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Automated Data Extraction and Analysis for Arrayed Primer
Extension Images

Abstract
The Arrayed Primer Extension (APEX) method is used to detect Single-Nucleotide Polymor-
phism (SNP), deletion and insertion based diseases. The main method consists of washing
different flourophores over oligonukleotites and then analysing which flourophore attached to
identify the oligonukleotites. A crucial step in the APEX method is analysing the captured light
from the flourophores when a laser excites them. The current method of analysing this data
requires extensive manual review.

This thesis describes a method of automating the data grid detection in the captured images
which is currently a manual task. The second part describes the application of predictive meth-
ods for the data analysis of the four captured images and comparisons to the already existing
clustering method.

CERCS: T111 Imaging, image processing

Keywords: KLD, SVM, LBP, Clustering

Praimerekstensioon Oligonukleotiidmaatriksi Piltidel Olevate
Andmete Tuvastuse ja Analüüsi Automatiseerimine

Lühikokkuvõte
Praimerekstensioon oligonukleotiidmaatriks (APEX) meetodit kasutatakse ühenukleotiidilisi
polümorfismil (SNP), deletsioonil ja insetsioonil põhinevate haiguste tuvastamiseks. APEX
meetodi põhiidee seisneb oligonukleotiidide pesemises erinevate fluorestseerivate markeritega
ning oligonukleotiidide määramiseks analüüsitakse markerite kinnitumist. Kinnitunud markerite
tuvastuseks kasutatakse fluorestsentse ergutavad lasereid. Kriitiline etapp APEX meetodis on
laseri abil tehtud piltide analüüs, mis hetkel tehakse manuaalselt.

See tees koosneb kahest peamisest osast. Esimeses osas on välja toodud meetod, mis au-
tomatiseerib pildil olevate andmete ruudustiku asukoha määramist. Teises osas analüüsitakse
erinevaid SVM baasil ennustavaid mudeleid, mis suudavad vastuseid paremini määrata, kui het-
kel kasutuses olev meetod.

CERCS: T111 Pilditehnika

Märksõnad: KLD, SVM, LBP, Klusterdamine
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1 Introduction

The APEX method is used to detect different types of genetic mutations and polymorphisms
caused by SNP, deletion and insertion [27]. A detailed description of the APEX method itself
can be found in section 1.1. One step in the APEX process generates grayscale High-Dynamic-
Range (HDR) images that contain a small dot grid, which have to be analysed by trained pro-
fessionals. Unfortunately this is very time consuming as the grids have to first be assigned and
adjusted manually. Because the current programs meant to aid in the labeling process are not
very accurate, the tests have to also be manually reviewed.

The biggest problem with the generated images for automated systems is how hard it is to
actually detect and align the data so each cell in the grid can be analysed separately. The images
vary both in resolution and luminosity, and the background noise can be so overpowering that
even aligning the grid manually can be a difficult task. The grids do have specific corner markers
meant to aid in the detection, but in almost half of the cases, some of the markers are either
indistinguishable from noise or just missing entirely.

There are other methods out there that do both dot pattern [8, 13, 34] and circular dot de-
tection [6], but those methods either require the grid to contain most of its dots or all of the
aiding markers. Sadly neither of these criteria can’t be guaranteed in this case, as part from
often missing the corner markers, the images rarely have more than 40% of the dots detectable
on a single image.

Leaving the dot grid detection aside, the analysis of the data may seem like a simpler task,
but this is not the case. Because of the background noise being unique for each image, the
overall values of each dot varies quite significantly. Coupled with the fact that some dots in
particular act differently from others, with much higher or lower thresholds than normal, makes
the manual assignment of thresholds a fruitless task.

Traditionally the most successful methods applied in similar cases have been manually ad-
justed clustering algorithms. [19,29] Clustering has provided reasonable results for tools like the
MACGT which could provide accuracy of around 98% and even up to 99.5% with adjusted con-
fidence measures [33]. There also exist some methods that employ supervised learning based
methods like GetGenos [14] which review the quality of primer extension 2-color fluorescent
reactions. However, the methods mentioned are not plagued by large amounts of noise, so the
quality measures there can focus more on the circularity of the dots and just discard those that
are not.

Because the main problem in this case is the classification of dots in a noisy image and not
the actual data behind it, similarities can even be drawn with methods which try to gauge the
quality of ball grid array solder joints on printed circuit boards [17].

This thesis presents two main parts, the first one employs a method which automatically
locates and calculates the translation, rotation and scaling of a fixed size dot grid array in the
image with error corrections. This allows for the manual process of grid alignment to be com-
pletely automated even in images with high noise.

The second part tackles the problem of predicting the dot values through the use of clustering

7



Figure 1.1: Illustration of the APEX reaction where DNA fragments are annealed to a previously
designed chip(ab). A solution of terminator nucleotides with flourecent markers is left to bind
with the oligonukleotites(c). After the reaction the rest of the markers and DNA fragments are
washed off(d) and a laser is used to excite the flourophores(e).

and trained Support Vector Machine (SVM)’s. Several variations in input data are tested and
compared against each other, with the best being compared against the existing method.

1.1 APEX method brief
Arrayed Primer Extension (APEX) is a method in which complimentary oligonukleotites are
immobilised on a test glass surface. The test sample DNA is then amplified using Poly-
merase Chain Reaction (PCR), digested enzymatically and hybridisized with the oligonuk-
leotites. A solution of four dye-labeled fluorescent marked terminators (ddATP, ddCTP, ddGTP
and ddUTP [25]) are left to bind with the complementary ends of the oligonukleotites. [18, 21,
30] Four different dye terminators are used which allows for simultaneous evaluation of possi-
ble nucleotide changes. [27] The terminator solution is then washed off and the oligonukleotites
are exited using 4 lasers reflecting off the test glass. [32]

The 4 lasers used in Genorama R© QuattroImageTM [20] are 635 nm Diode, 594 nm DPSS,
532 nm DPSS and 473 nm DPSS, corresponding to the four fluorescent markers.

The exited flourophores are recorded in four images corresponding to the four lasers using a
cooled digital CCD camera system with a resolution of 2184×1472 with each pixel representing
a length of 6.8 µm. The four captured images are then analysed and compared to previous
results in order to reduce interference from defective grid locations. The results of each test are
then matched with a database with the corresponding translations for each of the mutations.

1.2 Current image analysis
The method currently in use for analyzing the four test images consist of loading the data into
GenoramaTM 4.5 genotyping software [20] which illuminates and displays the HDR image data.
The grid is then placed on the images manually by marking each of the four corners and then an
automatic analysis predicts most of the outputs for each of the data points using a customised
clustering algorithm. [31]

The analysis program does not consider the previous test results of the corresponding matrix
positions but only the unorganized values of the current test. Because of this, the test results
lose accuracy when dealing with abnormal data points which routinely should have higher or
lower threshold values to be considered positive or negative.

8



Each of the test results have to be reanalyzed by a trained professional in order to elimi-
nate mislabeled results, because the current automated method is not accurate enough for full
automation.
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2 Acquired data

All of the image and label data was acquired from Asper Biotech for research purposes only.
The files corresponding to 500 tests were generated over a 4 year time-span starting from 2012.
The data is unordered outside of the year it was made in and does not contain any information
that could tie them to the original patients. During the initial data processing, the names of the
tests were set as unique numeric variables, because of similarly named files.

2.1 Image data description
The image data is in the form of raw 16 bit uncompressed monochrome images that have an
average size of 640 × 817 with σx = 70.1 and σy = 59.5. The bit depth makes analysing
the images by hand very difficult without the use of proper illumination enhancement methods.
Each of the images contain a 24 × 16 dot grid of data with an unknown location, size and
rotation. Generally the size and rotation of the grids varies very little. The datapoints in the grid
come with corresponding duplicate pair dots next to the original on the X axis. The duplicates
are there to counteract the effect of noise on the final evaluation. The grid itself comes with
4 corner markers that are always set to give a positive output along with their own pair dots.
For each test the final 36 datapoint locations are empty, with the corner markers taking up 4
datapoint locations each. This means each test contains 664 evaluatable data points where each
of the points can only occupy one binary state.

Due to human error or heavy noise, the corner dots are not always apparent and the bottom
corner markers are often completely missing from the dataset.

The borders of the data points rarely have sharp transitions due to background noise. They
also have varying diameters of about 6− 20 pixels depending on how the edge is defined as the
illumination of the dots is inconsistent. The distance between each dot is 19 − 25 pixels ( The

Figure 2.1: (a) is a dataset image converted to have a depth of 8 bits. (b) has had its illumi-
nation enhanced using Singular Value Equalization and (c) is enhanced using Discrete Wavelet
Transform and Singular Value Decomposition [10, 11].
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Figure 2.2: Examples of noise found in the data images. (a) contains an entire dataset com-
pletely hidden behind heavy amounts of pepper noise. The 2 images in (b) show the 2 most
common types of background anomalies. (c) and (d) are very common examples of shadow
and bleed noise respectively. The final 2 images in (e) show larger anomalies which are less
common than other types of noise.

distance only varies between different tests ) and the rotation of the grids doesn’t exceed ±10◦.

2.1.1 Noise
Each of the images contain a substantial amount of noise which can be categorized into 5 sepa-
rate groups:

• Pepper noise, if the cleaning solution has been contaminated or the wrong one is used.
This type of noise is very common and can have a devastating impact on the dot grid as
seen in Fig. 2.2a.

• Background anomalies, where the entire background of the test glasses have either a
gradient or underlying texture.

• Shadow noise in which duplicates of very vibrant data points carry over to neighboring
matrix positions when the cleaning solution has been over-saturated.

• Bleed noise, where very vibrant data points bleed their values over to neighboring cells.

• Larger anomalies like small dust particles, hair follicles or unknown streaks in the
dataset. This type of noise is very uncommon relative to the other types but like in Fig.
2.2e it can make several positions in the dataset completely unreadable.
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2.2 Evaluation data description
All of the acquired test images also have their corresponding results which have been manually
reviewed by a trained professional. The result data is separated into 4 files, separated by year,
with the tests from 2012 been distributed into the data files of 2011 and 2013.

The columns in each of the files represent a single test and each of the rows represent the
index of a cell in the grid starting from 1. Each cell in the results table contains a string with a
separating forward slash which denotes whether it is the odd or even Y index respectively.

The results themselves are as different combinations of the charactersA, T,G orC including
none which is represented as a ”−”. In some cases the output cell contains an exclamation mark.
The exclamation is a leftover from the original software predictions as it denotes locations in
the data where the result is different from the expected, notating a mutation. As some of the
exclamation marks have been deleted in the manual evaluation process, these can be discarded
as it lacks any effect on the result.

The order of the characters in each of the cells does not have an effect on the meaning but
the preferred order for the sake of consistency is [A,C,G, T ].
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3 Data extraction

3.1 Image cleanup

For all of the following functions, the base image will be annotated as Ib.
In order to remove high frequency noise and reduce the amount of small pepper noise, a

small Pillbox filter is applied over the image. By applying a threshold with the 95th percentile,
a binary mask called I t is created where most of the low values along with the background have
been removed.

I t =

{
1, if ib > Ib95th
0, Otherwise

ib ∈ Ib (3.1)

Using Matlabs built in regionprops function, the centers of white circular blobs in I t are
located. The array of those center points will be denoted as D.

For each of the found points, a vector is calculated from one point to another.
−→vij = di − dj {di, dj} ∈ D (3.2)

In order to reduce the amount of noisy dots, all points that do not have a pair dot are dis-
carded. In order to accomplish this, all of the vectors calculated in function 3.2 with 19 <
||−→vij|| < 25 and −10◦ < θ−→vij < 10◦ are added to a new vector array which will be denoted as
~G, the rest will be discarded. The original image is then rotated by −θ~g ~g = µ ~G, which will
align all of the data for further processing.

Two new binary masks are created on the rotated image with the threshold values of the 95th
percentile and 99th percentile with the aim of both increasing the amount of and recalculating
the previous datapoints. For the two new masks, the the center points are located using the same
method as before. The points that form a vector with 19 < ||−→vij|| < 25 and −3◦ < θ−→vij < 3◦

are then added to filtered point arrays which will be called P95 and P99 representing the data in
the 95th percentile and 99th percentile threshold images respectively. The vectors themselves
that fulfill those requirements will be added to

−→
G95 and ~G99 respectively, the union of those

vectors will be annotated as ~G =
−→
G95 ∪

−→
G99. The two point arrays are then merged together

into P ⊆ P95 ∪ P99 so that @pa, pb ∈ P,
−−→
papb < 0.7 · ||−→µG||. In order to reduce the amount of

outliers, points pa where @pb ∈ P,
−−→
papb < 9 · ||−→µG|| are removed from P .

The impact of these prunings can be seen in Fig. 3.1 where the image (a) contains all of the
points in P95 ∪ P99 and the image (b) contains the points in the final P .

3.2 Grid alignment
After the original image has been cleaned and some point locations in the dot matrix have been
located, a grid must be placed on the dot matrix in order to isolate the points into separate cells.

13



Figure 3.1: All of the raw detected centers of each blob in the image are shown in (a), while
(b) depicts the same image but in this case, all detected points that don’t fulfill the pair criteria
or are classified as outliers have been removed. Both of the images have already been rotated
using θ~g.

This will allow for comparisons between different point areas based on the point index when
using local binary pattern (Local Binary Pattern (LBP)) or local histograms based methods
[3, 12]. This will also be further needed when locating the actual data point locations for the
sampling of center values. In order to place the grid on the dot matrix, 3 separate methods
are proposed and tested. The first method approached the grid placement as straight forward
bounding box problem while the other two apply more complex approaches.

3.2.1 Bounding boxes
In order to place the grid on the dot matrix, two bounding boxes are applied over the points of
P with the first bounding box receiving the minimum and maximum X and Y values from P
as the bounding area. By discarding points with the 3 highest and lowest X and Y values in P
a second bounding box is also created with the intent of reducing the effect of any remaining
tilt in the dot grid. The average of these 2 bounding boxes is then used to create the final
bounding box for the grid. The grid itself is sectioned evenly with each cell taking the size
of Px

24
× P y

16
{P x, P y} = |~h| where ~h is the vector from one corner of the bounding box to

another.

3.2.2 Image alignment
A less straight forward approach for finding the grid location in the image consisted of using a
combination of linear and non-linear registration transformations, more specifically the Mathlab
function called imregtform. The imregtform function compares 2 similar images and returns
the translation, rotation and scaling of the second image for it to fit on the first image. The goal
of this method is to to align a perfect dot grid onto the image so the transformation of the dot
grid in the image could be calculated.

Firsly a black image is created and all of the pixel locations described in P are set to single
white values. For the second image a black image is populated with a uniform grid of white
points corresponding to the data grid size of 24× 16. All of the points in the second image are
also represented as single dots with the distance between each point being 21 pixels.

14



The images are then matched together and with the transformation parameters gained from
the second images relation to the first, the dot grid location of the first image is defined. This
further allowed a grid to be placed on the image using the same formula as described in the
bounding box method in order to define cell sizes.

A secondary method using imregtform involved placing a second ideal grid image on top
of the binary mask of the image. For this method the diameters of the points in the ideal grid
image are set to be 7 pixels.

3.2.3 Density based grouping
A Density based method is also applied in order to place the grid on top of the dot matrix in the
image.

Two arrays are first created from the point array as {XP , YP} = P with each only containing
point values for a single axis. The values in those arrays will be defined as XP = {xi} i ∈ I ,
similarly for YP for the following formulas. Because these arrays inherently contain a side view
of the dot grid, clusters could be formed which represent the cell center locations for the grid.

Due to the nature of the points having a small appearance rate and the possibility of contain-
ing noise, the number of possible clusters remained an unknown and can not be fixed. Because
of this, traditional clustering methods like K-means can not be applied to separate the groups.
The clumps are instead separated by using an iterative method on both of the arrays by using
the average distance between neighboring points.

Firstly two arrays Cx = {x0} and Ax = {} are defined and the values in XP are iterated
through using the following function so that k ∈ I ∩ {i0}′.{

Cx = Cx_xk, if xk − xk−1 < t

Ax = Ax_µCx ;Cx = {xk}, Otherwise
(3.3)

The value t denotes a maximum distance threshold, usually set to 0.5 · ||µ ~G|| for the best
results. The average distance of these clumps is then calculated to get the grid cell size using

dx =
1

|Ax|

n−1∑
i=1

Ax
i − Ax

i+1 , (3.4)

and the average starting location of the grid is calculated as

lx =
1

|Ax|

n∑
i=1

Ax
i mod dx . (3.5)

In a situation where the average location of the grid should be near 0, which can be detected
when the values of (Ax

i mod dx) in the formula 3.5 are distributed near 0 and dx but not dx

2
. The

point locations are moved by a quarter of the average distance and lx is recalculated. 0.25dx is
then subtracted from the output to get the real average grid location. Otherwise the calculated
average starting location value will be unreliable.

All of these functions are also applied to YP to find the Y axis equivalents. The point {lx, ly}
will then denote the starting point of the grid and the vector {dx, dy}will be the diagonal of each
cell in a grid over the entire image.

Next a 24 × 16 grid is defined with the same size parameters and iterated over the entire
larger grid to find the best fit. The best fit will be where most of the data points are either inside
of the grid or less than ||{d

x,dy}||
2

away from its outer boundary.
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3.3 Point location
After the grid has been successfully placed over the dot matrix, each dot is isolated into its own
individual cell, which will be notated as C = {cij} ∈ Rmn in the following formulas. Before
the center values of the dots in each cell can be sampled, the dots have to be first located with
better accuracy. In order to achieve this, three different methods are proposed and tested.

3.3.1 Averaged maximum
The first method used to locate the centers of the dots in each cell relies on the maximum values
inside the cell.

A Gaussian blur filter is applied over the entire cell in order to remove smaller pepper noise
or sharp bleed noise. The borders of the cell are padded with replicate padding in order reduce
the influence of the filter on the result itself. With zero padding, constant value padding or no
padding, the result would always end up near the center of the cell. The pixel location of the
highest value in the image is then located and sampled, representing the point value of the dot.
The average value of the background is also sampled as a reference.

3.3.2 Circle Hough Transform
Circle Hough Transform (CHT) is a commonly used method for detecting circular patterns with
a fixed or range limited radii in image data [5]. One of its better features is the ability to detect
circular patterns even when they are severely occluded or covered by noise [9].

It is applied using the Mathlab function called imfindcircles with the intent of locating the
circular dot locations in each cell. The specific type of CHT used is the Phase Coding variant
as it performed better than other alternatives. [5, 37] If a circle is detected, its center is sampled
as the dot value and the average background value is sampled as the reference. If no circular
pattern is detected in the cell, the the dot value is equalized with the reference.

In practice the CHT method proves to be very unreliable when detecting circles with very
small radii which in this case is often 2 − 6 pixels. Because of this, the cells are re-sized to be
5× larger than the original and a Gaussian blur is applied over the newly re-sized cells.

3.3.3 Kullback–Leibler divergence
The final method relies on the inherent shape of the dots, as they are very similar to a normal
distribution. Because of noise often present in the cells, the average value can not be used to
find the mean of the distribution. Instead, Kullback–Leibler Divergence (KLD) which measures
the difference between two probability distributions, is used to find the best fit for a manually
defined normal distribution [16]. The mean of the manually defined distribution can then be
used as point center.

Two side view arrays of the cells contents are made as the average values of the cell in both
the X and Y axis as Cx = {µCj i} , similarly for Cy. KLD is then applied to these arrays to
measure the difference between the array and a normal distribution Q(x). Q(x) is then iterated
over Cx as Ql = {Q(x+ l)} l ∈ Rm until the smallest difference value is found. Because the
mean of the iterating normal distribution is equal to the iterator, it is used as the exact center of
the dot in an axis.

DKL(C
x||Ql) =

∑
i

Cx
i

˙log(
Cx

i

Ql
i

) (3.6)
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Where in min{DKL(C
x||Ql)}, l defines the location of the dot in the X axis. The same

method is applied to Cy which will yield the Y coordinate of the dot. From the calculated dot
location, a 3x3 grid is sampled and averaged to record the dot value within the cell. For the
reference, the average value of the entire cell is also sampled.

3.3.4 Noisy point elimination
In order to eliminate noisy or unreliable points in the dataset, the positions of each calculated
point are compared to their corresponding pair dots. The pair dots are located in the neighboring
cell on the X axis. If their positions within their respective cells differ more than 0.36 · ||µ ~G||,
the sampled dot values of both are equalized with their respective background values. In order
to minimize the amount of data being passed on, the average values of both the background and
dot sample for each pair are used instead of the individual cell values.
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4 Data manipulation

The previous methods produce a 3D matrix where the first two dimensions depict the dot lo-
cation in the grid and the third dimension denotes whether the values is the dot value or its
reference. Because each teat consists of 4 images, there matrices can be combined into a single
4D matrix where the fourth dimension describes the image in question. For the clustering based
methods, the data can retain its 4 separate dimensions. In order to correctly label the results for
the SVM, the data must first be re-sized into a single dimensional array for each test.

The matrix is reordered so that the values of each of the four images are next to each other
so the fourth dimension can be removed. Next the third dimension is removed by making first
value the dot values and the second one the reference values for each image. Finally the cells
of the X axis are ordered together under every Y index. The matrix is re-sized in this order,
because it allows for values in the matrix to be easily accessed.

4.1 Grid selection size
In order to reduce the amount of data going into training each SVM, which may cause over-
fitting issues. Different grid sizes of neighboring cells are used to generate the input data for
the SVM’s.

When selecting grid sizes, pair dots are always present in the selection process of each cell,
This means cell count in the X axis can only be an even number. Because the data presented in
the evaluated test files is grouped into pairs of two vertically, it is more convenient for the cell
count in the Y axis to also increment in even numbers if the count goes over 2.

The smallest grid size being tested is a 2×1 which only contains the information for a given
dot and its pair dot, resulting in an array of length 8. The other sizes are 6 × 4, 10 × 6 and
24× 16, where the last one contains the entire grid.

4.2 Local Binary Pattern
Local Binary Pattern (LBP) [15] and Rotation-Invariant Local Binary Pattern (RI-LBP) [1, 22]
are also applied to generate the data for each of the cells. LBP was selected both because of the
methods simplicity and tolerance to illumination changes. The Rotation-Invariant version was
mainly chosen in order to disregard the angle of noise in the data. As the sought after data is in
a circular shape, RI-LBP can be better suited for distinguishing it from noise. [23, 24]

The method consists of applying the LBP filters on each of the cells individually in order
to obtain information on the gradients within those cell. An array of pixel value occurrences is
then constructed from the filtered cells contents.

In order to have a comparison with the paired cell, two arrays are created. The first array
contains an average of the two occurrence value arrays and the other contains the mean absolute
error between the two.
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Figure 4.1: The data isolated from the input image in 8bit depth(a), illuminated(b), illumination
applied separately for each cell(c) and with LBP(d)

In order not to overwhelm the SVM’s with very long input arrays, only the values of the
current cell are used to train the corresponding models. This means the SVM do not have any
reference data from the surrounding cells when making their decisions.

With the intent of evaluating the LBP results, two other methods are also applied. One of
those uses the raw cell value occurrences and the other applies Discrete Wavelet Transform and
Singular Value Decomposition to illuminate the cell before sampling the occurrences [11].
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5 Prediction

Each of the dots in the tests have different threshold values, all dependant on the values of the
neighboring cells, the noise in the image, the index of the cell and the test image itself. Because
of this manually assigning threshold values for each cell would be an overwhelmingly arduous
task. Instead, both supervised and unsupervised learning techniques are applied to correctly
predict the binary data of each test.

For the unsupervised methods, two well known clustering algorithms are applied. This is
done so because the existing method uses a customized clustering algorithm in order to label
the data.

Because of the nature of the data and the fact that there is not enough of it, more complex
supervised learning methods like neural networks are not used to create a predictive model of
this data-set. Instead, SVM are used as their problem with large data-sets can be avoided in this
case. [28, 36]

5.1 Clustering
K-means [4] and Fuzzy C-means (FCM) [7] clustering are also applied on the dot and back-
ground reference values in order to create a baseline for the SVM based models. The clustering
techniques are mainly applied in order to see if traditional unsupervised learning methods can
produce acceptable results with this seemingly simple classification problem.

For the K-means clustering, the number of clusters is set to 2 and for each cell the dot and
background reference values of all the cells in the grid are set as the two dimensions. Looking
at the data distribution of those 2 dimensions implies that simple clustering might not be able
draw the correct line between the 2 groups. In order to more uniformly distribute the results,
the common logarithm of dot values is used instead of the raw dot values. K-medoids clustering

Figure 5.1: Data distribution for a single image with both the raw location data and with the
common logarithm of dot values, The colors represent the actual data labels
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is also applied on the dataset, but as the results are too similar to K-means it is not separately
evaluated against the other methods. This is probably caused by the large presence of data points
near the cluster centers which makes the results for K-medoids nearly identical to K-means.

FCM clustering is applied in a similar fashion with two groups. For the FCM, different
ratios for the 2 clusters are also applied. Lastly, FCM is evaluated with 4 groups where the
inputs are the dot and reference values for each of the 4 test images in 8 separate dimensions.
This however produces results seemingly at random so the method is not evaluated against the
other proposed techniques.

5.2 Support Vector Machine
In essence, a SVM constructs a hyperplane in a space where each of the features is a separate
dimension. The data in that space is the labeled training data and the hyperplane separates the
data into 2 groups based on their labels. [35]

Because of the high versatility of SVM’s to use different types of input and output config-
urations to predict data, they are trained with varying features ranging from 8 to 1536 values
in order to label a single cell. The different feature sets are chosen and compared against each
other to select those with the best performance. The running time of the different models is
generally not regarded when comparing the performances. This is mainly done so because even
the methods with the worst run times completed their predictions in reasonable time frames of
under 5 seconds per test. [35]

In order to better classify the results, different kernel functions are also applied for all of the
models. [2] The main reason for this is to detect under- or over-fitting issues with the trained
models.

For the application of the SVM model, the Mathlab functions called svmtrain and svmclas-
sify are used to both train the model and predict its results. Because the model does not always
converge with the default max iteration count of 15000, it is set to 100000. The method used to
find the hyperplane is the Sequential Minimal Optimization [26]. Least squares and quadratic
programming optimization are not used because neither of them improve accuracy and both
increase the computational time significantly.
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6 Experimental results

All of the experiments are conducted on 500 tests worth of data which span over a time period
of 6 years. The prediction results from SVM’s trained on the location data, LBP values, illu-
minated local and raw values are compared against both FCM and K-means clustering on the
same test sets to see if a trained SVM has any significant advantage with this particular data-set.
Several different amounts of neighboring cells are used as the input for the location data SVM’s
to test whether the model has come across an over-fitting problem when evaluating individual
cells. The same SVM’s are also trained using some of the more common kernel functions. The
results from both the SVM and clustering models are also compared against the unedited results
from the method that is already in place in Genorama R© Genotyping SoftwareTM. The reason
behind this is to see if the methods proposed in this paper can be used to improve upon the
already existing system.

6.1 Grid alignment method evaluation
The three methods used to define the grids are all tested on a small sample size of 20 randomly
chosen images and the results are evaluated manually. This is done so because there is no
separate metric to automatically judge the quality of the grid placement.

Bounding boxes
The first method applies the average between a simple outer bounding box and a bounding box
with 3 maximum and minimum values removed on each axis. This method produces fast and
acceptable results on images that contain no noisy data outside of the grid and no sparsely pop-
ulated edges. In cases where noise is present, the method often overextends the grid boundary,
and where the edge data has very few detected points, the boundary cuts into the dot grid. In
both cases the grid is inaccurately aligned resulting in incorrectly calculated cell dimensions
and locations. This can be seen in figure 6.2a where both of these misalignments are present.

Image alignment
The second method uses the Mathlab function called imregtform, in order to align a perfect dot
grid onto the image. In images where the dots are sparsely detected in the grid, imregtform
fails to place the ideal grid on the image. However with densely packed dot grids the results are
more promising. Because the majority of the test images contain a sparsely active grid of dots,
this unfortunately means imregtform using the detected points fares even worse than the simple
bounding box method.

Using the thresholded images instead of the detected points provides very similar results in
images with low noise and the difference only becomes apparent in images with larger anomaly
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Figure 6.1: Grid alignment attempts on two noisy test images using bounding boxes(a),
imregtform(b) and the density based grouping method(c). The images on the left and right
have the bounding boxes defined in green and all of the detected points after image cleanup in
red. Bounding boxes should intersect the edge most points in the data grid. The middle images
have an ideal grid mask defined in magenta and the original image mask in green.

noise. In both cases as the test images often resemble less than 40% of the ideal image, a reliable
transformation can not be calculated.

Density based grouping
The last method which is based on the X and Y point densities, very often produces the correct
number of groups. Cases where 1 group is missing or an extra one is generated is luckily very
low, but the results in those cases are greatly improved by iterating a grid over the proposed data
locations.

The results provided by the density based grouping method greatly surpass what either the
bounding box or image alignment methods could produce with this dataset. Because of this, all
of the further operations use the method for the grid placement.

6.2 Point location method evaluation
All of the point location methods are manually evaluated over 20 randomly chosen test images.
Because each methods accuracy is very apparent and visually comparable, no error calculations
are needed to select the best method.

Averaged maximum
The averaged maximum method accurately locates the dots in cells where no high value noise
is present as seen in Fig. 6.2a. Unfortunately a substantial amount of cells contain high value
pepper noise, which makes this method unreliable. Applying different types of blur on the cells
does reduce the effect of pepper noise, but this has little effect in increasing the accuracy of this
method.
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Figure 6.2: Three point location allocation methods on 78 different cells. The locations are
found using the averaged maximum(a), CHT(b) and KLD(c).

This method also suffers greatly from the small section size as the method used for padding
the edges greatly influenced the result. Zero padding and constant padding causes the detected
location of the dot to drift towards the center while extended edge padding causes the opposite
to occur.

Hough transform template matching
The results provided by the Hough transform based circle detection are unfortunately also very
unreliable. The results are easily influenced by noise as the method often can not distinguish
vibrant pepper noise with a smaller radius from actual data dots. Very often the method also
misplaces the center of a detected dot near its edge, invalidating the center sampling results.
The method also proves to be the most resource intensive as going over and detecting dots in a
single image takes upwards of about 5 seconds on an i7-4790@3.6GHz. For comparison, the
other applied methods take less than a second to work through an entire test.

Kullback–Leibler divergence
Compared to the two previous methods, KLD provides the most accurate results. The method
is unaffected by sharp pepper noise and in some cases even manages to locate the data in cells
overlapped by large anomaly type noise. Something the other 2 methods fail at but where KLD
excels is locating the exact centers of the dots. This ensures the detected value is not in fact
noise but actual data. A great example of this is the 4th image on the bottom row in Fig. 6.2
where the averaged maximum method sampled noise, CHT failed to even locate the circle and
KLD found the center perfectly.
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Table 6.1: Average accuracy of clustering techniques evaluated using 10 fold cross-validation

Clustering on location data

Measure
Method

K-means
K-means with
log10(high value)

FCM
2:1

FCM
1:1

FCM
1:2

FCM
1:10

Accuracy 75.24% 69.25% 75.35% 74.73% 73.60% 71.73%

Precision 24.57% 23.33% 24.80% 24.64% 24.13% 23.51%

Recall 6.74% 18.16% 6.60% 7.91% 10.03% 13.36%

6.3 Clustering results
K-means and Fuzzy C-means (FCM) clustering methods are applied on the point value data in
order to compare their outputs against the customised clustering method used in the existing
software. It is also used as a baseline for all of the trained SVM results. The clustering methods
are evaluated on the entire 500 test dataset and the measures are calculated as the average values
for each of the images separately.

For both clustering methods, the data is clustered into 2 groups, where each group denoted
either the presence or absence of a dot in one of the images in a test. For the K-means clustering,
a second input method is evaluated where the common logarithm of high values is used instead
of the raw variant. FCM is evaluated using different ratios for assigning the 2 binary values. In
the table the ratio is represented as the average background value over the dot value.

In order to properly compare the methods, other measures called precision and recall are
used alongside accuracy. Precision is the rate of true positive values over the predicted positives
and recall is the same but over the actual positive values. Because type I and type II errors have
similar severity within these tests, Accuracy is still considered the most important measure.

Neither of the tested clustering methods can surpass even the worst results provided by SVM
based models that use the same input data for evaluation in table 6.3. In both cases, K-means
and FCM produce very small precision and recall rates, meaning the overall true positive rate
is very low. Along with that, because the recall rates are very small, the models are producing
very high type II error rates. By increasing the ratio to favor dot values, the recall of the model
steadily improve but the overall accuracy decreases. the opposite is true the other way around,
but that leads to the model no longer being a predictive system.

6.4 Support Vector Machine results
All of the methods that use SVM’s to predict the output are evaluated using 10-fold crossval-
idation. The 500 tests are split into 10 groups of 50, 9 groups are used for training and 1 for
evaluation. This is done for each of the 10 groups in order to calculate the average accuracy of
each model. In most cases only the accuracy is evaluated, because both types of errors carry
equal value.

Location data
The SVM based method is trained and evaluated on the entire dataset of located points using 4
different types of input grid sizes and 3 different kernel functions. The amount of data fed into
the SVM varies in order to see if the model is over-fitting. The data amount variations consist
of different sized girds around each dot with the 4 grid sizes used being 2 × 1, 6 × 4, 10 × 6
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Table 6.3: Average accuracy of different location based models evaluated using 10 fold cross-
validation.

Accuracy of models trained on location data

Grid
Size

Kernel
Function

Linear Quadratic 3rd Order Polynomial

2× 1 89.33% 94.84% 96.64%

6× 4 97.68% 98.35% 97.79%

10× 6 98.20% 98.56% 94.84%

24× 16 98.79% 98.73% 97.19%

Table 6.5: Average accuracy of only the SVM’s evaluated using 10 fold cross-validation, non-
changing labels were not evaluated.

Accuracy of SVM’s on location data

Grid
Size

Kernel
Function

Linear Quadratic 3rd Order Polynomial

2× 1 75.99% 88.40% 92.28%

6× 4 94.77% 96.28% 95.04%

10× 6 95.95% 96.76% 88.43%

24× 16 97.27% 97.04% 93.67%

and the last version using the entire grid values as the input to calculate every single datapoint.
The 3 kernel functions used are linear, quadratic and 3rd order polynomial kernels. They vary
in complexity because they are used to evaluate if the model is experiencing under-fitting.

Two methods are used to calculate the accuracy of all of the trained models. The first
method directly compares the binary results from the model to the binary representation of
the expected results. The proportion of similar results is deemed as the accuracy. The second
method considers the fact that several of the binary values don’t change between the tests so
those are discarded in the evaluation process. The accuracy in the latter case is purely calculated
on the binary values that change between different tests. This is done in order to get a better
understanding of the models performances.

As expected, increasing the input grid size has diminishing returns on the accuracy. What is
not expected however, is how increasing the grid size well beyond the local area of each point
does not result in obvious over-fitting. Out of all the methods tested, using location data from
every point in the grid provides the best accuracy in predicting the expected values. The model
trained on the entire grid as the input is the only one that performs better with a simple linear
kernel. The two methods using smaller selections of local points perform better with quadratic
kernels. Something to note is how the neighborless 2 × 1 grid as an outlier experiences severe
under-fitting, enough so that increasing the kernel function complexity has a significant impact
on increasing the performance of the trained model. Even though the accuracy of the 2× 1 grid
is very low, the amounts of type I and type II errors remain relatively equal. The same is true
for all of the other methods using SVM’s trained on location data.
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Table 6.7: Average accuracy of different cell based models evaluated using 10 fold cross-
validation

Accuracy of models trained on cell data

LBP RI-LBP Raw Cell Values Cell Illumination
Enhancement

Total accuracy 98.58% 92.12% 83.49% 98.57%

Accuracy over
changing values

96.80% 82.26% 62.86% 93.12%

Cell data
Local Binary Pattern (LBP) values and Rotation-Invariant Local Binary Pattern (RI-LBP) values
of each cell are calculated and used as an input for the SVM’s. This is done in order to compare
and evaluate the results of the SVM’s trained on the point values themselves. Two other methods
are also used which do not use the LBP filter output to generate values for each cell. The first
of these methods uses the raw high 8 bits of the values in each cell while the other applies
Discrete Wavelet Transform and Singular Value Decomposition before converting them into 8
bit values. Both of these are used as a control in order to assess the impact of applying LBP
on the dataset. The reason for using illumination enhancement on the cells is to counteract
the effects of background anomaly type noise. In order to calculate the accuracy of all of the
methods, the same two accuracy based evaluation techniques are applied here.

The results from LBP are very promising as they provide the second highest accuracy of all
the tested methods, only beaten by the local values of each point. What is unexpected is how
poorly RI-LBP performs when compared to standard LBP and simple illumination enhance-
ment. The worst results are provided by the unaltered local cell values. The reason for the low
accuracy in that model is mostly caused by background anomaly type noise. This is because
large uniform value changes in the background displace dot thresholds in individual cells, mak-
ing the predictions comparable to random guessing. The small difference between the LBP and
illumination enhanced cell data is expected because the illumination enhanced version doesn’t
hold any gradient direction information. The lack of gradient direction makes distinguishing
noise like bleed or large anomalies in the data much harder for the illumination method.

6.5 Evaluation against existing method
Out of the 500 tests worth of data, 20 tests were selected to be evaluated by the method already
in place in Genorama R© Genotyping SoftwareTM. Out of these 20, 10 were selected at random,
5 were manually chosen as being visually the worst to evaluate by hand and 5 were manually
chosen as the best to evaluate by hand. The the best and worst were selected purely by the
amount of noise visually visible in the data images and not by the performance of any model.
This means there are in total 6440 data points from 10 random tests, 3220 data points from 5 of
the best and similar for the worst tests that can be used to compare the accuracy of the proposed
methods against the existing method. The methods chosen to be compared against the existing
one are the best location based models for each grid size, the LBP and RI-LBP variants, as well
as the simple cell illumination enhancement method. Because the clustering attempts yield very
poor results, they are not evaluated against the existing method.
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Table 6.9: The best of the proposed models evaluated against the existing model on the 10
manually selected and 10 random test samples. The training sets for the proposed models
included all tests part from the one being evaluated

Proposed models evaluated against existing method

Model /
Grid Size /
Kernel

Evaluation
Sample Best Set

Accuracy
Worst Set
Accuracy

Random Set
Accuracy

Existing Method 96.18% 96.50% 94.71%

Location /
24× 16 /
Linear

99.47% 98.87% 97.00%

Location /
10× 6 /
Quadratic

98.97% 98.53% 96.92%

Location /
6× 4 /
Quadratic

99.05% 97.95% 96.89%

Location /
2× 1 /
3rd Order Polynomial

95.97% 94.76% 94.97%

LBP /
2× 1 /
Linear

98.84% 99.00% 96.82%

RI-LBP /
2× 1 /
Linear

92.16% 91.79% 91.12%

Cell Illumination /
2× 1 /
Linear

98.61% 97.68% 96.38%

Among all of the best models tested, only the location based model with a 3rd order poly-
nomial kernel, and the RI-LBP model with a linear kernel perform worse than the existing
method. All of the other methods show a significant increases in accuracy with the 2 best being
the location based model with a full grid input and the standard LBP with its local cell as the
input.

Comparing the confusion matrices of the different classifiers, there is actually very little
difference. All of the models have very small differences between their false positive and false
negative counts. The main difference between the existing method and the location based linear
model is the false positive rate which, over the random selection, are 5.06% and 2.22% respec-
tively. This means that the existing model produces 3 times as many type I errors as type II,
while the proposed methods all have a ratio closer to 3 : 2, which can be seen on Table 6.11.
Even with that being the case, the 2 proposed methods that perform the best, both still produce
type II error counts significantly lower than that of the existing methods error count.

Table 6.11: Test results for best models for random set. The training set for the proposed models
included all tests part from the random set

Test results for best models

Method
Count

True Positive True Negative False Positive False Negative

Existing Method 1513 5682 303 102

Location Based
Method

1520 5852 133 95

LBP 1515 5843 142 100
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7 Conclusion and Future Work

Several methods were developed for both automatically aligning the grid on the image and
locating specific dots in cells. They have all been evaluated against each other in terms of
accuracy by visual comparisons. The best methods managed to correctly and reliably extract
the information from even the noisiest images in the database. This shows the information
extraction process from the APEX images can in fact be easily automated.

The second part of the work saw the application of SVM’s with varying configurations
evaluated against the existing method currently in place in the Genorama R© Genotyping Soft-
wareTM. Several of the proposed methods produce accuracies that are significantly better than
the ones proposed by the existing software. Two of the best methods which each employed very
different techniques for the input managed to achieve accuracies exceeding 98.5% and 98.7%,
making them comparable alternatives for the automatic evaluation system.

Both of the proposed methods can be further improved to incorporate better noise detec-
tion higher accuracy in the predictions. The dot detection process could incorporate circularity
detection [29] in order to eliminate noise which could have an effect on the output. The best
prediction methods could be combined together with a voting system which could detect ques-
tionable cells. The grid alignment method itself could also be changed to incorporate varying
grid sizes and multiple grids in a single image for larger test images. With this the method
could be used for different PCR related applications or even for the automated inspection of
ball solder joints [17].
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