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UNIVERSITY OF TARTU

Abstract

Faculty of Science and Technology

Institute of Technology

Master of Science

Design and Comparison of Attitude Control Modes for ESTCube-2

by Ikechukwu Ofodile

This thesis presents the attitude control problem of ESTCube-2. ESTCube-2 is a

3U CubeSat with a size of 10 x 10 x 30 cm and a weight of about 4 kg. It is the

second satellite to be developed by the ESTCube Team and will be equipped with

the E-Sail payload for the plasma break experiment, Earth observation camera, a

high speed communication system, and a cold gas propulsion module. The satellite

will make use of 3 electromagnetic coils, 3 reaction wheels and the cold gas thruster

as actuators.

The primary purpose of this work was to develop and compare control laws to fulfill

the attitude control requirements of the ESTCube-2 mission. To achieve this, the

spacecraft dynamics and environmental models are derived and analyzed. PD like

controllers and LQR optimal controls are designed to fulfill the pointing require-

ments of the satellite in addition to the B-dot detumbling control law. Angular

rate control law to spin up the satellite for tether deployment is also derived and

presented. Simulations of the different controllers shows the performance with dis-

turbances also added to the system. Finally recommendations and optimal control

situations are presented based on the results.

Keywords: CubeSat, ESTCube-2, Attitude Control, High spin rate, LQR.

CERCS: P170, T125, T320
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Abstract 2

Abstract

ESTCube-2 asendi kontrolli režiimide disain ja võrdlus

See töö esitab ESTCube-2 asendi kontrolli probleemi. ESTCube-2 on 3U Cube-

Sat, mille suurus on 10x10x10 cm ning selle kaaluks on 4 kg. See on teine satelliit

valmistatud ESTCube meeskonna poolt ning selle pardal on erinevad kasulikud

lastid: plasma pidur, kaks maavaatluskaamerat, kommunikatsioonisüsteem suurte-

mateks andmevahetuskiirusteks ning külma gaasi tõukur. Satelliit kasutab asendi

kontrollimiseks kolme elektromagnetmähist, kolme reaktsiooniratast ning külma

gaasi tõukurit.

Töö peamine eesmärk oli arendada ning võrrelda erinevaid asendi kontrolli algo-

ritme, mis täidaksid ESTCube-2 missiooni nõuded. Selle saavutamiseks tuletati

ning analüüsiti sateliidi dünaamika ning keskkonna mudeleid. B-dot pöörlemise

vähendamiseks ning suunamise kontrolleriteks arendati PD-regulaatoril ning LQ-

regulaatoril põhinevaid kontrollereid. Tuletati ning esitati pöörlemiskiiruse kon-

trollimise seadused, et satelliiti pöörlema panna. Viidi läbi simulatsioonid, mil-

lele on lisatud erinevad häired, iseloomustavad süsteemi toimimist. Lõpetuseks

antakse töös soovitused ning optimaalsed kontrolli olukorrad, mis põhinevad eel-

nevatel tulemustel

Keywords: CubeSat, ESTCube-2, Attitude Control, High spin rate, LQR.

CERCS: P170, T125, T320



1 Introduction

1.1 Motivation

Since it’s inception in 2008, the ESTCube project is a student project which is now

aimed at getting students involved in understanding the concepts of space tech-

nology and it emerging technologies with scientific and engineering impacts. The

ESTCube-1 student satellite project was launched on the 7 May 2013, and involved

students from the University of Tartu, Estonian Aviation Academy, Tallinn Uni-

versity of Technology and Estoninan University of Life Sciences as well as instruc-

tors and experts from different countries [3]. The main mission of the ESTCube-1

satellite was to test the Electric Solar wind sail (E-sail) developed by Pekka Jan-

hunen [4]. Students had the opportunity to write their Bachelors’ and Masters’

Thesis on various parts and subsystems of the satellite including the ADCS, EPS,

COM etc. As a student of the Robotics and Computer Engineering Master’s Pro-

gram of the University of Tartu, this thesis will show forth the knowledge I have

gained by participating in the ESTCube-2 project relating to spacecraft dynamics

and implementation using quaternions as well as controllers to be used on the

satellite for attitude control.

3
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1.2 Background and Literature Survey

The increased research interests and innovations in space technology and explo-

ration, has driven a increase in development of nanosatellites (mass of 1-10kg) and

microsatellites. These satellites are mostly deployed in Low Earth Orbit (LEO) for

various mission objectives such as weather forcasting, telecommunications, earth

observation, environmental and scientific research purposes. The development of

CubeSat class of nanosatellites, began in 1999 in California [5]. A great success was

achieved in a collaborative effort between California Polytechnic State University

and Stanford university to develop an efficient and inexpensive satellite. CubeSats

have now recently being used as a great opportunity for researchers and universi-

ties to advance on the wide range of experimental and research opportunities in

space technology.

Satellites deployed for various missions have to be equipped with a reliable Atti-

tude Control System (ACS) to meet the requirements of the mission. Hence the

ADCS is regarded as an important subsystem of satellites. It is often expressed as

visual perspective or feeling of the satellites in space. The ACS performs several

operational modes and must maintain the attitude control even in the presence of

disturbance torques on the satellite.

Several works and university thesis reports have aimed to address varying attitude

determination and control design objectives and problems. While earlier works

are based on euler angle model, recent designs have discussed the design with

quaternion models [6–11]. Quaternion applications have been widely used in field

of computer science in areas of robotics, computer vision, motion planning, swarm

robotics. The use of quaternions in spacecraft model has significant advantage

over the Euler angle representation. The quaternion attitude representation, does

not depend on rotation sequence as in the case of Euler angle representation, and

does not have a singular point for any attitude. This advantages will be described

in this thesis work.

The application of Lyapunov based functions to design varying control laws have
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Figure 1.1: ESTCube-2 exploded view [1].

been presented in [12–14] which may however not be efficient in globally stabilizing

the nonlinear complex system. The authors in [15] designed a linearized model

with quaternion component as state variables for the nonlinear system implemen-

tation. Yang [16] proved the controllability of the linearized quaternion model

which globally stabilizes the nonlinear spacecraft model.

The ESTCube-2 ADCS hardware prototype has been designed [17] and currently

being developed. The ADCS will contain algorithms which are designed with

specific model and requirements to satisfy its mission requirements. As such the

algorithms are designed, explained, evaluated and interpreted based on require-

ments.
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1.3 Aim and Objectives

The long term goal and objective of this current study is to give a comprehensive

review of ESTCube-2 project relating to spacecraft dynamics and implementation

using quaternions as well as controllers to be used on the satellite for attitude con-

trol. Spacecraft attitude control system is defined herein as consisting of sensors,

attitude actuators and processor which houses the controllers for effective attitude

maneuvers. This study will outline the following sub-objectives:

• An overview of the fundamentals in attitude determination and control

• Explain concepts of different reference frame sensors and actuators used

• To derive mathematically the kinematics and dynamics of the satellite

• Elucidate basic attitude control requirements.

The results gotten from this study will be of great significance to the industry

practitioners as well as other students involved in ESTCube project.

1.4 Thesis Outline

The rest of the thesis is described as follows

• Chapter 2 presents the background to spacecraft attitude control, dis-

cussing reference frames used in spacecraft attitude determination and con-

trol as well as discussing parameters used in attitude representation. Brief

discussion on the sensors and actuators used on ESTCube-2 is also presented

here.

• Chapter 3 presents the satellite model describing the satellite dynamics

and kinematics as well as its linearized model. Environmental disturbance

torques are also discussed as it affects the ESTCube-2 satellite.
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• Chapter 4 describes in detail the attitude controllers designed based on the

attitude control modes and the set requirements

• Chapter 5 presents the simulation results of the controllers designed based

on specifications and provides analysis.

• Chapter 6 includes the conclusion of the thesis and future work to improve

the controllers designed.

• Appendix D Abstracts based on the work done in this thesis accepted for

oral presentation at 68th International Astronautical Congress to be held

from 25-29 September 2017 in Adelaide, Australia and at the 6th Interplan-

etary CubeSat Workshop to be held on 30-31 May 2017 at Cambridge, UK.



2 Background to Spacecraft

Attitude Control

2.1 Introduction

Spacecraft attitude control system typically consists of sensors, attitude actuators

and processor which houses the controllers for effective attitude maneuvers. In

this chapter, I will give an overview of the fundamentals in attitude determination

and control, thus explaining concepts as the different reference frames, sensors and

actuators used.

2.2 Reference Frame

In Aerospace related applications, many reference frames are used to represent

various rotations and concepts, however for the purpose of this report, I will give

a brief description of the most important reference frames used in the satellite

representations.

8
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2.2.1 Earth-Centered Inertial Reference Frame (ECIF)

The Earth-Centered Inertial Reference Frame (ECIF) is centered in the Earth’s

center. It is a non rotating reference frame that employs the Newton’s laws of mo-

tion and gravity on the spacecraft. For inertial pointing spacecrafts, this reference

frame is quite important in for use. The x-axis points toward the point where the

plane of the Earth’s orbit toward Sun, crosses the Equator going from South to

North, z-axis points toward the North pole and y-axis completes the right hand

Cartesian coordinate system.

2.2.2 Earth-Centered Earth Fixed Reference frame (ECEF)

The Earth-Centered Earth Fixed Reference frame (ECEF) has its origin at the

center of the Earth. The x-axis is the direction axis pointing towards the inter-

section between the Greenwich Meridian and the Equator which is at 0o longitude

and 0o latitude. The z-axis is the direction from the center of the Earth pointing

to the north pole. The y-axis is the direction that completes the right handed

system.

2.2.3 Local-Vertical Local-Horizontal Reference frame (LVLH)

The Local-Vertical Local-Horizontal Reference frame or Orbit frame is most de-

sired for use by many satellites as the z-axis direction points towards the center

of the Earth which is a desired nadir pointing mode of satellites. The origin of

orbit frame coincides with the center of mass of the satellite. The x-axis is in the

direction of the spacecrafts’ motion and is perpendicular to the z-axis. The y-axis

completes the right handed system.

2.2.4 Spacecraft Body Reference frame (SBRF)

The Spacecraft Body Reference Frame has its origin from the centre of mass of

the satellite. In this reference frame, the x-axis is orthogonal to the z-axis and the
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y-axis completes the right-handed orthogonal coordinate reference system.During

the nadir pointing phase of the satellite, the SBRF and the LVLH reference frames

are assumed to be aligned with each other without a rotation about the z-axis.

2.3 Attitude Parameterization

2.3.1 Direction Cosine Matrix (DCM)

The DCM represents the attitude in a 3×3 transformation matrix. This is de-

scribed by the vector dot product between two coordinate axes representing the

cosine of the deviation in angle.

A =


u · x u · y u · z

v · x v · y v · z

w · x w · y w · z

 (2.1)

This DCM is not directly applicable in space missions in representations of attitude

as deviations between two coordinate systems is not directly visible or applied to

attitude calculations or representations. The Euler angle described next is more

applicable.

2.3.2 Euler Angles

The Euler angle representation describes one coordinate frame to another in three

successive rotations. This implies a multiplication of three rotation matrices ob-

tained from rotations about three fixed axes. These successive rotations are define

as roll, pitch and yaw, where the roll angle ρ is a rotation about the x-axis, the

pitch angle θ about the y-axis and the yaw angle ψ about the z-axis. The rotation

matrices are defined as follows

The rotation (axis transformation) matrices are given as:
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Rz =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.2)

Ry =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.3)

Rx =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (2.4)

Rz is the transformation matrix for a fixed point about the z axis.

Ry is the transformation matrix for a fixed point about the y axis.

Rx is the transformation matrix for a fixed point about the x axis.

The resultant transformation matrix from inertial to body frame is given as

R = Rz.Ry.Rx

R =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosφ − sinφ

0 sinφ cosφ



R =


Cθ.Cψ Cψ.Sθ.Sφ− Cφ.Sψ Cψ.Sθ.Cφ− Sφ.Sψ

Cθ.Sψ Sψ.Sθ.Sφ− Cφ.Cψ Sψ.Sθ.Cφ− Sφ.Cψ

−Sθ Cθ.Sφ Cφ.Cφ

 (2.5)

The elements C() and S() are used as an abbreviation for the trignonmetric ex-

pression cos() and sin() respectively.
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2.3.3 Unit Quaternions

Quaternions are referred to as hyper complex numbers and was first introduced

by mathematician Rowan Hamilton in the early 19th century and over time have

been applied to mechanics solutions. Quaternions are used to express a rotation by

a rotational angle about an axis unlike Euler angles which represents rotations by

a series of rotations about x, y or z axes. The rotation performed by quaternions

are not explicitly about an x, y or z axes. Just like complex numbers, quaternions

have basis i, j, k satisfying the following expression

i2 = j2 = k2 = −1 = ijk (2.6)

Therefore we can define quaternions as follows representing an addition of both

scalar and vector component.

q = iq1 + jq2 + kq3 + q0 (2.7)

Thus quaternions contains four numbers and for simplicity in expressions, q0 is

the scalar part of the quaternions and the vector component is represented as

qv = iq1 + jq2 + kq3 (2.8)

The normalized quaternion is therefore represented as

q0 = cos(θ/2) (2.9)

qv = êsin(θ/2) (2.10)

where

• ê is the rotational axis,
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• θ is the angle of rotation.

The author in [18] defined and derived the multiplication of two quaternions in

order to obtain the quaternion rotation as follows

a⊗ b = a0b0 − avbv + a0bv + b0av + a× b (2.11)

In recall of complex conjugates, the quaternion complex conjugate can be repre-

sented as

q∗ = q0 − qv = q0 − iq1 − jq2 − kq3 (2.12)

Therefore the norm of a quaternion can then be defined easily as

‖q‖ =
√
q∗ ⊗ q (2.13)

‖q‖ =
√
q20 + q21 + q22 + q23 = 1 (2.14)

The inverse of a normalized quaternion satisfying the above equation is

q−1 = q∗ (2.15)

2.3.4 Quaternion Rotation

In order to obtain the quaternion rotation operator, we make use of the normalized

quaternion defined in Equations 2.9 and 2.10. Therefore we express the quaternion

as

q = q0 + qv = cos(
θ

2
) + êsin(

θ

2
) (2.16)

and perform quaternion products in order to obtain the rotations.

By defining two quaternions as p = cos(α
2
) + êsin(α

2
) and q = cos(β

2
) + êsin(β

2
) we

obtain the quaternion product as follows.
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r = p⊗ q =

(
cos(

α

2
) + êsin(

α

2
)

)
⊗
(
cos(

β

2
) + êsin(

β

2
)

)
(2.17)

r = cos
(α + β

2

)
+ êsin

(α + β

2

)
= cos(γ) + êsin(γ) (2.18)

The product of two quaternions as seen above represents the two consecutive

rotations by α and β. Equation 2.19 represents the rotation of a quaternion and

a vector v

q ⊗ v = (q0 + qv)⊗ (0 + v) = −qv · +q0v + q × v (2.19)

However, multiplying this expression by the conjugate of the quaternion q∗ gives

the expression in Equation 2.20 which is a vector and expressed further in the

form of direction cosine matrix in Equation 2.21

w = q ⊗ v ⊗ q∗ =

(
cos2

(α
2

)
− sin2

(α
2

))
v + 2(qv · v)qv + 2q0(qv × v) (2.20)


w1

w2

w3

 =


2q0

2 − 1 + 2q1
2 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q2
2 − 1 + 2q0

2 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 − 2q0q1 2q3
2 − 1 + 2q0

2



v1

v2

v3

 (2.21)

the DCM above can also be defined as a general rotational matrix

C = (2q0
2 − 1)v + 2(q.v)q + 2q0(q × v) (2.22)

2.3.5 Error Quaternion

The error quaternion is defined as the rotational quaternion between two rotations.

The error quaternion is obtained by quaternion product of the inverse quaternion
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representing the desired quaternion of one point to another and the initial quater-

nion itself, given below

qe = q−1d ⊗ q (2.23)

qe =


qd0 qd1 −qd2 −qd3
−qd1 qd0 qd3 −qd2
qd2 −qd3 qd0 −qd1
qd3 qd2 qd1 qd0




q0

q1

q2

q3

 (2.24)

The quaternion error qe satisfies the unit quaternion constraint.

2.4 Sensors

The sensors used in the ADCS of ESTCube-2 include gyroscopic sensors, ac-

celerometers, magnetometers, Sun sensors, and star tracker [19]. These were se-

lected in order to be able to meet the pointing requirements and accurately obtain

the attitude beyond LEO.

2.4.1 Gyroscopes

The satellite will consist of 4 gyroscopic sensors which have been selected and

tested on a prototype sensor board.

2.4.2 Accelerometers

Two accelerometers will be used on the satellite mainly for closed loop control of

the cold gas thrusters.
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2.4.3 Magnetometers

The satellite will contain two Magnetometers which will be used mainly for attitude

determination in LEO.

2.4.4 Sun sensor

On board the satellite will be 6 sun senors which are developed in house. Though

the sun sensors provide less accuracy than star tracker, they are required for more

frequent measurements.

2.4.5 Star tracker

The star tracker is a separate subsystem and will be used to obtain very accurate

and precise attitude information in combination with other sensors even during

the satellite spin up.

2.5 Actuators

2.5.1 Reaction Wheels

Reaction wheels are actuators that provide fine attitude control which results from

the acceleration of the flywheel. The rotational acceleration is as a result of an

electric motor which could output a varied rotation. The control Torque produced

is opposite to the rate of change of angular momentum of the wheel as given in

the Equation.

Tc = −J · ẇ = −Ḣ (2.25)

where

• Tc is control torque generated.



Chapter 2: Actuators 17

• J is the moment of inertia.

• w is the angular velocity vector.

• H is the angular momentum of the wheel.

The reaction wheels cannot be used exclusivelsy as there is a build up in angular

momentum of the wheels which mskes it saturated. As such, the ACS also makes

use of the thrusters and magntic coils which will be used to generate external

torque to unsaturate the angular momentum in the wheels. The reaction wheels

used on ESTCube-2 has a momentum storage of 1.5mNms.

2.5.2 Magnetic Coils

The magnetic coils or magnetic torquers or magnetorquers are wired coils used on

the satellite that interacts with the Earth’s magnetic field. The coils generate a

strong magnetic dipole by passing current through the coils. The torque used for

attitude control is proportional to the dipole moment of the torquer and strength

of the Earth’s magnetic field and thus depends on the angle between the two [20].

The torque reaction is also modeled based on the magnetic field and the current

supplied to the coils as give in Equation 2.26

Tc = nIA(ê×B) (2.26)

where

• Tc is control torque generated.

• n is the number of turns on the coil.

• A is the cross sectional area of the coil.

• I is the current supplied through the coils.

• ê is the unit vector in in the direction of the coil’s axis.
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The magnetorquers for ESTCube-2 are a similar design to those of ESTCube-1

[17]. For ESTCube-2, the area of the magnetoquers were increased based on the

size of the 3U satellite and the demand for a larger magnetic torque. The magnetic

moment of the magnetorquer is 0.5 A/m2 in the three axis.

2.5.3 Cold Gas Thruster

Thrusters are mostly used in spacecraft in higher altitudes outside the significant

influence of the Earth’s magnetic field. They are needed for large attitude maneu-

vers. The thruster to be used on ESTCube-2 is the cold gas thruster developed

by Nanospace AB and includes four thrust nozzles in the same -z axis direction.

The nominal thrust is 1mN and the torque created is a product of the thrust and

the distance to the centre of mass. More description on application of pulse width

modulation on thrusters with control laws is given in [21].



3 Spacecraft Modeling

In this Chapter, I will describe the satellite dynamics with mathematical models

and disturbances with view of obtaining an approximate linearized model for the

satellite for controller implementation.

3.1 Kepler And Newton’s Laws

The motion of celestial bodies have been studied and laws postulated by Johannes

Kepler based on works of Tycho Brahe [22] [21]. With respect to orbital evaluation

of two point masses, a model for a spacecraft orbiting a planet can be obtained

be considering equations of motions and Newton’s second law. Kepler postulated

the following laws which apply to satellite motion in Earth’s orbit

• The orbit of each planet is an ellipse, with the Sun at one focus.

• The radius vector drawn from the planet to the Sun sweeps out equal areas

in equal times.

• The square of the period of a planet is proportional to the cube of its mean

distance from the Sun.

These laws corresponds and also applies to spacecraft motion in Earth orbit, where

the Sun represents the Earth and the planet represent the spacecraft in orbit.

19
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3.2 Inertia Matrix

Based on the idea of inertia and due to the governing laws of dynamics, any force

applied to a body other than from its center of mass will cause an intent to rotate.

The rate of change of angular velocity of a body is proportional to the body’s

concentration of mass. Thus, a relationship between a body’s momentum and

rotation in inertia space can be defined as:

h = Jω (3.1)

The inertia matrix J can be obtained by relating the location of a portion of mass

from the center of a body, r , and its rotational velocity as in equation 3.2

h =

∫
r × (ω × r)dm (3.2)

Thus the inertia matrix J about an arbitrary origin which is obtained by taking

cross products of individual elements is defined by

J =


Jx −Jxy −Jxz
−Jyx Jy −Jyz
−Jzx −Jzy Jz

 (3.3)

J =


∫
v
(y2 + z2)ρmdv −

∫
v
(xy)ρmdv −

∫
v
(xz)ρmdv

−
∫
v
(yx)ρmdv

∫
v
(x2 + z2)ρmdv −

∫
v
(yz)ρmdv

−
∫
v
(xz)ρmdv −

∫
v
(zy)ρmdv

∫
v
(x2 + y2)ρmdv

 (3.4)

where

• ρm is the density of the satellite

• v is represented as the volume

and Jx, Jy and Jz are the moments of inertia about the x, y and z axis respectively,

and Jxy = Jyx , Jxz = Jzx and Jyz = Jzy are the products of inertia.
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If the principal axes of inertia coincide with the axes of the body frame by being

symmetric with its axes Jxy = Jxz = Jyz = 0, the inertia matrix reduces to:

J =


Jx 0 0

0 Jy 0

0 0 Jz

 (3.5)

3.3 Environmental Models

This section will discuss and examine the environmental torque models. Spacecraft

in orbit are subjected to a variety of environmental torques which affect its atti-

tude. These could be either internal disturbance torques caused by the spacecraft

or external environmental disturbances. The main disturbances to be evaluated

will be magnetic disturbance torque, solar radiation pressure torque, aerodynamic

torque and gravity-gradient torque and how much of influence they will have on

ESTCube-2 considering the satellite in LEO and GEO. A disturbance torque based

on the thruster axis misalignment will also be discussed and evaluated based on

some values of misalignment.

3.3.1 Earth’s Geomagnetic Field

Spacecrafts in LEO are greatly influenced by Earth’s magnetic field. Hence appli-

cation of magnetic control laws is dependent on the Earth’s magnetic field. The

geomagnetic field is extensively described in [23], a brief description of its model

and effect on spacecraft is discussed here. The geomagnetic field can be modeled

as a magnetic dipole which is tilted about 11.5 deg with the magnetic south near

the geographical north pole and the magnetic north, near the geographical south

pole as seen in Figure 3.1.

The geomagnetic field is much higher at altitudes closer to the Earth and decrease

with an increase in altitude. The magnetic field strength at the equator is approx-

imately 0.03mT [2] and as seen in Figure 3.1, lines are closer at the poles hence a
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Figure 3.1: Earth’s Magnetic Dipole [2].

stronger magnetic force experienced at the poles approximately twice the strength

to that at the equator.

The International Geomagnetic Reference Field (IGRF) is a standard geomagnetic

model used to describe the Earth’s magnetic field. The IGRF models entails a lot

of computation, however estimates of the Earth’s magnetic field are done using a

dipole model. Controllers are also designed based on the dipole model as effective

designs can be made with regards errors in magnetic field measurements. The

dipole model which will be used later in this work in the design of linear quadratic

regulator is mathematically defined as [24]

b =


b1(t)

b2(t)

b3(t)

 =
µf
a3


cosω0t sin θ

− cos θ

2 sinω0t sin θ

 (3.6)

where θ is the inclination with respect to the geomagnetic equator, a is the orbit’s

semi major axis, ω0 is the orbit angular velocity and µf is the magnetic field’s
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dipole strength in Wb ·m.

3.3.2 Gravity-Gradient Torque

Gravity-gradient disturbance is a torque felt by an Earth orbiting satellite due

to the gravitational force between the earth and the satellite. The Earth’s non-

uniform gravitational field which according to Newton is inversely proportional

to the square of the distance to the Earth causes this torque and also causes the

satellite to obey Kepler’s law of planetary motion as described in 3.1 The gravity-

gradient torque on a body is derived as

Tg =
3µ

2Rs

3

|R̂s × (J · R̂s)| (3.7)

where

• µ is the gravitational constant of the earth.

• Rs is a vector representing the distance from the center of the earth to the

satellite.

• J is the moment of inertia tensor of the satellite as described in 3.2.

Equation 3.7 could be used to obtain a detail analysis and also obtain the torques

about each axis when the body frame is along the reference frame. However a

more simplified equation is presented in [25] is used in this report based on the

maximum gravity gradient disturbance torque.

Tg =
3µ

2R3 s
|Jz − Jy| sin(2θ) (3.8)

where Tg is the maximum gravity torque, Jz and Jy are the largest and smallest

moment of inertia, and θ is the maximum deviation from the local vertical.

Based on the formula given in 3.2 and a satellite mass of about 4kg, the moments

of inertia about the x, y and z axes are calculated to be 0.0333kg.m2, 0.0333kg.m2

and 0.0067kg.m2 respectively.
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The gravity gradient torque can thus be calculated by applying a minimal deviation

of 1 degree:

Tg =
(3)(3.986× 1014)

(2)(7078× 103)3
|0.0067− 0.033| sin(2) (3.9)

Tg = 1.547× 10−9Nm

The torque value was obtained based on a 700km altitude orbit and from the

equation notice that with an increase in the altitude orbit towards the lunar orbit,

the value of this torque will continue to reduce and become quite insignificant.

With a maximum deviation of 30 degrees, the torque obtained was 2.2× 10−8Nm

3.3.3 Aerodynamic Torque

Spacecrafts in LEO experience an interaction between the satellite surface and

residual atmosphere. This results in the the aerodynamic torque which is quite a

dominant disturbance torque for satellites lower altitudes. The disturbance torque

can be modeled and describes as

Taero =
(
rcp − rcg

)
F (3.10)

where rcp is the centre of pressure vector and rcg is the centre of gravity vector. F

is the atmosperic force which acts on the satellite and is described as

F =
1

2
ρCdAV

2 (3.11)

where ρ is the atmospheric density, Cd is the atmospheric drag coefficient (usually

used as 2), A is the satellite surface area and V is the spacecraft velocity. The

torque always acts in the direction opposite to the satellite motion.
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3.3.4 Solar Radiation Torque

The solar photons which impact on the surface of the satellite creates a force which

produces a torque about the centre of mass of the satellite. The force acting on

the satellite depends on if the incident radiation is absorbed or reflected. The

torque is independent of the altitude of the satellite. The solar radiation torque is

modeled as

Ts =
(
rcp − rcg

)
F (3.12)

where F is

F =
Fs
c
A(1 + q) cos i

Fs is the solar constant (1371W/m2), c is the speed of light (3× 108m/s), A is the

surface area, q is the reflectant coefficient ranging between 0 and 1, i is the angle

of incidence of the sun.

3.3.5 Residual Magnetic Torque

As experienced by satellites in LEO as well as in ESTCube-1 [26], a magnetic field

is created in the satellite. While the satellite being controlled by the magnetic coils

interacts with Earth’s magnetic field, a magnetic field in the satellite is created

by electric components and other ferromagnetic materials. This magnetic field

is considered as a disturbance as it has an effect on the control of the satellite’s

attitude. The strength of this magnetic field and its direction cannot be easily

determined before launch of the satellite, however measuring and calculating this

residual magnetic torque is needed in other to augment for the disturbance in the

design of the magnetic control laws. The residual magnetic torque can also be

expressed the same way as the magnetorquers described in Section 2.5.2

τres = mres ×B (3.13)

In ESTCube-1, the residual magnetic moment was the dominant disturbance

torque in the satellite and it was estimated as 0.1Am2 [27]
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3.4 Dynamics

As mentioned earlier, the quaternion based model has advantages in space tech-

nology applications over the Euler angle representations. The spacecraft dynamics

model has been derived in several texts and here it is reviewed and simplified. In

order to derive the dynamic model of the satellite, the satellite is assumed to act

as a rigid body as well as a point mass in orbit. Hence Newton-Euler formulation

is used where the angular momentum relates to the applied torque.

By application of Newton’s second law to the spacecraft’s rotational motion

M = ḣi (3.14)

where

• h is the angular momentum

• M is the applied torque or external moment in inertial frame with reference

to body frame

in view of coriolis equation [28], (3.14) can be expressed as

M = ḣ+ ωi × h (3.15)

therefore, the rate of angular momentum can be defined as

ḣ = Jω̇i = −ωi × Jωi +M (3.16)

M can be expressed as addition of all disturbance torques and a control torque Tc

Jω̇i = Td + Tc − Ω(ωi)Jωi (3.17)

where
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• Ω(ωi) is the skew symmetric representation of the angular velocity in inertial

reference frame.

Ω(ωi) =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 (3.18)

• Td is the sum of disturbance torques acting on the satellite

• Tc is the applied control input torque

The varying torques acting on the satellite changes with respect to the selection

of actuator for specific attitude operation.

3.5 Kinematics

The kinematic model describes the orientation of the satellite by integrating the

angular velocity. The kinematic differential equations represented in quaternions

as derived in [23]

q̇ = −1

2
ω × qv +

1

2
qoω (3.19)

q̇0 = −1

2
ωT qv (3.20)

The quaternion representation that rotates body frame in relation with the refer-

ence frame is

q =
[
qo, q

T
v

]T
=
[
cos(α

2
), êT sin(α

2
)
]T

(3.21)

where we define the rotational axis by a unit vector ê and the angle of rotation

around that axis by α. The vector qe described by êT sin(α
2
) = [q1, q2, q3]

T and the
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scalar component of the quaternion by qo = cos(α
2
). Thus from (3.19), we obtain


q̇0

q̇1

q̇2

q̇3

 =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0




q0

q1

q2

q3

 =
1

2


q0 −q1 −q2 −q3
q1 q0 −q3 q2

q2 q3 q0 −q1
q3 −q2 q1 q0




0

ω1

ω2

ω3

 (3.22)

The vector component can be easily obtained from the property of quaternion

given in section 2.3 q0 =
√

1− q21 − q22 − q23
q̇1

q̇2

q̇3

 =
1

2


q0 −q3 q2

q3 q0 −q1
−q2 q1 q0



ω1

ω2

ω3

 (3.23)

3.6 Linearization

The satellite model equations as given in 3.17 and 3.23 represents the non linear

dynamics and kinematics models. In order to use these equations for an optimal

controller such as the Linear Quadratic Controller, these nonlinear equations have

to be linearized.

The linear form of the satellite attitude equations can be obtained by linearizing

the equations about an equilibrium or stationary point. The linearization points

based on a first order Taylor expansion about the stationary point are selected

and given as in 3.24

q =
[
1, 0
]T

(3.24)

Equation 3.23 can be represented as a function

q̇v = g(q, ωi) (3.25)
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therefore a partial derivative will be represented as

q̇v =
∂g

∂q
(q) +

∂g

∂ωi
(ωi) (3.26)

linearizing with change around the equilibrium point e, assume at equilibrium we

have stationary point where q1 = q2 = q3 = 0 and ωi = 0.

q̇v − q̇e =
∂g

∂q
(q − qe) +

∂g

∂ωi
(ωi − ωie) (3.27)

expanding equation 3.23 yields the following equations

q̇1 =
1

2
(q0ω1 − q3ω2 + q2ω3) (3.28)

q̇2 =
1

2
(q3ω1 + q0ω2 − q1ω3) (3.29)

q̇3 =
1

2
(−q2ω1 + q1ω2 + q0ω3) (3.30)

with respect to equation 3.27, the above equations 3.28, 3.29 and 3.30 becomes

q̇1 = 0− 0 + 0 +
1

2
(q0)− 0 + 0 (3.31)

q̇2 = 0 + 0− 0 + 0 +
1

2
(q0) + 0 (3.32)

q̇3 = −0 + 0 + 0− 0 + 0 +
1

2
(q0) (3.33)

Therefore the matrix representation is expressed as
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q̇1

q̇2

q̇3

 =


0 0 0 1

2
(q0) 0 0

0 0 0 0 1
2
(q0) 0

0 0 0 0 0 1
2
(q0)





q1

q2

q3

ω1

ω2

ω3


(3.34)

q̇v =
[
03

1
2
(I3)

]qv
ωi

 (3.35)

where q0 = 1 at equilibrium.

Also by performing the expansion and linearization of 3.17 and assuming the

approximation with negligible disturbance torque.

Jω̇i ≈ Tc (3.36)

q̇v
ω̇i

 =

03
1
2
(I3)

03 03

qv
ωi

+

 03

J−1

 (Tc) (3.37)

= Ax+Bu (3.38)

where u represents the control input Tc and

A =

03
1
2
(I3)

03 03

 , x =

qv
ωi

 , B =

 03

J−1

 (3.39)



4 Attitude Control for

ESTCube-2

4.1 Description and Control Specifications for

ESTCube-2

Based on the mission objectives for ESTCube-2, the centrifugal deployment of E-

sail Tether requires enough angular momentum, as such the control design should

spin up the satellite to one revolution per second (360 deg/s). For this purpose, the

satellite spin axis must be aligned with the Earth’s polar axis with pointing error

of less than 3 degrees [27]. Also for ground station pointing and Earth observation,

the pointing accuracy should be less that 0.1 degrees.

4.2 Detumbling Controller Designs

The purpose of the detumbling mode is to detumble or stabilize the angular rate of

the satellite after orbital insertion or release from the launch vehicle and to ensure

that the satellite can be in a controllable state. The controller designed for this

mode must be able to regain control of the satellite in situations where control of

the satellite has been lost. In general, the kinetic energy of the satellite is reduces,

thus causing a reduction in the angular velocity of the satellite for optimal control.

31
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The controller used in this mode is selected because the commanded magnetic

dipole moment can be obtained directly from the calculations and is used as an

input for the actuator. Also, the magnetometer measurement can always be read

and used for the control algorithm

4.2.1 B-dot Controller Design

The B-dot controller had been specifically chosen for detumbling of the satellite.

This is in view of the fact that it only requires the derivative of the magnetic field

as input making it the best choice in terms of efficiency even when other orbital

parameters could be missing.

The B-dot is derived by observing a decrease in the rotational energy during

detumbling. This basically means that the scalar product of the angular velocity

and the control torque must be negative

ωTi · τ < 0 (4.1)

where τ is represented as the control torque delivered by magnetic actuator and

is expressed as

τ = m×B (4.2)

where m is the commanded magnetic dipole moment and B is the geomagnetic

field vector. A seemingly accurate model of the geomagnetic field for LEO circular

orbit such as IGRF is being used as the model for the simulation.

the condition in equation 4.1 then becomes

ωTi · (m×B) < 0 (4.3)

Applying cross product rules given in section 2.3, the condition in 4.3 can be

rewritten as
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−mT · (ωi ×B) < 0 (4.4)

In order to decrease the kinetic energy of the spacecraft the control torque τ has

to be proportional to −ω and based on the above inequality, the magnetic moment

needs to be perpendicular to ω×B as no torque will be produced if it were parallel.

We can therefore complete the solution by implementing a scalar gain k

m = −k · (ωi ×B) (4.5)

where k is a positive gain. The change in magnetic field vector is assumed to be

mainly as a result of rotation of the satellite

Ḃ ≈ (ωi ×B) (4.6)

therefore we can obtain a simple control law based on

m = −kḂ (4.7)

4.2.2 P Controller Designs

A P-controller could be implemented for detumbling of the satellite using reaction

wheels. The proportional controller designed is based on the principle that the

torque produced by the reaction wheel for the attitude control is opposite to the

angular momentum change of the reaction wheel as described in section 2.5.1.

This control law is simply the multiplication of the angular velocity of the satellite

with a proportional gain.

Tc = kωωi (4.8)

This control law may not be effective for detumbling at high angular velocity,

but can be mainly used for nutation damping to implement nadir pointing as the
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maximum torque generated with the reaction wheel is 0.0001Nm and hence will

require unloading upon saturation of the reaction wheels.

4.2.3 PD Controller Designs

The PD controller designed is an implementation of the magnetic control law as

defined in equation 4.2. The control law makes use of the magnetic field vector and

the angular velocity and attitude of the satellite. The PD control implemented

here is a simple controller model used for both magnetic coils and reaction wheels.

While this control law attenuates the initial angular velocities, it also keeps the

quaternion attitude at zero for all three axes. This control law makes use of

calculated error vector to determine the most favourable magnetorquing moment

for use with the magnet torquers. This is then utilized directly as the required

torque vector. The error vector is composed of the quaternion error and the

angular velocity in the body axes.

~e = kω(ωi ×B) + kq(qe ×B) (4.9)

where B is the magnetic field vector. Kω and Kq are the controller gains which

are chosen based on the performance of several tests of the system. qe is the

quaternion error defined as

qe =


qd0 qd1 −qd2 −qd3
−qd1 qd0 qd3 −qd2
qd2 −qd3 qd0 −qd1
qd3 qd2 qd1 qd0




q0

q1

q2

q3

 (4.10)

4.3 Pointing Controller Designs

The controllers designed for the pointing mode of the satellite is aimed to satisfy

the requirements specified for pointing [29]. As such a simple PD controller for em-

ployed to both magnetic torquers and reaction wheels is described. Furthermore,
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Figure 4.1: Attitude Control block diagram with feedback.

to ensure stability in precise pointing, a Linear Quadratic Regulator is designed

based on a linearization of the satellite model for nadir pointing. Figure 4.4 shows

a block diagram of a control algorithm which takes the error signal input and

obtains a control torque to the actuator (reaction wheel) which attempts to rotate

the spacecraft to the desired attitude.

4.3.1 PD Controller

For 3-axis pointing control, the PD controller structure described in Section 4.2.3

is implemented. The reaction wheels are applied to be able to provide quick angle

maneuvers, however the limitation is in the maximum angular momentum that

can be generated from the reaction wheel used prior to its saturation. The control

law makes use of the quaternion error and feedback in 4.10. The control torque is

generated as follows


Tcx

Tcy

Tcz

 =
[
kωωi + kqqe

]
(4.11)

4.3.2 Linear Quadratic Regulator Design

The LQR control technique is designed here for the attitude stabilization during

pointing. In order to satisfy strict requirements, the LQR is used in designing
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linear controllers for such complex non linear systems like the CubeSat. The

design aims to find a cost function and minimize this cost function.

ẋ = Ax+Bu (4.12)

Based on the linearized satellite model designed for nadir pointing in C with state

space quaternion model given in Equation 4.12, the controller implements a basic

feedback control u for optimization,

u = −Kx (4.13)

where K is the feedback gain matrix calculated to minimize the Linear Quadratic

cost function

J =

∫ ∞
0

[xTQx+ uTRu]dt (4.14)

where Q and R are positive definite matrices known as the state weight matrix and

control input weight matrix respectively, where Equation 4.13 is further expressed

as

u = −R−1BTPx (4.15)

where P is a symmetric positive semi-definite solution of the Algebraic Riccati

Equation (ARE) given below

0 = PA+ ATP +Q− PBR−1BP (4.16)

Based on the calculated value for the gain K, |A−BK| must be stable to obtain

a correct and optimal result. For stability it can be analysed that the eigenvalues

must have negative real parts. Hence Equation 4.16 is only solvable if and only if

input matrices A and B is controllable. For controllability analysis see Appendix

A.

The designed LQR controller convergently stabilizes the nonlinear satellite model

by attempting to bring the initial attitude and angular velocity to the minimal
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Figure 4.2: LQR design from linearization.

Figure 4.3: LQR controller on nonlinear spacecraft model.

equilibrium point. At this equilibruim point, the linearised model approximates

the non linear model as efficiently as possible.

The satellite state x is given as

x = [qe1 qe2 qe3 ω1 ω2 ω3]
T (4.17)

where qe1 qe2 qe3 can be defined as the quaternion error to obtain the desired

attitude in quaternion for pointing which can be calculated from the quaternion

error defined in 2.3.5.
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Figure 4.4: LQR controller design algorithm.
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4.4 Cross Product Control Law

The controllability of the reaction wheels is limited by the saturation of the wheels

unlike the magnetorquers which are subject to the geomagnetic field. To solve this,

several approaches for wheel desaturation and unloading have been discussed and

developed [5, 30–32]. Here a very simple cross product law is implemented to per-

form the pointing of the satellite by constantly. This control algorithm is based on

the reaction wheel PD control law while constantly verifying the angular momen-

tum of the wheel as a feedback. The magnetorquer is enabled in the algorithm

when the angular momentum of the wheel approaches 1.5m.N.m.s as described in

the Equations below


Tcx

Tcy

Tcz

 =
[
kωωi + kqqe

]
(4.18)

m = − k

(‖B‖)2
[B × he] (4.19)

where Tc is the control torque from the reaction wheels, k, kω, kq are gains for the

algorithm, m is the magnetorquer dipole moment vector in SBRF and he is the

angular momentum error of the wheels.

4.5 Spin-up Controller Designs

The spin up control algorithm designed will aim to spin the satellite to achieve an

angular velocity of 360 deg/s. This high spin rate is based on mission requirement

of spinning the satellite to generate enough angular momentum for the centrifugal

deployment of tether for the plasma break experiment [19].

In order to control the spin motion of the satellite, three important control factors

needs to be simultaneously considered. These are spin control, precession control,

nutation control [33]. The spin rate controller designed here makes use of the
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magnetorquers based on the strong magnetic field in the LEO environment. As

the ESTCube-2 CubeSat would be used to test algorithms for the ESTCube-3

which is to be launched in Lunar orbit, a spin rate control based on reaction

wheels and cold gas thrusters will also be designed but not covered in the scope of

this thesis. The control law which is based on a Lyapunov like function satisfies

the spin rate and nutation control while aligning the spin axis with Earth’s polar

axis. This is obtained by considering the rate of angular momentum as defined in

Equation 3.17 to be

ḣ = Tc − Ω(ωi)Jωi (4.20)

Here we consider the disturbance torque to be negligible and the angular momen-

tum error to be he = h−hd, therefore the rate of angular momentum error is given

as

ḣe = Tc − Ω(ωi)he (4.21)

Since we desire a spin about the x-axis, we define the angular momentum error

he = 0, then hx = hd. We assume the principal axes of inertia coincide with the

axes of the body frame, therefore Equation 3.5 holds and the angular rates in the

transverse axes be controlled where w2 = w3 = 0. Then we assume Jy = Jz = Jt

and Equation 4.20 becomes


Jxω̇1

Jtω̇2

Jtω̇3

 = Tc −


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



Jxω1

Jtω2

Jtω3

 (4.22)

where Jt is the transverse component of the inertia matrix of the satellite and

simplified further to 
Jxω̇1

Jtω̇2

Jtω̇3

 = Tc +


0

(Jt − Jx)(ω1ω3)

(Jx − Jt)(ω1ω2)

 (4.23)
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Therefore the rate of angular momentum about the spin axis is given as

ḣ1 = Jxω̇1 = Tc

[
1 0 0

]
(4.24)

and the error is then calculated to be he1 = h1 − hd and error rate therefore is

ḣe1 = Tc

[
1 0 0

]
(4.25)

The control law is then defined based on the time derivative of a Lyapunov function

V defined in [34]

V̇ = (he
T + k1he1

[
1 0 0

]
+ k2ω

TP )Tc (4.26)

and simplified further in the control equation given below for the required spin

rate of the satellite in the x-axis for tether deployment.

m = − k

(‖B‖)2
[B × (he + k1he1


1

0

0

+ k2Sω)] (4.27)

where m is the magnetorquer dipole moment vector in SBRF and k, k1, k2 are

control law gains. S represents the axes selection matrix.

This control law and gains needs to be adjusted for the specific implementation

of the tether deployment and ran in an iterative loop sequence. In obtaining

preliminary results for the optimal performance of the controller, the following

points are noted:

• The B-dot algorithm described Section 4.2.1 for detumbling of the satellite

should first be used to reduce the angular momentum of the satellite in order

to improve the performance of the spin up algorithm.

• For the iterative loop in running the controller, the initial desired angular

velocity should be approximately 45 deg/s to ensure stability along the spin

axis.
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• The value of the control gains should be set as: k2 > 1, k1 < 1, k >> k1 to

augment the nutation damping process and avoid uncontrolled spinning of

the satellite about the transverse axis.



5 Simulation Results and Controller

Comparison

This section presents results of the controllers designed and their performances to

the system set with varying initial conditions. The attitude control system was

designed and simulated with MATLAB and SIMULINK.

5.1 B-dot Controller Analysis

The results of the control algorithm described in Section 4.2.1 are depicted in

Figures 5.1 to 5.3. The angular velocity components are seen to attain a steady

state with zero error. As evident with magnetic control, the response has a fast

transient and tends to converge at steady state with a very slow response. The

response shown is based on setting the frequency to 100Hz.

5.2 PD Controller Analysis

The PD controllers were tested with several cases while applying varying gains to

determine an optimum performance. The performance overview is presented in

Table 5.1 and result shown in Figures 5.4 to 5.14.

43
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Figure 5.1: Detumbling of Satellite with Bdot Control

Figure 5.2: Quaternion Attitude during detumbling phase.

5.2.1 PD performance with Magnetorquers

The simulations with the magnetorquers were performed with an initial angular

velocity of (0.05, 0.05, 0.3)rad/s and demonstrate in Figure 5.4 that the proposed

control law achieves attenuating of the satellite angular velocity in approximately



Chapter 5: Simulation Results 45

Figure 5.3: Magnetorquer Torque response during detumbling phase.

Parameters Value Unit
Orbit Period To 5400 Sec

Orbit Angular Velocity ωo = 2π/To Rads/sec

Parameters Reaction Wheels Magnetoquers
Kw 10−3 100
Kq 10−2 20000

Initial Angular Velocity (0.1, 0.1, 0.3)rad/s (0.05, 0.05, 0.3)rad/s
Initial Quaternion attitude (0, 0, 0, 1) (0, 0, 0, 1)

Table 5.1: PD Performance Overview.

1 orbit. Also the control law begins to maintain a stabilized attitude in approx-

imately 9 orbits in all axes towards nadir pointing. The torque produced is seen

to decline in about 1000secs as the oscillations of the angular velocity begins to

attenuate.
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Figure 5.4: PD controller Angular velocity for Detumbling/Pointing with
Magnetorquer.

Figure 5.5: PD controller Quaternion Attitude for Detumbling/Pointing with
Magnetorquer .
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Figure 5.6: Magnetorquer Torque response.
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Figure 5.7: PD controller Angular velocity for Detumbling/Pointing with
reaction wheels saturated

5.2.2 PD performance with saturated Reaction Wheels

The performance of the reaction wheel is hampered due to the saturation of

the wheels as presented in Figure 5.7. The initial angular velocity was set at

(0.1, 0.1, 0.3)rad/s, the reaction wheels were unable to successfully detumble the

satellite to (0, 0, 0)rad/s. Also, the attitude of the satellite keeps oscillating on

all axes. Figures 5.9 and 5.10 shows the angular momentum and torque of the

reaction wheels respectively with the momentum maximizing at 0.0015N.m.s in

approximately 250secs in all axes.
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Figure 5.8: PD controller Quaternion Attitude for Detumbling/Pointing with
reaction wheels saturated

Figure 5.9: Angular momentum showing reaction wheels saturated
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Figure 5.10: Reation Wheel saturated torque response
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Figure 5.11: PD controller Angular velocity for Detumbling/Pointing with
reaction wheels

5.2.3 PD performance with unsaturated wheels

The PD control law simulations were tested with the reaction wheels at an initial

angular velocity lowered to (0.04, 0.04, 0.18)rad/s and can be seen that the reaction

wheel does not get saturated with this initial velocity. The satellite as seen in

Figure 5.11 stabilizes to 0 deg in all axes in about 750secs and also maintains

the desired nadir pointing mode in a similar time frame. The angular momentum

and reaction wheel torque response are presented in Figures 5.13 and 5.14with the

angular momentum maintaining a value with magnitude less than 0.0015N.m.s in

all axes.
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Figure 5.12: PD controller Quaternion Attitude for Detumbling/Pointing with
reaction wheels

Figure 5.13: Angular momentum showing reaction wheels
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Figure 5.14: Reation Wheel torque response
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Figure 5.15: Angular velocity response while unloading Reaction Wheels with
magnetorquers

5.3 Cross Product Control Analysis

The Cross product control law simulations were tested with the reaction wheels and

magnetorquers with an initial angular velocity of the satellite (0.1, 0.1, 0.3)rad/s.

The angular velocity of the satellite as seen in Figure 5.15 attenuates to 0 deg in

all axes in about 750secs. The quaternion attitude attempts to stabilize in about

4000secs to nadir pointing mode. The angular momentum of the reaction wheel

as seen in Figure 5.17 saturates in about 100secs and at the same time torque is

delivered by the magnetorquers as seen in Figure 5.19 which in turn desatrurates

the wheels and the performance is then regulated for effective pointing.
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Figure 5.16: Quaternion Attitude during Reaction Wheel unloading with
Magnetorquers

Figure 5.17: Reaction Wheels angular momentum saturated and unloading
with magnetorquers
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Figure 5.18: Reaction Wheel torque response during unloading

Figure 5.19: Magnetorquer torque response with Reaction Wheel unloading
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Parameters Values Units
Satellite mass 4 Kg
Inertia Matrix Jx = 0.0331, Jy = 0.0331, Jz = 0.00678 Kg m2

Orbit Period To 5400 Sec
Orbit Angular Velocity ωo = 2π/To Rads/sec

Table 5.2: Satellite Parameters to obtain LQR controller gain.

5.4 LQR Analysis

The feedback control input defined in Equation 4.15 establishes the stability of

the linearized model in a closed loop system while minimizing the cost function

4.14. In order to obtain this control input, the inertia matrix J is calculated and

assumed to be diagonal as expressed in Equation 3.5. For further simplification

of the design process, the weight matrices Q and R are selected to be diagonal

with the number of states and number of actuator control as the lengths Q and R

respectively.

Q = diag[Q1, Q2, Q3, Q4, Q5, Q6]

R = diag[R1, R2, R3] (5.1)

Q and R matrices are selected by adjusting the values and comparing the perfor-

mances to the desired goal using code written in MATLAB where the feedback

gain K is also calculated using the function lqr in MATLAB

[K,P,E] = lqr(A,B,Q,R) (5.2)

where P is the solution of the ARE given in 4.16 and E is the closed loop eigen

values |A−BK| that must guarantee stability.

Figure 5.20 and 5.21 shows the step response of the system states with Q and R

matrices selected as Q = diag[1, 1, 1, 1, 1, 1] and R = diag[1, 1, 1]. The result of

the closed loop Eigen values and the controller gain K are



Chapter 5: Simulation Results 58

Figure 5.20: Quaternion Step response (weighting matrices Q = diag[1,1,1,1,1,
1], R = diag[1, 1, 1]) .

Figure 5.21: Angular Velocity Step response (weighting matrices Q =
diag[1,1,1,1,1, 1], R = diag[1, 1, 1] ).

E = −0.7070 + 0.0171i,−0.7070− 0.0171i,−0.7068 + 0.0171i,

− 0.7068− 0.0171i,−0.7071 + 0.0002i,−0.7071− 0.0002i

K =

0.9977 0.0000 0.0000 1.4134 0.0000 0.0000

0.0000 1.0000 −0.0000 0.0000 1.4142 −0.0000

−0.0000 −0.0000 0.9977 0.0000 −0.0000 1.4134

The result of the LQR controller with reaction wheels for the purpose of precise

pointing can be seen in Figures 5.22 to 5.24. The angular velocity of the satellite
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Figure 5.22: Angular Velocity LQR controller performance with noise.

Figure 5.23: Quaternion Attitude LQR controller response with noise.

attenuates to zero within 100 seconds with little oscillations due to noise. The

pointing requirement is satisfied as seen with 100 seconds as well.

Figures 5.25 to 5.27 shows results of the LQR controller with magnetorquers. The

angular velocity of the satellite is seen to attain rest at 0 deg/s in all axes in about

1500 seconds. The controller gain was calculated with Q and R matrices selected

as Q = diag[140, 140, 140, 140, 140, 140] and R = diag[2480, 2480, 2480]. The state

space model for this simulation is described in Appendix C.2
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Figure 5.24: Angular Velocity LQR controller performance.

Figure 5.25: Angular Velocity LQR controller performance with Magnetor-
quers.
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Figure 5.26: Quaternion Attitude LQR controller response with Magnetor-
quers.

Figure 5.27: Magnetorquer Torque response with LQR.
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Parameter Value
Initial Angular Velocity (0, 0, 0)deg/s

k 15000
k1 0.01

Desired Angular Velocity k2 Gain
57 deg/s 100
115 deg/s 1000
172 deg/s 1000
230 deg/s 1000
286 deg/s 5000
360 deg/s 5000

Table 5.3: Spin rate simulation result.

5.5 Spin-up Controller Analysis

The Spin-up control simulation results are presented in this section with the desired

ultimate angular rate set to 360 deg/s in the x-axis. As described in Section 4.5

the controller gains were set as shown in Table 5.3.

Figure 5.28 shows the angular rate of the satellite in the x-axis to about 110

deg/s while experiencing a spontaneous nutation effect. Figure 5.29 shows the

angular rate spin up to about 180 deg/s, which is implemented in 2 phases to

avoid a frequent nutation about the traverse axis. Figure 5.30 presents the desired

angular rate which is performed in several phases and achieved in about 27 orbits

as enumerated in Table 5.3
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Figure 5.28: Angular Velocity Spin up to 110 deg/s.

Figure 5.29: Angular Velocity Spin up to 180 deg/s.



Chapter 5: Simulation Results 64

Figure 5.30: Angular Velocity Spin up to 360 deg/s.



6 Conclusion & Future Work

6.1 Conclusion

This thesis presented various attitude controller designs for ESTCube-2 nanosatel-

lite. Table 6.1 gives an overview of the the various designed controllers and progress

made with testing and optimization as at the time of this thesis work. Further

work on these will continue to achieve specific desired requirements for the satellite

mission.

Much work was done on the design of LQR optimal controller for use with the

reaction wheels and magnetorquers. The LQR controller was seen to work well

even with the gravity gradient disturbance torque. However, due to the influence

of the Earth’s magnetic field, the response with magnetorquers was not much

Control Law Attitude Mode Status Future work
Bdot Detumbling(MT) Designed Gain Optimisation
PD Detumbling(MT) Designed
P Detumbling(RW ) Designed

PD Pointing(MT) Designed Gain Optimisation
PD Pointing(RW) Designed

Cross Product law Wheel unloading(MT/RW) Designed
LQR Pointing(MT) Designed Gain Optimisation
LQR Pointing(RW) Designed

Angular rate control Spin-up(MT) Designed Gain Optimisation
Angular rate control Spin-up(MT/RW) Theory Designed Design Controller
Angular rate control Spin-up(RW/Thruster) Theory Designed Design Controller

Table 6.1: Overview of Designed Controllers.
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desirable in comparison with reaction wheels. In comparison with the PD-like

control laws, LQR optimal control gave better results to stabilize the system even

when realistic disturbances were added.

In order to reduce the effect of the residual dipole disturbance, ferromagnetic

materials could be avoided in building the satellite.

6.2 Future Work

The control methods presented were able to attain a certain level of attitude

stability based on the requirements. However much work still needs to be done

to account for all necessary attitude maneuver for the ESTCube-2 mission. To

attain a more efficient performance, controllers making use of the magnetorquers as

actuators would require optimization in controller gain and testing of time varying

gain approach. The angular rate controller for spin would also be designed for use

with reaction wheels and thrusters as actuators.

The controllers designed are presented implemented in MATLAB environment,

however these control algorithms would have to be written in c language and

tested in simulation in SIMULINK.
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[18] B. Wie, H. Weiss, and A. Arapostathis, “Quarternion feedback regulator for space-

craft eigenaxis rotations,” Journal of Guidance, Control, and Dynamics, vol. 12,

no. 3, pp. 375–380, 1989.



69

[19] I. Iakubivskyia, H. Ehrpaisa, J. Dalbinsa, E. Orob, E. Kulub, J. Kütta, P. Jan-

hunenc, A. Slavinskisa, E. Ilbisa, I. Plooma et al., “Estcube-2 mission analysis:

plasma brake experiment for deorbiting,” 2016.

[20] W. Ley, K. Wittmann, and W. Hallmann, Handbook of space technology. John

Wiley & Sons, 2009, vol. 22.

[21] A. H. d. Ruiter, C. Damaren, and J. R. Forbes, Spacecraft Dynamics and Control:

An Introduction. John Wiley & Sons, 2012, google-Books-ID: mGSYHJIlDxEC.

[22] W. J. Larson and J. R. Wertz, “Space mission analysis and design,” 1992.

[23] J. R. Wertz, Spacecraft attitude determination and control. Springer Science &

Business Media, vol. 73.

[24] M. L. Psiaki, “Magnetic torquer attitude control via asymptotic periodic linear

quadratic regulation,” Journal of Guidance, Control, and Dynamics, vol. 24, no. 2,

pp. 386–394, 2001.

[25] J. R. Wertz and W. J. Larson, “Space mission analysis and design,” 1999.

[26] A. Slavinskis, M. Pajusalu, H. Kuuste, E. Ilbis, T. Eenmäe, I. Sünter, K. Laizans,
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A Controllability Analysis

For a linear system given as

ẋ(t) = Ax(t) +Bu(t) (A.1)

the system is said to be controllable if for all initial conditions x(t0), final conditions

x(tf ) and where tf > 0, there would exist a control input u(t), in the range 0 < t < tf

such that

x(t) = x(tf )

In other words, the Controllability propety is aimed to find u(t) such that the states

are forced to go from an initial state, x(t0) to a final desired state x(tf ) in a finite time

period.

The controllability condition states that the state and input matrix, A,B, satisfy that

Co =
[
B|AB|A2B| · · · |An−1B

]
(A.2)

where n is the dimension of A and the system is therefore controllable if and only if Co

has a full rank, rank(Co) = n. The controllability of the designed system is determined

by using Matlab controllability function ctrb().
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B Linear Programming Code.

LQR Gain with Reaction Wheels

InertiaM =[0.0331, 0, 0; 0, 0.0331, 0; 0, 0, 0.00678];

T_o = 90*60; %sec

omega_o = 2*pi/T_o;

omega_o_sq = omega_o*omega_o;

%RW_h = [1;1;1];

f_41 = 8*(InertiaM(3,3) - InertiaM(2,2))*omega_o_sq - 2*omega_o;

f_46 = (-InertiaM(1,1) -InertiaM(3,3) + InertiaM(2,2))*omega_o ;

f_52 = 6*(InertiaM(3,3) - InertiaM(1,1))*omega_o_sq;

f_63 = 2*(InertiaM(1,1) - InertiaM(2,2))*omega_o_sq - 2*omega_o;

f_64 = -(f_46);

%qBI = (qBI(1:3));

%x = [qBI; RotVel_B];

Adr = zeros(3);

Adr(1,3) = f_46;

Adr(3,1) = f_64;
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Adl = zeros(3);

Adl(1,1) = f_41; Adl(2,2) = f_52; Adl(3,3) = f_63;

Au = [zeros(3) eye(3)*0.5];

Ad = [Adl Adr];

A = [Au; Ad];

B = [zeros(3); eye(3)];

Q = diag([1,1,1,1,1,1]);

R = diag([1,1,1]);

%K = [31.066 0 0 0.7905 0 0;...

% 0 41.7118 0 0 0.7905 0;...

% 0 0 49.5115 0 0 0.7905];

[K,p,e] = lqr(A,B,Q,R)

LQR Gain with Magnetorquers

InertiaM =[0.0331, 0, 0; 0, 0.0331, 0; 0, 0, 0.00678];

T_o = 90*60; %sec

omega_o = 2*pi/T_o;

omega_o_sq = omega_o*omega_o;

f_41 = (8*(InertiaM(3,3) - InertiaM(2,2))*omega_o_sq)/InertiaM(1,1);

f_46 = ((-InertiaM(1,1) -InertiaM(3,3) + InertiaM(2,2))*omega_o)/InertiaM(1,1);

f_52 = (6*(InertiaM(3,3) - InertiaM(1,1))*omega_o_sq)/InertiaM(2,2);

f_63 = (2*(InertiaM(1,1) - InertiaM(2,2))*omega_o_sq)/InertiaM(3,3);

f_64 = ((InertiaM(1,1) +InertiaM(3,3) -InertiaM(2,2))*omega_o)/InertiaM(3,3);

%qBI = (qBI(1:3));

%x = [qBI; RotVel_B];
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Adr = zeros(3);

Adr(1,3) = f_46;

Adr(3,1) = f_64;

Adl = zeros(3);

Adl(1,1) = f_41; Adl(2,2) = f_52; Adl(3,3) = f_63;

Au = [zeros(3) eye(3)*0.5];

Ad = [Adl Adr];

A = [Au; Ad];

B = [zeros(3); 0 0 (3.6838e-05)/InertiaM(1,1); 0 0 0;...

(-3.6838e-05)/InertiaM(3,3) 0 0];

Q = diag([140,140,140,140,140,140]);

R = diag([2480,2480,2480]);

%K = [31.066 0 0 0.7905 0 0;...

% 0 41.7118 0 0 0.7905 0;...

% 0 0 49.5115 0 0 0.7905];

[K,p,e] = lqr(A,B,Q,R)



C Nadir Pointing Satellite Model

With Reaction Wheels

C.1 Model with Reaction Wheels

The linearization of the satellite model was described in Section 3.6, here the satellite

model is described with respect to nadir pointing of the satellite with reaction wheels.

The dynamic model representing the satellite with reaction wheels is given below as

described in [35].

Jω̇i = Td + Tc − Ω(ωi)(Jωi +H) (C.1)

where H = [h1h2h3]
T is the angular momentum of the wheel. Here, the Nadir pointing

Attitude is represented by the SBRF rotation to the orbit frame (LVLH). The transfor-

mation matrix representing the orbit frame to the SBRF is ABo . therefore the angular

velocity of the satellite in the inertial reference frame is given as

ωi = ω +ABo ωo = ω + ωBo (C.2)

ω is described as the angular velocity in the body frame with respect to the orbit frame.

The derivative is also obtained as give below with ω̇o regarded as small and negligible.

ω̇i = ω̇ + ȦBo ωo +ABo ω̇o = ω̇ − ω × ωBo (C.3)
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Therefore, Equation C.1 can be re-written as

Jω̇i = Td + Tc − Ω(ω + ωBo )(J(ω + ωBo ) +H) (C.4)

This can further be expressed with the angular momentum quite small and negligible.

Jω̇i = Td + Tc + f(ω, ωBo ) (C.5)

For nadir pointing of the satellite, the satellite angular velocity rate in SBRF with

respect to orbit frame should be as small as possible ω ≈ 0 and both frames be aligned

with very little error q1, q2, q3 = 0. Also, we consider the orbit rate of the satellite in a

circular orbit ωo = 2π/To. The linearized nadir pointing model in state space form of

ẋ = Ax+BTc with gravity gradient torque is given as described in [36]

 q̇
ω̇i

 =



0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5

f41 0 0 0 0 f46

0 f52 0 0 0 0

0 0 f63 f64 0 0



 q
ωi

+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


(Tc) (C.6)

where

f41 = 8(J33 − J22)ω2
o − 2ωo

f46 = (−J11 − J33 + J22)ωo

f52 = 6(J33 − J11)ω2
o

f63 = 2(J11 −−J22)ω2
o − 2ωo

f64 = −f46

C.2 Model with Magnetorquers

The initial model is same as that used in the previous section, however, the control torque

used is that generated by the magnetic coil also described in 2.5.2 where Tc = m× b.



Appendix C. Satellite Model 77

The magnetic field b is also expressed based on the dipole model described in Section

3.3.1 as

b =


b1(t)

b2(t)

b3(t)

 =
µf
a3


cosω0t sin θ

− cos θ

2 sinω0t sin θ

 (C.7)

With the inclination of the spacecraft orbit and the magnetic equator θ = 0 the quater-

nion linear time invariant model is therefore reduced and given by [16]

 q̇
ω̇i

 =



0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5

f41 0 0 0 0 f46

0 f52 0 0 0 0

0 0 f63 f64 0 0



 q
ωi

+



0 0 0

0 0 0

0 0 0

0 0 −b2/J11

0 0 0

−b2/J33 0 0




m1

m2

m3

 (C.8)

where

f41 = 8 (J33−J22)
J11

ω2
o

f46 = (−J11−J33+J22)
J11

ωo

f52 = 6 (J33−J11)
J22

ω2
o

f63 = 2 (J11−−J22)
J33

ω2
o

f64 = (J11+J33−J22)
J33

ωo
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sentations

D.1 Abstract for 68th International Astronauti-

cal Congress 2017 - Tether Deployment Us-

ing High Spin Rate Control For Interplan-

etary Nanosatellite Missions

This paper presents a high spin rate control algorithm based on a Linear Quadratic

Regulator (LQR) used for tether deployment on the ESTCube-2 3U nanosatellite. The

300m long tether, consisting of 4 parallel 25µm diameter wires, will be deployed using

centrifugal force generated by spinning up the satellite. The deployed tether will be

used for a deorbiting experiment employing the plasma break technology. The attitude

control system of ESTCube-2 will use electromagnetic coils, reaction wheels and cold

gas thrusters as actuators. The LQR will be designed based on linearized satellite

dynamics. The aim of the controller is to spin up the satellite to 360 deg/s about the X-

axis (short axis) while simultaneously aligning the spin axis with the Earth’s polar axis.

The paper will also describe the design of an LQR optimal controller with controllability

and stability analysis to meet the strict pointing requirements of the ESTCube-2 Earth

observation camera and the high speed communication antenna. The simulation results

will be presented and analysed to improve controller performance. The attitude control
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algorithms will be flight tested on ESTCube-2 as a stepping stone for ESTCube-3 which

is planned to be launched to lunar orbit.

D.2 Abstract for 6th iCubeSat Workshop 2017 -

ESTCube-2 Nanosatellite Attitude Control

for Interplanetary Missions

This paper presents the design and study of attitude control algorithms for the ESTCube-

2/3 missions making use of electromagnetic coils, reaction wheels and cold gas thrusters

as actuators. The controllers designed are based on fulfilling the set requirements of

the ESTCube-2 mission. The 3U CubeSat is required to spin up for the centrifugal

tether deployment for the Plasma Brake experiment. The algorithm designed for this is

required to spin the satellite up to 360 deg/s about the X-axis while simultaneously en-

suring the alignment of the satellite with Earth’s polar axis. The attitude control system

is designed to also satisfy the strict pointing requirement of which a Linear Quadratic

Regulator controller (LQR) has been designed with controllability and stability analysis

based on linearized satellite dynamics and is being enhanced for tracking making use of

the reaction wheels of the satellite. In addition, we present attitude control methods to

be tested for the ESTCube-3 which is meant for the lunar orbit applying a combination

of reaction wheels and cold gas thrusters for attitude maneuvering. Results based on

simulations are therefore presented and analyzed for improved performance.
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