 1)B(r2, xn)

)
Pk,l(x),

∂x(BPk,l(x)x) = (BxPk,l(x))∂x

= 2∂1B(r2, xn)xPk,l(x)x+ (−1)l(2l − n+ 1)B(r2, xn)Pk,l(x).

Proof: The commutator relations gives

∂x(BxPk,l(x)) = −(n+ 2k − 1)B(r2, xn)Pk,l(x)− 2∂1B(r2, xn)r2Pk,l(x).

Using formula (1) we obtain

∂x(BPk,l(x)x) = 2∂1B(r2, xn)xPk,l(x)x+ (−1)l(2l − n+ 1)B(r2, xn)Pk,l(x).

�

Lemma 3.5 If B = B(r2, xn) is an arbitrary differentiable function, then

∂x(B(r2, xn)xPk,l(x)x) =
(
− 2∂1B(r2, xn)r2 − (n+ 2k + 1)B(r2, xn)

)
Pk,l(x)x

+ (−1)l+1(2l − n+ 1)B(r2, xn)xPk,l(x),

(B(r2, xn)xPk,l(x)x)∂x =
(
− 2∂1B(r2, xn)r2 − (n+ 2k + 1)B(r2, xn)

)
xPk,l(x)

+ (−1)l+1(2l − n+ 1)B(r2, xn)Pk,l(x)x.

Proof: Using the commutator relation we have

∂x(xPk,l(x)x) = −(n− 1)Pk,l(x)x− 2E(Pk,l(x)x)− x∂x(Pk,l(x)x)

= −(n+ 2k + 1)Pk,l(x)x+ (−1)l+1(2l − n+ 1)xPk,l(x),

and similarly

(xPk,l(x)x)∂x = −(n+ 2k + 1)xPk,l(x) + (−1)l+1(2l − n+ 1)Pk,l(x)x.

Then we have

∂x(B(r2, xn)xPk,l(x)x) = ∂xB(r2, xn)xPk,l(x)x+B(r2, xn)∂x(xPk,l(x)x)

=
(
− 2∂1B(r2, xn)r2 − (n+ 2k + 1)B(r2, xn)

)
Pk,l(x)x

+ (−1)l+1(2l − n+ 1)B(r2, xn)xPk,l(x).

Similarly

(B(r2, xn)xPk,l(x)x)∂x = xPk,l(x)x∂xB(r2, xn) +B(r2, xn)(xPk,l(x)x)∂x

=
(
− 2∂1B(r2, xn)r2 − (n+ 2k + 1)B(r2, xn)

)
xPk,l(x)

+ (−1)l+1(2l − n+ 1)B(r2, xn)Pk,l(x)x.

�

Using these we may compute the following technical lemmata.

Lemma 3.6 If PG is as in above then

∂xPG = (PG)∂x =
(
− 2∂1A2(r2, xn)r2 − (n+ 2k − 1)A2(r2, xn)

+ (−1)l(2l − n+ 1)A3(r2, xn)
)
Pk,l(x) + 2∂1A3(r2, xn)xPk,l(x)x

Proof: We compute

∂xPG = (PG)∂x = ∂x(A2(r2, xn)xPk,l(x)) + ∂x(A3(r2, xn)Pk,l(x)x)

=
(
− 2∂1A2(r2, xn)r2 − (n+ 2k − 1)A2(r2, xn)

)
Pk,l(x)

+ 2∂1A3(r2, xn)xPk,l(x)x+ (−1)l(2l − n+ 1)A3(r2, xn)Pk,l(x)

=
(
− 2∂1A2(r2, xn)r2 − (n+ 2k − 1)A2(r2, xn)

+ (−1)l(2l − n+ 1)A3(r2, xn)
)
Pk,l(x) + 2∂1A3(r2, xn)xPk,l(x)x.
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�

We may also deduce that

P ′G = A2(r2, xn)x′Pk,l(x)′ +A3(r2, xn)Pk,l(x)′x′ = (−1)l+1QG,

and

Q′G = A1(r2, xn)Pk,l(x)′ +A4(r2, xn)x′Pk,l(x)′x′ = (−1)lQG.

In this case the generalized CR-system takes the form

∂xPG− ∂xnQG+
κ

xn
QG = 0, (3)

∂xnPG− ∂xQG = 0, (4)

∂xPG− (−1)l+1∂xnQG+ (−1)l+1 κ

xn
QG = 0, (5)

(−1)l+1∂xnQG+ (QG)∂x = 0. (6)

For Q-part we obtain the following symmetric formulae.

Lemma 3.7 If QG is as in above then

∂xQG = 2∂1A1(r2, xn)xPk,l(x)

+
(
− 2∂1A4(r2, xn)r2 − (n+ 2k + 1)A4(r2, xn)

)
Pk,l(x)x

+ (−1)l+1(2l − n+ 1)A4(r2, xn)xPk,l(x)

and

(QG)∂x = 2∂1A1(r2, xn)Pk,l(x)x

+
(
− 2∂1A4(r2, xn)r2 − (n+ 2k + 1)A4(r2, xn)

)
xPk,l(x)

+ (−1)l+1(2l − n+ 1)A4(r2, xn)Pk,l(x)x.

4 Two-sided κ-monogenicity

Now we write the preceding Cauchy-Riemann -system in component form using the formulas in above. After a

straightforward computation, equations (3) and (4) gives us the system

∂xn
A1(r2, xn)− κ

xn
A1(r2, xn) + 2∂1A2(r2, xn)r2,

+(n+ 2k − 1)A2(r2, xn)− (−1)l(2l − n+ 1)A3(r2, xn) = 0,

2∂1A1(r2, xn)− ∂xn
A2(r2, xn)− (−1)l(2l − n+ 1)A4(r2, xn) = 0,

2∂1A4(r2, xn)r2 + ∂xn
A3(r2, xn) + (n+ 2k + 1)A4(r2, xn) = 0,

∂xnA4(r2, xn)− κ
xn
A4(r2, xn)− 2∂1A3(r2, xn) = 0,

(7)

and equations (5) and (6) gives us the system

∂xnA1(r2, xn)− κ
xn
A1(r2, xn)− (2l − n+ 1)A2(r2, xn),

+(−1)l2∂1A3(r2, xn)r2 + (−1)l(n+ 2k − 1)A3(r2, xn) = 0,

2∂1A1(r2, xn)− (−1)l∂xnA3(r2, xn)− (−1)l(2l − n+ 1)A4(r2, xn) = 0,

2∂1A4(r2, xn)r2 + (−1)l∂xn
A2(r2, xn) + (n+ 2k + 1)A4(r2, xn) = 0,

∂xn
A4(r2, xn)− κ

xn
A4(r2, xn) + (−1)l+12∂1A2(r2, xn)+ = 0.

(8)

Hence, in order to obtain the conditions over A1, A2, A3, A4, such that G is two-sided κ-hypergenic, we need

to combine the systems (7) and (8). To do that we will need to split our study in two cases: when l is even and

when l is odd.
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4.1 The Case l = 2j

Supposing that l is even, systems (7) and (8) become, respectively, equal to

∂xn
A1(r2, xn)− κ

xn
A1(r2, xn) + 2∂1A2(r2, xn)r2,

+(n+ 2k − 1)A2(r2, xn)− (4j − n+ 1)A3(r2, xn) = 0,

2∂1A1(r2, xn)− ∂xnA2(r2, xn)− (4j − n+ 1)A4(r2, xn) = 0,

2∂1A4(r2, xn)r2 + ∂xn
A3(r2, xn) + (n+ 2k + 1)A4(r2, xn) = 0,

∂xnA4(r2, xn)− κ

xn
A4(r2, xn)− 2∂1A3(r2, xn) = 0,

(9)

and 

∂xnA1(r2, xn)− κ

xn
A1(r2, xn)− (4j − n+ 1)A2(r2, xn),

+2∂1A3(r2, xn)r2 + (n+ 2k − 1)A3(r2, xn) = 0,

2∂1A1(r2, xn)− ∂xn
A3(r2, xn)− (4j − n+ 1)A4(r2, xn) = 0,

2∂1A4(r2, xn)r2 + ∂xn
A2(r2, xn) + (n+ 2k + 1)A4(r2, xn) = 0,

∂xn
A4(r2, xn)− κ

xn
A4(r2, xn)− 2∂1A2(r2, xn) = 0.

(10)

The function G is two-sided κ-hypergenic if the correspondent equations of (9) and (10) can be solved at the

same time., i.e., if

2∂1A2(r2, xn)r2 + (n+ 2k − 1)A2(r2, xn)− (4j − n+ 1)A3(r2, xn),

= −(4j − n+ 1)A2(r2, xn) + 2∂1A3(r2, xn)r2 + (n+ 2k − 1)A3(r2, xn),

∂xn
A2(r2, xn) = ∂xn

A3(r2, xn),

∂xnA3(r2, xn) = ∂xnA2(r2, xn),

∂1A3(r2, xn) = ∂1A2(r2, xn).

(11)

From the third and the fourth equation of (11) we get

∂xn
(A3(r2, xn)−A2(r2, xn)) = ∂1(A3(r2, xn)−A2(r2, xn)) = 0,

and consequently A2(r2, xn)−A3(r2, xn) is constant. The first equation gives

2∂1(A2(r2, xn)−A3(r2, xn))r2 + (n+ 2k − 1)(A2(r2, xn)−A3(r2, xn))

+ (4j − n+ 1)(A2(r2, xn)−A3(r2, xn)) = 0,

i.e.,

A3(r2, xn) = A2(r2, xn). (12)

Combining (12) with system (9), we finally obtain that G is two-sided κ-hypergenic if and only if coefficients

satisfies the Vekua-type system

2∂1A2(r2, xn)r2 + ∂xnA1(r2, xn)− κ

xn
A1(r2, xn)

+2(n+ k − 2j − 1)A2(r2, xn) = 0,

2∂1A1(r2, xn)− ∂xn
A2(r2, xn)− (4j − n+ 1)A4(r2, xn) = 0,

2∂1A4(r2, xn)r2 + ∂xn
A2(r2, xn) + (n+ 2k + 1)A4(r2, xn) = 0,

2∂1A2(r2, xn)− ∂xn
A4(r2, xn) +

κ

xn
A4(r2, xn) = 0.

(13)

We look for solutions of the form Aq(r
2, xn) =

∑∞
i=0 r

2iAq,i(xn), where

∂1Aq(r
2, xn) =

∞∑
i=0

2ir2i−1Aq,i(xn), ∂xn
Aq(xn) =

∞∑
i=0

r2iA′q,i(xn). (14)

7



Substituting (14) in system (13) and making some calculations, we get

∞∑
i=0

r2i
[
A′1,i(xn)− κ

xn
A1,i(xn) + 2(2i+ n+ k − 2j − 1)A2,i(xn)

]
= 0,

∞∑
i=0

r2i
[

4i

r
A1,i(xn)−A′2,i(xn)− (4j − n+ 1)A4,i(xn)

]
= 0,

∞∑
i=0

r2i
[
A′2,i(xn) + (4i+ n+ 2k + 1)A4,i(xn)

]
= 0,

∞∑
i=0

r2i
[

4i

r
A2,i(xn) +

κ

xn
A4,i(xn)−A′4,i(xn)

]
= 0.

(15)

Since all the coefficients should be equal to zero, we get the first order system

A′1,i(xn)− κ

xn
A1,i(xn) + 2(2i+ n+ k − 2j − 1)A2,i(xn) = 0,

4i

r
A1,i(xn)−A′2,i(xn)− (4j − n+ 1)A4,i(xn) = 0,

A′2,i(xn) + (4i+ n+ 2k + 1)A4,i(xn) = 0,
4i

r
A2,i(xn) +

κ

xn
A4,i(xn)−A′4,i(xn) = 0.

(16)

Using the techniques of ordinary differential equations [8] and properties of special functions [3], we obtain our

solutions of system (16) in terms of Bessel functions, namely

A1(xn) =
r(2i(2 + 8j − 2n)−Ar) x

k+1
2

n

8i2

[
B J k−1

2
(
√
Axn) + C Y k−1

2
(
√
Axn)

]
,

A2(xn) = −
√
A r x

k+1
2

n

4i

[
B J k+1

2
(
√
Axn) + C Y k+1

2
(
√
Axn)

]
,

A4(xn) = x
k+1
2

n

[
B J k−1

2
(
√
Axn) + C Y k−1

2
(
√
Axn)

]
,

where B,C are arbitrary real constants and A = 4i(n+2k+1+4i)
r . Hence, our functions Aq take the form

A1(r2, xn) =

∞∑
i=0

(2i(2 + 8j − 2n)−Ar) r2i+1 x
k+1
2

n

4i2

[
B J k−1

2
(
√
Axn) + C Y k−1

2
(
√
Axn)

]
,

A3(r2, xn) = A2(r2, xn) = −
∞∑
i=0

√
A r2i+1 x

k+1
2

n

4i

[
B J k+1

2
(
√
Axn) + C Y k+1

2
(
√
Axn)

]
,

A4(r2, xn) =

∞∑
i=0

r2i x
k+1
2

n

[
B J k−1

2
(
√
Axn) + C Y k−1

2
(
√
Axn)

]
.

Remark 4.1 In an analogous way, this case can be studied for solutions of the type Aq(r
2, xn) =

∑∞
i=0 xnAq,i(r

2).

4.2 The Case l = 2j + 1

Supposing that l is odd, systems (7) and (8) become, respectively, equal to

∂xn
A1(r2, xn)− κ

xn
A1(r2, xn) + 2∂1A2(r2, xn)r2

+(n+ 2k − 1)A2(r2, xn) + (4j + 2− n+ 1)A3(r2, xn) = 0,

2∂1A1(r2, xn)− ∂xnA2(r2, xn) + (4j + 2− n+ 1)A4(r2, xn) = 0,

2∂1A4(r2, xn)r2 + ∂xn
A3(r2, xn) + (n+ 2k + 1)A4(r2, xn) = 0,

∂xnA4(r2, xn)− κ

xn
A4(r2, xn)− 2∂1A3(r2, xn) = 0,

(17)

and 

∂xnA1(r2, xn)− κ

xn
A1(r2, xn)− (4j + 2 + n+ 1)A2(r2, xn)

−2∂1A3(r2, xn)r2 − (n+ 2k − 1)A3(r2, xn) = 0,

2∂1A1(r2, xn) + ∂xn
A3(r2, xn) + (4j + 2− n+ 1)A4(r2, xn) = 0,

2∂1A4(r2, xn)r2 − ∂xn
A2(r2, xn) + (n+ 2k + 1)A4(r2, xn) = 0,

∂xn
A4(r2, xn)− κ

xn
A4(r2, xn)− 2∂1A2(r2, xn) = 0.

(18)
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The function G is two-sided κ-hypergenic if the correspondent equations of (17) and (18) can be solved at the

same time., i.e., if

2∂1A2(r2, xn)r2 + (n+ 2k − 1)A2(r2, xn) + (4j + 2− n+ 1)A3(r2, xn)

= −(4j + 2− n+ 1)A2(r2, xn)− 2∂1A3(r2, xn)r2 − (n+ 2k − 1)A3(r2, xn),

−∂xn
A2(r2, xn) = ∂xn

A3(r2, xn),

∂xnA3(r2, xn) = −∂xnA2(r2, xn),

−∂1A3(r2, xn) = ∂1A2(r2, xn),

(19)

From the third and the fourth equation of (19) we get

∂xn
(A3(r2, xn) +A2(r2, xn)) = ∂1(A3(r2, xn) +A2(r2, xn)) = 0,

and consequently A2(r2, xn) +A3(r2, xn) is constant. The first equation gives

2∂1(A2(r2, xn) +A3(r2, xn))r2 + (n+ 2k − 1)(A2(r2, xn) +A3(r2, xn))

+ (4j + 2− n+ 1)(A2(r2, xn) +A3(r2, xn)) = 0,

i.e.,

A3(r2, xn) = −A2(r2, xn). (20)

Combining (20) with system (17), we finally obtain that G is two-sided κ-hypergenic if and only if coefficients

satisfies the Vekua-type system

2∂1A2(r2, xn)r2 + ∂xnA1(r2, xn)− κ
xn
A1(r2, xn)

+2(n+ k − 2j − 2)A2(r2, xn) = 0,

2∂1A1(r2, xn)− ∂xn
A2(r2, xn) + (4j − n+ 3)A4(r2, xn) = 0,

2∂1A4(r2, xn)r2 − ∂xn
A2(r2, xn) + (n+ 2k + 1)A4(r2, xn) = 0,

2∂1A2(r2, xn) + ∂xnA4(r2, xn)− κ
xn
A4(r2, xn) = 0.

(21)

As we had done for the even case, we look for solutions of the type Aq(r
2, xn) =

∑∞
i=0 r

2iAq,i(xn), where

∂1Aq(r
2, xn) =

∞∑
i=0

2iu2i−1Aq,i(xn), ∂xn
Aq(r

2, xn) =

∞∑
i=0

r2iA′q,i(xn). (22)

Substituting (22) in system (21) and making some calculations, we get

∞∑
i=0

r2i
[
A′1,i(xn)− κ

xn
A1,i(xn) + 2(2i+ n+ k − 2j − 2)A2,i(xn)

]
= 0,

∞∑
i=0

r2i
[

4i

r
A1,i(xn)−A′2,i(xn) + (4j − n+ 3)A4,i(xn)

]
= 0,

∞∑
i=0

r2i
[
−A′2,i(xn) + (4i+ n+ 2k + 1)A4,i(xn)

]
= 0,

∞∑
i=0

r2i
[

4i

r
A2,i(xn)− κ

xn
A4,i(xn) +A′4,i(xn)

]
= 0.

(23)

Since all the coefficients should be equal to zero, we get the first order system

A′1,i(xn)− κ

xn
A1,i(xn) + 2(2i+ n+ k − 2j − 2)A2,i(xn) = 0,

4i

r
A1,i(xn)−A′2,i(xn) + (4j − n+ 3)A4,i(xn) = 0,

−A′2,i(xn) + (4i+ n+ 2k + 1)A4,i(xn) = 0,
4i

r
A2,i(xn)− κ

xn
A4,i(xn) +A′4,i(xn) = 0.

. (24)

Using the techniques of ordinary differential equations [8] and properties of special functions [3], we obtain our

solutions of system (24) in terms of Bessel functions, namely

A1(xn) =
r(4i(n− 3− 4j) +Ar) x

k+1
2

n

8i2

[
B J k−1

2
(
√
Axn) + C Y k−1

2
(
√
Axn)

]
,

A2(xn) =

√
A r x

k+1
2

n

4i

[
B J k+1

2
(
√
Axn) + C Y k+1

2
(
√
Axn)

]
,

A4(xn) = x
k+1
2

n

[
B J k−1

2
(
√
Axn) + C Y k−1

2
(
√
Axn)

]
,
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where B,C are arbitrary real constants and A = 4i(n+2k+1+4i)
r . Hence, our functions Aq take the form

A1(r2, xn) =

∞∑
i=0

(4i(n− 3− 4j) +Ar) r2i+1 x
k+1
2

n

8i2

[
B J k−1

2
(
√
Axn) + C Y k−1

2
(
√
Axn)

]
,

A2(r2, xn) =

∞∑
i=0

√
A r2i+1 x

k+1
2

n

4i

[
B J k+1

2
(
√
Axn) + C Y k+1

2
(
√
Axn)

]
,

A3(r2, xn) = −
∞∑
i=0

√
A r2i+1 x

k+1
2

n

4i

[
B J k+1

2
(
√
Axn) + C Y k+1

2
(
√
Axn)

]
,

A4(r2, xn) =

∞∑
i=0

r2i x
k+1
2

n

[
B J k−1

2
(
√
Axn) + C Y k−1

2
(
√
Axn)

]
.

Remark 4.2 In an analogous way, this case can be studied for solutions of the type Aq(r
2, xn) =

∑∞
i=0 xnAq,i(r

2).
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