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INTRODUCTION 

Six-layered neocortex has emerged latest in the evolution of the mammalian 
brains and is the most expanded part of the nervous system in vertebrates. Neo-
cortex controls nearly all aspects of behaviour, including perception, voluntary 
movements, cognition, language, and decision-making. Neocortex contains an 
immense number of neurons that can be broadly divided into two groups, 
excitatory neurons and inhibitory interneurons. Glutamatergic excitatory neurons 
comprise the majority (70–80%) of neocortical circuit neurons and are respon-
sible for generating the output. Excitatory neurons are generated in the pro-
liferative ventricular zone of the dorsal telencephalon and migrate radially to 
constitute the future neocortex. GABAergic inhibitory interneurons are produced 
in the proliferative zone of the ventral telencephalon and migrate tangentially to 
reach the neocortex, co-assemble with excitatory neurons and form functional 
circuits. Defects in those developmental stages lead to several malformations 
that severely affect mental capabilities and cytoarchitecture of the brain. 

To generate neurons and guide their migration to the specific positions, 
cells must perceive and adequately respond to the changes in their surrounding 
environment. Proper interaction and communication between the cells is the key 
to the development and functioning of a multicellular organism. The seven-
transmembrane domain G-protein coupled receptors (GPCRs) represent the 
most widely used system to transmit information across the cell membrane. Via 
coupling of such receptors to heterotrimeric G proteins and by the help of 
accessory proteins, numerous effectors can be activated. A chaperone and a 
non-canonical guanine nucleotide exchange factor RIC8A is a highly conserved 
protein that interacts with a subset of Gα subunits. RIC8A has been reported in 
different model organisms to participate in the control of mitotic cell division, 
cell signalling, cell migration and development. In the mammalian nervous 
system, RIC8A is expressed at the high level in the developing nervous system 
and in adult brain regions involved in the regulation of memory and emotional 
behaviour, which manifest as anxiety and impaired memory in the mice hetero-
zygous for the Ric8a allele. However, the homozygous Ric8a–/– embryos die at 
E6.5 – E8.5 due to a gastrulation defects, hence, the function of RIC8A in the 
mammalian nervous system has not been sufficiently analysed.  

The main goal of this thesis is to analyse the role of RIC8A in the develop-
ment and function of the mammalian nervous system. Two different conditional 
knockout mice models were generated where Ric8a was specifically deleted 
from the differentiated neurons and from the neural precursor cells. The ablation 
of RIC8A function in either cell type resulted in severe neuromuscular pheno-
type of mice. Additionally, the deficiency of RIC8A in neural precursor cells 
led to a type II lissencephaly-like defect with characteristic malformations in the 
brain, eyes, skeletal muscle and heart. The underlying causes for these deformities 
are thoroughly examined in this dissertation. 
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REVIEW OF LITERATURE 

1. Development of the mouse neocortex 
During the development of the neocortex, a limited number of neural stem cells 
give rise to a vast array of neurons and macroglial cells. Prior to the neurogenesis 
the neural plate and neural tube consist of a pseudostratified neuroepithelium. All 
neurons of the mammalian neocortex originate from neuroepithelial cells (NE) 
that are apico-basally polarised multipotent neural progenitor cells (Götz and 
Huttner, 2005). NE cells show typical epithelial features: they are connected to 
each other by adherens junctions and tight junctions at the most apical end of 
the lateral plasma membrane; and they are attached to the pial basement 
membrane (BM) with integrins and α-dystroglycan, which are concentrated at 
the basal plasma membrane (AakuSaraste et al., 1996; Wodarz and Huttner, 
2003). In concert with the mitotic cell cycle, NE cells undergo interkinetic 
nuclear migration where nuclei shift between the basal side (S phase) and the 
apical side (M phase), giving neuroepithelium a pseudostratified appearance 
(Götz and Huttner, 2005). Before active neurogenesis, the NE cells undergo 
several symmetric self-amplicative divisions in the ventricular zone (VZ) to 
expand their progenitor population (Miyata et al., 2010). With the onset of neuro-
genesis (at about E9.0 in mouse) the activation of Notch and fibroblast growth 
factor (FGF) pathway drive the NE cells to reveal the features typical to glial 
cells and lose tight junctions to become the radial glial cells (RG) (AakuSaraste 
et al., 1996; Hatakeyama et al., 2014; Sahara and O'Leary, 2009). RG cells are 
also apico-basally oriented, undergoing interkinetic nuclear migration and 
contribute to RG cell self-renewal but they are more fate restricted neural 
progenitor cells compared with NE cells (Anthony et al., 2004; Noctor et al., 
2002). Most of the projection neurons form directly or indirectly through RG 
cell divisions (Anthony et al., 2004; Malatesta et al., 2000). Direct neurogenesis 
yields a neuron immediately after RG cell division producing two daughter cells 
with the same fate (Miyata et al., 2001; Noctor et al., 2004). Indirect neuro-
genesis is accomplished through asymmetric cell division where dividing RG 
cell gives two daughter cells with different fates: one daughter cell self-renews 
itself and the other loses its RG cell identity and becomes multipolar basal 
intermediate progenitor cell (bIP) (Miyata et al., 2001; Noctor et al., 2004). bIP 
cells translocate to the basal part of the VZ forming subventricular zone (SVZ) 
where they undergo subsequent symmetric division to produce neurons, thereby 
expanding the neurogenic output (Haubensak et al., 2004; Miyata et al., 2004; 
Noctor et al., 2004) (Figure 1). Neuronal diversity and output are also increased 
using other less abundant progenitor cells that populate the mouse embryonic 
cortex, such as short apical intermediate progenitors (aIPs), subapical pro-
genitors (SAPs), basal radial glial cells (bRGs), which share similarities with 
bIP or RG cells but differ in cell cycle kinetics and locations in the VZ and SVZ 
(Pilz et al., 2013; Shitamukai et al., 2011; Stancik et al., 2010; Tyler and 
Haydar, 2013; Wang et al., 2011b). 
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Upon exiting the cell cycle, newborn excitatory neurons need to migrate out 
of the VZ into the cortical plate, where they in response to environmental signals 
position themselves to appropriate layers (Hatten, 2002; Marin and Rubenstein, 
2003). Processes of the RG cells provide the necessary substrate and guide to 
radially migrating neurons (Nadarajah et al., 2003; Nadarajah et al., 2001). 
There are two distinct modes for postmitotic neurons to migrate radially: somal 
translocation and locomotion (Nadarajah et al., 2003; Nadarajah et al., 2001). In 
early neocortical development, the principal mode of neuronal migration is the 
somal translocation, in which neurons have a long radial process attached to the 
pial surface and move their cell soma toward the leading edge of all (Gupta, 
2002). At later stages, as the cerebral cortex grows bigger, the distance between 
the ventricular zone (VZ) and the marginal zone (MZ) increases, neurons pre-
dominantly start migrating using locomotion, where they use the radial processes 
of RG cells as a scaffold to reach their final positions (Gupta et al., 2002; Tan 
and Shi, 2013). The neocortical layers of II–VI are generated in an „inside-out“ 
manner, meaning that neurons generated earlier reside in the deeper layers, 
whereas later-born neurons migrate past the existing neurons to occupy more 
superficial layers (Hatten, 1999; Nadarajah et al., 2001). 

The proper arrangement of cortical plate neurons in an inside-out manner 
depends on the function of Reelin expressed by a unique group of cells in the 
marginal zone, the Cajal-Retzius cells (Soriano and del Rio, 2005). Cajal-
Retzius cells originate from several sources outside the neocortex such as cortical 
hem, ventral pallium and septum (Bielle et al., 2005; Yoshida et al., 2006; Zhao 
et al., 2006). At the onset of neurogenesis, Cajal-Retzius cells migrate tan-
gentially to populate developing neocortex to help future neurons to migrate to 
their appropriate layers (Magdaleno et al., 2002). Later in development 
GABAergic interneurons generated in distinct regions of the ventral 
telencephalon also migrate tangentially to enter the developing cortex (Jimenez 
et al., 2002). Interneurons invade the neocortex after their partners, excitatory 
neurons have reached their location, reflecting the possible requirement for 
signals from appropriately located excitatory neurons (Tan and Shi, 2013). As 
neurogenesis proceeds, the VZ shrinks and it is finally replaced by a single layer 
of ependymal cells that line the lateral ventricles (Kriegstein et al., 2006). 
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Figure 1. Neural progenitor cells and the phases of neurogenesis in mice. A limited 
number of neuroepithelial cells (NE) self-renew by symmetric divisions in the ventri-
cular zone (VZ), then convert into radial glial cells (RG) to give rise to a high number of 
diverse neural cell types through asymmetric cell divisions. Cajal-Retzius cells (CR) 
migrate tangentially from ventral telencephalon to the marginal zone (MZ) to guide 
radial migration in neocortex. Intermediate progenitor cells (bIP) that are produced 
through asymmetric cell division populate the subventricular zone (SVZ). Neurons 
migrate along the basal processes of RG cells through the intermediate zone (IZ) to 
populate cortical plate (CP) from where they migrate towards their destined layer. 
During the radial migration, interneurons generated in the ganglionic eminences migrate 
tangentially in IZ and contribute to the neocortical layer formation. At later stages, RG 
cells undergo their final division generating symmetrically two neurons (N). Modified 
from (Jiang and Nardelli, 2016). 
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2. Cell division in mouse neurogenesis 

2.1. Cell polarity in asymmetric cell division 

Asymmetric cell division and the establishment of cell polarity are essential 
processes generating a vast variety of neuronal cell types. In order to establish 
the polarity and correctly locate the cell-fate determinants, the orientation of the 
division in animal cells requires complex coordination of external and internal 
cues, including signalling pathways, scaffold proteins and the mitotic spindle 
apparatus (Taverna et al., 2014). An axis of polarity is established in the mother 
cell and coordinated with the asymmetrically located fate determinants, membrane 
compartments and spindle orientation to create two daughter cells containing 
different amounts of these determinants (Götz and Huttner, 2005; Sanada and 
Tsai, 2005). For example, since NE and RG cells are highly polarized, their 
apical compartment is composed of the apical plasma membrane, the primary 
cilium, centrosomes and the junctional belt and it substantially differs from the 
basolateral compartment and the basal endfeet that are attached to the basal 
lamina (Kosodo et al., 2004; Paridaen et al., 2013; Peyre et al., 2011; Peyre and 
Morin, 2012; Tong et al., 2014).  

The apical plasma membrane is in close contact with the lumen of the 
ventricles and mediates the signals communicated by the cerebrospinal fluid 
(CSF) such as IGF, SHH and WNT (Johansson, 2014; Lehtinen et al., 2011). 
These signals are received by primary cilium, an organelle protruding from the 
apical plasma membrane into the lumen of the ventricle (Arellano et al., 2012; 
Tong et al., 2014). When the function of primary cilium is interfered, the circu-
lation of the cerebrospinal fluid is impaired, which, in turn, affects neurogenesis 
and brain homoeostasis (Boutin et al., 2014; Tong et al., 2014). The primary 
cilium is directly linked to the centrosome at the base of the cilium as its basal 
body, which forms the poles of the mitotic spindle during mitosis and after 
centriole duplication. Centrosomes are always asymmetrically inherited by the 
daughter cells because, with the self-renewing, RG cell retains the mother 
centriole and the differentiating cell receives the daughter centriole (Paridaen et 
al., 2013; Wang et al., 2009) (Figure 2). 

In addition, the unequal distribution of the entire apical plasma membrane is 
important in generating asymmetric cell fate in daughter cells, even if the 
majority of divisions in the VZ occur in a planar manner (Kosodo et al., 2004). 
The apical membrane also embeds the cell polarity determinants such as Par3, 
Par6, aPKC, which are dynamically distributed in the apical membrane (Costa 
et al., 2008; Imai et al., 2006; Kosodo et al., 2004; Manabe et al., 2002). In RG 
cells the Par-complex proteins localise only in the apical endfoot and are 
segregated equally at the early divisions but exhibit different inheritance in later 
divisions (Farkas and Huttner, 2008; Manabe et al., 2002). During interphase, 
Par3 is localised to the lateral membrane of the ventricular endfeet, during 
mitosis it becomes dispersed in the apical compartment which allows Par3 
protein asymmetric inheritance and distinct daughter cell fate specification by 



15 

the unequal activation of Notch signalling (Bultje et al., 2009). The daughter 
cell that inherits a higher amount of Par3 protein develops higher Notch 
signalling activity and undergoes self-renewal, whereas the daughter cell 
receiving less Par3 and possessing lower Notch activity acquires either neuronal 
or bIP fate (Bultje et al., 2009). The apical membrane contains apical junctional 
complexes that have crucial roles in establishing and maintaining cell polarity 
and cell fate. The junctions govern the association neighbouring NE and RG 
cells and are required for maintaining the proper tissue architecture (Aaku-
Saraste et al., 1996). Adherens junctions are comprised of three membrane 
domains (Par-3/aPKC apically, ZO-1 and Afadin centrally, N-cadherin/β-catenin 
basally). During asymmetric cell division, these domains are split so that both 
daughter cells retain the adhesive proteins that control the cell positioning, but 
only one of them inherits the polarity proteins along with the apical membrane 
(Marthiens and Ffrench-Constant, 2009). The localisation of proteins controlling 
the cell polarity is regulated by the small GTPases Cdc42, RhoA, and Rac1 
which are concentrated at the apical cell cortex (Cappello et al., 2006; Cappello 
et al., 2012). The main function of Cdc42 in mammalian neurogenesis is to 
activate the Par complex in order to maintain the adherens junctions coupling 
and progenitor cell fate. Deletion of Cdc42 caused the conversion of apical 
progenitors to basal SVZ progenitor cells that had also acquired the SVZ 
characteristic fate determinants (Cappello et al., 2006). Rac1 is required for 
maintaining the cell proliferation, in the absence of Rac1 cells undergo early 
differentiation leading to a smaller brain size (Chen et al., 2009; Leone et al., 
2010). Loss of RhoA in neural progenitor cells causes the disruption of adherens 
junction and hyperproliferation (Katayama et al., 2011). RhoA plays an 
important role in maintaining the balance between actin and tubulin cyto-
skeleton which regulates apical and basal anchoring and proliferation of 
progenitor cells (Cappello et al., 2012).  

On the opposite side of the apical junctions lies the basolateral plasma 
membrane which forms the majority of the NE and RG cells plasma membrane. 
Basolateral plasma membrane surrounds the nucleus and elongates through the 
neuronal layers attaching to the basal lamina by the endfoot (Miyata et al., 
2001; Miyata et al., 2004). The basal process is recognised as an active sub-
cellular compartment involved in signalling and fate specification. During NE 
cells proliferation, when the neuroepithelium is relatively thin, the basal 
processes are bisected and inherited equally between the daughter cells (Kosodo 
and Huttner, 2009). During RG cell divisions and active neurogenesis, the basal 
process is asymmetrically inherited. During mitosis, the daughter cell inheriting 
the basal process often maintains its proliferative capacities (Konno et al., 2008; 
Miyata et al., 2001) (Figure 2). The endfoot of the basal process makes a direct 
contact with the basement membrane and is able to receive signals generated by 
the basal lamina and meninges which has an important role in the establishment 
of the epithelial cell polarization and the generation of differentiated cells 
(Halfter et al., 2002; Li et al., 2003; Zarbalis et al., 2007). A critical receptor is 
the GPR56 that localizes to basal endfeet and associates with extracellular 
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matrix (ECM) components in the basal lamina, such as collagen III, and that 
promotes proliferation of radial glial cells (Jeong et al., 2013; Singer et al., 
2013; Zarbalis et al., 2007). Mutations of Foxc1 which reduces retinoic acid 
production by cells in the dorsal meninges, delay the onset of neurogenesis and 
asymmetric cell division (Siegenthaler et al., 2009).  

 

 
Figure 2. Asymmetric polarity in apical neural progenitor cell division. In NE and 
RG cells the apical polarity cues are presented by the apical plasma membrane, the 
adherens junctions, centrosome and ciliary membrane. The basolateral compartment 
contains the plasma membrane around the nucleus and the basal process. These cues can 
be divided symmetrically or asymmetrically which determine the cleavage plane and the 
fate of the daughter cells.  
 
 

2.2. Spindle orientation in asymmetric cell division 

The generation of multiple neurons and secondary progenitor cells from RG cells 
is tightly controlled by orientation of the mitotic spindle during cell division, 
which influences the acquisition of asymmetric cell fate determinants and 
apical/basolateral membrane compartment between cortical progenitors (Huttner 
and Kosodo, 2005; Peyre and Morin, 2012; Shitamukai and Matsuzaki, 2012). 
Daughter cells must be properly positioned in order to maintain the tissue 
structure and to contribute to tissue morphogenesis. In the mouse neurogenesis 
the RG cells divide mainly in a planar manner with the horizontal orientation of 
spindle but also exhibit oblique and vertical divisions that are suggested to be 
required for the bIP cell production (Konno et al., 2008; Morin et al., 2007; 
Peyre et al., 2011; Postiglione et al., 2011).  

The mitotic spindle is formed during the prophase when the duplicated 
centrosomes nucleate spindle microtubules to position the chromosomes 
(Lancaster and Knoblich, 2012). Then, the astral microtubules elongate from the 
centrosomes and are fixed by capture at the plasma membrane to position the 
spindle (Lancaster and Knoblich, 2012). Numerous studies in different tissues in 
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invertebrate and vertebrate species have shown that an evolutionarily conserved 
complex, composed of the heterotrimeric G protein GDP-bound Gαi subunit, 
LGN (Leucine-Glycine-Asparagine) protein and nuclear mitotic apparatus 
(NuMA) molecules associate strongly with the spindle pole (Buchman and Tsai, 
2007; Du and Macara, 2004; Du et al., 2001; Konno et al., 2008; Morin et al., 
2007; Peyre et al., 2011; Schaefer and Knoblich, 2001; Schaefer et al., 2001; 
Zheng et al., 2013). During mitosis, Gαi:GDP-LGN-NuMA complex localises 
to particular sites of basolateral membrane cortex and directs the recruitment of 
the minus-end-directed microtubule motor protein dynein/dynactin complex 
(Couwenbergs et al., 2007; Peyre et al., 2011; Zheng et al., 2013). This directed 
movement of dynein/dynactin complex along cortically anchored astral micro-
tubules generates pulling forces on the spindle poles that leads to the positioning 
of the spindle (Siller and Doe, 2009) (Figure 3).  
 

 
Figure 3. Spindle orientation during the planar and oblique cell division in 
mammalian neurogenesis. During early neurogenesis, the majority of the divisions 
occur in a planar manner that segregates equally apical (Par3/Par6/aPKC; apical plasma 
membrane) and basal compartments (basolateral membrane, basal process). Astral 
microtubules are nucleated to the centrosomes and are recruited to the cortex by 
LGN/NuMA/Gα complex. This directs the minus-end-directed microtubule motor 
protein dynein to move towards the centrosomes which generates pulling forces on the 
spindle poles. During oblique cell divisions, apical and basal compartments are 
segregated unequally: the self-renewing daughter cell inherits the majority of the Par-
complex proteins, apical plasma membrane and the basal process, also Inscuteable 
promotes oblique cell division since it competes with LGN over the interaction of 
NuMA that is associated with spindles. 
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The polarity proteins Par3:Par6:aPKC promote the recruitment of Gαi:GDP-
LGN-NuMA complex via an adaptor molecule known as Inscuteable (Insc) that 
is shown to promote oblique and vertical divisions in the cortex (Postiglione et 
al., 2011; Williams et al., 2011). When mInsc is present, the communication 
between LGN and the spindle via NuMA is disrupted by competition with 
mInsc (Mapelli and Gonzalez, 2012; Zhu et al., 2011) (Figure 3). This com-
petitive behaviour is important for the asymmetric cell division since LGN 
presence favours more planar spindle orientation and mInsc shifts the spindle 
towards the oblique orientation (Konno et al., 2008; Postiglione et al., 2011). In 
addition, interaction with NuMA is necessary to switch LGN to an open 
conformation that increases its ability to bind the Gαi subunits (Du and Macara, 
2004). LGN is initially recruited all around the cell cortex but its localisation is 
restricted to two cortical crescents facing the spindle poles during metaphase 
and anaphase (Kiyomitsu and Cheeseman, 2012). During interphase, NuMA 
localises to the nucleus and after nuclear envelope breakdown, it needs to be 
phosphorylated by CDK1 (cyclin dependent kinase-1) (Du and Macara, 2004; 
Kotak et al., 2013). Then, the anaphase-specific cortical recruitment is 
accomplished through the interaction between phosphoinositides PIP/PIP2 and 
NuMA (Kotak et al., 2013, 2014). Thus, the formation of the Gαi/LGN/NuMA 
cortical complex is restricted to the cortex only in mitosis (Du and Macara, 
2004; Kotak et al., 2013, 2014). Increased cortical levels of NuMA in anaphase 
drive the recruitment of additional dynein into the cortex which is important for 
spindle elongation and chromosome separation (Kotak et al., 2013). 

Recent studies have shown that in parallel to Gαi/LGN/NuMA complex the 
intact cortex is required for the correct localisation of the spindle orientation 
machinery and for the stabilisation of force generators. Almost all animal cells 
become round or spherical as they enter mitosis which requires profound changes 
in cell organisation (Lancaster and Baum, 2014). Cytoskeletal remodelling 
begins in prophase when interphase microtubules are disassembled and a new 
population of shorter, more dynamic microtubules are nucleated from centro-
somes (Niethammer et al., 2007). When nuclear envelope breaks down, the plus 
ends of centrosome-nucleated microtubules establish contacts with chromo-
somes at kinetochores (Lancaster and Baum, 2014). Microtubule nucleation and 
dynamics regulate the number of microtubules reaching the cortex, these 
microtubules need to establish proper contacts with the cortex and force gene-
rators (Lancaster and Baum, 2014). While cells round up and nucleate micro-
tubules, they remain connected to the adhesive substrate through retraction 
fibres which are cytoplasmic extensions filled with actin filaments. These 
retraction fibres have been proposed to recruit polarising factors to the cell 
cortex, leading to spindle orientation (Fink et al., 2011; Thery et al., 2007). 
Moreover, the previous study has shown that amorphous clusters or membrane 
ruffles composed of actin filaments are formed during early prometaphase, which 
revolves along the cell cortex concentrating near the retraction fibres and 
disappear into the contractile ring upon cytokinesis (Kunda et al., 2008; 
Mitsushima et al., 2010). The cortical regions with attached retraction fibres 
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organise the adjacent cytoplasm by controlling a dynamic subcortical actin 
network which in turn concentrates force-generating molecules on astral micro-
tubules (Fink et al., 2011; Kwon et al., 2015; Mitsushima et al., 2010). Micro-
tubule binding protein Myosin-10 is required for the spindle orientation by 
modulating microtubule dynamics towards the polarised actin clusters and 
retraction fibres (Kwon et al., 2015). Myosin-10 mediated spindle positioning is 
acting in parallel and independently of dynein/LGN mechanism since combined 
depletion of myosin-10 and LGN resulted in randomised spindle orientation 
whereas depleting each complex individually did not impair dynein cortical 
localisation or Myosin-10 cortical distribution, respectively (Kwon et al., 2015). 

Defects in astral microtubule stability also affect spindle orientation. Most of 
the studies on astral microtubules have been performed in cultured cells, but 
recent evidence in vivo has demonstrated that two different astral microtubule 
subpopulations regulate spindle orientation and thus proliferative or neurogenic 
divisions (Mora-Bermudez et al., 2014). In proliferating NE cells, there are more 
astral microtubules that reach the apical and basal cell cortex that collectively 
help to stabilise the cell shape and anchor the spindle to the cortex, which 
promotes symmetric divisions (Mora-Bermudez et al., 2014). In contrary, in RG 
cells that undergo neurogenic divisions the number of astral microtubules that 
reach the apical and basal cortex decreases and cells are more sensitive to other 
intra- and extracellular forces that can induce tilt in cleavage plane (Mora-
Bermudez et al., 2014).  

Intrinsic actions in cells are activated mostly by the extracellular stimuli. 
Integrins are transmembrane receptors that interact with extracellular matrix 
proteins and upon binding undergo a conformational change that induces the 
recruitment of integrin-interacting partners to the cortex which in turn activates 
a variety of processes, like cell survival, migration and proliferation. β1 integrins 
are implicated in regulating the mitotic spindle orientation relative to the 
substratum and sensing the extracellular matrix so that the cell can divide parallel 
to the substratum (Morris et al., 2015). The absence of β1 integrin signalling 
disrupts the epithelial cell polarity and correct apical localisation of the LGN 
complex, thus randomising the spindle orientation (Lechler and Fuchs, 2005). In 
addition, the direct interaction between the integrin-linked kinase (ILK) and 
dynactin-2 links integrins to the dynein complex independent of Gαi/LGN/NuMA 
complex and controls the position of the force generators. For example, when 
the integrin and ILK signalling were blocked in intestinal epithelial cells, the 
spindle orientation was more random, which influenced the gross morphology 
of the bowel (Morris et al., 2015). Thus, the cell-shape-sensing mechanism 
contributes to the default planar orientation independently from cortical force 
generators (Morris et al., 2015). Also, integrin/laminin interactions are necessary 
for maintaining the stem cells at the apical VZ surface within their niche and 
preserving the architecture of the VZ (Loulier et al., 2009). After blocking the 
interaction between the β1 integrin and laminin α2, the apical progenitors 
detached from the ventricular surface. Also, divisions along the oblique and 
horizontal cleavage planes exhibited mostly planar divisions instead, which 



20 

suggests different outcomes and pathways acting through integrin signalling 
(Loulier et al., 2009). 
 
 

3. The meninges in neurogenesis  
Telencephalic development is accompanied by the concomitant development of 
meninges which comprise the layers surrounding the central nervous system: 
the dura mater, arachnoid mater and pia mater (last two are also considered 
together as leptomeninges) (Decimo et al., 2012; Radakovits et al., 2009). The 
meninges gives physical protection to the brain parenchyma by covering it with 
thick layering and by enabling circulation of cerebrospinal fluid (CSF) around 
the central nervous system, which cushions the brain in case of rapid move-
ments (Nakagomi et al., 2015; Siegenthaler and Pleasure, 2011). The essen-
tiality of pia mater lies in production and organisation of the BM covering the 
brain and it allows the blood vessels to traverse and nourish the cerebral cortex 
(Radakovits et al., 2009). The arachnoid mater is in contact with pia mater 
through arachnoid trabeculae which span the subarachnoid space and enable the 
CSF circulation (Decimo et al., 2012; Saboori and Sadegh, 2015). The dura 
mater is the outermost part of the meninges and is essential for the skull 
development (Siegenthaler and Pleasure, 2011).  

Development of the meninges in mouse starts at about E9 – E10 (Siegent-
haler and Pleasure, 2011). Meningeal layers need the contribution of cephalic 
neural crest cell (NCC) to their development since surgical removal of NCCs 
from posterior diencephalon, mesencephalon and rhombencephalon leads to the 
activation of massive cell death within the forebrain neuroepithelium (Decimo 
et al., 2012; Etchevers et al., 1999; Inoue et al., 2008). Cephalic NCCs altogether 
contribute to the development of the facial skeleton and overlying dermis and to 
the development of forebrain leptomeninges, the rest of the meninges in the 
central nervous system are entirely of mesodermal origin (Etchevers et al., 
1999; Siegenthaler and Pleasure, 2011; Zarbalis et al., 2007). Thus, the presence 
of NCC-derived mesenchyme is necessary for the growth and survival of the 
telencephalic neuroepithelium and the paraxial mesodermal population near the 
prosencephalon is not capable of forming forebrain meninges on its own 
(Etchevers et al., 1999). 

Little is known about the meningeal development, but few studies have 
revealed that the loss of presenilin-1 or transcription factor Foxc1 disrupts the 
formation of forebrain meninges which accelerates the cortical BM breakdown, 
mislocalisation of Cajal-Retzius cells and formation of cortical dysplasias 
(Hartmann et al., 1999; Hecht et al., 2010; Zarbalis et al., 2007). Furthermore, 
recent evidence has revealed that in addition to the protective role of the 
meninges, they secrete several trophic factors that regulate the proliferative and 
migratory behaviour of neural progenitor cells (Bifari et al., 2015; Borrell and 
Marin, 2006; Siegenthaler et al., 2009). For example, meninges serve as a 
necessary substrate for the tangential spread of Cajal-Retzius cells by expressing 
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chemoattractive CXCL12 (Borrell and Marin, 2006; Zarbalis et al., 2007). Also, 
mice that fail to form complete forebrain meninges have major defects in the 
switch to neurogenic radial expansion due to a loss of meninges derived retinoic 
acid which leads to a prolonged NE cell stage and symmetric division 
(Siegenthaler et al., 2009).  

Meningeal fibroblasts produce the key components of the extracellular 
matrix (ECM): laminins, collagens and nidogen that form the pial BM covering 
the developing neocortex (Erickson and Couchman, 2000; Siegenthaler and 
Pleasure, 2011). Lots of effort has been invested to the pial BM interaction with 
the RG cell endfeet. The pial BM and RG cell interact through transmembrane 
receptors, such as integrins and dystroglycan, on RG cell endfeet. Alterations in 
the pial BM composition and in the function of ECM-associated proteins 
including laminin γ1 chain, perlecan, and collagen type III, result in cortical 
lamination defects, accompanied by the fragility of the pial BM and detachment 
of the RG cell endfeet from the BM. Moreover, mutations in genes encoding 
cell-surface receptors for BM (β1 and α6 integrins, α-dystroglycan and GPR56), 
disrupt normal deposition of cortical BM and result in a disorganized type II 
lissencephaly-like cortex (Beggs et al., 2003; Cappello et al., 2012; Costell et 
al., 1999; De Arcangelis et al., 1999; Georges-Labouesse et al., 1998; Graus-
Porta et al., 2001; Halfter et al., 2002; Jeong et al., 2013; Li et al., 2008; Luo et 
al., 2011; Moers et al., 2008; Moore et al., 2002; Niewmierzycka et al., 2005).  
 
 

4. Congenital muscular dystrophies 
Abnormalities in aforementioned events can cause severe neuronal defects and 
are associated with various diseases like lissencephaly, microcephaly, poly-
microgyria, different heterotopias and epilepsy (Manzini and Walsh, 2011; 
Noatynska et al., 2012; Olson and Walsh, 2002). 

Cobblestone lissencephaly (type II lissencephaly) is a neuronal over-mig-
ration defect where neurons and glial cells migrate through the breaches of the 
superficial pial BM (Olson and Walsh, 2002). It is often associated with auto-
somal recessive disorders like Fukuyama congenital muscle dystrophy (FCMD), 
Walker-Warburg syndrome (WWS) and muscle-eye-brain disease (MEB) that 
negatively affect skeletal muscle, central nervous system (CNS) and the 
development of the eyes (Barkovich et al., 2012; Devisme et al., 2012; Olson 
and Walsh, 2002). These syndromes are characterised by CNS symptoms such 
as type II lissencephaly, enlarged lateral ventricles, meningeal thickening and 
hydrocephalus (Bouchet et al., 2007; Brasseur-Daudruy et al., 2012; Hartmann 
et al., 1999; Hehr et al., 2007; Lach and Arredondo, 2013; Nabi et al., 2003; 
Pabuscu et al., 2003; Saito, 2006; Yoshioka and Higuchi, 2005; Yoshioka et al., 
2008). In addition to brain defects, several ocular malformations and neuro-
muscular innervation defects characterised by lower-limb stiffness and muscle 
fibre atrophy have been reported (Belpaire-Dethiou et al., 1999; Nabi et al., 
2003; Pabuscu et al., 2003). Also, heart and kidney defects have been reported 
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in some of the FCMD, WWS or MEB patients (Devisme et al., 2012). FCMD 
patients survive beyond infancy, ocular manifestations are rare and usually 
mild. Patients with WWS are severely affected from birth, and only a few live 
beyond infancy. In MEB, the cerebral and ocular anomalies are severe, but 
some patients reach adulthood. Although FCMD is frequent only in Japan, 
WWS has been found in many different nationalities, and MEB has been 
observed mainly in Finland (Silan et al., 2003).  

Several studies have implicated that proteins and enzymes that are involved 
in glycosylation of dystroglycan cause these disorders (Grewal and Hewitt, 2003; 
Miyata et al., 2004; Saito et al., 2007; Satz et al., 2010; Takeda et al., 2003; van 
Reeuwijk et al., 2005a; van Reeuwijk et al., 2005b; Yamamoto et al., 2004). 
Abnormally modified α-dystroglycan is deficient in binding to extracellular 
matrix ligands, including laminin and agrin (Grewal and Hewitt, 2003). WWS 
and MEB are associated with the mutations in two genes involved in  
O-mannosylation, POMT1 and POMGnT1; Fukutin mutations are associated 
with FCMD (Grewal and Hewitt, 2003; Takeda et al., 2003). Despite the 
intensive research and genetic screening of genes involved in glycosylation of 
α-dystroglycan, about half of the cases remain unexplained suggesting that other 
genes and/or signaling pathways may be involved (Belpaire-Dethiou et al., 
1999; Cormand et al., 2001; Devisme et al., 2012; Manzini et al., 2008; Vajsar 
and Schachter, 2006).  

Integrins represent a parallel system to the dystrophin-glycoprotein complex 
by which the cytoskeleton is linked to the extracellular matrix. Therefore, it is 
possible that the signalling pathways triggered by laminin receptors (integrins 
and dystroglycan) are essential for BM integrity and may underlie the patho-
logies of these disorders. Affecting the cell signalling via integrin-mediated 
pathway – integrin linked kinase (Ilk), Focal Adhesion Kinase (FAK), small 
GTPase RhoA, G protein-coupled receptor GPR56 and G proteins Gα12/Gα13) – 
in the developing cerebral cortex results in type II lissencephaly (Beggs et al., 
2003; Cappello et al., 2012; Jeong et al., 2013; Moers et al., 2008; Niew-
mierzycka et al., 2005). Few of these studies with neural precursor specific 
mouse models have implicated also neuromuscular disorders (Beggs et al., 
2003; Niewmierzycka et al., 2005) and strong resemblance of described 
congenital muscular dystrophies (CMD).  
 
 

5. G-Proteins  
To generate neurons and guide their migration to the specific positions, cells 
must perceive and correctly respond to the changes in their surrounding 
environment. To accomplish this, cells contain receptors for chemical and 
physical signals and intracellular signalling molecules among which the  
G-proteins are one of the most prominent families. Heterotrimeric G-protein 
mediated signal transduction is a complex and very versatile transmembrane 
signalling system involving hundreds of different receptors and multiple  
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G-proteins and effectors. Heterotrimeric G-proteins are composed of α, β and γ 
subunits where β and γ are tightly associated and considered as one functional 
unit (Gilman, 1987; Neer, 1995). The βγ-dimer and the guanosine diphosphate 
(GDP) bound α-subunit are associated at the inner side of the plasma membrane, 
and the heterotrimer can be recognised by an appropriately activated receptor 
(Wettschureck and Offermanns, 2005). To dynamically couple activated receptors 
to effectors, the heterotrimeric G-protein undergoes activation-inactivation 
cycle (Bastiani and Mendel, 2006; Wettschureck and Offermanns, 2005). 
  

 
Figure 4. A classical model of the G protein signalling regulation. Heterotrimeric 
GDP-bound Gαβγ is associated with the transmembrane G-protein coupled receptor 
(GPCR). GDP-bound G-proteins are in an inactive state and the spontaneous release of 
GDP is inhibited by the GDI (guanine nucleotide dissociation inhibitor). The signalling 
of G-protein is activated by the ligand binding to the GPCR which changes the 
conformation of GPCR and the exchange of GDP from Gα subunit with GTP which 
dissociates the Gαβγ to Gα subunit and Gβγ dimer. Released functional subunits are 
then in an active state and can participate in downstream interactions with various 
cellular effectors. Gα subunit’s intrinsic GTPase activity or regulator of G-protein 
signalling (RGS) proteins that act as GTPase-activating proteins (GAP) terminate the 
activity of Gα by hydrolysing the bound GTP to GDP. Inactivated Gα:GDP reassociates 
again with the Gβγ dimer or is activated in a receptor-independent fashion via guanine 
nucleotide exchange factors (GEF). RIC8 acts as a receptor-independent GEF to 
monomeric Gα subunits, it is also necessary for Gα plasma membrane localisation.  
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The classical G-protein cycle is activated by the binding of a ligand, ranging 
from photons to hormones and neurotransmitters, to the transmembrane  
G-protein coupled receptor (GPCR) (Wettschureck and Offermanns, 2005). 
This interaction rearranges the conformation of the GPCR so that it acts as a 
guanine nucleotide exchange factor (GEF) triggering the exchange of guanosine 
diphosphate (GDP), bound to the Gα subunit, with guanosine triphosphate (GTP) 
and the dissociation of Gα subunit from Gβγ dimer (Bastiani and Mendel, 2006; 
Siderovski and Willard, 2005). Both released functional subunits are then in an 
active state and can participate in further interactions with various cellular 
effectors (Neves et al., 2002). The signalling of the Gα subunit is terminated by 
the intrinsic GTPase activity of Gα, which hydrolyses the bound GTP to GDP 
and inactivated Gα:GDP reassociates the Gβγ dimer (Bastiani and Mendel, 
2006; Neer, 1995). In addition to GPCRs, other proteins also regulate the activity 
of the heterotrimeric G-proteins such as GEFs, regulators of G-protein signalling 
(RGS), guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating 
proteins (GAPs), and βγ-interacting proteins (Sato et al., 2006) (Figure 4). The 
downstream effectors activated by G-proteins interact with one another to form 
a network that regulates metabolic enzymes, ion channels, transporters, and 
other components controlling processes like transcription, motility, contractility 
and secretion which in turn regulate systemic functions such as embryonic 
development, gonad development, learning and memory, and organism 
homeostasis (Neves et al., 2002).  

Several subtypes of α-, β- and γ-subunits have been described and G-proteins 
are classified into four groups by their Gα subunit sequence and functional 
similarities: Gαs, Gαi/Gαo, Gαq/Gα11 and Gα12/Gα13 (Wettschureck and Offer-
manns, 2005). Each family consists of various members that often show very 
specific expression patterns. Members of one family are structurally similar and 
share some of their functional properties (Wettschureck and Offermanns, 2005). 
Currently, these families altogether comprise 18 different Gα subunits 
(Syrovatkina et al., 2016). In addition to Gα subunits, G-proteins also contain 
5 Gβ and 12 Gγ genes in the human and mouse genomes (Syrovatkina et al., 
2016). In brief, both Gαs and Gαi families regulate adenylyl cyclase (AC) where 
Gαs stimulates AC to convert ATP to cAMP which results in the activation of 
cAMP-regulated proteins (Wettschureck and Offermanns, 2005). Gαi, on the 
other hand, can inhibit certain isotypes of AC, leading to reduced intracellular 
cAMP levels (Wettschureck and Offermanns, 2005). AC has a physiological 
influence on cardiac function and Gαs

–/– and Gαi
–/– knockout mice have shown 

to have a failure in cardiac contractility (Lohse et al., 2003; Rudolph et al., 
1996). The Gαo is highly abundant in the mammalian nervous system where it 
constitutes up to 0.5% of membrane proteins (Offermanns, 2001). Its expression 
has also been shown in neuroendocrine cells as well as at low levels in the heart 
(Offermanns, 2001). Gao

–/– mice showed no gross morphological abnormalities, 
but were smaller and weaker than their littermates and showed greatly reduced 
postnatal survival rates (Jiang et al., 1998). In addition, the Gao

–/– mice had 
impaired motor control and they were hyperactive, running continuously in 



25 

circles (Jiang et al., 1998). The Gαq/Ga11 family of G-proteins are widely 
expressed in the CNS and are coupled to numerous receptors that regulate the 
activity of β-isoforms of phospholipase C (β1-4), which cleave the phosphati-
dylinositol 4,5-bisphosphate (PIP2) into inositol trisphosphate (IP3) and 
membrane-bound diacylglycerol (DAG). IP3 opens the calcium channel IP3-
receptor on the endoplasmic reticulum membrane, and DAG activates protein 
kinase C (Syrovatkina et al., 2016). Mice lacking Gαq and Gα11 genes have 
multiple defects including impaired motor coordination, hyperparathyroidism 
associated with defective cerebellar development, embryonic cardiomyocyte 
proliferation and craniofacial development (Dettlaff-Swiercz et al., 2005; 
Offermanns et al., 1997; Wettschureck et al., 2001). In addition, Gαq family 
members can induce Rho-mediated responses including the activation of RhoA 
in smooth muscle cells and the neurotransmitter acetylcholine release at the 
neuromuscular junction in C.elegans (Miller et al., 2000; Williams et al., 2007). 
The activity of RhoGEF and its related proteins is also increased by the 
membrane recruitment and direct interaction with Gα13 from Gα12/Gα13 family 
(Wettschureck and Offermanns, 2005). Gα12 gene deleted mice were normal, 
but Gα13

–/– mice died at E9.5 (Gu et al., 2002; Offermanns et al., 1997). Gα13 is 
essential for blood vessel formation and is highly expressed in endothelial cells 
(Offermanns et al., 1997). The Gα13

–/– mice have a defective vascular system 
that shows no blood vessels (Ruppel et al., 2005). Ablation of Gα12 and Gα13 
genes from the nervous system results in neuronal ectopia in the cerebral and 
cerebellar cortices suggesting they have an essential role in the proper 
positioning of migrating cortical plate neurons and Purkinje cells during 
development (Moers et al., 2008).  
 
 

6. RIC8A Protein 

6.1. Biochemical properties of RIC8A and cell signalling  

RIC8 (Resistant to Inhibitors of Cholinesterase 8) is a highly conserved 63-kDa 
protein that was first characterised during a genetic screening of aldicarb-
resistant Caenorhabditis elegans (C.elegans) mutants that were defective in 
synaptic transmission and suggested its interaction with Gαq (Miller et al., 1996; 
Miller et al., 2000). RIC8 mutants were able to survive the neurotoxic effects of 
cholinesterase inhibitors by decreasing the amount of neurotransmitter released 
at the synapse (Miller et al., 2000). Further purification and biochemical charac-
terisation of the protein have revealed that RIC8 acts as a receptor-independent 
guanine nucleotide exchange factor (GEF) for Gα proteins (Tall et al., 2003). A 
single ric8 gene has been described in C.elegans and in Drosophila melano-
gaster (D.melanogaster) and two homologues in mammals: Ric8A and Ric8B 
(Tall et al., 2003). RIC8A has been shown to regulate the activity of monomeric 
G protein α subunits such as Gαq/ Gα11, Gαi/ Gαo, Gα12/ Gα13 families and 
RIC8B has been mostly described in association with the Gαs family proteins 
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(Chan et al., 2011; Gabay et al., 2011; Tall et al., 2003). The structure of 
Xenopus laevis Ric8A has been suggested to contain 10 armadillo folding 
motifs organised in a right-twisted α-alpha super-helix (Figueroa et al., 2009). 
Proteins containing armadillo motif have been shown to interact with multiple 
partners and participate in diverse cellular functions (Figueroa et al., 2009).  

Currently, RIC8A is defined as a multifunctional protein. RIC8A may act as 
a GEF by interacting with GDP-bound or monomeric Gα subunits forming a 
stable nucleotide-free Gα-RIC8A complex whereafter GTP binds to Gα-RIC8A 
and disrupts the complex, releasing RIC8A and activated Gα protein (Tall et al., 
2003). Several studies have also implied that RIC8A may act as a molecular 
chaperone that regulates G protein biosynthesis and folding (Chan et al., 2013; 
Gabay et al., 2011) or inhibit G protein ubiquitination and degradation (Chishiki 
et al., 2013; Nagai et al., 2010). Moreover, recent studies have shown that RIC-
8A and Gα13 regulate each other: Gα13 stimulates the tyrosine phosphorylation 
of RIC8A and subsequent translocation of RIC8A to the plasma membrane, 
whereas RIC8A potentiates the activation of RhoA and Cdc42 through Gα13 

signalling (Xing et al., 2013; Yan et al., 2015). Through Gαq signalling RIC8A 
positively regulates the Gαq coupled receptor-mediated ERK activation and 
intracellular calcium mobilisation (Nishimura et al., 2006).  

  

 6.2. The role of RIC8A in asymmetric cell division and embryogenesis 

GPCR independent activation of G-proteins by RIC8A is highly conserved 
signaling mechanism required for the mitotic spindle orientation and asym-
metric cell division in the early embryogenesis in C.elegans and in D.melano-
gaster and in mammalian cells (David et al., 2005; Miller et al., 2000; Miller 
and Rand, 2000; Wang et al., 2005; Woodard et al., 2010). These studies have 
shown that RIC8A triggers a conserved receptor-independent mechanism that 
controls the interaction between the cell membrane and microtubules, thus 
affecting spindle orientation and the generation of pulling forces.  

Briefly, during the first division of wild-type C.elegans embryos, the asym-
metry is dependent on the partitioning of several Par-proteins and cell fate 
determinants to either the anterior or the posterior cell cortex (Betschinger and 
Knoblich, 2004). Then, the posterior centrosome while nucleating the mitotic 
spindles must migrate towards the posterior pole by the end of anaphase 
resulting in an unequal cleavage into a larger anterior and a smaller posterior 
blastomere (Miller and Rand, 2000). Therefore, the Gαi-mediated pulling 
activity must be greater at the posterior pole of the cell which moves the entire 
mitotic spindle posteriorly to help define the characteristic asymmetric cleavage 
plane (Afshar et al., 2004). RIC8 has been shown to localise similarly like 
GOA-1 (Gαi in mammals) in the cell cortex and on the astral microtubules of 
the mitotic spindle in C.elegans early 1-cell embryo (Afshar et al., 2004; 
Couwenbergs et al., 2004). RIC8 is additionally localised on the central 
spindles, at the nuclear envelope, around the chromatin and at the junctions 
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between the cells (Afshar et al., 2004; Couwenbergs et al., 2004; Hess et al., 
2004).  

During the cell division, RIC8 activates GOA-1 subunits to associate with 
GPR1/2:LIN-5 (LGN:NuMA in mammals, respectively) which binds to dynein/ 
dynactin complex to generate the pulling forces (Afshar et al., 2004; Afshar et 
al., 2005) (Analogous mechanism is shown in Figure 3). Without RIC8 the first 
division exhibits defects in centrosome movements and in the regulation of 
pulling forces. This produces equally sized blastomeres and causes embryonic 
lethality with phenotype identical to goa-1 mutant embryos (Afshar et al., 2004; 
Afshar et al., 2005; Couwenbergs et al., 2004; Miller et al., 2000; Miller and 
Rand, 2000).  

Also, in D. melanogaster neuroblasts and sensory organ precursor cells, RIC8 
is localised in the cytoplasm throughout the cell cycle and accumulates to the 
mitotic spindle during mitosis (Hampoelz et al., 2005; Wang et al., 2005). In 
order to control the asymmetric cell division the adaptor protein Inscuteable 
(Insc.) segregates the polarity proteins (Par-proteins such as Bazooka (Par-3 in 
mammals), Par-6, aPKC) apically which then mediate the localization of the 
cell fate determinants (Numb; Brat, Miranda) to the opposite side of the 
membrane (Knoblich, 2008). Then, RIC8 activates the apically located Gαi 
which binds to the GoLoco domains of Pins (Partner of Inscuteable; LGN in 
mammals) and recruits Pins to the apical plasma membrane where it also 
mediates the binding of dynein/dynactin complex via Mud protein (NuMA in 
mammals) providing necessary pulling forces (Bowman et al., 2006; David et 
al., 2005; Hampoelz et al., 2005; Izumi et al., 2006; Nipper et al., 2007; 
Schaefer et al., 2000; Siller et al., 2006; Siller and Doe, 2009; Wang et al., 
2005). Gαi:Pins:Mud complex is linked to the apical polarity proteins by the 
adaptor protein Insc. which associates with Bazooka and Pins and orients the 
mitotic spindle (Schaefer et al., 2000; Yu et al., 2000). Thus, in D.melanogaster 
RIC8 is essential for proper spindle orientation, modulating differences in 
daughter cell size and in asymmetric localisation of cell-fate determinants 
(David et al., 2005; Hampoelz et al., 2005; Wang et al., 2005; Yu et al., 2006). 
In the absence of RIC8, all the G-protein subunits fail to localize to the cell 
cortex and subsequently the recruitment of Pins to the cortex also fails which 
disrupts the formation of spindle asymmetry and different daughter cell size 
(David et al., 2005; Hampoelz et al., 2005; Wang et al., 2005; Yu et al., 2006). 
In addition, D.melanogaster ric-8 mutants exhibit embryonic lethality and have 
various defects during gastrulation (Hampoelz et al., 2005; Schaefer et al., 
2001; Wang et al., 2005).  

The role of mammalian RIC8A and Gαi has been studied in HeLa and 
MDCK cells where RIC8A localises at the cell cortex, spindle poles, 
centromeres, central spindle, and midbody depending on the cell cycle phase 
(Woodard et al., 2010). At the onset of mitosis, mammalian Gαi-
GDP:LGN:NuMA complexes form at the sites of astral microtubule regulation 
(Tall and Gilman, 2005). Afterwards, the GEF activity of RIC8A stimulates the 
release of GDP and the binding of GTP to Gαi, which catalyses the dissociation 
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of the complex into Gαi-GTP, LGN and NuMA. Finally, RGS activity (GAP) 
stimulates the hydrolysis of GTP on Gαi and the resultant Gαi-GDP could 
reform the active Gαi-GDP/LGN/NuMA complex (Tall and Gilman, 2005). 
Perturbation of RIC8A function reduces the localisation of LGN, NuMA and 
dynein at the cell cortex in metaphase, causing the failure of astral microtubule 
capture which leads to prolonged mitosis or mitotic arrest (Woodard et al., 
2010). Without correct spindle positioning or inappropriate application of 
pulling forces the cell fate decisions are altered, which subsequently impede 
embryogenesis (Woodard et al., 2010). Compliance with the genetic studies in 
C.elegans and D.melanogaster, loss of Ric8a also results in an early embryonic 
lethality within E6.5 – E8.5 due to gastrulation defects in mice (Tõnissoo et al., 
2006; Tõnissoo et al., 2010). The gastrulation is initiated in Ric8a–/– embryos 
but their growth is retarded, epiblast and mesoderm are disorganised (Tõnissoo 
et al., 2010). Additionally, the BM is disorganised and the folding of the 
amnion, the formation of allantois and cavitation are defective (Tõnissoo et al., 
2010).  
 
 

6.3. RIC8A in the development of the nervous system 

RIC8 has a crucial role in the nervous system. First, RIC8 was characterised 
during a genetic screening of aldicarb-resistant C.elegans mutants that were 
defective in synaptic transmission (Miller et al., 1996; Miller et al., 2000). 
Neurotransmitter release in the presynapse is modulated by G-protein coupled 
receptors (GPCR) and by the Gαq-Gαo signalling pathway. RIC8 is present 
throughout the C.elegans nervous system in the juvenile and adult worms where 
it functions upstream of or in conjunction with Gαq (Miller et al., 2000). RIC8 
activates Gαq that activates PLCβ and leads to the production of DAG which 
positively regulates neurotransmitter secretion via UNC-13 interaction (Miller 
and Rand, 2000). Gαo stimulates DAG kinase to reduce the functional levels of 
DAG, thus negatively regulating the Gαq pathway (Miller and Rand, 2000). 
Reduction of RIC8 function in C.elegans results in a strong neuronal phenotype 
including decreased locomotion, egg laying, and body flexion (Miller et al., 
2000). A recent study has shown that in the D.melanogaster nervous system 
RIC8 binds to the Ca2+ sensor NCS-1 to regulate the synapse number and 
neurotransmitter release (Romero-Pozuelo et al., 2014).  

The expression of RIC8A in the murine nervous system has also been docu-
mented. During the early development of mice (E9.5 – E12.0), RIC8A is 
expressed in the developing nervous system in the neural tube, cranial ganglia, 
dorsal root ganglia and in the sympathetic chain (Tõnissoo et al., 2003). 
Furthermore, RIC8A is also found in the lens, vomeronasal organ, and 
endolymphatic sac (Tõnissoo et al., 2003). In adult mice, RIC8A is expressed in 
the neocortex, hippocampus, and cerebellum and has a role in the regulation of 
emotional behaviour and memory since haploinsufficiency of Ric8a in mice 
causes increased anxiety and impaired spatial memory (Tõnissoo et al., 2006; 
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Tõnissoo et al., 2003). Conditional knockout studies have additionally revealed 
that RIC8A is specifically required in Bergmann glia during cerebellar foliation 
(Ma et al., 2012). Interference of RIC8A function in neural precursor cells 
results in Bergmann glial disorganised scaffolding due to a decreased affinity 
for BM components and interaction, defective granule cell migration, and 
disrupted Purkinje cell positioning (Ma et al., 2012). Moreover, studies with the 
model organism Xenopus tropicalis have revealed a requirement for RIC8A also 
in neural crest (NCC) derived structures (Maldonado-Agurto et al., 2011). 
RIC8A levels are also critical for the migration of cranial NCCs and their 
subsequent differentiation into craniofacial cartilage (Fuentealba et al., 2013). 
Furthermore, cells in Ric-8A knockdown animals showed anomalous radial 
migration, displaying a strong reduction in cell spreading and focal adhesion 
formation (Fuentealba et al., 2013). Earlier, RIC8A has been linked to growth 
factor-induced cell migration of mouse embryonic fibroblasts (MEFs) (Wang et 
al., 2011a). Downregulation of RIC8A protein levels slowed down platelet-
derived growth factor (PDGF)-induced dorsal ruffle turnover and inhibited 
PDGF-initiated cell migration (Wang et al., 2011a). Subsequent research 
indicated that RIC8A is critical for coupling receptor tyrosine kinase (RTK) to 
Gα13, which is essential for actin cytoskeleton reorganisation (Wang et al., 
2011a). Other studies have found that deletion of ric8a resulted in the reduction 
of the amount of total and polymerized actin which affected formation of blebs 
and filopodia-like structures on the ventral cellular surface of the 
D.melanogaster blastoderm cells and mouse Ric8a–/– embryonic stem cells 
(mES), respectively (Gabay et al., 2011; Kanesaki et al., 2013).  
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AIMS OF THE STUDY 

RIC8A regulates the activity, stability and localisation for a subset of Gα 
subunits (Gαi, Gαq and Gα13) acting as a GEF and a chaperone. RIC8A 
participates in the regulation of cell division, gastrulation, cell signalling, 
adhesion and migration. Mammalian RIC8A is expressed in the central nervous 
system and it affects behavioural physiology in mice. However, Ric8a–/– 
embryos exhibit defects in the basement membrane integrity and die due to 
severe gastrulation defects. 

The current dissertation is focused on the elucidation of RIC8A function in 
the development of the nervous system in mammals and in asymmetric cell 
division using knockout mouse models and primary cell cultures. The thesis 
covers five linked studies that are focused on four main goals: 
1. To assess the role of RIC8A in the development of the nervous system and 

in the synaptic signal transduction. We assessed the effect of the targeted 
ablation of Ric8a in neural progenitor cells and in differentiated neurons. 

2. To analyse the role of RIC8A in the cell division in mouse neurogenesis and 
in mouse oocytes. 

3. To examine the role of RIC8A in cell migration and adhesion using RIC8A 
deficient mouse primary embryonic cells. 

4. To characterise the similarities of the phenotypes with congenital muscular 
dystrophies. 
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RESULTS AND DISCUSSION 

1. RIC8A in neuromuscular signalling  
(Ref. I, Ref. II and Ref. V) 

1.1. Deletion of RIC8A from the developing nervous  
system of mouse leads to neuromuscular defects and  

postnatal lethality (Ref.I; Ref.II) 

The expression pattern of Ric8a in the early stages of mouse organogenesis 
(E9.5 – E12.0) is highly neurospecific. In adult brains, Ric8a is expressed in 
areas that are responsible for the regulation of behaviour and memory (e.g. 
neocortex, cingulate cortex, caudate putamen, hippocampus, cerebellum) 
(Tõnissoo et al., 2003). Haploinsufficiency of Ric8a results in behavioural 
abnormalities such as increased anxiety-like behaviour and impaired spatial 
memory (Tõnissoo et al., 2006). The function of RIC8A in neurogenesis and in 
the nervous system is largely unknown since homozygous Ric8a–/– mice die at 
E6.5 – E8.5 due to multiple gastrulation defects (Gabay et al., 2011; Tõnissoo et 
al., 2010). In order to circumvent the embryonic lethality and examine the role 
of RIC8A in the mouse nervous system, we generated two conditional knockout 
mice models where RIC8A was specifically knocked out from neural precursor 
cells or from presynaptic terminals of postmitotic neurons. Transgenic mouse 
strains expressing Cre-recombinase under Nestin or Synapsin I promoter were 
introduced into the conditional Ric8a (Ric8alacZ/F) background which ablated 
RIC8A function in neural precursor cells (Nes;Ric8aCKO mice) and differentiated 
neurons (Syn;Ric8aCKO mice), respectively.  

Neurospecific Ric8a conditional mutant mice were born at expected 
Mendelian ratio (22–24%), however, the genotyping data from our crossings 
indicated that the number of newborn pups per litter was lower than the average 
in Nes;Ric8aCKO mice. Nevertheless, all Nes;Ric8aCKO mice died within 12 h 
after birth and the majority of analysed Syn;Ric8aCKO mice died between P4 – 
P6 postnatally. Moreover, most Nes;Ric8aCKO pups and some Syn;Ric8aCKO were 
abandoned or killed by their mother during first days after their birth due to a 
lack of feasible viability.  

The absence of RIC8A in neurons in Syn;Ric8aCKO mice and in neural 
precursor cells in Nes;Ric8aCKO pups give rise to a severe neuromuscular pheno-
type. The Syn;Ric8aCKO mice had abnormal body curvature and were not able to 
right themselves due to impaired motor skills and muscular spasms (Ref.I, 
Figure 2A–2C). The Nes;Ric8aCKO pups also showed strong neuromuscular 
phenotype characterised by limited capacity for movement and they always lied 
on one side. Moreover, they exhibited a barrel-like body shape, dropping 
forelimbs and stiffness of lower limbs (Ref.II, Figure 1K,1L).  

The body-weight of Nes;Ric8aCKO mice varied within litters, being slightly 
lower or the same with the littermates, but the body weight of Syn;Ric8aCKO 
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mice was significantly lower throughout the observed period compared to 
littermates (P0-P5) (Ref. I, Figure 2F). Syn;Ric8aCKO mice were able to gain 
weight, but not in an exponential manner as their littermates and their weight 
gain stopped completely at P5. The inadequate weight-gain was probably due to 
a low level or absence of milk in their stomach as was also seen in Nes; 
Ric8aCKO mice (Ref.I, Figure 2E; Ref.II, Figure 1O;1P). The mutant mice were 
probably not able to compete with their littermates for food, however, the 
inability to feed themselves might also be associated with neuromuscular or 
craniofacial defects (Turgeon and Meloche, 2009) which can be caused by the 
removal of RIC8A from the neural crest cells (NCC) since RIC8A has been 
shown to be necessary for the cranio-facial development in vertebrates 
(Fuentealba et al., 2013). NCCs also contribute to the palate and tongue 
development (Caruana and Bernstein, 2001; Liu et al., 2012). Other studies with 
neonatal mutant mice have revealed that nonfeeding newborns die within 12 – 
24 h after birth due to the lack of nutrients or due to disturbed liquid 
homeostasis, which leads to dehydration (Dechiara et al., 1995; Mizushima et 
al., 2001; Segre et al., 1999; Turgeon and Meloche, 2009). Nes;Ric8aCKO mice 
died within 12 h postpartum but mostly because their mother abandoned them 
that lead to quick dehydration and hypothermia. 

However, Syn;Ric8aCKO mice were able to feed because their stomachs 
contained milk in the early neonatal period, but from P3 onward, the amount of 
milk in the stomach decreased. The main reason for the early neonatal and 
postnatal death is probably malnutrition and an alteration in liquid homoeo-
stasis. Indeed, the Syn;Ric8aCKO mice revealed the ossification delay at P3 and it 
is consistent with the fact that postnatal nutrition and bone development are 
known to be directly linked (Land and Schoenau, 2008; Triffitt, 1987). Another 
indicator for malnutrition is the brain and liver weight ratio that was signi-
ficantly higher in Syn;Ric8aCKO mice confirming their malnutrition (Mitchell, 
2001). Taken together, the early lethality of both conditional knockout mice was 
probably mostly caused by the lack of postnatal care, interfered development or 
defective innervation of their cranio-facial structures that lead to the inability to 
feed.  

 
 

1.2. Deficiency of RIC8A in neurons and precursor cells leads  
to skeletal muscle atrophy in mice (Ref.I; Ref.V).  

The analysed phenotypes revealed the evident neuromuscular defects in 
Syn;Ric8aCKO mice and in Nes;Ric8aCKO mice. The histological analyses of brains 
of Syn;Ric8aCKO mice did not show any obvious malformations (Ref.I, Figure 3) 
indicating that the brain development has not been markedly disturbed in 
Syn;Ric8aCKO mice. However, the histological examination of the skeletal muscles 
at P0 and P5 of Syn;Ric8aCKO mice and P0 Nes;Ric8aCKO mice revealed that the 
skeletal muscle tissue was hypoplastic compared to littermate controls. This was 
caused by the atrophy of myocytes, and the diameter of the muscle fibres was 
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substantially decreased and the fibres were also sparsely distributed and less 
compact resembling endomysial fibrosis (Ref.I, Figure 2G; Ref.V, Figure 
4C;4D). The muscle atrophy may be the result of an insufficient neuronal 
stimulation at the neuromuscular junction. RIC8A has been established as a 
receptor-independent activator for Gαi, Gαq, Gαo and Gα13 subunit families (Tall 
et al., 2003). This particular activity has been confirmed by separate studies that 
demonstrate the capacity of the RIC8A protein to potentiate the Gαq and Gαi 
signal (Fenech et al., 2009; Nishimura et al., 2006; Wang et al., 2007). 
Furthermore, RIC8A has also been suggested to function as a molecular 
chaperone required for Gα subunit biosynthesis (Gabay et al., 2011). The 
collective data on the biochemical function of RIC8A protein strongly suggests 
that the neuromuscular defects of Syn;Ric8aCKO and Nes;Ric8aCKO mice are 
caused by the reduced activity of G-proteins in neurons. Indeed, Gαo is 
abundantly expressed in neurons and mediates the effects of a group of 
receptors such as opioid, α2-adrenergic, M2 muscarinic and somatostatin 
receptors. Gαo

–/– mice were weaker and smaller and had impaired motor control 
compared to their littermates, they also displayed the neural phenotype of ataxia 
and impaired motor control and lived for about 7 weeks (Jiang et al., 1998; 
Offermanns et al., 1997).  

Poor muscle innervation in Nes;Ric8aCKO mice may also be due to defects in 
the peripheral nerve myelination, which develops through radial sorting that has 
been shown to be GPCR signalling dependent (Berti et al., 2011; Mogha et al., 
2016). Mouse models where the β1 integrin, laminin α2 or α-dystroglycan 
functioning is deficient have myelination defects that often cause paralyses, 
tremor and muscular dystrophy similar to the Nes;Ric8aCKO mice (Berti et al., 
2011; Chen and Strickland, 2003; Feltri et al., 2002; Saito et al., 2007). These 
results suggest that RIC8A may also have a role in myelination process through 
Schwann cells that have neural crest origin. 

 
 

1.3. Deficiency of RIC8A in neurons and neural precursor cells affects 
the heart development, function and morphology (Ref.I; Ref.V). 

In addition to impaired neuromuscular signalling, the heart of Syn;Ric8aCKO 

mice was markedly smaller than in littermate controls indicating that the heart 
functioning was also insufficient (Ref.I, Figure 4A;4B). Indeed, the hematoxylin-
eosin stained tissue sections of mutant mice contained more blood which 
indicates malfunctioning of the cardiac muscle, suggesting Syn;Ric8aCKO heart 
could not pump blood out after dissection (Ref.I, Figure 4C;4D ). Moreover, the 
myocardium of these hearts was also substantially thinner than in littermates 
(Ref.I, Figure 4G;4H). Similarly, the majority of P0 Nes;Ric8aCKO pups had 
considerably thinner myocardium and coronary artery anomalies. Furthermore, 
about half of the mice had severe ventricular septum defects (Ref.V, Figure 5C–
5H). The closer inspection of Ric8a expression in E14.5 Ric8alacZ/+ mice 
revealed that RIC8A is expressed in the areas of developing coronary artery and 
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in the wall of the aorta (Ref.V, Figure 5A). The same region was also populated 
with cells expressing NestinCre transgene (Ref.V, Figure 5B). NCCs give rise 
to cardiac smooth muscle cells and contribute to the coronary artery and to the 
interseptum development (Arima et al., 2012; Dettlaff-Swiercz et al., 2005; 
Waldo et al., 1998). Similar defects were also described in neural crest cell-
specific Gα12/Gα13-deficient mice (Dettlaff-Swiercz et al., 2005) further 
corroborating the essentiality of RIC8A functioning in the neural crest-derived 
structures. 

Neural crest-derived structures were in general normally developed in 
Syn;Ric8aCKO mice. However, the sinoatrial node was located more anteriorly 
and appeared to be substantially smaller than in littermates (Ref, I, Figure 4E;4F). 
The sinoatrial node is innervated by both sympathetic and parasympathetic 
axons, and it contains pacemaker cells, which are responsible for the generation 
of normal sinus rhythm (Durham and Worthley, 2002). In the case of a 
defective sinoatrial node, the heart rhythm becomes abnormally fast, slow or 
their combination (Durham and Worthley, 2002). As expected, the heart rate of 
Syn;Ric8aCKO mice was significantly slower than that of littermates. The lack of 
RIC8A may affect the neurotransmitter release since it has been shown to 
participate in the regulation of neurotransmitter secretion by activating Gαq and 
PLCβ signalling in C.elegans (Miller et al., 2000). In mice, ubiquitously 
expressed Gαq and PLCβ proteins are mostly studied within the context of 
cardiac function and development (Wettschureck et al., 2001). Double knockout 
mice of Gαq/Gα11 died at E11.5 whereas mutants with a single active allele 
survived until birth, but then died within a couple of hours because of numerous 
cardiac malformations. Furthermore, they were of small size, anoxic and poorly 
responded to tactile stimulation (Offermanns et al., 1998). Mice lacking only 
Gαq were viable but suffered from ataxia and typical signs of motor discoordi-
nation (Offermanns et al., 1997). These results indicate that in parallel with the 
skeletal muscle atrophy, Syn;Ric8aCKO mice and Nes;Ric8aCKO mice have strong 
cardiac muscle hypoplasia, which affects their cardiac function. Additional 
defects in neural crest-derived structures in Nes;Ric8aCKO mice strongly influence 
the morphology of the heart tissue which most likely further aggravates the 
cardiac function and thus might also be one of the causes triggering the death of 
Nes;Ric8aCKO mice. 
 
 

2. RIC8A in the cell-ECM interaction (Ref.II; Ref.IV; Ref.V) 

2.1. Ablation of RIC8A in neural precursor cells disrupts the pial 
basement membrane and cortical cytoarchitecture (Ref.II). 

As was mentioned earlier, Nes;Ric8aCKO mice were readily identifiable by their 
appearance revealing severe neuromuscular phenotype. The analyses of the 
whole brain revealed an enlarged area of the neocortex in Nes;Ric8aCKO mice 
and the presence of several extravasations (Ref.II, Figure 1M,1N). However, a 
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closer examination of histological sections exhibited much thinner cortex in the 
brain of newborn Nes;Ric8aCKO than in control mice (Ref.II, Figure 2A;2B). In 
several cortical areas, the aberrant column-like cell clusters were discovered in 
the uppermost layers that had invaded to the marginal zone resembling type II 
lissencephaly-like cortical ectopias (Ref.II, Figure 2B, red arrowhead). In the 
anterior part of the Nes;Ric8aCKO mice cortexes the cortical heterotopias were 
bigger and the number of ectopias was higher when compared to the posterior 
part of the cortexes (Ref.II, Figure 2C;2D). However, we could not detect 
differences in RIC8A protein expression along rostro-caudal axis (data not 
shown) by immunofluorescence analysis. The cortical ectopias strongly affected 
the overall lamination of the developing neocortex where most cortical ectopias 
were comprised of neurons from the upper layers but also contained occasional 
cells from the mid-part of the cortex (Ref.II, Figure 4A–4F compared to 4G–
4L). However, with severe lamination defects, the cells from the deepest layers 
were detected within the over-migration in the marginal zone (Ref.II, Figure 
4M–4R). These neuronal over-migrations were probably due to the defects in 
basement membrane (BM) since several other studies have shown analogous 
type II lissencephaly-like cortical ectopias accompanied with BM defects 
(Beggs et al., 2003; Costell et al., 1999; Georges-Labouesse et al., 1998; Graus-
Porta et al., 2001; Halfter et al., 2002; Hartmann et al., 1999; Haubst et al., 
2006; Hecht et al., 2010; Inoue et al., 2008; Jeong et al., 2012; Jeong et al., 
2013; Li et al., 2008; Luo et al., 2011; Myshrall et al., 2012; Niewmierzycka et 
al., 2005; Radakovits et al., 2009; Radner et al., 2013; Singer et al., 2013; 
Zarbalis et al., 2007).  

BMs are thin and dense sheets comprised of highly cross-linked extracellular 
matrix (ECM) proteins that are located at the basal side of every epithelium and 
endothelia and also surround muscle, fat and Schwann cells (Hohenester and 
Yurchenco, 2013; Yurchenco, 2011). Mutations in genes of BM constituent 
proteins are either embryonically lethal or lead to muscular dystrophy, vascu-
lature ruptures, or CNS malformations (Halfter and Yip, 2014). Indeed, our 
research group has previously also demonstrated that the Ric8a–/– embryos died 
due to gastrulation defects that were accompanied with BM integrity (Tõnissoo 
et al., 2010). Moreover, the absence of RIC8A in cerebellum development 
caused impaired adhesion of the Bergmann glia to the BM, leading to the 
impaired migration of granular progenitor cells and to failure in the generation 
of cerebellar fissures (Ma et al., 2012). Therefore we analysed the morphology 
of BM by characterising Laminin-I localisation in murine CNS. In control mice 
and in Nes;Ric8aCKO mice the BM was intact at E12.5 showing continuous 
Laminin-I localisation (Ref.II, Figure 5A–5D). However, at neurogenesis peak 
phase at E14.5 (when the first ectopias were detected) and in newborn mice, the 
BM was ruptured as suggested by fragmentary Laminin-I localisation pattern 
and numerous gaps in BM in the mutant mice (Ref.II, Figure 5E–5P). Thus, the 
absence of functional RIC8A in the neural precursor cells leads the loss of the 
pial BM integrity suggesting a putative role for RIC8A in the cell adhesion.  
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The assembly of the BMs depends on the meninges and radial glial endfeet 
that tightly associate with each other to form a barrier (glia limitans). The 
evolutionarily conserved mechanism of BM assembly is initiated through the 
recruitment of laminin by integrin and α-dystroglycan receptors (Beggs et al., 
2003; McKee et al., 2007). Mutations in genes encoding extracellular matrix 
components like laminins (α5; β2 or γ1, γ3), perlecan and Collagen III disrupt 
normal BM maintenance and cause cortical ectopias and BM breaches (Costell 
et al., 1999; Haubst et al., 2006; Luo et al., 2011; Radner et al., 2013). Con-
sistent with the ECM studies, deletion of Integrin a6β1, β1-class integrins, and 
conditional deletion of α-dystroglycan in mice also lead to breaks in BM 
integrity and allowed migration of ectopic neurons to the marginal zone 
(Georges-Labouesse et al., 1998; Graus-Porta et al., 2001; Myshrall et al., 2012; 
Radakovits et al., 2009). The meninges covering the developing brain also 
participate in the formation of the BM since meningeal fibroblasts secrete ECM 
components and organise the BM lining over the cortex (Beggs et al., 2003; 
Decimo et al., 2012; Radakovits et al., 2009). Defects in meninges differen-
tiation lead to the breakdown of the pial BM in the development of mouse brain 
cortex and cause severe cortical dysplasia associated with the marginal zone 
heterotopias and dyslamination (Hecht et al., 2010; Inoue et al., 2008; Zarbalis 
et al., 2012). It seems that in Nes;Ric8aCKO mice Laminin-I production was not 
affected as the BM was organised correctly at E12.5. However, considering the 
fragmented and scattered localisation of Laminin-I in between and around the 
cells at E14.5 and P0, the ability to maintain an intact BM is lost after E12.5. 
We hypothesise that intactness of BM is lost due to the impaired polarisation of 
the RIC8A deficient pial cells. In fact, the polarised distribution of RhoA and 
microtubule dynamics has been shown to play a role in the disruption of the BM 
maintenance during gastrulation (Nakaya, 2008). Cells surrounded by Laminin-
I, in an analogous manner to the RIC8A deficient pial cells, were also detected 
in the primitive streak region of the Ric8a–/– embryo at E7.5 (Tõnissoo et al., 
2010). Moreover, our in vitro studies showed that RIC8A plays an important 
role in the organisation and remodelling of actin cytoskeleton since Ric8a–/– 
mouse embryonic stem cells (mES) were not able to form stress fibres or spread 
properly (Ref.IV, Figure, 3A;3A’;3B;3B’). Also, recent studies have proposed 
the participation of RIC8A in the activation of RhoA and Cdc42 which play a 
crucial role in cell polarisation (Gabay et al., 2011; Yan et al., 2015). Hence, 
abnormal localisation of laminin accompanying the RIC8A deficiency also 
implies the malfunctioning of the RhoA pathway leading to a defective 
epithelial tissue polarity (Cappello et al., 2012; Daley et al., 2012). Therefore 
we suggest that insufficient activation of RhoA pathway could be the reason for 
the breakdown of the pial BM seen in Nes;Ric8aCKO mutants.  
 
 
  



37 

2.2. RIC8A is needed for the attachment of radial glial endfeet  
to BM and Cajal-Retzius cell positioning (Ref.V). 

Intact pial BM is necessary for the anchorage of radial glial endfeet using 
integrins or α-dystroglycan. Cortical abnormalities in laminar organization were 
also found in studies in mice with deletion of nidogen-binding site of laminin 
γ1, integrin-linked-kinase (Ilk), focal adhesion kinase (FAK), adhesion G 
protein-coupled receptor GPR56, Gα12/Gα13 (Beggs et al., 2003; Halfter et al., 
2002; Jeong et al., 2012; Jeong et al., 2013; Li et al., 2008; Moers et al., 2008; 
Niewmierzycka et al., 2005). Consistent with the results found in Nes;Ric8aCKO 

mice where the anterior cortical heterotopias were bigger, the GPR56 expres-
sion pattern mimics the anterior-to-posterior gradient of defects associated with 
loss of GPR56 in mice (Jeong et al., 2012; Li et al., 2008; Singer et al., 2013). 
These results strongly suggest that RIC8A might associate with GPR56 and 
Gα13 since GPR56 has been shown to function using interaction with Gα13 (Luo 
et al., 2011). All of the aforementioned studies also reported that the radial glial 
endfeet were detached from the BM and the Cajal-Retzius cells were 
mislocalized around the ectopias. In Nes;Ric8aCKO mice the first ectopias were 
detected at (data not shown) and the first BM breach already at E13.5 and these 
were not present in control mice (Ref.V, Figure 2G;2H;2Gʹ;2Hʹ). In ectopias the 
Cajal-Retzius cells were randomly distributed, the radial glial processes were 
disorganised and the Laminin-I lining was fragmentary (Ref.V, Figure 2Aʹ–2Fʹ, 
respectively). Since Cajal-Retzius cells did not express RIC8A, the misloca-
lization was probably a concurrent feature and dependent on the detachment of 
radial glia and BM defects as reported earlier (Kwon et al., 2011). Taken 
together, the absence of RIC8A in the neural precursor cells affects the 
attachment of radial glia to the BM and the localisation of CR cells which in 
turn may affect the signal molecules secreted by them. 
 
 

2.3. RIC8A deficiency causes impaired cell migration  
(Ref.II, Ref. IV) 

Along with the defects in the BM integrity, different signals from the sur-
rounding environment (e.g signal molecules secreted by Cajal-Retzius cells) can 
also lead to mislocalization of the migrating neurons. Removal of RIC8A 
function from neural progenitors in Nes;Ric8aCKO mice did not influence the 
generation of neural progenitor cell types at early embryonic ages or the onset 
of neurogenesis. Furthermore, newborn neurons were able to start the migration 
towards the pial surface (Ref.II, Figure 3), and to form cortical layers in an 
„inside-out“ manner (Ref.II, Figure 4). However, the cells were not correctly 
positioned in the layers in Nes;Ric8aCKO mice. The binding partners of RIC8A – 
Gα12/Gα13 – have been shown to provide the positioning cues for the cortical 
neurons during brain development and ablation of the genes encoding these  
α-subunits in neural precursor cells resulted in a cobblestone-like cortical mal-
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formation (Moers et al., 2008). One of the possibilities for these cortical over-
migrations is that the cells have lost the ability to respond to the repulsive 
mediators that signal via GPCRs. Indeed, embryonic cortical neurons lacking 
Gα12/Gα13 did not retract, the neurites in response to repulsive mediators, indi-
cating that they had lost the ability to transmit the stop signals from Gα12/Gα13 
coupled receptors and therefore cortical plate neurons were not correctly 
positioned during development (Moers et al., 2008). Gα12/Gα13 stimulate the 
small GTPase RhoA-dependent actomyosin-based contractility and it is likely 
that the loss of this regulatory pathway interferes with the normal regulation of 
cell migration (Buhl et al., 1995). Consistently, the genetic deletion of RhoA in 
the developing neocortex lead to two migrational disorders: the cobblestone 
lissencephaly and subcortical band heterotopia (SBH) which were perhaps 
caused by partial or incomplete migration of neurons to their cortical locations 
(Cappello et al., 2012). In vivo and in vitro studies have shown that RhoA–/– 
neurons were able to initiate migration, however, they showed decreased the 
formation of F-actin and reached the cortical plate faster (Cappello et al., 2012). 
Ablation of RhoA in the RG cells caused profound destabilisation of the actin 
and tubulin cytoskeleton in RG cells and loss of apical anchoring as well as 
defects in formation or maintenance of basal process (Cappello et al., 2012). In 
the RIC8A-deficient neural precursor cells, the levels of Gα13 were decreased 
(Ref.II, Figure S2), which incorporates RIC8A into the RhoA-mediated 
signalling pathway as also shown before (Gabay et al., 2011; Yan et al., 2015). 
Therefore, the cortical ectopias forming in Nes;Ric8aCKO mutants may be caused 
by defects in Gα12/Gα13 and RhoA signalling pathways.  

Next, we studied the migratory capacity of RIC8A deficient cells in more 
detail. However, instead of neural cells, for simplicity, we used mouse embryonic 
stem (mES) cells and mouse primary fibroblasts (MEFs) where first four exons 
were flanked by loxP sites and the ablation of functional RIC8A was achieved 
by transfection of cells with Cre-recombinase-expressing vector. We discovered 
the deficiency of RIC8A indeed affects the cell migration but this is highly 
dependent on the substrate. Migration of Ric8a–/– cells was impaired on laminin 
521 (Ref.IV, Figure 5C) when no chemotactic stimulus was introduced. 
However, upon chemotactic stimulation with foetal bovine serum (FBS) the 
migration of RIC8A deficient mES cells was increased on type IV collagen and 
on laminin 521 compared to control cells (Ref. IV, Figure 5E). MEFs displayed 
similar tendencies with decreased migration on type I collagen and increased 
migration when the chemotactic stimulus was added. Cells mostly bind to 
laminin and collagens using β1 integrin subfamily integrins (Humphries et al., 
2006). These results indicated that RIC8A is involved in the regulation of cell 
migration, which is dependent on the ECM substrate, probably through β1-
integrin signalling. To verify this hypothesis, we analysed whether RIC8A 
regulates the activity of β1-integrins by quantifying the amount of β1-integrins 
active in conformation on the cell surface using flow cytometry. We discovered 
that the activation of β1-integrins upon cell adhesion to type I collagen was 
decreased in RIC8A-deficient cells as was the activating phosphorylation of Akt 
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downstream of integrins when compared to control cells (Ref.IV, Figure 
6C;6D). These results suggest that the lack of RIC8A does not impair the cell 
migration as such, rather RIC8A-deficient cells are unable to properly interact 
with specific ECM components and this interaction is most likely integrin β1 
dependent.   

Integrins link the ECM to F-actin in focal adhesion complexes, hence we 
analysed the formation of focal adhesion complexes. RIC8A deficient cells did 
not assemble ordinary focal adhesion complexes since β1-integrin was distributed 
rather randomly in the plasma membrane (Ref.IV, Figure 4B;4B’) whereas it 
had accumulated into sprouting clusters in RIC8A expressing cells (Ref.IV, 
Figure 4A;4A’). Vinculin, which is a major component of focal adhesions, also 
showed similar localisation pattern in RIC8A deficient cells (Ref.IV, Figure 4D; 
4D’). The reduction of focal adhesion complexes in RIC8A deficient conditions 
was also detected in X.laevis NCCs (Fuentealba et al., 2013). The 
downregulation of RIC8A in X.laevis resulted in reduced adhesion of neural 
crest cells to fibronectin (Fuentealba et al., 2013) and upon its deletion from 
mouse neural progenitor cells reduced adhesion to laminin (Ma et al., 2012). 

The lack of focal adhesion complexes was probably due to an inability to 
properly organise actin cytoskeleton. No stress-fibre-like structures were found 
in the RIC8A-deficient cells in contrary to control mES colonies (Ref.IV, 
Figure 3). This is probably due to the downregulation of Gα13 in RIC8A 
deficient cells (Ref.IV, Figure 1F) and reduction of RhoA activity since the 
activation of RhoA is known to be required for the formation of actin stress 
fibres (Ridley and Hall, 1992) and RIC8A has previously been shown to affect 
RhoA activity (Gabay et al., 2011). Another key component of this pathway is 
the focal adhesion kinase (FAK) which has a similar phenotype with Ric8a–/– 
cells since Fak –/– cells have an increased number of immature focal adhesions, 
resulting in cell rounding and reduced cell migration as well as the altered 
regulation of the actin cytoskeleton (Beggs et al., 2003). FAK is a nonreceptor 
tyrosine kinase that is activated following integrin binding to various 
components of ECM (Parsons, 2003). Interference with FAK function in neural 
precursor cells or in meningeal cells leads to a severe cortical dysplasia 
resembling typeII lissencephaly (Beggs et al., 2003). These observed defects 
resemble the phenotype of Nes;Ric8aCKO mice and Ric8a–/– cells. Therefore, 
based on our results and studies by others, we can conclude that RIC8A is an 
essential regulator of cell-matrix interactions and can modulate the cell 
migration in early cerebral cortex development. 
 
 

4. RIC8A in asymmetric cell division (Ref. II; Ref. III) 
Dorsal meninges and radial glial endfeet lie in close proximity to each other and 
their interactions may be crucial for cell specification through extrinsic signals 
(Siegenthaler and Pleasure, 2011). As reported earlier, the disruption of the pial 
BM in mice could lead to miscommunication between the meninges and the RG 
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endfeet and may trigger neurogenic fate (Siegenthaler et al., 2009). The 
reduction of the cortical thickness of Nes;Ric8aCKO mice at P0 is indicative of 
the premature neurogenesis where postmitotic cells are generated too early at 
the expense of progenitor cells. Therefore, we analysed the division of mitotic 
cells by measuring their cleavage plane angles in relation to the VZ surface and 
grouped the angles using 10° intervals. The results were somewhat surprising, 
since usually planar divisions are analysed using the angle intervals of 30°  
(0–30°; 30–60°; 60–90°) (Haubst et al., 2006; Kosodo et al., 2004; Noctor et al., 
2002), but our results showed significant increase of the cleavage planes 
between 70–90° range and obvious decrease in the range of 0–70° in 
Nes;Ric8aCKO mice (Ref.II, Figure 6E). These results indicate that the loss of 
RIC8A in neural progenitor cells shifts the balance between the planar and 
oblique cell divisions towards planar divisions. In addition, studying the cell 
lineage of daughter cells after mitosis revealed an imbalance between the direct 
or indirect neurogenesis since the amount of radial glial cells and neurons 
(could be produced through planar divisions) increased while the number of 
intermediate progenitors (produced through oblique divisions) decreased in 
Nes;Ric8aCKO cortices (Ref.II, Figure 6G–6L).  

Cleavage plane is oriented through the correct attachment of astral micro-
tubules to the cell cortex which requires the formation of Gαi-LGN-NuMA 
complex (Morin and Bellaiche, 2011; Nipper et al., 2007; Schaefer et al., 2001). 
RIC8A is required for the asymmetric cell division and it catalyses the release 
of Gαi-GTP and NuMA from Gαi-GDP:LGN:NuMA complex (Tall and 
Gilman, 2005). Gαi, that serves as an attachment point for astral microtubules at 
the plasma membrane, locates mostly in the cytoplasm and only occasionally at 
the cell cortex in the neural precursor cells of Nes;Ric8aCKO mutants at E14.5 
(Ref.II, Figure S2B-S2E). Such localisation of Gαi is in good concordance with 
the studies where RIC8A was shown to function as a chaperone that governs the 
membrane-association of nascent G-protein α-subunit (Chan et al., 2013; Gabay 
et al., 2011; Tall et al., 2013). The Gαi-LGN-NuMA complex on the ends of 
astral microtubules can also associate with Inscuteable (Postiglione et al., 2011). 
The loss and gain of function analysis of the mouse Inscuteable (mInsc) gene 
indicated that mInsc interferes with the horizontal orientation of mitotic spindle 
during RG cell division and increases the number of forming neurons. The 
oblique spindle orientation is required for the production of intermediate 
progenitor cells and thereby causes the increase in the final brain size 
(Postiglione et al., 2011). In our studies, the number of cells in mitosis did not 
differ in brains of control and Nes;Ric8aCKO mice. However, the number of cells 
in anaphase differed remarkably, especially the number of planarly dividing 
cells was significantly higher in the brain of mutant mice than in control 
cortices (Ref.II, Figure 6F). These results are consistent with the results from an 
earlier study where RIC8A removal in HeLa cells interfered with the 
localisation of Gαi subunit to the cell cortex in metaphase and disrupted correct 
mitotic spindle alignment, which in turn caused the occasional mitotic arrest and 
prolonged mitosis (Woodard et al., 2010).  
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When RIC8A regulated asymmetric cell division is excluded, the resulting 
LGN-complex-independent actin spindle orientation could lead to unregulated 
and rather symmetric divisions as a default state (Kwon et al., 2015). Moreover, 
aforementioned proteins that mediate cell adhesion also participate in orien-
tation of the mitotic spindle. For example, the main function for Cdc42 in 
mammalian neurogenesis is to activate the Par complex in order to maintain the 
adherens junctions coupling and progenitor cell fate. In line with this, the 
deletion of Cdc42 caused the conversion of apical progenitors to bIP cells that 
had also acquired the SVZ characteristic fate determinants (Cappello et al., 
2006). Furthermore, during cell division, Ilk localises to the centrosome and 
plays an essential role in mitotic spindle assembly and colocalizes with tubulin-
interacting proteins (Fielding et al., 2008). Overall, Ilk has been implicated in 
regulating migration, cell survival, proliferation, and IP3 dependent signal 
transduction. Similarly to Ilk, RIC8A has also been shown to localise in centro-
somes, in the mitotic spindles and in the midbody in HeLa cells (Miller and 
Rand, 2000; Woodard et al., 2010). Additionally, in C.elegans RIC8 has been 
shown to participate in IP3 signalling, thus, RIC8 may also be involved in 
mitotic spindle assembly and other centrosome-mediated processes (Miller and 
Rand, 2000). Accordingly, mice deficient in centrosomal protein Pericentrin 
have similar spindle orientation defects in neural progenitor cells and also 
possess malformations in the heart septum (Chen et al., 2014). Pericentrin is 
necessary for spindle orientation and functions by regulating the astral micro-
tubule length and density. Based on extensive similarities of the phenotype of 
Pcnt–/– and Nes;Ric8aCKO mice, it seems feasible that RIC8A may act in the 
regulatory network of astral microtubule length and density. Moreover, a recent 
study revealed the importance of astral microtubule density and dynamics on 
the stability of mitotic spindle orientation (Mora-Bermudez et al., 2014). The 
authors suggested that in neuroepithelial cells (NE) the astral microtubule 
density is high which keeps the cells parallel to the substratum, but when NE 
cells transform into RG cells, which is at about the same time when RIC8A is 
upregulated, the density of astral microtubules decreases and they become more 
dynamic (Mora-Bermudez et al., 2014). The orientation of spindle that becomes 
less tightly anchored is, therefore, more easily readjusted by intra- and 
extracellular forces that can induce tilts (Mora-Bermudez et al., 2014). Thus, the 
regulation of astral microtubule assembly, density, and dynamics may be 
influenced by the Gαi-RIC8A interplay during cell division, but this is a 
completely unexplored area in mammals and definitely needs further 
investigations before solid conclusions can be drawn. 

In a separate line of investigation, we studied the RIC8A role in mammalian 
oocyte divisions, since oocyte undergoes highly asymmetric cell divisions 
resulting in the formation of small polar bodies and one large oocyte. The size 
difference between the daughter cells is achieved by the asymmetric spindle 
positioning before the cytokinesis. Gene expression analyses have shown that 
Ric8a is upregulated at the beginning of meiosis (Olesen et al., 2007). 
Moreover, xRic-8 is maternally expressed in amphibian oocytes where it 
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participates in the maintenance of meiotic arrest (Maldonado-Agurto et al., 
2011; Romo et al., 2008). In meiosis, RIC8A localises to the cytoplasm at the 
early and in germinal vesicle at later stages. Upon meiotic spindle formation, 
RIC8A shifted to the spindle in metaphase and retained there during the 
anaphase and telophase of meiosis I and II (Ref. III, Figure 2). RIC8 also co-
localizes with its known interaction partners NuMA, LGN and Gαi1/2 in the 
meiotic spindle (Ref.III, Figure 4; Figure 5). LGN has been shown to participate 
in chromosome alignment by regulating the spindle elongation and cortical 
localisation (Guo and Gao, 2009). NuMA is associated with the centrosome core 
structure in meiotic cells and functions during meiotic maturation. Accurate 
translocation to the meiotic poles is important for maturation that leads to 
functional spindle poles (Schatten and Sun, 2011). RIC8A may regulate these 
processes since the downregulation of RIC8A synthesis by RNA interference 
during oocyte maturation interfered with the correct localisation of Gαi1/2 and 
reduced its level in the cell cortex (Ref.III, Figure 8G). Although the 
downregulation of Ric8 had no statistically significant effect on morphology, 
we observed a tendency for some unfertilized oocytes to divide abnormally 
(forming two or three almost equal cells). Furthermore, meiosis I lasted longer 
in Ric8 siRNA treated cells and also some oocytes could not maintain the 
correct positioning in metaphase.  

Meiotic spindle positioning in mouse oocytes relies mostly on actin-
dependent mechanisms but not microtubules (Lancaster and Baum, 2014). In 
mammalian oocytes, there are no true centrosomes and astral microtubules, 
therefore different pools of F-actin meshworks in the cortex and in the cyto-
plasm play the key role in the positioning of spindles (Almonacid et al., 2014; 
Chaigne et al., 2012). To compensate the lack of centrosomes and astral 
microtubules, oocytes use several alternative strategies depending on the species 
(Almonacid et al., 2014). Although, we have shown that RIC8A is important in 
F-actin assembly, in oocyte meiotic divisions there are possibly other regulators 
that could compensate for RIC8A downregulation after siRNA treatment.  
 
 
5. RIC8A and neural crest-derived structures (Ref.II, Ref.V) 

Previous results have suggested that functionality and behaviour of the neural 
crest cells may be affected in Nes;Ric8aCKO mice. The cranial neural crest cells 
migrate first rostrally between E9 and E10 in mouse embryo to contribute to the 
initial layer of meningeal cells that becomes a part of the leptomeninges 
(Etchevers et al., 1999; Siegenthaler and Pleasure, 2011). Without this migration, 
the development of the telencephalon and cranio-facial development are inter-
rupted (Etchevers et al., 1999). The genotyping data of Nes;Ric8aCKO mice 
indicated that the number of newborn pups per litter was smaller than the 
average, therefore the embryos at different development stages were evaluated. 
The phenotypic evaluation revealed that at E10.5, almost 40% of Nes;Ric8aCKO 
embryos had severe developmental abnormalities and they died around that 
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period or shortly after. These mutant mice displayed neural tube closure defects 
in the trunk and head regions, morphologically defective brain vesicles, twisted 
body shape and cranio-facial defects that were not detected in the littermate 
controls (Ref.II, Figure 1A–1D). A larger group of Nes;Ric8aCKO embryos had 
rather mild phenotypic defects or were even indistinguishable from littermates. 
Therefore, in some cases, the absence of RIC8A in the neural progenitors 
affects more severely the migrating cranial NCCs and results in the defective 
telencephalon and cranio-facial development. However, at the peak phase of 
mouse neurogenesis at E14.5, the majority of Nes;Ric8aCKO embryos (~80%) 
were indistinguishable from the control embryos. Nevertheless, at the age of 
E18.5 the Nes;Ric8aCKO mutant animals were again easily recognisable by their 
neuromuscular phenotype (described earlier in Results and Discussion Chapter 
1.1.). Some of the observed defects in Nes;Ric8aCKO mice again point to 
developmental aberrations in the neural crest-derived structures, such as the 
short snout and steep forehead. The RIC8A expression (E9.5) and NestinCre 
upregulation (E9.5) in the neuroepithelium (Ref.V, Figure S1) probably overlap 
with the time of cranial neural crest migration and the deficiency of RIC8A sum 
to randomly affect the neural crest cells that migrate to the rostral region or 
influences the rear part of cranial NCCs.  

NCCs also provide all parasympathetic innervation of the heart which 
influences the normal myocardial function (Kirby et al., 1983). Therefore, we 
analysed RIC8A and NestinCre transgene expression at E14.5 in the area of 
coronary artery and in the wall of the aorta (Ref. V, Figure 5A,5B). The NCCs 
contribute to the heart development in the same area giving rise to cardiac 
smooth muscle cells which contribute to the development of coronary artery and 
interseptum (Arima et al., 2012; Dettlaff-Swiercz et al., 2005; Waldo et al., 
1998). Moreover, in the heart development, it has been demonstrated that the 
early migration of preotic NCCs, rather than postotic NCCs, gives rise to smooth 
muscle cells and contributes to coronary artery development (Arima et al., 
2012). According to the above-mentioned results in some cases, RIC8A 
deletion affects the very early migrating cranial NCCs, however, in the majority 
of cases RIC8A deletion affects cranial NCCs in later stages resulting in 
malformations of heart and brain. 

Moreover, poor muscle innervation described in Nes;Ric8aCKO mice may also 
be due to defects in NCCs derived structures that in turn affect myelination of 
peripheral nerve and their development through radial sorting. Myelination in 
the peripheral nervous system is accomplished by Schwann cells which 
originate from NCCs (Witt and Brady, 2000). Schwann cells deposit polarised 
BM around themselves and the myelinated axon during the radial sorting. This 
process is dependent on the interaction between laminin and β1-integrins or α-
dystroglycan (McKee et al., 2012). Interference with this interaction in Schwann 
cells by ablation of laminins (α2; γ2), integrin β1, Ilk, FAK, RhoGTPases, 
GPR56 or α-dystroglycan function causes dysmyelination and subsequent 
paralysis, tremors and muscular dystrophies (Berti et al., 2011; Berti et al., 
2006; Feltri et al., 2008; Gheyara et al., 2007; Giera et al., 2015; Grove et al., 
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2007; Pereira et al., 2009; Postel et al., 2008). These results strongly support the 
idea that RIC8A functionality is essential for nerve myelination by regulating 
the BM organisation through RhoA pathway. However, further studies are 
needed to unravel the role of RIC8A in nerve myelination.  

In order to migrate along their cranial routes, cranial NCCs need to integrate 
positional and guidance cues to dynamically interact with each other and with 
their surrounding extracellular matrix (Deakin and Turner, 2008). Clusters of 
migrating cells firmly associate with each other while only transiently adhere to 
a substrate (Friedl et al., 2004). A myriad of molecular signals trigger the 
cascade of coordinated events like induction, specification, polarisation and 
migration (Theveneau et al., 2010). Signal transduction of heterotrimeric G-
proteins has been described to regulate each of these events by promoting actin 
cytoskeleton reorganisation via activation of small GTPases such as Cdc42, Rac 
and Rho (Cotton and Claing, 2009; Kjoller and Hall, 1999; Nobes and Hall, 
1995). It is well documented that Cdc42 has an essential role in NCC develop-
ment. Cdc42 is activated by integrins and focal adhesion kinase (FAK) and loss 
of integrin β1 or FAK in NCCs result in craniofacial and cardiovascular 
developmental defects (Pietri et al., 2004; Vallejo-Illarramendi et al., 2009). 
The total deletion of Cdc42 caused embryonic lethality and aberrant actin 
cytoskeleton organisation (Chen et al., 2000; Liu et al., 2013). Cdc42 conditional 
knockout studies have indicated that Cdc42 plays a crucial role in the renewal 
of neural progenitor cell and cerebral hemisphere separation (Cappello et al., 
2006; Chen et al., 2000; Peng et al., 2013). Moreover, deletion of Cdc42 in 
NCCs induced embryonic lethality with craniofacial morphogenetic defects 
showing similar defects in craniofacial and cardiovascular development as in 
Nes;Ric8aCKO embryos (Liu et al., 2013). A recent study by Yan and colleagues 
also affirmed that RIC8A participates in Cdc42 activation through Gα13 (Yan et 
al., 2015). Furthermore, the evidence that heterotrimeric G-protein signalling 
controls the collective and directional migration of NCCs was also provided 
recently (Theveneau et al., 2010; Theveneau and Mayor, 2011). However, the 
craniofacial defects mostly associate with defective signalling via Gαq/Gα11 
rather than Gα12/Gα13 which insufficiency has been shown to contribute to the 
cardiac malformations such as coronary artery dilation and various VSD defects 
that were also manifested in newborn Nes;Ric8aCKO pups (Dettlaff-Swiercz et 
al., 2005; Ref.V, Figure 5C-5H). Furthermore, similarly to Nes;Ric8aCKO mice 
and Ric8a–/– mES cells, Ric8A loss-of-function completely abolishes the ability 
of cranial NCCs to spread and migrate in Xenopus laevis, suggesting impaired 
cell adhesion, which in turn leads to craniofacial defects (Fuentealba et al., 
2013; Maldonado-Agurto et al., 2011). These results strongly suggest the 
requirement for RIC8A functionality in migration and subsequent differentiation 
of NCCs that contribute to craniofacial development. 

Intrigued by this data, I decided to identify possible neural crest migration 
defects in Nes;Ric8aCKO embryos for this dissertation by labelling migrating 
neural crest cells using transcription factor AP2α (Activating enhancer binding 
Protein 2 alpha) as a marker. The results indicated that the neural crest cells 
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were able to migrate to their destination areas also in Nes;Ric8aCKO embryos. 
AP2α-positive cells were found in leptomeninges of the telencephalic vesicles 
(Figure 5A;5A’), but they were not present in the meninges of mesencephalic 
vesicle (Figure 5B;5B’). AP2α-positive cells were also detected in the 
pharyngeal arches from where they migrate to the heart (Figure 5C;5C’), also in 
dorsal root ganglion and in the epidermis where NCCs contribute to the 
development of melanocytes (Figure 5D;5D’). Moreover, the deletion of RIC8A 
did not alter the initiation of cell migration in the cerebral cortex development 
(Ref. II, Figure 3G,3H), but showed aberrant positioning afterwards. Thus, 
incorrect positioning of cranial NCCs may be one of the reasons for cranio-
facial defects in E10.5 in Nes;Ric8aCKO mice.  

 

 
Figure 5. AP2α positive migrating neural crest cells in control (Ctrl) and 
Nes;Ric8aCKO embryos (Ric8CKO) at E10.5. (A;A’) AP2α positive neural crest cells 
(white arrowhead) in the telencephalic meninges. (B,B’) The lack of neural crest cells in 
the mesencephalic meninges (C,C’) Neural crest cell population in the pharyngeal arch 
and (D) in the dorsal root ganglion. Abbreviations: T.Ve – telencephalic vesicle; 
M.Ve – mesencephalic vesicle; LM – leptomeninges; Ph.A – pharyngeal arch; Nt – 
neural tube; Drg – dorsal root ganglion; E – epidermis. Scale bars: 100 µm. 
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6. The role of RIC8A in the development of congenital 
muscular dystrophies (Ref. II and Ref. V) 

Nes;Ric8aCKO mice exhibit a severe neuromuscular phenotype which is mainly 
due to multiple developmental defects. The enlarged ventricles, multiple cerebral 
cortical ectopias and breaches in the BM (Ref.II, Figure 1I–1N; Figure 2; Figure 4 
and Figure 5, respectively) strongly resemble the symptoms found in the 
congenital muscular dystrophies, especially Fukuyama Congenital Muscular 
Dystrophy (FCMD), Walker-Warburg syndrome (WWS) and Muscle-Eye-Brain 
(MEB) disease (Bouchet et al., 2007; Pabuscu et al., 2003; Saito, 2006; Yoshioka 
and Higuchi, 2005). These syndromes are characterised by ocular defects, muscle 
dystrophy, dysmyelination and occasionally heart, kidney or thymus function 
failure.  

In the current thesis, the brain, muscle and heart defects have been charac-
terised earlier. In addition to these, Nes;Ric8aCKO mice also display defective 
lens development revealing abnormal vacuoles between the secondary fibres 
(Ref.V, Figure 3). These vacuoles and aberrant Y-suture formation in lens 
secondary fibre elongation are linked to defective adhesion and migration, 
associated with aberrant RhoA signaling (Cammas et al., 2012; Maddala et al., 
2011; Maddala et al., 2004; Maddala et al., 2003; Maddala et al., 2008). All of 
the deficiencies that are found in Nes;Ric8aCKO mice add up to a phenotype that 
highly resembles congenital muscular dystrophies.  

Since the WWS is the most severe syndrome among these disorders 
(Barkovich et al., 2012; Cormand et al., 2001; Devisme et al., 2012), we presume 
that the lack of RIC8A in neural progenitor cells mostly generates the pheno-
type resembling WWS. Persons with lissencephaly and only mild eye 
abnormalities develop muscle dysplasia but can live beyond infancy like FCMD 
and MEB patients (Jang et al., 2013; Yoda et al., 2011). However, WWS 
patients mostly live only for a few months, and never reach over 3 years. 
FCMD patients form a distinct group from other two having the mildest pheno-
type and mostly lacking ocular defects (Cormand et al., 2001; Vajsar and 
Schachter, 2006). MEB patients are usually floppy, mentally retarded with 
suspected visual problems, however, they are able to learn of few words and 
learn to walk (Cormand et al., 2001). The defects described in WWS individuals 
are the most severe and can be diagnosed already prenatally because of 
aggravated hydrocephalus (Cormand et al., 2001). However, a lot of patients 
possess clinical features somewhere in between these typical groups described 
(Cormand et al., 2001). Despite intensive research and genetic screening of 
genes involved in glycosylation of α-dystroglycan, a lot of the cases remain 
unexplained suggesting that other genes and/or signalling pathways may be 
involved in these pathologies (Belpaire-Dethiou et al., 1999; Devisme et al., 
2012; Vajsar and Schachter, 2006).  

Our hypothesis is that in addition to described features, the NCC with 
impaired functionality, due to the absence of RIC8A, may also cause additional 
defects in the heart development and nerve myelination. Our hypothesis is also 
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supported by case studies where cleft palate defects were described in WWS 
patients (Pratap et al., 2007; Vajsar et al., 2008). Our research also showed that 
RIC8A is expressed in neural crest cell derived structures (heart, meninges) and 
it is involved in regulation of cell shape, division adhesion, and migration. 
However, further studies are needed to clarify how the absence of RIC8A 
impairs the NCC migration and differentiation contributes to multiple develop-
mental processes defects that could cause CMD.  

To sum up, our findings demonstrate that the functional RIC8A is required 
for the development and normal functioning of the central nervous system in 
mammals as well as for the development of the peripheral nervous system. The 
removal of RIC8A from the neural precursor cells impairs differentiation and 
migration of progenitor cells in the neuroepithelium and also neural crest cells. 
On the cellular level RIC8A regulates reorganisation of BM and cell’s morpho-
genetic changes which both require proper actin cytoskeleton organisation, and 
probably RIC8A modulates the activity of RhoA pathway. The phenotype of 
created mutant mice has features that are characteristic to CMD symptoms i.e 
the development of brain, eyes, muscles and heart is affected. Among CMD 
disorders, Nes;Ric8aCKO mouse model could be considered the most similar to 
Walker-Warburg syndrome, but being more severe and causing early lethality. 
In principle malfunctioning of RIC8A may be one of the factors generating 
WWS due to the failure in cell-ECM interaction and insufficient signalling via 
G-protein mediated RhoA pathway. We also suggest that defective neural crest 
cells might contribute to the emergence of the CMDs if the integrin-mediated 
interactions with ECM are defective.  
 
 
 
 
 
 
 
 
 
 
 
 
 
  



48 

CONCLUSIONS 

RIC8A is a highly conserved protein that regulates the activity of a subset of G 
protein α subunits and is irreplaceable in the normal development and 
functioning of the brain regions that influence the emotional behaviour and 
memory. The total loss of RIC8A function is embryonically lethal and causes 
severe gastrulation defects in mice. To characterise the role of RIC8A function 
in the nervous system and its development we generated two knockout mouse 
models where RIC8A was knocked out from the postmitotic neurons and neural 
precursor cells, respectively. Additionally, the mechanism of RIC8A action in 
regulating the adhesion of cells to ECM, and in migration was analysed in vitro 
in primary cells.  

The main results of this dissertation can be concluded as follows 
1. Deletion of RIC8A from the nervous system during its development leads to 

the severe defects in neuromuscular signalling that affect the functioning of 
skeletal muscles and heart. The muscles of these animals suffer from 
progressive atrophy and fibrosis, the heart function is severely impaired due 
to several morphological defects.   

2. RIC8A has an essential role in neurogenesis by maintaining the integrity of 
pial basement membrane. The breaches in the basement membrane cause 
further defects in the attachment of arachnoid trabeculae and radial glial 
endfeet to it, which in turn leads to wrong positioning of Cajal-Retzius cells.  

3. RIC8A functions as one of the organisers of actin filaments assembly. 
RIC8A deficient cells fail to activate β1-integrin and form proper focal 
adhesion complexes or stress fibres, which subsequently impair cell 
migration.  

4. Deletion of RIC8A from neural precursor cells shift the ratio of the planar 
and oblique cell division toward planar divisions and thereby the proportion 
of direct or indirect neurogenesis.  

5. RIC8A also regulates the development of neural crest-derived structures 
such as meninges, cranio-facial development, the formation of coronary 
artery and interseptum in heart and innervation of nerves in muscles. 

6. The phenotype and histological studies of the RIC8A deficient knockout 
mice reveal its high resemblance with the symptoms of congenital muscular 
dystrophies such as Walker-Warburg disease, Muscle-Eye-Brain disease and 
Fukuyama congenital muscular dystrophy. 
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SUMMARY IN ESTONIAN 

RIC8A roll hiire närvisüsteemis ja selle arengus 

Kesknärvisüsteemi ja perifeerse närvisüsteemi häireteta toimimine on olulise 
tähtsusega täisväärtusliku elu tagamiseks. Närvisüsteemi funktsioneerimiseks 
on vajalik neuraalsete eellasrakkude, gliiarakkude ja neuronite õigeaegne 
moodustumine ning paigutumine. Sellele paneb aluse korrektselt läbitud neuro-
genees, mis hõlmab endas neuraalsete eellasrakkude jagunemist, neuronite 
diferentseerumist ja migreerumist ning rakkudevaheliste võrgustike loomist 
(Bjornsson et al., 2015). Üheks ülioluliseks ja väga kompleksseks struktuuriks 
imetajate neurogeneesis on evolutsiooniliselt noor 6-kihiline neokorteks, mis 
vastutab tunnetuslike ja õppimis- ning tajufunktsioonide eest (Buchman and 
Tsai, 2007). Neokorteksi suurus oleneb aga embrüonaalse neurogeneesi käigus 
tekkinud neuronite arvust ning õigest paiknemisest kihtides (Fernandez et al., 
2016). 

Rakkude jagunemist, adhesiooni ja liikumist õigetesse piirkondadesse 
koordineerivad erinevad signaalide võrgustikud, mis vahendavad signaali 
ülekannet rakuvälisest keskkonnast rakku (Bastiani and Mendel, 2006). Looma-
riigis konserveerunud G-valkude vahendatud signaali ülekanne enim kasutatud 
mehhanismiks rakuvälise signaali viimiseks rakusisesesse keskkonda (Bastiani 
and Mendel, 2006). G-valkude aktiviseerimisel osalevad transmembraansed 
retseptorid ning rakusisesed G-valgu aktiivsuse regulaatorid. Üheks neist on 
RIC8A, mis mõjutab G-valgu Gαq/Gα11; Gαi/Gαo and Gα12/Gα13 subühikute 
toimimist. Seni teadaolevalt omab RIC8A kahte funktsiooni, millest esmalt 
kirjeldati nukleotiidivahetuse võime (GEF) G valgu α subühiku aktiveerimisel 
ning hiljem G-valgu stabiliseerimine biosünteesil ja membraani suunamine 
(Chan et al., 2011; Gabay et al., 2011; Tall et al., 2013).   

Imetaja närvisüsteemis on RIC8A täpselt kaardistatud koduhiires (Mus 
musculus). RIC8A ekspressioon on aktiivsel organogeneesi staadiumil (E9.5–
E12.5) peamiselt neurospetsiifiline. Täiskasvanud hiire kesknärvisüsteemis on 
RIC8A avaldunud piirkondades, mis on seotud tunnetuslike ja õppimis- ning 
tajufunktsioonidega (Tõnissoo et al., 2003; Tõnissoo et al., 2006). Käitumis-
katsed haplodefitsiitsete Ric8a+/– hiirtega näitasid, et neil esinevad ärevushäired, 
neil on vähenenud ruumiline taju ning õppimisvõime (Tõnissoo et al., 2006). 
Homosügootsed Ric8a–/– embrüod surevad gastrulatsiooni staadiumis (E6.5 – 
E8.5) tekkinud arenguanomaaliate tõttu (Tõnissoo et al., 2010). 

Käesoleva töö eesmärgiks oli uurida RIC8A rolli närvisüsteemi arengus. 
Selleks loodi hiireliin, kus Ric8a geen oli välja lülitatud neuraalsetest eellas-
rakkudest. Lisaks loodi hiireliin, kus Ric8a oli inaktiveeritud diferentseerunud 
neuronites. RIC8A valgu puudumine hiire kesknärvisüsteemi ja perifeerse 
närvisüsteemi rakkudest põhjustab tugevat neuromuskulaarset fenotüüpi, mida 
iseloomustab liikumisvõime puudumine, värisemine ja tõmblused ning mis 
põhjustab hiirte sünnijärgse suremuse. Mõlemal närvisüsteemi-põhisel mutandil 
esinesid skeleti- ja südamelihaste atroofia. Hiirtel, kellel RIC8A puudus närvi-
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süsteemi arengu ajal esinesid lisaks veel morfoloogilised defektid südame ja 
näo-kolju arengus. 

Neuraalsetes eellasrakkudes RIC8A puudumine põhjustas rakkude migrat-
siooni häired neurogeneesis. Mutantsete hiirte ajukoor oli õhem ning eba-
korrektse morfoloogiaga. Nende ajukoor sisaldas anomaalseid ektoopilisi välja-
kasve, mis olid eelkõige tekkinud pehmekesta basaalmembraani (BM) purune-
mise tagajärel. BM katked põhjustasid omakorda sellest sõltuvate rakkude 
jätkete kinnitumise (radiaalgliia rakud, ämblikvõrk-kelme trabeekulid) ning 
paiknemise häireid (Cajal-Retzius rakud). Lähemalt uuriti edasi RIC8A funkt-
siooni raku ja rakuvälise maatriksi interaktsioonil in vitro. Tulemused näitasid, 
et RIC8A defitsiitsed rakud ei ole võimelised moodustama rakk-maatriks inter-
aktsioonil olulisi fokaalse adhesiooni komplekse ega ka stressifiibreid, mis 
põhjustasid ka rakkude vähenenud migreerumist. Need häired on peamiselt 
põhjustatud β1-integriini vahendatud signaaliraja defektsusega. 

RIC8A puudus neuraalsetest eellasrakkudest mõjutas ka neurogeneesis 
toimuvaid rakujagunemisi, kus vähenes viltuste jagunemiste osakaal ning kasvas 
planaarselt jagunevate rakkude osakaal. Selline tasakaalu muutus mõjutab 
oluliselt tekkivate rakkude arvu ajukoore arengus, kus viltuste jagunemistega 
suurendatakse rakkude mitmekesisust erinevate eellasrakkude abil (kaudne neuro-
genees) ning samas säilitatakse eellasrakkude õige arvukus. Rohkete planaarsete 
jagunemiste käigus tekib pigem kaks sama saatusega rakku (otsene neurogenees) 
ning neurogenees peatub enneaegselt, põhjustades õhema ajukoore tekke. 

RIC8A geeni inaktiveerimine närvisüsteemi arenemise ajal mõjutas ka 
neuraalharja rakkudest moodustatavate struktuuride arengut, põhjustades näo-
kolju arenguhäireid ning südames pärgarterite ja vatsakeste vaheseina defekte. 
Samuti võib RIC8A puudus ajukelmetes põhjustada kõrvalekaldeid BM struk-
tuuris ja koostises ning mõjutada närvide müeliniseerumist ja seeläbi ka lihaste 
innervatsiooni. Nii ajukelmete tekkesse kui ka müeliniseerumisse panustavad 
oluliselt omavad neuraalharja rakud. 

Kirjeldatud defektid RIC8A puudulikel hiirtel sarnanevad kaasasündinud 
lihasdüstroofiate tunnustega, mis näiteks Fukuyama lihasdüstroofia, Walker-
Warburgi sündroomi ja lihase-silma-aju haiguse korral patsientidel esinevad. 
Need haigused on eelkõige seotud häirunud rakk-maatriks vahendatud signa-
lisatsiooni tõttu läbi düstroglükaanide ja integriinide. Seega, häired RIC8A 
funktsioonis koostöös G-valkude ja β1-integriinide vahendatud signalisat-
siooniga võib olla seotud nende haiguste kujunemisel. 
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