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INTRODUCTION 

Since the first working human genome draft was published in 2001, there has 
been rapid development of high-throughput sequencing technologies. The 
resultant mass of genomic datasets contains information about inter-individual 
genome variance of great interest for personalized medicine, which has become 
a major focus of human genomics, with the goal of providing comprehensive and 
reliable data regarding complex genetic phenotypes and, ultimately, imple-
menting this knowledge into clinical practice such that individuals’ genomic data 
can be used to assess individualized risk, including expected drug responsivity. 
Pharmacogenetics/genomics – the practice of administering treatments based on 
the individual’s genomic make-up – has started to become integrated into every-
day clinical practice, informing treatment decisions and allowing for more 
accurate and efficient selection of therapies that are best suited for specific 
patients. 

The extensively researched enzyme thiopurine methyltransferase (TPMT) is 
a notable example in personalized cancer and immunotherapy. TPMT is a cyto-
solic enzyme that catalyzes the S-methylation of aromatic and heterocyclic sulf-
hydryl compounds, including thiopurine drugs such as 6-mecaptopurine (6-MP), 
azathioprine (AZA), and 6-thioguanine (6-TG). These drugs are used to treat 
acute lymphoblastic leukemia (ALL) and autoimmune diseases as well as to 
prevent rejection of transplanted organs. Individuals with low or deficient TPMT 
activity are at risk of developing severe reactions to drugs methylated by TPMT. 
TPMT activity level correlates inversely with the accumulation of cytotoxic 
metabolites (6-thioguanine nucleotides), such that low enzyme activity results 
in high metabolite levels and vice versa. It has been shown in population studies 
that TPMT activity is trimodally distributed, with the three dominant modes 
observed being deficient/low, intermediate, and normal. Among people of Euro-
pean descent, approximately 0.3%, 11%, and 89% have deficient/low, inter-
mediate, and normal TPMT activity, respectively, indicating that some 11% of 
individuals in this population may be prone to adverse drug events. A small 
subgroup of individuals with ultra-high TPMT activity has also been described. 
One study showed a relationship between trinucleotide repeats in the TPMT 
promoter region and ultra-high TPMT activity.  

Several TPMT polymorphisms and mutations have been identified that alter 
(usually decrease) the encoded enzyme’s activity. Insufficient metabolism of 
standard-dosage thiopurine drugs by TPMT results in myelosuppression, a severe 
adverse event wherein bone marrow does not produce sufficient blood cells. 
Meanwhile, standard thiopurine doses are ineffective in patients with ultra-high 
TPMT activity because the drugs are eliminated rapidly. Aside from identifiable 
inactivating variants of TPMT, there are additional geno- and phenotype 
variances, especially among individuals with intermediate TPMT activity, 
indicating that there are factors other than TPMT genotype influencing TPMT 
activity.  
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In the first phase of this study, we determined TPMT activity in 253 healthy 
Estonian subjects, sequenced TPMT’s coding region, and determined the allele 
frequencies of TPMT genetic markers in the population. Previously undescribed 
mutations were detected. Next, we examined genotype-phenotype variance. The 
second phase of the TPMT study was conducted with a large cohort of 
randomly selected individuals from the Estonian Genome Center. The effect of 
S-adenosyl-methionine (SAM) on TPMT activity was studied. In addition, a 
genome-wide association study (GWAS) and meta-analysis were performed 
with an Estonian cohort, German pediatric ALL patients, and liver samples with 
the aim of finding new genetic markers of TPMT activity.  
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1. REVIEW OF THE LITERATURE 

1.1. The main aspects of pharmacogenetics/-genomics 
It has long been known that individuals respond differently to drugs due to many 
factors such as age, gender, liver and kidney function, environmental/ lifestyle 
factors, and drug-drug and drug-disease interactions. It has since become very 
clear that one’s genetic profile can have a big impact on drug sensitivity and 
efficacy (Meyer, 2004; Meyer, 2012). 

Pharmacogenetics was defined over half a century ago as the study of 
variable drug responses due to inherited characteristics (Vogel, 1959). Owing to 
the rapid development of genomics, molecular pharmacology, and genome 
analysis methods, we are now heading towards a situation where every patient 
will get prescribed a dosage according to their genetic make-up, thereby reducing 
adverse drug reactions (ADRs) and increasing the treatment efficiency (Johnson, 
2003; Meyer, 2012; Squassina et al., 2010; Weinshilboum and Wang, 2004). 
Frequently, the terms pharmacogenetics and -genomics are used interchan-
geably. However, in pharmacogenetic studies, particular candidate genes are 
investigated, whereas in pharmacogenomics (PGx) studies, the whole genome is 
scanned at the level of DNA and/or RNA. PGx studies may include various  
“-omics” methods, such as metabolomics, proteomics, and epigenomics, among 
others (Pinto and Dolan, 2011).  

There are two fundamental areas of PGx research, namely studies of the 
genetic underpinnings of pharmacokinetics (PK) and pharmacodynamics (PD) 
(Fig. 1). PK describes the course of drug and metabolite levels and the rate of 
drug metabolism in different tissues. It incorporates data describing drug 
absorption, distribution, metabolism, and elimination, which are referred to in 
conglomerate by the acronym ADME. PD describes the pharmacological effects 
of a drug on the body, desired or not. Thus, PD can be viewed as what the drug 
does to the body, whereas PK is what the body does to a drug. Variance in both 
mechanisms leads to differences in drug efficacy and toxicity (Johnson, 2003; 
Schwarz et al., 2016). 
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Figure 1. Pharmacogenetics/-genomics is comprised of different components underlying 
the mechanisms of drug actions. See the text for more details. Figure adapted from 
(Johnson, 2003). 
 
 

1.1.1. Drug metabolizing enzymes 

The biotransformation, metabolism, and/or detoxification of xenobiotics (i.e., 
exogenous compounds), including drugs, are mediated largely by enzymes known 
as xenobiotic metabolizing enzymes or drug metabolizing enzymes (DMEs). 
Once in the body, xenobiotics can affect a great variety of processes, including 
cell differentiation, cell division, apoptosis, and necrosis. The body manages 
xenobiotic effects with diverse phase I and phase II DMEs expressed in various 
tissues (Fig. 2); DMEs may be present in abundance basally or upregulated after 
exposure (Pasipoularides, 2016; Rushmore and Kong, 2002). The ultimate goal 
of the reactions mediated by these enzymes is to convert lipophilic drugs into 
hydrophilic metabolites amenable to excretion (Brunton et al., 2005; Schwarz et 
al., 2016).  
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Figure 2. Phase I and phase II enzymes. The relative size of each sector represents how 
much the indicated enzyme type contributes to drug metabolism. Those enzymes, were 
polymorphisms are known to affect drug efficacy are separated from the corresponding 
pie charts. Abbreviations: ADH, alcohol dehydrogenase; ALDH, aldehyde dehydro-
genase; CYP, cytochrome P450; DPD, dihydropyrimidine dehydrogenase; NQO1, 
NADPH:quinone oxidoreductase or DT diaphorase; COMT, catechol O-methyltrans-
ferase; GST, glutathione S-transferase; HMT, histamine methyltransferase; NAT, N-
acetyltransferase; STs, sulfotransferases; TPMT, thiopurine methyltransferase; UGTs, 
uridine 59-triphosphate glucuronosyltransferases. Figure adapted from (Evans and 
Relling, 1999). 
 
 
The phase I enzyme group includes mostly cytochrome P450 (CYP450) family 
enzymes. Generally, they modify the functional groups of xenobiotics/pro-
drugs, converting them into active compounds. In some cases, Phase I enzymes 
may inactivate drugs. Subsequently, drug detoxification is carried out by Phase 
II enzymes (e.g. methyl-, sulfotransferases, quinone oxidoreductases, N-acetyl-
transferases). Phase II enzymes alter chemical structures by adding groups that 
make compounds easier to excrete in urine (Evans and Relling, 1999; Schwarz 
et al., 2016). 

The Clinical Pharmacogenetics Implementation Consortium (CPIC) estab-
lished consensus terms for phenotyping individuals according to the activity of 
drug metabolizing enzymes (e.g. CYP2C19, CYP2D6, CYP3A5, CYP2C9, 
TPMT, DPYD, UGT1A1). Patients are classified as poor, intermediate, normal, 
rapid, or ultra-rapid metabolizers of a target drug. This diversity in metabolism 
is related mainly to the polymorphic genes encoding phase I and II DMEs. 
Polymorphism of DME genes may be the result of gene copy number variations 
(e.g. gene deletions and duplications), small insertions/deletions (indels), and 
single nucleotide polymorphisms (SNPs). Non- and hypofunctional alleles yield 
reduced drug metabolism and thus elevated risk for ADRs (Ingelman-Sundberg 
et al., 1999; Norton, 2001; Schwarz et al., 2016; Zhou et al., 2008); patients with 
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two such alleles for the same key gene should be administered lower doses. 
Intermediate metabolizers, who have one normal allele and one non-or hypo-
functional allele, may also suffer ADRs to standard doses. Standard doses of the 
drugs are suitable and expected to be therapeutically effective in patients with 
normal enzyme activity (usually two wild-type alleles). Conversely, the problem 
of faster than normal drug metabolism, due to the presence of one (rapid 
metabolism) or two (ultra-rapid metabolism) alleles is critical for drug efficacy. 
Such patients require higher doses to achieve drug efficacy because the drug is 
eliminated quickly (Ahmed et al., 2016; Caudle et al., 2016; Kirchheiner and 
Seeringer, 2007; Schwarz et al., 2016).  

In the case of genes that encode enzymes that activate pro-drugs, the opposite 
pattern occurs, wherein individuals with poor and intermediate enzyme activity 
may not reach therapeutic efficacy, while rapid and ultra-rapid metabolizers are 
at risk of ADRs due to excessive concentrations of active metabolites being 
produced. For example, the cytochrome P450 family isoenzyme CYP2D6 is the 
main metabolizer of codeine and tamoxifen, from which it produces morphine 
and endoxifen, respectively. Low CYP2D6 activity is due to loss of function 
alleles, whereas rapid/ultra-rapid CYP2D6 activity has been attributed to 
duplication of the functional gene. There have been several reported cases of 
routinely recommended codeine doses being lethal. For example, there was a 
case reported of a fatal opioid overdose in a breastfeeding neonate due to the 
mother who was taking codeine being a rapid metabolizer of CYP2D6 and, there-
fore, having excessive accumulation of morphine. Postmortem examination of 
the infant revealed significantly elevated serum morphine concentrations (Ahmed 
et al., 2016; Madadi et al., 2007). 

 
 

1.1.2. Drug transporters 

Translocation of drugs across biological membranes was long assumed to be 
mediated by passive transport. However, it is now very clear that the main 
critical modulators of drug absorption, tissue distribution, and elimination are 
transporters mainly in the intestines, liver, kidney, and blood-brain barrier. Two 
types of transporters have been discovered (Fig. 3): uptake and efflux.  

Uptake transporters facilitate drug translocation into the cells. Their driving 
force is mainly the exchange or cotransport of ions (e.g. Na+, H+). Notable 
examples of uptake transporters include several solute carrier (SLC) super-
family members, namely organic anion transporting polypeptides, organic anion 
transporters, and organic cation transporters (DeGorter et al., 2012).  

By contrast, efflux transporters expel compounds from the intracellular space 
into the extracellular milieu, thereby preventing the cellular accumulation of their 
substrates. Their driving force is ATP hydrolysis, which enables them to pump 
their substrates against steep concentration gradients. Efflux transporters include 
ATP-binding cassette (ABC) superfamily members, such as multidrug resistance-
related proteins, and multidrug resistance proteins (DeGorter et al., 2012).  



16 

 
 

Figure 3. Expression of drug transporters in (a) human intestinal epithelia, (b) kidney 
proximal tubule epithelia, (c) hepatocytes, and (d) brain capillary endothelial cells. 
Transporters with major roles in drug efficacy or toxicity are colored red. Sodium-
dependent taurocholate co-transporting polypeptide (NTCP), apical sodium-dependent 
bile acid cotransporter (ASBT), and bile-salt export pump (BSEP) are bile acid 
transporters. Peptide transporter 1 and 2 (PEPT1 and PEPT2) are transport small peptide 
fragments. Organic cation/carnitine transporter 1 and 2 (OCTN1 and OCTN2) transport 
organic cations and carnitine. Abbreviations: BCRP, breast cancer resistance protein; 
MATE, multidrug and toxin extrusion; MRP, multidrug resistance-associated protein; 
OAT, organic anion transporter; OATP, organic anion transporting polypeptide; OCT, 
organic cation transporter; PEPT, peptide transporter; P-gp, P-glycoprotein. Figure 
adapted from (DeGorter et al., 2012).  
 
 

Interindividual variability in activity among transporters is determined by several 
factors, including polymorphisms in drug transporter genes. A well-known 
example of transporter gene polymorphism effect is the case of the transporter 
gene SLCO1B1, which encodes the solute carrier organic anion transporter 1B1 
(OATP1B1). SLCO1B1 has a causative SNP (rs4149056) that reduces hepatic 
transport and increases plasma concentrations of simvastatins, resulting in myo-
pathy (Link et al., 2008). Several clinically impactful SLC and ABC transporter 
polymorphisms have also been described (Ahmed et al., 2016; Cascorbi, 2011; 
Chinn and Kroetz, 2007; Sissung et al., 2010; Srimaroeng et al., 2008; Yee et 
al., 2010; Zhou et al., 2016).  
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1.1.3. Drug targets 

Although studies of drug metabolism pharmacogenetics have been underway 
since the 1950s, the literature on drug target pharmacogenetics is much more 
recent, having emerged in the mid-1990s. Drug targets in the body can be direct 
or indirect. Direct drug targets may be receptors (nuclear or cell surface), 
enzymes, metabolites, ion channels, or transport proteins (Fig. 4). Indirect 
targets include proteins involved in the pharmacologic response, such as signal 
transduction proteins, downstream proteins, and proteins associated with 
disease risk or pathogenesis (Fig. 4). 
 

 
 
Figure 4. Percentage of current drug target classes. About half of all known drug targets 
are membrane proteins, however their structures are largely unresolved, remaining a 
bottle-neck in the drug-development pipeline. Figure adapted from (Adams et al., 2012).  
 
 

Many drugs have more than one specific target. Drug responses can be divided 
into primary and secondary drug responses. Primary responses occur when a 
drug binds to its target; secondary responses can be followed as functional 
changes in a tissue, organ, or whole organism (Armstrong, 2008). Drug target 
PGx research is focused on identifying the inheritance basis of interindividual 
variability in drug response and toxicity (Johnson, 2001). The human epidermal 
growth factor receptor 2 (HER2) and human epidermal growth factor (EGF) 
receptors are well-established examples of how drug target pharmacogenetics 
can be used to predict anti-cancer drug responses. The drug trastuzumab is 
administered selectively for breast cancers associated with overexpression of 
HER2 due to gene duplication (Sim and Ingelman-Sundberg, 2011). In recent 
years, several new therapeutics targeting specific oncology biomarkers, on-label 
Food and Drug Administration (FDA) drug uses, and companion diagnostics 
have been accepted (Patel, 2016).  
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1.2. Thiopurine drugs 
In the early 1950s, Gertrude B. Elion and George H. Hitchings synthesized a 
group of compounds known as thiopurines, for which they received the Nobel 
Prize in 1988 (Elion, 1951; 1986; 1989). The thiopurine drug 6-mercaptopurine 
(6-MP), its pro-drug azathioprine (AZA), and 6-thioguanine (6-TG), have been 
in common use for more than four decades as antineoplastic and immuno-
suppressive agents (Coulthard and Hogarth, 2005). 
 
 

1.2.1. Clinical use of thiopurine drugs 

6-MP, AZA, and 6-TG are used to treat malignancies, rheumatic diseases, der-
matologic conditions, and inflammatory bowel disease (IBD), and to prevent 
solid organ transplant rejection. Thiopurines have a narrow therapeutic index 
and may cause life-threatening ADRs, including myelosuppression. These drugs 
are antagonists for endogenous purines that are essential components of DNA 
and RNA. 6-MP, which was approved by the FDA in 1953 (Burchenal et al., 
1953; Elion, 1986; Veerman et al., 1996), is used mainly in combination with 
methotrexate to induce and maintain remission in childhood ALL (Cheok et al., 
2009; Fotoohi et al., 2010). AZA was introduced in the 1960s as an immuno-
suppressant for organ transplant recipients (Murray et al., 1963). Nowadays, it 
is used to treat IBDs, such as Crohn’s disease and ulcerative colitis (Blaker et 
al., 2012; Cosnes et al., 2005).  
 
 

1.2.2. Metabolism of thiopurine drugs 

The common oral daily dose for 6-MP in ALL maintenance therapy is 1.5–
2.5 mg/kg/d, with plasma concentrations peaking within, on average, 2.2 h. The 
bioavailability of oral 6-MP is in the range of 5–37%, with a half-life of 21 min 
in children (Blaker et al., 2012; Fotoohi et al., 2010). Renal transplant patients 
receive oral AZA (55% 6-MP by molecular weight) at a dosage of 2 mg/kg/d; 
its bioavailability range is 27–83% and, once absorbed, ~90% of AZA is 
converted immediately to 6-MP. The half-life of AZA is quite short at <2 h 
(Blaker et al., 2012; Chan et al., 1990). AZA is currently indicated for IBD, 
with dosing that is based on trial results (Axelrad et al., 2016). When single-
agent chemotherapy with 6-TG is determined to be appropriate, the usual initial 
oral dosage is approximately 2 mg/kg/d, which results in peak plasma levels 
within 2–4 h (Brox et al., 1981). The bioavailability of 6-TG is relatively low 
and variable at 14–46% (LePage and Whitecar, 1971) with a plasma half-life of 
90 min (Konits et al., 1982).  

 
 

1.2.2.1. Pharmacokinetics of thiopurines 
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Before exerting their cytotoxic and clinical effects, thiopurines are metabolized 
through a multi-enzyme pathway (Fig. 5). Once absorbed, AZA is transformed 
extensively into 6-MP by glutathione S-transferase (GST) via a non-enzymatic 
reaction (Blaker et al., 2012; Eklund et al., 2006; Kurtovic et al., 2008). Subse-
quently, it is taken up by cells via several transporters (e.g., SLC28A3 and 
SLC29A2) (Fotoohi et al., 2006; Peng et al., 2008; Zaza et al., 2005). There are 
three competitive enzymatic pathways by which 6-MP is metabolized: xantine 
oxidase (XO), hypoxanthine guanine phosphoribosyltransferase (HGPRT), and 
TPMT. In cells, both 6-MP and 6-TG are metabolized by XO into inactive 
metabolite-thiouric acid, which is excreted renally. XO can also metabolize 6-TG 
after prior conversion by guanase. TPMT catalyzes SAM-dependent S-methyl-
ation of 6-MP, 6-TG, and their metabolites into methyl metabolites, 6-methyl-
mercaptopurine (6-MMP), 6-methyltioguanine (6-MTG), 6-methyl-thioinosine 
monophosphate (meTIMP), and 6-methyl-thioguanine nucleotides (6-MTGN) 
(Al Hadithy et al., 2005; Blaker et al., 2012; Derijks et al., 2006; Moon and 
Loftus, 2016; Sahasranaman et al., 2008).  

Whereas TPMT is expressed ubiquitously in human tissues [e.g. liver, 
intestine, red blood cells (RBCs), white blood cells], XO is not expressed in 
hematopoietic tissue, making TPMT-dependent inactivation of drugs critical in 
white blood cells (Lennard et al., 1987). HGPRT is responsible for the 
bioactivation of the thiopurines. 6-MP metabolism is mediated step-wise by a 
series of enzymes. After HGPRT, conversion by inosine monophosphate 
dehydrogenase (IMPDH), guanosine monophosphate synthase (GMPS), and 
several kinases, active cytotoxic metabolites known as thioguanine nucleotides 
(6-TGNs) are formed (Al Hadithy et al., 2005; Blaker et al., 2012; Derijks et al., 
2006; Moon and Loftus, 2016; Sahasranaman et al., 2008). Conversion of 6-TG 
into active 6-TGNs is more direct, involving only HGPRT. The 6-TGNs include 
6-thioguanosine 5’-monophosphate (TGMP), -5’-diphosphate (TGDP), and -5’-
triphosphate (TGTP) (Elion, 1993).  

The therapeutic response to thiopurines is related to 6-TGN production and 
accumulation (Moon and Loftus, 2016; Zimm et al., 1983). In vivo, a 6-TGN 
steady state is achieved in 4–5 weeks of therapy, with a highly variant half-life 
of 3–13 days (Chouchana et al., 2012). For most patients with Crohn’s disease, 
signs of efficacy are apparent 12–17 weeks after initiation of therapy (Pre-
fontaine et al., 2010). 

Clinical studies have found that the cellular accumulation of TGN nucleotides 
is inversely proportional to TPMT activity because high TPMT activity shunts 
more molecules down the methylation pathway, leaving less for activation into 
cytotoxic TGNs (Krynetski et al., 1996; McLeod et al., 2000; McLeod et al., 
1994). Conversely, TPMT-deficient patients accumulate very high TGN 
concentrations, which leads to the severe ADRs when conventional doses are 
given (Evans et al., 1991; Krynetski et al., 1996; McLeod et al., 1993).  
 

1.2.2.2. Metabolism pathways of thiopurines 



20 

 
 
Figure 5. The metabolism of thiopurine drugs. Thiopurines are catabolized by XO, 
guanase, and aldehyde oxidase (AO) in the extracellular space. When inside the cell, 6-
TG is converted directly by HGPRT into TGMP; 6-MP is converted first to 6-
thioinosine-5’-monophosphate (TIMP) by HGPRT then to 6-thioxanthine-5’-mono-
phosphate (TXMP) by inosine monophosphate dehydrogenase (IMPDH), and finally to 
TGMP by guanosine monophosphate synthetase (GMPS). Both 6-MP and 6-TG and 
their respective monophosphates (TIMP and TGMP) are inactivated extensively inside 
the cell by thiopurine-S-methyltransferase (TPMT). meTIMP is a strong inhibitor of de 
novo purine synthesis. The remaining TGMP is converted to TGDP, reduced to deoxy-
6-thioguanosine-5’-diphosphate (dTGDP) by ribonucleotide reductase (RR), and 
phosphorylated by nucleoside diphosphate kinase (NDPK) to form dTGTP. Figure 
adapted from (Fotoohi et al., 2010). 
 
 

1.2.3. Mechanism of action of thiopurines 

As described in the previous section, thiopurines must be bioactivated via a 
series of non-enzymatic and enzymatic steps before they can exert their thera-
peutic effects. 6-TGNs are bioactive metabolites with cytotoxic and immuno-
suppressant properties. Following their formation, 6-TGNs are incorporated into 
DNA and RNA, thereby inhibiting replication, DNA repair mechanisms, and 
protein synthesis (Blaker et al., 2012; Moon and Loftus, 2016; Somerville et al., 
2003; Swann et al., 1996). 6-TGN cytotoxicity occurs selectively in the S-phase 
of the cell cycle (Inamochi et al., 1999). It has been shown that one possible 
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action of AZA and 6-MP may be increasing apoptosis of activated T-lympho-
cytes. Thiopurine therapy results in accumulation of 6-TGNs in lymphocytes. In 
immunologically driven diseases, T-cell activation occurs and 6-TGNs block 
the expression of Tumor necrosis factor-related apoptosis-inducing ligand, tumor 
necrosis factor receptor-S7, and α4-integrin, effects that reduce inflammation 
(Blaker et al., 2012; Moon and Loftus, 2016; Thomas et al., 2005).  

The effects of AZA and its metabolites on T-cell apoptosis have been 
attributed, at least in part, to modulation of Rac1 activation upon CD28 and CD3 
co-stimulation. The small GTPase Rac1 is involved in cell growth modulation, 
cytoskeletal organization, and protein kinase activation. Specific blockade of 
Rac1 activation is achieved by AZA-generated 6-TGTP binding Rac1 instead of 
GTP. Consequently, AZA suppresses activation of Rac1 target genes, resulting in 
a pro-apoptotic influence on T-lymphocytes. AZA thus converts a co-stimulatory 
signal into an apoptotic signal by modulating Rac1 activity (Blaker et al., 2012; 
Moon and Loftus, 2016; Tiede et al., 2003).  

As shown in the Figure 5 above, several other metabolites in this pathway 
are substrates for TPMT. For example, meTIMP is a strong inhibitor of de novo 
purine synthesis (DNPS), which contributes to the cytotoxic action of 6-MP 
(Erb et al., 1998; Evans et al., 1991). Inhibition of DNPS is immunosuppressive 
and block proliferation of various lymphocyte lines. TPMT activity level is 
expected to influence the production of meTIMP, and consequently, affect 
DNPS (Hanauer et al., 2001).  

 
 

1.2.4. ADRs associated with thiopurines 

There are generally two types of ADRs described: dose dependent and dose-
independent. Dose-dependent toxicity is associated with intra-cellular con-
centrations of active metabolites, which may evolve months or years after 
initiation of the therapy. Bone marrow and liver toxicities are particularly worri-
some. Dose-independent reactions include myalgia, flu-like symptoms, rash, 
acute pancreatitis, and gastric intolerance (Moon and Loftus, 2016). In clinical 
trials, up to 25% of patients treated with purine antimetabolites experience 
dose-independent side effects (Marinaki et al., 2004).  

Thiopurines often have hematologic toxicity, most commonly leucopenia 
(white blood cell count < 3 × 109/L) and neutropenia (absolute neutrophil count 
< 1.5 × 109/L). These ADRs can occur any time during the therapy, but most 
often occurs early in the course of therapy; they can be reversed by dose reduction 
or treatment discontinuation (Connell et al., 1993; Moon and Loftus, 2016; 
Present et al., 1989). Mild leucopenia is the most common hematological ADR 
to AZA. Drug-induced decreases in white blood cell count, however, has been 
reported to be associated with an improved clinical outcome (Colonna and 
Korelitz, 1994). Notwithstanding, severe bone marrow suppression is con-
sidered the worst ADR to thiopurines (Connell et al., 1993; Kirschner, 1998). 
The authors of a recent study concluded that Crohn’s disease patients should be 
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closely monitored, especially during the first three months of the thiopurine 
therapy when the majority of complications emerge, even if the patient has 
normal TPMT activity (Benmassaoud et al., 2015). A prospective study of 30 
Dutch IBD patients in which a pretreatment TMPT genotype analysis group was 
compared to a non-genotyped control group indicated that TPMT screening 
significantly reduced the risk of hematologic ADR in the subgroup of patients 
with TPMT variants (Coenen et al., 2015).  

In ALL patients, a high concentration of 6-TGNs in RBCs correlates with 
degree of leucopenia and positive drug responsivity, whereas low concentrations 
may lead to a higher risk of relapse (Bostrom and Erdmann, 1993; Lennard et al., 
1997). Hematotoxicity is the only dose-dependent ADR that has been associated 
with TPMT activity/genotype, thus far. TPMT-deficient patients taking standard 
doses of thiopurines are at approximately 100% risk of developing severe bone 
marrow suppression (Ansari et al., 2002; Gardiner et al., 2006; Gisbert and 
Gomollón, 2008; Moon and Loftus, 2016) due to very high concentrations of 6-
TGNs (Lennard et al., 1989). Childhood ALL patients that are TPMT hetero-
zygotes and patients with rheumatological diseases taking standard doses of 
thiopurines are also at risk of severe hematoxicity (Black et al., 1998; Relling et 
al., 1999).  

IBD patients with intermediate or low TPMT activity have been found to be 
at risk of developing myelosuppression (Colombel et al., 2000; Moon and 
Loftus, 2016). A large meta-analysis of 67 studies assessing the risk of myelo-
suppression among patients taking thiopurines indicated that, compared to 
patients with normal TPMT activity, those with intermediate TPMT activity 
were at a higher risk of developing myelosuppression, albeit not at as high of 
risk as those with low TPMT activity (Higgs et al., 2010). In another recent 
meta-analysis, the authors found an association of TPMT polymorphisms with 
overall AZA-induced ADRs, bone marrow toxicity, and gastric intolerance, but 
not with hepatotoxicity per se (Liu et al., 2015). However, several studies have 
indicated that hematotoxicity risk in IBD patients may be independent of TPMT 
status (De Ridder et al., 2006; Gisbert et al., 2006; Moon and Loftus, 2016). 
Other factors may determine risk, such as drug interactions (allopurinol), other 
enzymes (e.g. ITPase) and other genes (e.g. IL6ST, MOCOS) or TPMT-depen-
dent metabolites (meTIMP) may be involved (Coelho et al., 2016; Colombel et 
al., 2000; Hindorf et al., 2006; Venkat et al., 1990; Zabala et al., 2013).  

A variety of ADRs, including nausea, vomiting, malaise, myalgia, and 
arthralgia as well as hepatotoxicity and pancreatitis have been reported, 
especially early in the course of AZA therapy (Teml et al., 2007). As early as 
2000, an association between hepatotoxicity and levels of the TPMT methy-
lation product 6-MMP had been suggested (Dubinsky et al., 2000). Later, the 
same group confirmed that escalating AZA doses in non-responders lead to a 
preferential production of 6-MMPs, which was hepatotoxic (Dubinsky et al., 
2002), though the underlying mechanism of this phenomenon had not been 
uncovered. However, these ADRs have not been shown to be associated with 
empirically established TPMT status (Schwab et al., 2002). Although several 
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genes and enzymes have been studied searching for mechanisms underlying 
ADRs, results related to ITPA gene polymorphisms have been inconsistent 
(Gearry et al., 2004; van Dieren et al., 2005; von Ahsen et al., 2005). The 
development of gastrointestinal intolerance during thiopurine therapy was 
reported to be associated with TPMT activity by several groups (Hindorf et al., 
2006 Marinaki et al., 2004), but the putative association was not confirmed in a 
subsequent prospective study (Ansari et al., 2008a). Hence, TPMT involvement 
in gastrointestinal intolerance remains unclear and should be assessed further. 
 
 

1.3. Thiopurine methyltransferase (TPMT) 
1.3.1. TPMT gene 

TPMT (EC 2.1.1.67) is a cytosolic enzyme that catalyzes the S-methylation of 
aromatic and heterocyclic sulfhydryl compounds, including thiopurine drugs 
(REMY, 1963). In 1996, Szumlanski and colleagues mapped the TPMT gene to 
the short arm of chromosome 6 (6p22.3). They determined that TPMT is 
approximately 34 kb long and composed of 10 exons and nine introns (Fig. 6). 
Due to alternative splicing, exon 2 is present only in subset of mRNAs 
transcribed from the gene (Szumlanski et al., 1996). A year later, another group 
described TPMT as spanning only 25 kb and containing only 9 exons with 17 
additional nucleotides upstream of the transcription start site and a shorter 
intron 8 (Krynetski et al., 1997). Subsequently, Seki and colleagues determined 
that TPMT spanned 27 kb and contained 9 exons; they did not identify the 
intron 2 reported by Szumlanski group (Seki et al., 2000; Szumlanski et al., 
1996).  

Several groups have confirmed the presence of variable number tandem 
repeats (VNTRs) in the promoter region of the gene. These consist of 17–18-bp 
repeated sequences that are repeated three to nine times (VNTR*3–*9), most 
frequently four (*V4) or five (*V5), and contain putative binding sites for 
transcription factors (Alves et al., 2000; 2001; Marinaki et al., 2003; Spire-
Vayron de la Moureyre et al., 1998a; 1999; Yan et al., 2000; ). The 5’ of TPMT 
is GC rich (71%) with binding sites for several transcription factors (Sp1, NF-κB, 
AP-2 and KROX-24), but no TATA box or CCAAT element consensus 
sequences (Fessing et al., 1998; Szumlanski et al., 1996). In the human genome, 
there is a TPMT pseudogene in chromosome 18, which shares 96% identity with 
the TPMT open reading frame (ORF) on chromosome 6 (Lee et al., 1995). 
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Figure 6. Genetic structure of TPMT. The gene consists of 10 exons and 9 introns. 
Exon 2 is shown with dashed outline because it is spliced out of most transcript forms. 
The ORF is shown in green. Figure adapted from (Yan et al., 2000).  
 
 

1.3.2. TPMT protein 

TPMT has long been recognized for its major role in the metabolic transfor-
mation of exogenous thiopurine drugs. However, an endogenous substrate for 
TPMT has yet to be identified and TPMT deficiency has not been associated 
with any pathological condition (Blaker et al., 2012).  

The protein encoded by TPMT has a molecule mass of 28 kDa and is 245 
amino acids long (Honchel et al., 1993; Krynetski et al., 1996; Lee et al., 1995). 
Partly purified TPMT was characterized by Woodson and Weinshilboum in 
1983. The complete structure of TPMT was published in 2007 by Wu and 
colleagues. However, because the full-length TPMT protein failed to crystallize, 
the protein’s N-terminus was truncated, lacking the first 16 amino acids (Wu et 
al., 2007). TPMT was found to be a single-domain monomer with a classic Class-
I methyltransferase fold. The domain contains a nine-stranded β-sheet flanked 
on each side by three α-helices (Fig. 7). The β-sheet contains five parallel β-
chains with a pair of antiparallel β-hairpins on either end. An additional two 
helices were identified in the catalytic region of the protein, to which structurally 
similar S-adenosyl-homocystein, S-adenosyl-L-metionine, and 6-MP bind (Wu 
et al., 2007).  

 

 
 
 
Figure 7. Structure of TPMT in a complex 
with S-adenosyl-homocysteine. Strands (1-9) 
are colored green and helices (B-G) cyan. 
The N-terminal helices A and H (shown in 
yellow) constitute the catalytic site of the 
enzyme. Figure adapted from (Wu et al., 
2007).  
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In vitro and computational structural/functional analyses have shown that TPMT 
variants produce proteins of differing stability. Polymorphisms occur throughout 
the structure, but the amino acids whose alterations have the most influence on 
function are those involved in intra-molecular stabilizing interactions (Fazel-
Najafabadi et al., 2015; Wu et al., 2007). 
 
 

1.4. TPMT phenotypic and genetic variability 
TPMT activity in humans is influenced by variations in the TPMT (Weinshil-
boum and Sladek, 1980). Although TPMT enzyme activity has no apparent 
influence on individuals’ general phenotype, it becomes influential when one is 
administered a thiopurine drug (Lennard et al., 1993). Allelic differences have 
an impact on treatment efficacy and ADR risk (Weinshilboum and Sladek, 
1980). A series of population studies have shown that TPMT activity is trimodal, 
with approximately 89% of subjects exhibiting normal activity, 11% exhibiting 
intermediate activity, and 0.3% having very low or deficient activity. The 
association between enzyme activity and mutation is best established for 
individuals with poor or deficient enzyme activity, who are usually mutant 
homozygotes or compound heterozygotes for inactive alleles (Appell et al., 
2010; Colombel et al., 2000; Feng et al., 2010; Garat et al., 2008; Hamdan-
Khalil et al., 2003; Hamdan-Khalil et al., 2005; Hon et al., 1999; Kham et al., 
2009; Landy et al., 2011; Lee et al., 2012; Lindqvist et al., 2004; Lindqvist et 
al., 2007; Otterness et al., 1997; Sasaki et al., 2006; Schaeffeler et al., 2006; 
Schaeffeler et al., 2004; Schaeffeler et al., 2003; Spire-Vayron de la Moureyre 
et al., 1998b). The correlation between genotype and enzyme activity is mixed 
in heterozygous subjects because some heterozygotes exhibit normal-range 
TPMT activity (enzyme activity range, 53–100% of typical) (Alves et al., 2001; 
Milek et al., 2006; Schaeffeler et al., 2004; Spire-Vayron de la Moureyre et al., 
1998a). There is also a subgroup of individuals with rapid or ultra-rapid enzyme 
activity, which confers therapeutic resistance (Roberts et al., 2008).   

Due to the aforementioned population variance in TPMT activity, standard 
thiopurine doses that are effective in most patients are not suitable for patients 
with hypo- or hyper-active TPMT. Therefore TPMT genotype and/or TPMT 
enzyme activity should be considered when prescribing a thiopurine, together 
with other potential factors that may influence thiopurine drug effects (Karas-
Kuzelicki and Mlinaric-Rascan, 2009). 

 
 

1.4.1. Factors that may influence TPMT activity 

TPMT genotype is not a perfect predictor of thiopurine therapy efficacy or ADR 
risk. Indeed, roughly half of all patients who develop leucopenia during thio-
purine therapy have normal TPMT activity and a wild-type TPMT genotype 
(Blaker et al., 2012). Hence, there is a need to identify additional markers of 
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thiopurine responsivity. In the following sections, I will give an overview of the 
different types of factors that are thought to influence TPMT activity as of the 
time of writing this thesis. 
 
 

A large systematic review summarized the effects of various factors on TPMT 
activity (Loit et al., 2011). Results regarding the influence of gender and age 
have been contradictory. Some have found that TPMT activity is significantly 
higher in males than females (Indjova et al., 2003; Schaeffeler et al., 2004; 
Tamm et al., 2008), whereas others found no correlation between gender and 
TPMT activity (Alves et al., 2001; Ganiere-Monteil et al., 2004; Zhang et al., 
2007). Schaeffeler and colleagues also showed a statistically significant dif-
ference in TPMT activity between smokers and non-smokers, within both male 
and female groups (Schaeffeler et al., 2004). Children have been reported to 
have lower TPMT activity than adults, though the distinction was attributed to 
their juvenile group have a greater portion of intermediate metabolizers (Hindorf 
et al., 2004). A large study with more than 14,000 patients demonstrated that 
TPMT activity in groups of patients with IBD, autoimmune hepatitis, multiple 
sclerosis, myasthenia gravis, pemphigus, and chronic renal failure differed from 
that in a healthy control population (Gisbert et al., 2007). 
 
 

SAM is an endogenous universal methyl donor involved in a multitude of 
reactions catalyzed by numerous SAM-dependent enzymes. It has been described 
as a modulator of a number of important genes via transcriptional, posttran-
scriptional, and posttranslational mechanisms. Most notably, SAM provides 
posttranslational stabilization of catechol O-methyltransferase, a polymorphic 
enzyme involved in the catabolism of catechol estrogens and catecholamines 
(Rutherford et al., 2006), as well as cystathionine b-synthase, the rate-limiting 
enzyme in the trans-sulfuration pathway (Prudova et al., 2006).  

It has been shown that SAM stabilizes the conformational structure of TPMT 
by binding to its active site and protecting it from degradation (Scheuermann et 
al., 2004). Milek et al. (2012) demonstrated effects of fluctuations in physio-
logical levels of SAM and related metabolites on TPMT activity levels in cell 
lines and in erythrocytes collected from healthy individuals. In TMPT wild-type 
subjects, TPMT activity was significantly higher in subjects with high SAM 
concentrations than in those with low SAM levels. Those findings extend a 
previous study demonstrating that restriction of L-methionine (SAM precursor) 
in cell growth media decreased TPMT activity and protein levels reversibly, but 
had no effect on TPMT mRNA expression (Milek et al., 2009). Interestingly, in 
a large cohort of healthy individuals, the influence of SAM availability on TPMT 
activity was shown to be particularly pronounced in TPMT heterozygotes (Karas-

1.4.1.1. Gender, age, and diseases 

1.4.1.2. S-adenosylmethionine (SAM) 
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Kuželički et al., 2014). Thus, the bioavailability of SAM has been shown to 
influence TPMT activity in vivo and to affect the formation of thiopurine 
metabolites (Blaker et al., 2012).  
 
 

It is well known that there are extrinsic factors beyond genetics that can influence 
TPMT activity. Because patients are usually on polytherapy, it should be kept in 
mind that interactions between drugs and other factors can occur. This thesis 
will address those interactions for which there are clear outcome data. 

Several drugs are known to inhibit TPMT activity and lead to ADRs when 
administered together with thiopurines. In the 1980s, benzoic acid derivatives 
were shown to inhibit TPMT activity strongly (Ames et al., 1986; Blaker et al., 
2012). Several studies have shown that TPMT can also be inhibited by amino-
salicylates, such as mesalamine, sulphasalazine, olsalazine, and balsalazide (de 
Graaf et al., 2010; Szumlanski and Weinshilboum, 1995). Notably, patients with 
Crohn’s disease who were co-administered 6-MP and olsalazine were reported 
to exhibit several episodes of myelosuppression, and olsalazine was demon-
strated to be a non-competitive inhibitor of TPMT (Blaker et al., 2012; Lewis et 
al., 1997). Co-administration of the thiopurine drugs AZA or 6-MP with mesa-
lamine, sulphasalazine, or olsalazine has also been reported result in TPMT 
inhibition, presenting clinically as leucopenia (Lowry et al., 2001a; 2001b). The 
same phenomenon was described for IBD patients with different TPMT pheno-
types. A strongest TPMT inhibitor examined thus far appears to be sulfasalazine 
(Xin et al., 2005a).  

Diuretics, like furosemide, have also emerged as potential inhibitors of 
TPMT (Blaker et al., 2012; Xin et al., 2005b). In 2007, one study aimed at 
analyzing the potential inhibitory effect of nonsteroidal anti-inflammatory drugs 
on TPMT in vitro showed that naproxen, tolfenamic acid, and mefenamic acid 
were non-competitive inhibitors of TPMT. Also, propionic derivatives (ibu-
profen and ketoprofen) have been suggested to have the potential to inhibit 
TPMT activity in a clinically significant manner (Blaker et al., 2012; Oselin and 
Anier, 2007). The xanthine oxidase inhibitor allopurinol is not a direct inhibitor 
of TPMT, but rather an important modulator of thiopurine tolerance; it is 
prescribed to patients with IBD to yield better efficacy of reduced-dose thio-
purine therapy by way of increasing 6-MP bioavailability and augmenting 6-
TGN levels (Blaker et al., 2012; Moon and Loftus, 2016; Zimm et al., 1983). 
Co-administration of these drugs must be monitored carefully to enable timely 
adjustments to be made as needed. Further clarification of TPMT-related drug 
interactions should clarify the mechanisms thiopurine intolerance and ADRs.   
 
 

 

 

1.4.1.3. Drugs 
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1.4.2. Known genetic variants of TPMT 

The TPMT gene has a number of known polymorphisms and mutations affecting 
exons, exon-intron junctions, and the 5’-flanking region. Those sequence variants 
affecting the ORF of TPMT have received the most attention, particularly in 
studies of TPMT enzyme activity (see references in Table 1). Several allelic 
variants have been functionally characterized in vitro (Ujiie et al., 2008; 
Wennerstrand et al., 2012) or computationally (Fazel-Najafabadi et al., 2015). 
 
 

According to the published literature available at the time of writing this thesis, 
there are more than 35 non-synonymous sequence variants of TMPT that alter 
TMPT activity (Table 1). TPMT*1 is the wild-type allele and encodes normal-
activity TPMT (Szumlanski et al., 1996). Coding-region variants exhibit 
accelerated protein degradation or aggregation (Tai et al., 1997; Wang et al., 
2005). Meanwhile, exon-intron mutations can alter mRNA splicing in ways that 
affect the functional status of the protein (Otterness et al., 1997; Salavaggione et 
al., 2005). 

1.4.2.1. TPMT sequence mutations 

 
Table 1. TPMT alleles confirmed by TPMT nomenclature committee (November 2016). 

Allele rs number Location Amino acid change Reference 

TPMT*1 rs2842934  Wild-type  

TPMT*1A – Exon 1 –178C>T, – Spire-Vayron de la 
Moureyre et al., 1998b 

TPMT*1S rs2842934 Exon 7 474T>C, Ile158Ile Yates et al., 1997 

TPMT*2 rs1800462 Exon 5 238G>C, Ala80Pro Krynetski et al., 1995 

 
TPMT*3A 

rs1800460 
rs1142345 

Exon 7 
Exon 10 

460G>A, Ala154Thr 
719A>G, Tyr240Cys 

Tai et al., 1996 

TPMT*3B rs1800460 Exon 7 460G>A, Ala154Thr 

TPMT*3C rs1142345 Exon 10 719A>G, Tyr240Cys 

 
TPMT*3D 

rs72552739 
rs1800460 
rs1142345 

Exon 5 
Exon 7 
Exon 10 

292G>T, Glu98stop 
460G>A, Ala154Thr 
719A>G, Tyr240Cys 

Otterness et al., 1997 
 

TPMT*3E rs3931660 
rs12529220 
rs2518463 
rs1800460 
rs2842934 
rs1142345 

Intron 3 
Intron 3 
Intron 4 
Exon 7 
Exon 7 
Exon 10 

140 +114T>A 
141 –101A>T 
366+58T>C 
460G>A, Ala154Thr 
474T>C, Ile158Ile 
719A>G, Tyr240Cys 

Colleoni et al., 2012 

TPMT*4 rs1800584 Intron 9 
/exon10 

626-1G>A, in splice 
junction 

Otterness et al., 1997 
 

TPMT*5 rs72552740 Exon 4 146T>C, Leu49Ser Otterness et al., 1997 
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Allele rs number Location Amino acid change Reference 

TPMT*6 rs75543815 Exon 8 539A>T, Tyr180Phe Otterness et al., 1997 

TPMT*7 rs72552736 Exon 10 681T>G, His227Glu Spire-Vayron de la 
Moureyre et al., 1998b 

TPMT*8 rs56161402 Exon 10 644G>A, Arg215His Hon et al., 1999 

TPMT*9 rs151149760 Exon 5 356A>C, Lys119Thr Schaeffeler et al., 2004 

TPMT*10 rs72552737 Exon 7 430G>C, Gly144Arg Colombel et al., 2000 

TPMT*11 rs72552738 Exon 6 395G>A, Cys132Tyr Schaeffeler et al., 2003 

TPMT*12 – Exon 6 374C>T, Ser125Leu Hamdan-Khalil et al., 
2003 TPMT*13 rs72552742 Exon 3 83A>T, Glu28Val 

TPMT*14 rs9333569 Exon 3 1A>G, Met1Val Lindqvist et al., 2004 

TPMT*15 rs9333570 Intron 7 
/exon8 

495-1G>A, in splice 
junction 

TPMT*16 rs144041067 Exon 7 488G>A, Arg163His Schaeffeler et al., 2004 

TPMT*17 – Exon 3 124C>G, Gln42Glu 

TPMT*18 – Exon 4 211G>A, Gly71Arg 

TPMT*19 – Exon 5 365A>C, Lys122Thr Hamdan-Khalil et al., 
2005 

TPMT*20 rs150900439 Exon 10 712A>G, Lys238Glu Schaeffeler et al., 2006 

TPMT*21 rs200591577 Exon 4 205C>G, Leu69Val 

TPMT*22 – Exon 7 488G>C, Arg163Pro 

TPMT*23 rs74423290 Exon 8 500G>C, Ala167Gly Lindqvist et al., 2007 

TPMT*24 rs6921269 Exon 8 537G>T, Gln179His Garat et al., 2008 

TPMT*25 – Exon 10 634T>C, Cys212Arg 

TPMT*26 rs72556347 Exon 9 622T>C, Phe208Leu Kham et al., 2009 

TPMT*27 – Exon 5 319T>C, Tyr107Asp Feng et al., 2010 

TPMT*28 – Exon 5 349C>A, Gly117Arg Landy et al., 2011 

TPMT*29 rs267607275 Exon 3 2T>C, Met1Thr Lee et al., 2012 

TPMT*30 – Exon 3 106G>A, Gly36Ser Sasaki et al., 2006 

TPMT*31 rs79901429 Exon 9 611T>C, Ile204Thr Appell et al., 2010 

TPMT*32 rs115106679 Exon 5 340G>A, Glu114Lys Lennard et al., 2012 

TPMT*33 rs12339338 Exon 7 487C>T, Arg163Cys 

TPMT*34 rs111901354 Exon 5 244C>T, Arg82Trp 

TPMT*35 – Exon 3 200T>C, Phe67Ser Skrzypczak-Zielinska et 
al., 2013 TPMT*36 – Exon 8 595G>A, Val199Ile 

TPMT*37 rs398122996 Exon 10 648T>A, Cys216Ter Roberts et al., 2014a 

TPMT*38 – Exon 8 514T>C, Ser172Pro Kim et al., 2015 

TPMT*39 – Exon 6 218C>T, Ala78Val Coelho et al., 2016 
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TPMT*2, TPMT*3A, and TPMT*3C are the most frequent (80–95%) alleles 
causing intermediate and low/deficient enzyme activity (Tai et al., 1996; Yates 
et al., 1997). TPMT*2 has a variant in exon 5 (Ala80Pro) (Krynetski et al., 
1995). TPMT*3A, which occurs frequently in people of European descent, has 
non-synonymous changes in exon 7 (Ala154Thr) and exon 10 (Tyr240Cys) (Tai 
et al., 1996), which when they occur alone are referred to as TPMT*3B and 
TPMT*3C, respectively (Aarbakke, 1995). The enzyme activity levels of the 
proteins encoded by TPMT*2 and TPMT*3A are decreased markedly to <1% 
and <0.5% of that of normal of the wild-type protein, respectively (Fazel-
Najafabadi et al., 2015; Tai et al., 1997); TPMT*3C has relatively little effect on 
enzyme activity (Tai et al., 1997). Both TPMT*2 and TPMT*3A are transcribed 
at normal levels, but people with these alleles carry low levels of the enzyme 
due to posttranslational modifications that affect secondary and tertiary structure 
and aggregate formation. The resultant mutant proteins are subjected to 
degradation in proteasomes and lysosomes (Tai et al., 1997; Wang et al., 2005).  

Alleles TPMT*4–*18 and *20–*39 have been identified in only a few 
subjects, who carry the heterozygous genotype of their respective variants 
(Appell et al., 2010; Coelho et al., 2016; Colombel et al., 2000; Feng et al., 2010; 
Garat et al., 2008; Hamdan-Khalil et al., 2003; Hamdan-Khalil et al., 2005; Hon 
et al., 1999; Kham et al., 2009; Kim et al., 2015; Lee et al., 2012; Lennard et al., 
2012; Otterness et al., 1997; Roberts et al., 2014a; Sasaki et al., 2006; Schaef-
feler et al., 2006; Schaeffeler et al., 2004; Skrzypczak-Zielinska et al., 2013; 
Spire-Vayron de la Moureyre et al., 1998b), though some are compound hetero-
zygotes for different non-wild-type alleles (Landy et al., 2011; Lindqvist et al., 
2004; Lindqvist et al., 2007; Otterness et al., 1997; Schaeffeler et al., 2003). 
The TPMT alleles have an ethnically differentiated distribution. TPMT*6, *26, 
*27, *29, and *38 are only found in individuals of Asian origin, whereas 
TPMT*8 has only been found in African-Americans (Feng et al., 2010; Hon et 
al., 1999; Kham et al., 2009; Kim et al., 2015; Lee et al., 2012; Otterness et al., 
1997). All other alleles are mostly present in Caucasians, but are very rare with 
very low frequencies (see references in Table 1). In vitro functional analysis 
have demonstrated that alleles *2–*24, *27, *28 are associated with decreased 
enzyme activity and accelerated protein degradation compared to the wild-type 
enzyme (Appell et al., 2010; Feng et al., 2010; Ujiie et al., 2008). TPMT*19 
(exon 5 mutation) was identified in a single patient with Crohn’s disease, who 
exhibited TPMT activity comparable to that seen with the wild-type enzyme 
(Hamdan-Khalil et al., 2005). Computational analysis indicated diverse effects 
of missense mutations on TPMT structure and function, with several variants 
being expected to affect stability, aggregation propensity, and ligand binding 
(Fazel-Najafabadi et al., 2015).  

Phenotype-genotype discrepancies for TPMT variants that defy the typical 
expectations for sequence variance are abound. Notably, phenotype-genotype 
correlation is very high for wild-types and mutant homozygotes (93–100%), but 
much less reliable (53–100%) for TPMT heterozygotes (Coelho et al., 2016; Ford 
et al., 2009; Laróvere et al., 2003; Milek et al., 2006). This divergence from 
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phenotype-genotype correlation points to the importance of other unidentified 
factors, including other genetic variations, that have an indirect effect on TPMT 
activity or otherwise modulate thiopurine metabolism. 
 
 

 

Other sequence variations, besides SNPs, have been identified in the 5’-flanking 
region of TPMT. The contributions of GC-rich VNTRs, which consist of three 
elements (A, B and C) that differ in sequence and length between individuals, to 
TPMT enzyme activity have been explored. Spire-Vayron de la Moureyre and 
colleagues (1998a) identified 17–18-bp units that repeat four to eight times 
(*V4–*V8). Variable three to nine repeats (*V3–*V9) have also been found in 
the promoter with differing nucleotide sequences (Alves et al., 2000; Marinaki 
et al., 2003; Spire-Vayron de la Moureyre et al., 1998a; 1998b; 1999; Yan et al., 
2000). Four-repeat VNTRs are most frequent, followed by five-repeat VNTRs 
(Spire-Vayron de la Moureyre et al., 1998b).  

Because the VNTRs contain binding sites for the transcription factor Sp1, 
they could potentially have an impact on inter-individual variability in TPMT 
activity by way of modulating transcription and, consequently, expression levels. 
However, population studies analyzing the influence of VNTRs on TPMT 
activity have been contradictory, with some showing only modest effect (Alves 
et al., 2001; Marinaki et al., 2003; Yan et al., 2000). Repeats composed of 6 or 7 
tandem copies have been reported to reduce promoter activity relative to alleles 
with less tandem copies (Spire-Vayron de la Moureyre et al., 1999). Specific 
combinations may also be correlated to decreased activity (Alves et al., 2001). 
The presence of at least one allele with more than five repeat elements has been 
associated with notable low activity (Yan et al., 2000), albeit a modest reduction 
relative to that produced by ORF-based variants. One study found no 
differences in VNTR allele frequencies between British Asians and Caucasians 
(Marinaki et al., 2003).  

The effect of VNTRs on TPMT activity during thiopurine therapy has been 
investigated. In patients with rheumatoid arthritis taking AZA, enzyme activity 
levels before and after treatment were not found to be associated with VNTRs 
(Arenas et al., 2004). In addition, in children with ALL, there was no correlation 
between the number of VNTRs and 6-MP treatment outcome (Dokmanović et 
al., 2008). Recently, a long-term study investigating the functional role of VNTR 
number and type with respect to TPMT gene transcription was completed. The 
researchers demonstrated that both the number and type of VNTRs in the TPMT 
promoter influenced the level of gene transcription observed. The study also 
showed that the ‘A’ repeat has a negative effect on TPMT transcription and that 
a positive regulatory element immediately upstream to the VNTR region in the 
promoter was indispensable for TPMT transcription (Zukic et al., 2010). The 
same group showed later that 6-MP influences TPMT transcription in a VNTR-
dependent manner mediated by the binding of newly recruited protein complexes 

 1.4.2.2. Variable number tandem repeats 
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to the promoter upon 6-MP treatment. They also demonstrated that ALL patients 
carrying different VNTR genotypes respond differently to 6-MP therapy. 
Indeed, patients with VNTRs that decreased TPMT promoter activity were 
treated with lower doses of the drug and given a longer discontinuation period 
(Kotur et al., 2012). In 2015, in a study examining TPMT expression in 
childhood ALL patients at diagnosis and during the maintenance therapy, the 
same group detected a three-fold increase in gene expression during maintenance 
therapy, with this upregulation being modulated by the architecture of 
the VNTR region. They concluded that the TPMT VNTR region should be 
considered at the commencement of maintenance therapy for childhood ALL 
patients because it may serve a pharmacogenomic biomarker of thiopurine 
therapy responsivity (Kotur et al., 2015). Notwithstanding, larger cohort studies 
are needed to confirm these findings independently and more functional analysis 
should be performed to uncover the modulatory mechanism of VNTRs on 
TPMT activity.  
 
 

As mentioned above, there are more than TPMT variants that are predictive of 
decreased TPMT enzyme activity. Meanwhile, there is far less information 
regarding the cause of ultra-high enzyme activity. Thus far, there is only one 
study published that has shown an association between ultra-high enzyme 
activity and GCC trinucleotide repeats in the promoter region of TPMT. Signi-
ficantly increased TPMT activity was observed for five and seven repeats, 
compared to six repeats, which is considered to be wild-type; however the 
mechanism by which the trinucleotide repeat may affect TPMT expression is 
unknown (Roberts et al., 2008). At the time of the writing of this thesis, this was 
the only study in the literature addressing the influence of these triple repeats on 
TPMT expression. 
 
 

1.4.3. Variations in other genes and thiopurine drug response 

Although thiopurines are considered to have good clinical efficacy, they are 
associated with some drawbacks with respect to ADRs as well as drug 
resistance. The mechanism of thiopurine metabolism is quite well-established 
with the most important player being the enzyme TPMT, though there have 
been many cases in which TPMT genetic and enzymatic variability could not 
explain drug response variance. Therefore, there is a need to identify novel 
markers of thiopurine drug responsivity, in genetic and metabolite levels. 
Several studies have investigated the possible role of other genes in thiopurine 
drug response (Fig. 8). The preliminary results obtained thus far need to be 
replicated and confirmed in further prospective studies before their clinical 
applicability is known. In the following section, there are examples of some 
findings in this regard.  

1.4.2.3. Triple repeats 
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Figure 8. Schematic diagram showing the main steps and metabolites of thiopurine drug 
metabolism (green boxes) and genes implicated in thiopurine induced toxicity. Genes 
described in the text are indicated with blue encircling. Details of thiopurine metabolism 
are in Figure 5 above. Abbreviations: 6-MP, 6-mercaptopurine; 6-MMP, 6-methyl 
mercaptopurine; 6-MMPN, 6- methyl mercaptopurine nucleotides; 6-TGN, 6-thio-
guanines; 6-TIMP, 6-thioinosine monophosphate; 6-TITP, 6-thioinosine triphosphate; 6-
TU, 6-thiouracil; 6-TXMP, 6-thioxanthosine monophosphate; ABCC4, ATP-binding 
cassette, sub-family C (CFTR/MRP), member 4; AOX1, aldehyde oxidase 1; AZA, 
azathioprine; FSLT5, Follistatin-Like 5; GMPS, guanosine monophosphate synthetase; 
GST, glutathione S-transferase; HGPRT, hypoxanthine guanine phosphoribosyl-
transferase; IL6ST, Interleukin 6 signal transducer; IMPDH, inosine 5-monophosphate 
dehydrogenase; ITPase, inosine triphosphatase; MOCOS, molybdenum cofactor sulfurase; 
MTHFR, methyl-enetetrahydrofolate reductase; NUDT15, nudix (nucleoside diphosphate 
linked moiety X)-type motif 15; PACSIN2, protein kinase C and casein kinase substrate 
in neurons 2; TPMT, thiopurine methyltransferase; XDH, xanthine dehydrogenase 
[synonym: xanthine oxidase (XO)]. Figure adapted from (Coelho et al., 2016). 
 
 

1.4.3.1. Glutathione S-transferase (GST) 

GSTs are cytosolic enzymes responsible for the conjugation of several xeno-
biotics. Some of them are abundantly expressed in the human liver and are 
involved in the early metabolism of AZA (Fig. 8). These enzymes catalyze the 
release of 6-MP from its pro-drug AZA (Blaker et al., 2012; Moon and Loftus, 
2016). The GST isoforms A1-1, A2-2, and M1-1 are abundantly expressed in 
the liver and exhibit robust activity towards AZA in their wild-type forms 
(Eklund et al., 2006).  
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Several polymorphisms in GST A2-2 gene have been detected, with one variant 
GST-A2-2*E showing the three- to four-fold increased activity (Zhang et al., 
2010). It has been suggested that excessively high enzyme activity with a high 
drug dose may lead to glutathione depletion and cause cell damage (Eklund et 
al., 2006). In one study, GST-M1 was associated with adverse events (Stocco et 
al., 2007). The authors posited that high-activity GST-M1 may lead to a slight, 
but significant increase in the risk of developing lymphopenia. Therefore, it 
would be expected that the null genotype (low GST-M1 activity) may protect 
against adverse events (Moon and Loftus, 2016; Stocco et al., 2007). In an 
evaluation of the association between GST-M1 genotype and thiopurine meta-
bolites in IBD patients treated with AZA, GST-M1 deletion was associated with 
a lower TGN/dose ratio, higher AZA requirement, and dampened therapeutic 
response (Al-Judaibi et al., 2016; Stocco et al., 2014a). Because the frequency 
of the null GST-M1 genotype is high in Caucasians and present in about half of 
Asians, there is a pressing need to determine its role in thiopurine drug response 
(Hamdy et al., 2003). However, there is not enough evidence to explain the 
relationship between GST genotype and other ADRs (Moon and Loftus, 2016). 
It has been suggested that genetic polymorphisms in genes encoding GSTs may 
be useful for predicting therapeutic response to AZA, though in vitro and 
clinical validation studies are needed to test this expectation (Stocco et al., 
2014b).  
 

The enzyme XO participates in the early detoxification of thiopurine drugs (Fig. 
8). It oxidases 6-MP into inactive thiouric acid, which is excreted in urine, 
thereby removing up to two-thirds of a delivered dose (Parks and Granger, 
1986). XO is a ubiquitous cytoplasmic enzyme found in particularly high levels 
in the intestine and liver (Huh et al., 1976). XO deficiency is very rare, but 
when it occurs, it yields severe toxicity following administration of a full dose 
of AZA (Ansari et al., 2008b; Moon and Loftus, 2016; Serre-Debeauvais et al., 
1995). Activity of XO can vary 10-fold between individuals, with ethnic and 
gender differences having been detected (Ansari et al., 2008b; Relling et al., 
1992). A variety of SNPs have been identified and associated with deficient XO 
activity, which consequently may alter thiopurine metabolite levels (Hawwa et 
al., 2008; Kudo et al., 2008; Moon and Loftus, 2016). XO activity requires its 
cofactor molybdenum; thus, molybdenum deficiency affects XO activity (Smith 
et al., 2009). It is also known that some XO products, namely oxidized purine 
metabolites, inhibit TPMT, which may increase 6-TGN levels (Deininger et al., 
1994). Thus, the potential clinical utility of these findings is unclear. 
Confirmatory studies are needed to develop firm conclusions regarding the role 
of XO in characterizing individual patients’ drug responsivity profiles. 
 
 

1.4.3.2. Xanthine oxidase (XO) 
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The enzyme AOX, which is ubiquitously expressed in animals, is involved in 
early thiopurine metabolism (Fig. 8). It catalyzes 8-hydroxylation of 6-MP and 
AZA into inactive metabolites (Clarke et al., 1958). SNPs on the AOX gene 
have been associated with a poor clinical response to AZA. When AOX1 3404G 
SNP is combined with TPMT activity data, the likely drug response to AZA can 
be predicted effectively. Patients with normal TPMT activity and wild-type 
AOX1 were found to have 86% likelihood of a favorable clinical response to 
AZA therapy, whereas those with deficient TPMT activity who were carriers of 
the AOX1 3404G SNP were found to only have a 33% likelihood of exhibiting a 
favorable response (Smith et al., 2009). However, the frequency of this SNP in 
different populations is unknown, and further work is needed to explore the 
clinical implications of these findings (Chouchana et al., 2012; Moon and 
Loftus, 2016). 
 
 

HGPRT catalyzes the first step in the conversion of 6-MP and 6-TG into 6-
TGNs and it is the key enzyme in the purine salvage pathway (Fig. 8). Inter-
individual variability in HGPRT activity could help to explain the board range 
of thiopurine therapeutic responses and ADRs observed in IBD patients. 
Mutations have been identified throughout the HGPRT gene, and many of these 
may influence the enzyme’s activity (Moon and Loftus, 2016). However, there 
are only sparse data on the relationship between HGPRT activity and thiopurine 
related ADRs. In IBD patients prescribed thiopurines, high HGPRT activity was 
associated with an increased risk of leucopenia, which correlates with elevated 
6-TGN levels (Ding et al., 2012). However, our knowledge is still insufficient 
to determine the significance of HGPRT for predicting and avoiding thipurine-
related ADRs (Blaker et al., 2012; Moon and Loftus, 2016). 
 
 

The enzyme ITPA is widely expressed in variety of tissues in the human body, 
including in leucocytes and erythrocytes (Lin et al., 2001). It converts inosine 
triphosphate (ITP) back into inosine monophosphate (IMP), which prevents the 
intracellular accumulation of potentially harmful nucleotides that can be mis-
incorporated into nucleic acid molecules (Holmes et al., 1979). In thiopurine 
metabolism, there is a parallel cycle wherein ITPA hydrolyzes 6-thioinosine 
triphosphate (6-TITP) back into 6-thioinosine monophosphate (6-TIMP) (Fig. 8). 
Thus, ITPA deficiency leads to an accumulation of toxic 6-TITPs (Marinaki et 
al., 2004). To date, five single nucleotide polymorphisms have been identified 
in the ITPA gene, two of which have been associated with enzyme deficiency 
(Sumi et al., 2002), though contradictory results exist. Some studies have shown 

1.4.3.3. Aldehyde oxidase (AOX) 

1.4.3.4. Hypoxantine guanine phosphoribosyltransferase (HGPRT) 

1.4.3.5. Inosine triphosphatase (ITPA) 
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that ITPA deficiency in patients on AZA therapy is associated with greater risk 
of adverse events like flu-like symptoms, rash, leucopenia, and pancreatitis 
compared with control subjects (Ansari et al., 2008a; Marinaki et al., 2004; 
Moon and Loftus, 2016; Zelinkova et al., 2006), while other studies have not 
shown any significant association (Allorge et al., 2005; Kurzawski et al., 2009; 
Moon and Loftus, 2016). Large prospective studies and clinical trials are needed 
to assess the influence of ITPA on clinical responses to thiopurines. 
  
 

As mentioned above, the cofactor SAM acts as an essential methyl donor for 
TPMT. In this reaction, SAM is converted back to S-adenosyl-L-homocystein 
(SAH), which is thereafter recycled back into SAM via the folate cycle. 5,10-
MTHFR is an enzyme in the folate cycle that may influence TPMT activity 
indirectly by altering the availability of SAM. Two SNPs that have been 
associated with decreased MTHFR activity may decrease TPMT activity in this 
way (Karas-Kuzelicki et al., 2009; Ogino and Wilson, 2003; Schwahn and Rozen, 
2001). Additionally, antifolate drugs such as methotrexate or trimethoprim 
inhibit the folate cycle and may thereby also influence TPMT activity and 6-
TGN production (Brouwer et al., 2005; Dervieux et al., 2003).  
 
 

PACSIN2 is a member of the ‘protein kinase C and casein kinase substrate in 
neurons’ family of proteins that are involved in vesicle formation via inter-
actions with the large GTPase dynamin and N-WASP, which forms a critical 
part of the actin polymerization machinery (Kessels and Qualmann, 2004). 
Using genome-wide analysis (GWAS), Stocco and colleagues identified a new 
marker (rs2413739) in the PACSIN2 gene that is related to variability in TPMT 
activity. They showed that PACSIN2 polymorphism and gene expression infor-
mation together can be used to predict TPMT activity level in HapMap CEU 
cell lines, and further found that PACSIN2 genotype was related to TPMT 
activity and mercaptopurine-induced ADRs in children with ALL. A significant 
association was confirmed in both patients with wild-type and patients with 
variant TPMT genotypes, who developed gastrointestinal toxicity during con-
solidation therapy (Stocco et al., 2012). A recent study reported an interaction 
between the TPMT genotype and PACSIN2 rs2413739 presence in hemato-
toxicity risk. Specifically, patients with wild-type TPMT and a PACSIN2 
rs2413739 mutant homozygous genotype were at elevated risk of experiencing 
hematotoxicity compared to patients that were heterozygous for or without the 
PACSIN2 rs2413739 allele during ALL maintenance therapy (Smid et al., 
2016).  
 

1.4.3.6. Methylene tetrahydrofolate reductase (MTHFR) 

1.4.3.7. Protein kinase C and casein kinase substrate  
in neurons 2 (PACSIN2) 
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Although TPMT deficiency is less common in individuals of Asian descent than 
in individuals of European ancestry, the Asian population appears to be 
particularly intolerant to a full dose of thiopurines. This finding suggests that 
there are other genetic variants associated with thiopurine intolerance that may 
be common in Asian populations (Moon and Loftus, 2016). In 2014, a study in 
Korean IBD patients, and more recently two studies of pediatric ALL patients in 
the USA and Japan, identified an association between a novel pharmacogenetic 
variant in NUDT15 (rs116855232) and thiopurine ADRs, especially hemato-
poietic toxicity (Tanaka et al., 2015; Yang et al., 2015; Yang et al., 2014). 
NUDT15 is a member of the nudix hydrolase enzyme family; it underlies a 
safeguard mechanism in mammalian cells to minimize DNA damage and 
thereby avoid subsequent repair and apoptosis. Several studies have confirmed 
that NUDT15 variant alleles represent a highly robust toxicity-related locus in 
Asian populations (Moriyama et al., 2016; Zgheib et al., 2017; Zhu et al., 2016). 
The risk allele (rs116855232) is most frequent in East Asians (9.8%), followed 
by Hispanics (3.9%); it is exceedingly rare in Europeans (0.2%) and not 
observed in Africans (Yang et al., 2015). More research examining the 
association between NUDT15 genotype and thiopurine intolerance is needed. 
Nevertheless, the results obtained thus far suggest that the NUDT15 risk allele 
should be considered a factor in leucopenia risk for patients undergoing thio-
purine therapy.  
 
 

The MOCOS enzyme sulfurates the molybdenum cofactor of XO and AOX, 
key enzymes involved in the degradation of thiopurines. In a preliminary study 
still in need of independent confirmation, Kurzawski et al. (2012) found that 
the MOCOS rs594445 polymorphism influenced AZA dose responsivity in a 
manner similar to TPMT heterozygosity in a cohort of kidney transplant recipients 
on AZA therapy. Furthermore, recently, Coelho et al. (2016) identified an 
association between the MOCOS gene and TPMT activity. However, the 
mechanism by which MOCOS may influence TPMT function remains to be 
determined.  
 
 

Dysfunction of transport proteins specific for thiopurine metabolites may 
explain some of the variability in thiopurine clinical efficacy and ADRs. It has 
been shown that down-regulation of SLC28 and SLC29, which mediate the 
cellular intake of the nucleosides and nucleoside analogues, decreases the uptake 
of thiopurines and therefore the cellular accumulation of TGNs (Fotoohi et al., 
2006; Zaza et al., 2005).  

1.4.3.8. Nucleoside diphosphate-linked moiety X-type motif 15 (NUD15) 

1.4.3.9. Molybdenum cofactor sulfurase (MOCOS) 

1.4.3.10. Drug transporters 
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ATP binding cassette subfamily C member 4 (ABCC4) is a nucleotide efflux 
transporter for purines that is expressed in many cells, including myeloid 
progenitors. ABCC4 protects cells from the accumulation of cytotoxic meta-
bolites that can modify sensitivity and resistance to thiopurine therapy (Janke et 
al., 2008; Krishnamurthy et al., 2008; Sampath et al., 2002). ABCC4 genetic 
variant that reduces the encoded transporter’s activity dramatically and were 
associated with depressed white blood cell counts were identified in a cohort of 
Japanese patients undergoing thiopurine therapy for IBD (Ban et al., 2010). It is 
not yet known whether this phenomenon generalizes to other populations. 
 
  

1.5. Using TPMT pheno- and genotyping  
to guide thiopurine therapy 

Dosing decisions for specific patients can be informed by a variety of biological 
markers associated with a drug-disease combination, such as genotype, gene 
expression profile, protein/enzyme concentration/activity, systemic metabolite/ 
drug levels, and cell/clinical response (Jayachandran et al., 2015). Pharmaco-
genetic information is included on the labels of more than 180 drugs approved 
by US FDA and European Medicines Agency. Some include dosing guidelines 
based on genetic factors, such as gene variants (including TPMT), functional 
deficiencies, expression changes, and chromosomal abnormalities.1 

There is still ongoing debate as to whether TPMT pheno- or genotyping are 
reliable enough to be used to determine treatment course and whether such 
testing would be cost-effective. In 2016, a large meta-analysis of 47 high-quality 
pharmocogenetic studies, of which 12 involved TPMT testing, yielded mixed 
results for TPMT. The cost-effectiveness of genotyping prior to the use of 6-MP 
or AZA was highly variable across studies, casting doubt on whether such 
testing would be worthwhile (Plumpton et al., 2016). The position of the 
European Crohn’s and Colitis Organization thus far has been that no recommen-
dations can be made according to TPMT geno- and phenotype (Travis et al., 
2006), whereas the American Gastroenterological Association included it in 
their consensus on immunosuppressive therapy (Lichtenstein et al., 2006). 
Regardless, because TPMT is a well-known and important thiopurine meta-
bolizing enzyme, several assays have been developed to measure TMPT activity 
and assess TPMT genotype.  

The first guidelines for thiopurine starting dose for use at therapy initiation 
based on TPMT pheno- and genotype have been established by the Clinical 
Pharmacogenetics Implementation Consortium from the US National Institutes 
of Health (Relling et al., 2013; Relling et al., 2011); the therapeutic algorithm is 
depicted in Figure 9A and B. Current TPMT genotype-based recommendations 
are as follows: wild-type homozygotes, standard AZA dosage (2.5 mg/kg/d); 

                                                                          
1 https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=4490128b-e73f-4849-9d6e-
e8591639d771 
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heterozygotes, 30–70% of standard dosage; mutant homozygotes or compound 
heterozygotes, 10% dosage or switch to alternative drug. For the two latter 
groups, therapeutic monitoring is important to confirm whether the adjusted 
dosage is appropriate (Relling et al., 2013; Relling et al., 2011). Notably, 
because some patients exhibit TPMT geno-/phenotype discrepancies, in vivo 
enzyme activity assays are useful. For patients with IBD who are undergoing 
thiopurine treatment, therapeutic drug monitoring (TDM) based on thiopurine 
metabolite levels (6-TGN or 6-MMP) may enable clinicians to optimize the 
treatment, prevent ADRs, and help elucidate the mechanisms of clinically poor 
response or drug resistance (Moon and Loftus, 2016; Roblin et al., 2011).  
 
 

1.5.1. Measurement of TPMT enzyme activity 

TPMT is widely expressed in the human body with expression varying between 
tissues, with notably high TPMT activity levels in the liver and kidneys, and 
relatively lower activity levels in the brain, lungs, intestine, and placenta (Lee et 
al., 1995). TPMT tissue-specific distribution differs pre- versus postnatally 
(Pacifici et al., 1991). Because hepatic TPMT activity correlates well with that 
in erythrocytes, the phenotypic measurements are usually carried out on whole 
blood owing to the low invasiveness of drawing blood (Szumlanski et al., 1992; 
Van Loon and Weinshilboum, 1982).  

There are several methods available for assessing TPMT status. TPMT 
activity is most commonly determined by measurement of 6-MMP formation 
from 6-MP employing SAM as a methyl donor (Loit et al., 2011). The originally 
developed radiochemical method has been modified over the years to rely on 
nonradioactive detection by high performance liquid chromatography (HPLC) 
(Jacqz-Aigrain et al., 1994; Lennard and Singleton, 1994; Weinshilboum et al., 
1978). A method that uses 6-TG as the enzyme substrate instead of 6-MP has 
also been developed (Kröplin et al., 1998). The choice of dosage threshold 
criteria is crucial and may be influenced by the patient population as well as the 
clinical indication for testing (Roberts et al., 2007; Zur et al., 2016). Although 
TPMT phenotyping provides important information for treatment planning, 
patients’ on thiopurine therapy should be also monitored for toxicity and drug 
metabolite levels because numerous other factors can influence ADR risk, 
including blood transfusions, age, renal function, interactions with other drugs, 
and genetics.  
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A. 

 
B. 

 

Figure 9. A: Before initiating thiopurine therapy, determine recommended starting dose 
based on TPMT pheno-/genotype. During thiopurine treatment, therapeutic monitoring 
is critical for patients on adjusted dosages. *or compound heterozygote. B: TDM based 
on thiopurine metabolite profiles in IBD patients experiencing toxicity or resistance. 
*low/absent TPMT activity (homozygous mutant or compound heterozygote). 
Abbreviations: TPMT, thiopurine methyltransferase; AZA, azathiopurine; 6-MP, 6-mer-
captopurine; 6-TNG, 6-thioguanine nucleotides; 6-MMP(R), 6-methylmercaptopurine 
ribonucleotides. Panel A dapted from (Relling et al., 2011); panel B adapted from 
(Dewit et al., 2010). 
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1.5.2. Diagnostic genotyping of TPMT  

Generally, genotyping in routine clinical laboratories targets specific variants, 
mostly the most common ones. When ethnic background is considered in the 
selection of target alleles, one may identify up to 95% of individuals with the 
clinically relevant alleles. However, rare variants or relevant alleles in other 
genes may still be missed in some cases (Zur et al., 2016). Genotyping methods 
used in practice include restriction-fragment length polymorphism (Coulthard et 
al., 1998; Yates et al., 1997), denaturing HLPC (Hall et al., 2001; Schaeffeler et 
al., 2001), and sequencing (Haglund et al., 2004). The advantage of TPMT geno-
typing over phenotyping is that it never changes, whereas TPMT activity may 
be influenced by several factors. However, the cost-effectiveness of genotyping 
of TPMT remains in question (Plumpton et al., 2016). 

Both genotyping and phenotyping have their limitations. Obviously, pheno-
typing by measuring RBC TPMT activity is misleading in patients who have 
received blood transfusions because it reflects the enzyme activity of donor 
RBCs. On the other hand, we still do not know and understand all of the DNA 
sequence variations that influence TPMT activity. Considering current state of 
knowledge, ideally, both pheno- and genotyping should be used with other 
clinically relevant monitoring applications to guide the best therapy. 
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Epilogue 
Future perspectives of pharmacogenomics  

There is substantial interindividual heterogeneity in drug responses with respect 
to both efficacy and toxicity. The proportion of patients who respond bene-
ficially to the first drug offered in the treatment of a wide range of diseases has 
reported to be 20–60% (Wilkinson, 2005). For example, on average, 38%, 40%, 
43%, 50%, and 75% of patients who have depression, asthma, diabetes, arthritis, 
and cancer, respectively, show no response to their initial treatments (Spear et 
al., 2001). Furthermore, between 1990 and 2013, 43 drugs were withdrawn 
from the market due to severe ADRs (Wei et al., 2012). Approximately 6.5% of 
admissions to hospitals are related to ADRs. Hence, interindividual drug response 
variability is an important factor in morbidity and can lead to potentially 
avoidable strains on limited healthcare resources (Pillans, 2008).  

As the cost of whole-genome sequencing is declining, it has been predicted 
that in the near future, every individual could have their entire genome sequenced 
in early life with the information being available for clinical use throughout 
one’s lifetime. Thus, we are moving forward from the debate over the need for 
introducing PGx markers into the clinic towards a discussion about how to pre-
emptively integrate genetic information into everyday clinical practice. More 
than 180 US FDA-approved drugs have at least one PGx association in their 
product labeling2 and pharmaceutical companies are realizing the need to include 
genomic information in clinical trials.  

Clinical drug responses and outcomes are always patient-specific. Such 
interindividual variation is often a challenge to optimizing dosage. Because 
different patients respond differently to the same drug and dose, the suggested 
population-based standard dose can lead to severe ADRs, including death, in 
some patients or result in therapeutic failure in others. TDM is suggested for 
drugs with a narrow therapeutic index or known serious ADRs (Ahmed et al., 
2016). Many studies have been conducted to identify PGx markers with possible 
effect on diseases or conditions through drug pharmacokinetics/-dynamics. For 
example, several drug metabolizing enzymes, transporters, and receptors have 
been discovered to have potential effect on metabolic pathways of certain anti-
cancer drugs. But for most chemotherapeutics, the association of gene poly-
morphisms with pharmacokinetics is not well understood (Bertholee et al., 
2016).  

Several implementation studies and programs have been initiated in recent 
years to address the barriers that prevent the clinical implementation of PGx. 
The main aims related to overcoming these hurdles are: implementing drug-
gene pairs one at a time and assessing their clinical utility; educating healthcare 
providers on PGx; implementing existing CPIC and Dutch Pharmacogenomic 
Working Group guidelines; integrating PGx test results into the electronic health 
records and clinical decision support systems at the point of care to guide 

                                                                          
2  http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm 
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healthcare providers (including the standardization of pharmacogenetic terms 
for clinical tests); and expanding the field of PGx by making use of next gene-
ration sequencing techniques. Notably, to improve the cost-effectiveness, the 
Ubiquitous Pharmacogenomics Consortium aims to develop a panel of relevant 
PGx markers for various therapeutic areas for pre-emptive clinical testing rather 
than advancing single gene-drug pairs (Caudle et al., 2016; Relling and Evans, 
2015; van der Wouden et al., 2016). 

Analyses of large-scale sequencing efforts, such as the 1000Genomes project 
and Exome Sequencing Project, have indicated that each individual harbors, on 
average, more than 100 SNPs, of which 90% are rare non-synonymous variants 
in pharmacogenetic loci (minor allele frequency < 1%). It was estimated that 
these variants account for 30–40% of the functional variability in so-called 
adsorption-distribution-metabolism-excretion pharmacogenes (Kozyra et al., 
2017). Thus, beyond the potential clinical utility of identifying such variants, 
they may have a major impact on drug discovery, particularly with respect to 
potentially driving stratified drug development. In light of the fact that drug 
development is very complex, time consuming, and costly, it is important to 
recognize that PGx studies enable predictions of drug response to be made 
based on individual variations, identifying patient subgroups that are most likely 
to respond. The information gained is helpful for designing drugs and drug 
therapy regimes based on patient profile (Gupta and Jhawat, 2017).  

Beyond the research identifying the contributions of genetic variants to 
differences in drug response and efficacy, other “-OMICS” are emerging with 
potential applications in PGx. For example, (pharmaco)epigenomics (including 
microRNAs) and (pharmaco)metagenomics may expand the scope of PGx. Both 
are dynamic over time and quite susceptible to environmental factors. There is a 
growing body of evidence indicating that epigenomic alterations, such as methy-
lation, histone modification, and microRNAs, regulate the expression of genes 
involved in drug metabolism, xenobiotic transport, drug target effects, and down-
stream signaling molecules, either directly or indirectly (Ingelman-Sundberg 
and Cascorbi, 2016).  

Recognition of the physiological importance of the microbiome of the 
human gut is growing. Gut microbe genomes encode gene products that extend 
human metabolism biotransform xenobiotics, including drugs, in direct or 
indirect ways. Thus far, already more than 50 drugs have been shown to be 
amenable, in vitro or in vivo, to being metabolized by gut microbiota via bio-
chemical reduction and/or hydrolysis. Understanding the metabolic contributions 
of gut microbes may provide information about the energetic demands of the 
gut microbiota and be useful for predicting how drugs will be modified 
(Spanogiannopoulos et al., 2016).  

Combining PGx with traditional clinical phenotypic variables (e.g., sex and 
age) alone is unlikely to be sufficient to describe the net effect of the multitude of 
factors influencing drug responses adequately. Thus, Turner and colleagues have 
proposed a new interdisciplinary translational field, called systems pharmacology, 
that aims to parse systematically and comprehensively all of a drug’s clinically 
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relevant activities to explain, simulate, and predict clinical drug responsivity. It 
is hoped that systems pharmacology will accelerate drug discovery and develop-
ment by way of facilitating the identification and validation of new targets, 
elucidating target network responses to drug perturbation, and uncovering drug-
response biomarkers. Moreover, the application of systems pharmacology holds 
additional transformative potential for a deeper parsing of interindividual drug 
variability, which would facilitate drug stratification (Turner et al., 2015).  



45 

AIMS OF THE STUDY 

The overall aim of the thesis was to identify causes of variability in TPMT 
activity in healthy individuals and acute ALL patients.  
 
The specific aims of the studies were as follows: 
1. To identify new markers and haplotypes in the TPMT gene explaining the 

variability in TPMT activity in randomly selected healthy individuals in 
Estonia (Ref. I). 

2. To investigate the influence of SAM on TPMT activity in human subjects 
(Ref. II). 

3. To search for new genetic markers, beyond TPMT, to explain the variability 
in TPMT activity in the general population and among ALL patients using a 
genome-wide approach (Ref. III).  
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MATERIALS AND METHODS 

The population cohort studies in Ref I–III were approved by the Ethics Review 
Committee on Human Research of the University of Tartu, Estonia. The study 
of ALL and IKP (Institut für Klinische Pharmakologie) cohort in Ref III was 
approved by the ethics committees of the Charité, Humboldt University in 
Berlin, Germany and the University of Tübingen in Tübingen, Germany in 
accordance with the principles of the Declaration of Helsinki. Informed consent 
and filled questionnaires were obtained from all study participants. 
 
 

3.1. Study subjects and sample preparation 
First phase (Ref I) 
Estonian population cohort 
Venous blood samples were collected from 253 healthy blood donors (127 
males, 126 females) at the Blood Centre of Tartu University Hospital in Estonia. 
DNA was extracted from whole blood. TPMT activity was measured in hemoly-
sates prepared from RBCs.  
 
Second phase (Ref II) 
Estonian population cohort 
Individuals were recruited from the Estonian Genome Center at the University 
of Tartu in Estonia. The cohort was composed of 1017 healthy individuals (511 
males, 507 females) with a wide range of health statuses and demographic infor-
mation. DNA was extracted from whole blood samples; hemolysates prepared 
from RBCs were subjected to TPMT and SAM measurements. A set of 19 bio-
chemical parameters from plasma and ten hematological parameters from whole 
blood were measured at Tartu University Hospital. 

 
 
 

 
Second phase (Ref III) 
Estonian population cohort 
A portion of the Ref II cohort was recruited (N = 844; 414 males, 430 females). 
 
ALL study cohort  
Children diagnosed with ALL (N = 245) who participated in the Berlin-
Frankfurt-Münster trials were included. None of the patients had been trans-
fused within 3 months prior to blood sampling. The samples were obtained before 
ALL maintenance therapy. Genomic DNA was extracted from whole blood; 
RBC lysates were prepared for TPMT assay.
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IKP liver cohort  
Histologically normal liver tissues (N = 124) and corresponding blood samples 
(N = 150) were collected from patients undergoing liver surgery at the 
Department of General, Visceral, and Transplantation Surgery, University 
Medical Center Charité in Berlin, Germany. DNA was extracted from whole 
blood; cytosol was prepared for TPMT assay.  
 
 

3.2. Biochemical measurements 
First phase (Ref I) 
TPMT activity was measured in the RBC hemolysates obtained for all 253 
subjects. The samples were submitted to HPLC with UV detection and 6-MP as 
the substrate at the Department of Pharmacology at the University of Tartu in 
Estonia. 
 
Second phase (Ref II) 
TPMT activity and SAM levels were measured in all 1017 RBC hemolysate 
samples by HPLC at the Department of Clinical Biochemistry, University of 
Ljubljana, Slovenia. For the TPMT assay, 6-MP was used as a substrate. 
 
Second phase (Ref III) 
TPMT activity was measured in the RBC hemolysate samples from all three 
cohorts by non-radioactive HPLC with 6-TG as a substrate at the Dr. Margaret 
Fischer-Bosch Institute of Clinical Pharmacology in Stuttgart.

 

 
 

3.3. Genotyping and imputation 
3.3.1. TPMT genotyping 

First phase (Ref I) 
The coding region of TPMT was analyzed for 154 subjects, including all 45 
individuals with intermediate TPMT activity, all 19 with high TPMT activity, 
and a sample of 90 individuals with normal enzyme activity. To avoid ampli-
fication of the TPMT processed pseudogene, intron-specific polymerase chain 
reaction (PCR) primers were designed and the PCR primers were used to 
sequence the coding region of the TPMT gene. The program ChromasPro 1.34 
was used for sequence analysis (Technelysium Pty Ltd).  
 
Second phase (Ref II and Ref III) 
The Estonian population cohort was genotyped for TPMT*2, *3B, and *3C 
alleles by TaqMan Genotyping Assays (Applied Biosystems). The ALL and 
IKP-liver cohorts were genotyped for the same alleles by TaqMan Genotyping 
Assays (Applied Biosystems) or matrix-assisted laser-desorption ionization–
time-of-flight mass spectrometry (Sequenom).  
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3.3.2. Whole-genome genotyping 

Second phase (Ref III) 
Genome-wide genotyping for the Estonian population, ALL, and IKP-liver 
cohorts was performed with HumanCNV370, Human Omni1-Quad, and 
HumanHap300 arrays (Illumina, Inc), respectively. After conducting quality 
control, imputation, and filtering, the following markers were included in the 
subsequent association analyses: 8,617,769 markers in 844 Estonian cohort 
samples; 8,224,478 markers in 245 ALL cohort; 7,481,872 markers in 123 IKP-
liver cohort samples.  
 
 

3.3.3. Next-generation sequencing 

Second phase (Ref III) 
In the IKP-liver cohort samples, TPMT was analyzed for the presence of genetic 
variations by targeted exome sequencing in the HiSeq2500 platform (Illumina, 
Inc) at the Center for Genomics and Transcriptomics in Tübingen, Germany.  
 
 

3.4. TPMT mRNA and protein quantification 
Second phase (Ref III) 
TPMT mRNA was quantified with a TaqMan® 

Gene Expression Assay 
(Hs00909011_m1, Applied Biosystems). TPMT expression was normalized 
against ß-actin measured with a HUMAN ACTB Endogenous Control Assay 
(Applied Biosystems). The measurements were conducted on a Fast Real-time 
PCR System (7900HT, Applied Biosystems). TPMT protein expression was 
quantified by immunoblot analyses of liver cytosol with a specific rabbit anti-
TPMT antibody (Mayo Clinic). TPMT protein levels (available for 122 samples) 
were quantified through immunoblotting.   
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RESULTS 

4.1. Identification of known and new TPMT variants  
in healthy Estonians (Ref. I) 

4.1.1. Distribution of TPMT activity and influence of gender 

Mean (± standard deviation, SD) TPMT activity in 253 healthy Estonians (127 
males, 126 females) was 90.60 ± 32.27 ng/ml/h (range, 21.5–185.5 ng/ml/h). 
Males had a higher mean enzyme activity level (97.07 ± 34.66 ng/ml/h) than 
females (84.18 ± 28.41 ng/ml/h; Mann-Whitney U-test, p = 0.0022). Values in 
the range of 60–140 ng/ml/h were considered normal (arbitrary cut-off values); 
values below and above this range were considered intermediate and high, 
respectively. No subjects had a complete enzyme deficiency. Shapiro-Wilk W-
test indicated a non-normal distribution of the wild-type population as a whole 
(W = 0.98, p < 0.001) as well as of the normal TPMT activity group (W = 0.94, 
p < 0.0001). Based on the aforementioned cut-off criteria, 45 subjects were 
placed in the intermediate, 189 in the normal, and 19 in the high TPMT activity 
groups (Fig. 10).  
 

 
 

4.1.2. Identification of TPMT sequence variants 

After sequencing the coding region of TPMT (exons 3–10) in 154 individuals (45 
intermediate, 19 high, and 90 normal enzyme activity), 16 markers were identi-
fied, of which three were new (Table 2). Five previously known mutant alleles 
were detected: TPMT*2, *3A, *3C, *9 and *12. Subjects who were carrying these 
mutant alleles include 15 TPMT*1/*3A, 2 TPMT*1/*3C, and 2 TPMT*1/*2 
heterozygotes, as well as 1 TPMT*1/*9 and 1 TPMT*1/*12 heterozygote.  

 

 

Figure 10. Distribution of TPMT activity among 253 healthy Estonians. Components of 
the distribution that formed the intermediate, normal, and high enzyme activity groups 
are indicated (graphic legend).  
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The three new mutations were a silent –30T>A mutation in the 5’-untranslated 
region (UTR), a 10A>G mutation in intron 3, and a 145A>G mutation in the  
3’-UTR. All three were present heterozygously. 
 
 

4.1.3. Genotype-phenotype comparison and haplotype analysis 

An association analysis revealed no significant differences in marker frequency 
between the normal and high TPMT activity groups. In the intermediate enzyme 
activity group, four markers [114T>A, 94T>A, 460G>A (*3B), 719A>G (*3C)] 
were found to be in strong linkage disequilibrium (LD), and the frequencies of 
these markers differed significantly from those in the control group (normal and 
high activity groups combined; p < 0.001, Table 2, Fig. 11). 

 
The haplotype analysis yielded two haploblocks. The haplotype frequencies for 
intermediate, normal, and high TPMT activity groups, as determined in 
Haploview, are presented in Table 3. The haplotype analysis further revealed 
that haplotype (H3) from the second haploblock was associated with reduced 
enzyme activity (p < 0.001). None of the haplotypes from the first haploblock 
were associated with TPMT activity. 
 
 
 
 
 
 
 

 

 
 
Figure 11. Comparison of enzyme activity between wild-type (☐) and heterozygous 
() individuals regarding four significant markers. X-axis, enzyme activity (mg/ml/h); 
y-axis, number of individuals. 
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4.2. SAM modulates TPMT activity (Ref. II) 
4.2.1. TPMT activity, SAM levels, and TPMT genotypes 

In this study cohort of 1017 subjects, 828 (81.4%) exhibited normal 
(≥26.1 nmol/g Hb/h; 26.12–102.50 nmol/g Hb/h) and 189 (18.6%) exhibited low 
(<26.1 nmol/g Hb/h; 12.80–26.09 nmol/g Hb/h) TPMT activity. Meanwhile, 
520 subjects (51.1%) had high SAM levels (≥16.6 nmol/g Hb; 16.61–
50.90 nmol/g Hb) and 497 (48.9%) had low SAM levels (<16.6 nmol/g Hb; 
1.60–16.60 nmol/g Hb).  

Genotyping for TPMT*2, *3A, and *3C indicated that of the 1017 subjects, 
961 (94.5%) had the wild-type TPMT genotype (TPMT*1/*1), 50 (5.1%) were 
TPMT*1/*3A heterozygotes, and 6 (0.6%) were TPMT*1/*3C heterozygotes. 
No mutant homozygotes or TPMT*2 alleles were found in the cohort. Of the 
961 TPMT wild-type individuals, 818 (85.1%) had normal and 143 (14.9%) had 
low TPMT activity, respectively. Meanwhile, of the 56 TPMT-heterozygous 
subjects, 46 (82.1%) had low and 10 (17.9%) had normal TPMT activity.  
 
 

4.2.2. In addition to TPMT genotype,  
SAM is a main predictor of the TPMT activity 

The influence of TPMT genotype, SAM levels, and 41 other factors (objective, 
demographic, biochemical, and hematological values) on TPMT activity was 
investigated. Although several factors had an association p-value suggestive of 
influencing TPMT activity (<0.05) initially, after correction for multiple testing, 
only TPMT genotype and SAM levels remained statistically significant 
(p ≤ 1 × 10–13).  
 
 

Table 3. Haplotype frequencies in three TPMT activity groups. 

Block 1 1111A>T 35T>C 58C>T Intermediate Normal High 

H1 T T C 0.575 0.500 0.523 

H2 A C T 0.375 0.446 0.477 

H3 A T C 0.050 0.043 – 

H4 A T T – 0.011 – 

       

Block 2 474T>C 14G>T  Intermediate Normal High 

H1 C G  0.200 0.217 0.205 

H2 T T  0.575 0.766 0.795 

H3 T G  0.225 0.016 – 

H1-H4, haplotypes 1–4 
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4.2.3.  Influence of SAM on TPMT activity is more pronounced  
in TPMT-heterozygous individuals 

The correlation between SAM levels and TPMT activity was much stronger in 
TPMT-heterozygotes (r = 0.651, N = 56) than in wild-type individuals 
(r = 0.252, N = 961). The distribution of TPMT activity across the four TPMT 
genotype/SAM level groups showed the expected pattern, with the highest 
enzyme activity occurring in the TPMT-wild-type–high SAM group and the 
lowest activity being observed in TPMT-heterozygous individuals with low 
SAM levels (Fig. 12), indicating that healthy individuals can be divided into 
four TPMT-phenotype groups on the basis of TPMT genotype and SAM level. 
The influence of SAM on TPMT activity was significant within TPMT 
genotype groups, and was particularly pronounced in TPMT*1/*3 subjects (Fig. 
12).  
 

 
 
Figure 12. Distribution of TPMT activity according to TPMT genotype and SAM 
levels. TPMT activity differed significantly across the four TPMT genotype/SAM level 
combination groups (p = 1 × 10–13). Individuals with the TPMT-wild-type (TPMT*1/*1) 
genotype and high SAM levels had the highest TPMT activity, while heterozygous 
(TPMT*1/*3) individuals with low SAM levels had the lowest TPMT activity. SAM 
levels had a significant influence within the TPMT genotype groups. Error bars show 
95% confidence intervals of the mean values. Dashed line show mean values for each 
TPMT genotype/SAM level group.  
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Next, we looked at the correlation between SAM and TPMT activity in four 
TPMT genotype-phenotype groups shown in Figure 12. The four presently 
observed TPMT genotype-phenotype groups were consistent with clinical 
observations, where the majority of patients belong to two genotype-phenotype 
concordant groups (wild-type genotype with normal activity and heterozygous 
genotype with intermediate activity) and a minority of individuals have 
discordant TPMT genotypes and phenotypes (wild-type genotype with low 
activity or heterozygous genotype with normal activity). This discordance is a 
major obstacle to more extensive implementation of pharmacogenetics in clinical 
practice. In our cohort, the two groups with concordant TPMT genotypes and 
phenotypes had very similar correlation coefficients between TPMT activity 
and SAM (wild-type with normal activity, r = 0.259; heterozygous with inter-
mediate activity, r = 0.299), while the coefficients obtained for the two 
discordant groups differed substantially. In TPMT-wild-type with low TPMT 
activity, TPMT activity did not correlate with SAM levels (r = –0.059). By 
contrast, in TPMT heterozygotes with normal TPMT activity, we observed a 
very strong correlation between the TPMT activity and SAM levels (r = 0.879), 
indicating that the discrepancy between TPMT genotype and activity in indi-
viduals carrying a mutated TPMT allele might be due to differing SAM levels. 

The discovery that unexpectedly high TPMT activity in some TPMT-
heterozygous individuals might be due to higher than typical SAM levels is 
supported by the finding that the difference in the mean SAM levels between 
the genotype–phenotype-concordant and -discordant groups was much more 
pronounced in TPMT*1/*3 heterozygotes than in TPMT-wild-type individuals. 
As illustrated in Figure 13, TPMT-wild-type individuals with low enzyme 
activity had a mean SAM concentration only 2 units lower than TPMT-wild-
type individuals with normal enzyme activity, a difference that is unlikely to be 
clinically significant despite the p-value. On the other hand, among TPMT*1/*3 
subjects, those with normal TPMT activity had a mean SAM level 10.5 units 
higher than those with low enzyme activity, a difference that could be important 
in a clinical setting.  
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Figure 13. Comparisons of SAM levels between normal- and low-TPMT activity 
individuals within two TPMT genotype groups. In both wild-type and heterozygous 
individuals, SAM levels were higher in the group exhibiting normal enzyme activity 
(means, 17.5 nmol/g Hb and 20.7 nmol/g Hb, respectively) than in the groups with low 
TPMT activity levels (15.5 nmol/g Hb and 10.2 nmol/g Hb, respectively). However, the 
difference in SAM levels was greater in TPMT heterozygotes (i.e., 20.7 vs. 10.2 nmol/g 
Hb), indicating that the unexpectedly high TPMT activity in some heterozygous 
individuals might be due to higher SAM levels. Error bars show 95% confidence 
intervals of the mean values. Dashed lines show mean SAM levels for each genotype-
phenotype group. Hb, hemoglobin.  
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4.3. A genome-wide meta-analysis revealed the TPMT locus 
as the main determinant of TPMT phenotype (Ref. III) 

4.3.1. TPMT phenotype-genotype associations in three studied cohorts 

First, we investigated the relationship between genome-wide genotypes and 
TPMT activity in a cohort of Estonians from the general population. TPMT 
activity measured in RBCs showed a bimodal distribution of TPMT activity 
without any cases of TPMT deficiency. The association analysis of TPMT*3 
alleles with TPMT activity showed significantly lower TPMT activity in hetero-
zygotes (median 21, range 13–33 nmol/g Hb/h) than in wild-type homozygotes 
(median 40, range 18–64 nmol/g Hb/h; Fig. 14A).  

Next, we investigated whether the same relationship between genotype and 
TPMT activity exists in pediatric ALL patients. The distribution of TPMT 
activity showed two patients with a profound TPMT deficiency (activity ≤2 
nmol/g Hb/h): one with the TPMT*3A/*11 genotype and one TPMT*3A/*3A 
homozygote.

 
TPMT wild-type carriers had significantly higher TPMT activity 

levels (median 30, range 9–69 nmol/g Hb/h) than heterozygous carriers of 
defective TPMT alleles (median 21, range 9–33 nmol/g Hb/h; Fig. 14B).  

After making these observations, we sought to identify genetic markers that 
influence TPMT activity in the liver, which is composed of the most important 
thiopurine metabolizing tissue in the human body. TPMT activity in liver 
cytosol showed a bimodal distribution and none of the samples were TPMT-
deficient. Liver cytosol samples from carriers of the TPMT*2 and TPMT*3A 
alleles showed reduced hepatic TPMT activity (median 1.2, range 1.1–1.9 
nmol/h/mg) compared to those of wild-type TPMT homozygotes (median 2.7, 
range 1.5–4.1 nmol/h/mg; Fig. 14C).  

 
A                                 B                                             C 

 
 
Figure 14. Association of TPMT activity with wild-type (TPMT*1) and common non-
functional TPMT alleles (TPMT*2, *3A, *3C) in Estonian (A), pediatric ALL (B), and 
IKP liver (C) sample cohorts.  
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4.3.2. Genome-wide association hits in three studied cohorts 

A total of 8,617,769 genotyped and imputed genetic markers in the Estonian 
population cohort (see section 3.3.2) were included in a GWAS for TPMT 
activity, using sex and age as covariates. As shown in a Manhattan plot (Fig. 
15A) and regional association plot (Fig. 15B), the locus showing the most 
significant association with TPMT activity was in the TPMT gene region at 
6p22.3. In total, 169 genetic variants (Table S1 in Ref. III) on chromosome 6 
were significant at the genome-wide threshold (p < 5 × 10–8) with the lowest p-
value being 2.73 × 10–76. 
 

 
 
Figure 15. Results of GWAS for TPMT activity in the Estonian cohort, using age and 
sex as covariates. A. Manhattan plot showing the association p-values of genetic 
variants across chromosomes 1–22. Significantly associated genetic variants, p < 5 × 
10–8, are marked in green. B. Regional association plot highlighting the genomic region 
containing TPMT. Recombination rates and LD estimates (r2) of variants with the TPMT 
variant 719A>G (rs1142345) are displayed. 
 
 
A parallel GWAS of 8,224,478 genotyped and imputed markers in the ALL 
cohort was conducted. As shown in Figure 16, only genetic variants within the 
TPMT gene region were significantly associated with TPMT activity. A list of 
all SNPs that were genome-wide significant (p < 5 × 10–8) is provided in Table 
S2 in Ref. III. The common variant 719A>G (rs1142345), which is present in 
the non-functional TPMT*3A and TPMT*3C alleles, displayed a notably low p-
value.  

Subsequently, we performed a GWAS of 7,481,872 genotyped and imputed 
markers in the IKP-liver cohort, corrected for age and sex, to determine whether 
the association results found in previous cohorts could be further confirmed. As 
shown in Figure 17, only genetic variants within the TPMT region were found 
to be significantly associated with TPMT activity (p < 5 × 10–8) (Table S3, Ref. 
III).  
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Figure 16. Results of GWAS for TPMT activity in the ALL cohort, using age and sex 
as covariates. A. Manhattan plot showing the association p-values of genetic variants 
across chromosomes 1–22. Significantly associated genetic variants, p < 5 × 10–8 are 
marked in green. B. Regional association plot highlighting the genomic region 
containing TPMT. Recombination rates and LD estimates (r2) of variants with the TPMT 
variant 719A>G (rs1142345) are displayed. 
 

Figure 17. Results of GWAS for TPMT activity in IKP human liver samples, using age 
and sex as covariates. A. Manhattan plot showing the association p-values across 
chromosomes 1–22. Significantly associated genetic variants, p < 5 × 10–8 are marked in 
green. B. Regional association plot of these values focusing on the genomic region on 
chromosome 6 (hg19) in which TPMT is located. Recombination rate and LD estimates 
(r2) of variants with the TPMT variant 719A>G (rs1142345) are shown. 
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Further GWAS analyses focused on the most frequent non-functional TPMT 
alleles (TPMT*3A and *3C) were performed in all three cohorts to search for 
genetic factors independent of TPMT. However, no further variants were found 
to be significantly associated (p < 5 × 10–8) with TPMT activity. Moreover, 
previously identified candidate SNPs were not found to be related to TPMT 
activity in the Estonian, ALL, or IKP-liver cohorts in our GWAS results 
(Table 4).  

 
Because systematic data on TPMT expression and in vivo function in the liver 
were not available, we conducted a correlational analysis between cytosolic 
TPMT activity and TPMT protein levels, determined by immunoblotting and 
obtained a highly significant correlation (rs = 0.58, p < 2.2 × 10–16) between 
TPMT’s protein expression level and its enzyme activity level. TPMT mRNA 
expression did not correlate with either TPMT activity or TPMT protein levels 
in the human liver, even after exclusion of TPMT variant cases. These results 
are in accordance with previously published data (Tai et al., 1997) 
 
 
 
 

 
Table 4. Previously implicated SNPs were associated with TPMT activity in the present 
cohorts. 

  
Estonian 

cohort  
ALL  
study  

Liver  
cohort 

gene rs number 

chro-
mo- 

some 

non-
effect 
allele

effect 
allele 

effect 
size 

P- 
value

effect 
size 

P-
value

effect 
size 

P-
value 

PACSIN2§ rs2413739 22 c T 0.06 0.23 –0.07 0.48 –0.02 0.91 

XDH# rs494852 2 C T 0.07 0.36 –0.13 0.26 0.004 0.98 

IMPDH1  rs4731448 7 A G 0.02 0.73 –0.01 0.90 –0.03 0.83 

SLC28A3# rs17428030 9 A G –0.11 0.26 0.04 0.77 –0.30 0.26 

ABCC4# rs17268122 13 G T 0.03 0.62 0.02 0.84 0.15 0.36 

FAM8A6P# rs1040637 6 A G 0.02 0.72 –0.10 0.31 –0.40 0.002 

HIVEP2, 
AIG1# 

rs200148 6 G A 0.05 0.27 –0.13 0.12 0.13 0.34 

NUDT15* rs554405994 13 – GGAGTC –0.34 0.44 – – – – 

NUDT15* rs186364861 13 G A – – – – – – 

NUDT15* rs116855232 13 C T 0.18 0.61 –0.70 0.20 –0.14 0.87 

NUDT15* rs147390019 13 G A – – –0.55 0.45 – – 

§ (Stocco et al., 2012), # (Matimba et al., 2014), *(Moriyama et al., 2016) 
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4.3.3. Meta-analysis of the studied cohorts 

A joint meta-analysis of all three of the aforementioned datasets was performed 
to increase power and reliability of our GWAS analyses. The meta-GWAS 
revealed significantly associated genetic variants on chromosome 6; among 
them was a sentinel marker of the TPMT gene region (rs73726531, p = 1.2 × 
10–72, effect size: –2.2; Fig. 18A). As shown in the associated regional 
association plot in Figure 18B, this sentinel marker was observed to be tightly 
linked with the TPMT variant 719A>G (rs1142345). Altogether, 148 markers 
on chromosome 6 exceeded the genome-wide significance threshold (p < 5 × 
10–8) in the meta-GWAS (Table S5 in Ref. III).  
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Figure 18. Results of meta-GWAS for TPMT activity of all three cohorts. A. Man-
hattan plot showing the association p-values, revealing significant results only within 
the TPMT locus. The sentinel marker was at chromosome 6:18103028 (rs73726531; 
minor allele frequency = 0.03, p = 1.2 × 10–72; effect size: –2.2), which is linked to 
TPMT variant 719A>G (rs1142345). B. Regional association plot of these values 
focusing on genomic region hg19 in which TPMT is located.  
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5. DISCUSSION 
Ref I was the first study focusing on the distribution of TPMT enzyme activity, 
and the identification and frequency of known and novel sequence variants in 
TPMT in the Estonian population. It is very well known that the frequency of 
mutations that influence drug responses in one population may not be a 
causative variant in another. The variety of TPMT allele patterns that have been 
observed thus far in different ethnic group populations is summarized in 
Table 5. Our finding of higher mean enzyme activity in males than in females is 
consistent with the findings of Schaeffeler et al. (2004), who observed good 
correlations of gender, as well smoking, with enzyme activity. 
 
Table 5. TPMT allele frequencies in different populations. 

Population Allele frequency (%) Reference 

*2 *3A *3B *3C *6 Other alleles 

British 
Caucasian  
(N = 199) 

0.5 4.5 0 0.3 NA NA (Ameyaw et al., 
1999) 

Swedish  
(N = 800) 

0.06 3.75 0.13 0.44 NA NA (Haglund et al., 
2004) 

American 
Caucasian  
(N = 282) 

0.2 3.2 0 0.2 NA NA (Hon et al., 
1999) 

African-
American  
(N = 248) 

0.4 0.8 0 2.4 NA NA (Hon et al., 
1999) 

Ghanaian  
(N = 232) 

0 0 0 6.75 0 3.45 (*8) (Schaeffeler et 
al., 2008) 

Chinese  
(N = 192) 

0 0 0 2.3 NA NA (Collie-Duguid 
et al., 1999) 

Japanese  
(N = 151) 

0 0 0 0.3 NA NA (Kubota and 
Chiba, 2001) 

Russian  
(N = 700) 

0.14 2.6 0 0.36 NA 0 (Nasedkina et 
al., 2006) 

Korean  
(N = 900) 

0 0 0 1.44 0.17 0.07 (*16, *32), 
0.11 (*38) 

(Kim et al., 
2015) 

Estonian  
(N = 253) 

0.4 2.75 0 0.2  0.3 (*9, *12) (Tamm et al., 
2008) 

N, number of individuals; NA, not available.  



62 

The most frequent TPMT alleles in Caucasians are TPMT*2, *3A and *3C 
(Ameyaw et al., 1999; Haglund et al., 2004; Schaeffeler et al., 2004). Consistent 
with the results obtained in our study, the allele frequencies of TPMT*3A 
among the different populations have been reported to be in the range of 3.2–
5.7%, and those of TPMT*2 and TPMT*3C have been reported to be in the 
range of 0.2–0.8% 3C (Ameyaw et al., 1999; Haglund et al., 2004; Schaeffeler 
et al., 2004). The rest of the TPMT alleles that have been identified to date are 
very rare (i.e., 1 in 300 individuals, Liu et al., 2015; Weinshilboum and Sladek, 
1980). Our study cohort included a single carrier of TPMT*9 and a single 
carrier of TPMT*12, both of whom were heterozygotes. The aforementioned 
variants result in reduced TPMT enzyme activity, as was confirmed by our 
findings of substantially lower TPMT activity levels for heterozygous indi-
viduals (48.8 ± 11.3 ng/ml/h) than for wild-types (93.3 ± 31 ng/ml/h, p < 0.001). 

Three new mutations were identified, including an intronic SNP (10A>G, 
rs20152942), a SNP in the 3’UTR (–30T>A, rs376768623), and a SNP in the 
5’UTR (145A>G). The effects of these mutations on enzyme activity are 
unknown. Given that the rs376768623 allele was paired with the known low-
activity allele TPMT*3A and the carrier had intermediate (some preserved) 
activity, the rs376768623 allele may have no or only a negligible effect on 
enzyme activity. All three of these new mutations are extremely rare, with prior 
examples of only two of them (rs376768623, rs201529425) in very few 
individuals being included in the dbSNP database. The intronic mutations 
114T>A and 94T>A were relatively common in our intermediate TPMT activity 
group. However, additional studies will be necessary to understand if these have 
any regulatory impact on enzyme activity. 

Although genetic variants were found in association with intermediate 
TPMT activity, the present results cannot explain high (or ultra-high) TPMT 
activity. Similar to Dewit et al. (2010), we observed few individuals with ultra-
high TPMT activity. Notably, the TPMT activity in one subject who was 
heterozygous for the extremely rare 399C>T variant was found to be almost 
double the median activity level of the wild-type individuals. This variant allele 
may have a gain-of-function effect, but no final conclusion can be made based 
on data from our single subject nor data in the dbSNP. To date, published 
analyses have not associated any variations in the TPMT open reading frame 
region with ultra-high enzyme activity. However, Roberts et al. (2008) reported 
a triple repeat in the promoter region of TPMT that was associated with very-
high TPMT enzyme activity. We also contributed samples to that work, but the 
effect appeared to be quite specific for individuals of British origin. An alter-
native explanation for heightened TPMT activity may be gene duplication or 
enzyme induction. For example, ultrahigh CYP2D6 enzyme activity has been 
attributed to a functional gene duplication (Dalén et al., 1998). We have 
contributed samples to other studies looking for TPMT gene duplication, but 
none of the studies have yielded positive results. In addition, previous studies 
examining the effect of VNTRs in TPMT promoter region on enzyme activity 
have produced contradictory results (Arenas et al., 2004; Marinaki et al., 2003; 
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Zukic et al., 2010). Finally, it has been established that epigenetic patterns 
affect adsorption-distribution-metabolism-excretion gene expression (Kacevska 
et al., 2012), but no such studies in the literature have included data related to 
TPMT as of yet. 

Our analysis of common markers shared by study participants, regardless of 
their enzyme activity, revealed that several markers formed two haploblocks 
(Table 3). The most interesting result obtained from this analysis was that 
although the markers 474T>C and 14G>T did not associate independently with 
intermediate enzyme activity, their haplotype (H3) may predict reduced TPMT 
activity because it was more frequently present in the intermediate TPMT 
activity group (Table 3). We used the D’ confidence interval algorithm (Gabriel 
et al., 2002) for block definition in Haploview because that haplotype frame-
work provides substantial statistical power in association studies of common 
genetic variation within regions. 

One must consider the fact that TPMT represents only one part of a 
complicated network of biochemical pathways involved in drug metabolism. 
Accordingly, thiopurine drug toxicity has been associated with other genes 
described in this thesis, which contribute to the metabolism of thiopurine drugs 
and may influence TPMT activity directly or indirectly via other factors.  

Even though the correlation between TPMT genotype and thiopurine therapy 
response is good in most cases, an increasing number of patients whose therapy 
responses cannot be predicted on the basis of TPMT genotype alone are being 
seen in clinical practice (Hindorf and Appell, 2012; van Egmond et al., 2012). 
Therefore, the identification of additional (genetic or non-genetic) biomarkers 
of thiopurine response profile is of great importance.  

Studies performed in various experimental paradigms – including an in vitro 
protein model (Scheuermann et al., 2004), cell lines (Milek et al., 2009; Milek 
et al., 2012), and indirect studies of human subjects (Arenas et al., 2005; 
Dorababu et al., 2012; Karas-Kuzelicki et al., 2009) – have shown that SAM 
may modulate TPMT activity as a non-genetic cofactor. Arenas et al. (2005) 
suggested that some cases of patients with a homozygous TPMT-wild-type 
genotype exhibiting low TPMT activity might be explained by the presence of 
the MTHFR 677 TT genotype. More than a decade ago, they hypothesized that 
their result might be due to the fact that MTHFR is a key enzyme in SAM 
biosynthesis, but a direct correlation between SAM and TPMT activity had not 
been reported. Since that time, cell biology studies have demonstrated SAM-
mediated stabilization of TPMT via a posttranslational mechanism that occurs 
in both tumor-derived transformed and primary cells (Milek et al., 2012). 

In our study (Ref II) – which is to our knowledge the first to study the direct 
influence of SAM on TPMT activity in a large number of individuals – we 
showed that SAM is an important modulator of TPMT activity in healthy 
individuals not exposed to thiopurine drugs. More specifically, SAM had a 
greater influence on TPMT activity in TPMT*1/*3 than TPMT-wild-type 
genotype individuals (Fig. 13). This finding is in concordance with the findings 
of Tai et al. (1997) indicating that stabilization of the TPMT protein by SAM is 
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especially pronounced in the presence of mutant TPMT. Our results do not lead 
to the conclusion that SAM levels can explain discrepancies in TPMT activity 
and thiopurine drug responses among wild-type individuals. However, our 
results do support the notion that SAM levels could be an important factor 
modulating TPMT activity in TPMT heterozygotes. Notwithstanding, these data 
should be interpreted with caution due to the small number of subjects in the 
normal activity–heterozygous group. Although this discordant group represents 
only approximately 1% of the population (according to both the present study 
and that conducted by Hindorf and Appell, 2012), in terms of clinical practice, 
this finding means that every fifth to tenth heterozygote may be at increased risk 
of ineffective therapy and relapse if classified only by genotype. Given the 
fairly weak correlations between SAM and TPMT activity in some TPMT 
genotype–phenotype groups, we believe that there are additional modulators of 
TPMT activity that have yet to be identified.  

It should be kept in mind that even though good correlations were obtained 
with TPMT activity data obtained for RBCs and liver cytosol, these measure-
ments are only an approximation of thiopurine-relevant metabolic processes that 
take place mostly in the liver and the various modulators/cofactors of drug 
metabolism may not be represented in RBCs. Duley and Florin (2005) pointed 
out that diagnostic values for TPMT activity and TGN levels are a RBC pheno-
menon poorly equated to the liver, which is the major site of drug methylation. 
Thus, some cases of thiopurine-induced leukopenia cannot be explained by 
RBC TPMT activity or TGN levels, and some individuals with low TPMT 
activity in RBCs can tolerate normal doses of the drug.  

It is also important to note that the present study was conducted in 
individuals who were not undergoing thiopurine therapy. Therefore, prospective 
studies on thiopurine-treated ALL and IBD patients are necessary to evaluate 
the clinical usefulness of determining SAM levels as a predictive factor of thio-
purine therapy response. Diagnostically and economically, it may be reasonable 
to measure SAM levels only in TPMT-mutated patients because such patients, 
when confirmed to have high SAM levels, should be able to tolerate standard 
doses of 6-MP, and thereby experience better therapeutic efficacy than they 
would with a reduced dose. Meanwhile, in TPMT-mutated patients with low 
SAM levels, SAM supplementation during 6-MP therapy could lower the 
incidence of adverse effects. Currently, there is no clinical evidence base for 
SAM supplementation during thiopurine therapy. Thus, further studies in patients 
receiving thiopurines are warranted in the near future.  

The possibility that human microbiota may play an important role in drug 
response in terms of efficacy and ADRs has been gaining attention recently 
(Spanogiannopoulos et al., 2016). In the case of TPMT, which is highly 
evolutionarily conserved, bacterial TPMT reacts with AZA. Moreover, bacterial 
TPMT confers resistance to the bactericidal drug tellurite, highlighting how 
bacterial enzymes can act promiscuously on drugs used to treat humans. Such 
unplanned actions may inactivate a drug before it reaches the intended target 
tissue (Nayak and Turnbaugh, 2016; REMY, 1963).  
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As mentioned earlier in this discussion, concerns remain with regard to 
whether TPMT genetics determine exclusively the substantial inter-individual 
variability of TPMT activity measured in RBCs, or whether other genes may 
contribute substantially. Clinically, it is well-known that in addition to TPMT 
heterozygous individuals, patients with a homozygous wild-type TPMT geno-
type are at risk for thiopurine-related hematotoxicity. Although non-genetic 
factors (like SAM) may underlie thiopurine-related hematotoxicity, the 
mechanisms are not yet well understood as discussed extensively in literature 
overview of this thesis. 

Our meta-analysis (Ref. III) results indicate that TPMT genetics have a 
fundamental impact on TPMT activity (Fig. 18) in humans and provide little 
support for the proposal that other genes may significantly contribute to the 
inter-individual variability of TPMT activity. In addition to investigating blood 
samples from healthy and diseased human cohorts, we also investigated, for the 
first time, human liver samples and the results revealed that only variants on 
chromosome 6 (TPMT region) were significantly associated with TPMT activity 
(Fig. 17). Noticeably, the genome-wide significant hits for TPMT activity were 
found to extend to other genes (e.g. KDM1B) near TPMT. As shown in the 
regional association plot of the meta-GWAS (Fig. 18B), these variants were 
linked with the presence of non-functional TPMT*3 alleles. Further analyses 
conditioned on the TPMT*3A and *3C alleles revealed no variants that were 
significantly associated with TPMT activity in all three cohorts. 

Of note, we observed TPMT genotype-phenotype discordance in ALL 
patients, compared with the Estonian general population cohort. That discordance 
was attributed to the ALL disease process and anemia of patients resulting in 
lower TPMT activities in RBCs due to degraded TPMT enzyme. 

We attempted to replicate effects associated with non-TPMT related 
candidate genes previously identified by a genome-wide study approach with 
HapMapCEU lymphoblastoid cell lines (LCLs) (Matimba et al., 2014; Stocco et 
al., 2012). Of note, LCL, including non-HapMap LCLs, have been promoted as 
useful model systems for cellular pharmacology, biochemistry, and enzymatic 
reaction studies (Zhang and Dolan, 2009). Matimba et al. (2014) proposed a 
minor association (p > 5 × 10-4) between SNPs within “thiopurine-related” 
genes (XDH, IMPDH1, SLC28A3, ABCC4) and “non-thiopurine pathway” 
SNPs (FAM8A6P, AJG1/HIVEP2) with thiopurine cytotoxicity in LCLs, with 
further validation in pediatric ALL patients. Additionally, using a genome-wide 
approach, Liu et al. (2016) sought to identify novel predictors of TPMT activity 
in LCLs and found 96 genes that ranked higher than TPMT itself. With the 
exception of SLC22A16, none of those genes were located on chromosome 6. 
However, our findings provide little support for any such effect being mediated 
through TPMT directly because there was only negligible correlation with 
respect to TPMT activity in our cohorts (Table 4). Noticeably, we did not find 
any variants of SLC22A16 that were significantly associated with TPMT 
activity. Thus, use of LCLs in studies aimed at discovering novel pharma-
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cogenetic loci may have serious limitations. Regardless, validation of results 
obtained in LCLs require validation in large-scale population/patient cohorts.  

SNPs localizing to PACSIN2, a gene previously reported to influence TPMT 
activity and to be related to MP-related gastrointestinal toxicity (Stocco et al., 
2012), were not associated with TPMT activity in our analyses (Table 4). Our 
negative finding in this regard is consistent with the work of Roberts et al. 
(2014b), who failed to confirm an association between PACSIN2 genotype and 
thiopurine-related ADRs in IBD patients.  

Yang et al. (2014) reported that a NUDT15 variant was associated with 
thiopurine-induced leukopenia firstly in a retrospective cohort of Korean IBD 
patients, and that finding was confirmed in subsequent studies involving children 
with ALL and MP intolerance (Tanaka et al., 2015; Yang et al., 2015). Very 
recently, Moriyama et al. (2016) provided mechanistic evidence of how 
NUDT15 variants may alter levels of active thiopurine metabolites, independent 
from TPMT, in a manner that increases thiopurine cytotoxicity. However, we 
did not observe any potential interaction of the NUDT15 R139C variant 
(rs116855232) with TPMT activity in our three cohorts (Table 4). However, it 
should be noted that the frequency of this allele is extremely low in non-Asians, 
including Estonians.  

Although the liver is the predominant site of thiopurine metabolism in 
humans, data demonstrating a close correlation between hepatic TPMT protein 
expression and cytosolic TPMT enzyme activity have been lacking. Here, we 
provide the first available systematic data on TPMT expression (mRNA, 
protein) and function (activity levels) in human liver samples. TPMT mRNA 
was not significantly correlated with either TPMT activity or TPMT protein 
levels, which supports previous findings demonstrating that the common TPMT 
polymorphisms 460G>A and 719A>G affect TPMT activity by way of post-
translational modifications and increased protein degradation (for review see 
Moon and Loftus, 2016). Moreover, TPMT mRNA expression did not correlate 
with either TPMT activity or TPMT protein expression (in immunoblots) in 
subjects carrying the TPMT reference sequence (confirmed by next generation 
sequencing). These data are in contrast to prior results showing a significant 
correlation between normal/high TPMT enzyme activity in RBCs and TPMT 
mRNA levels extracted from whole blood samples taken from 29 individuals 
(Lindqvist et al., 2003). It remains questionable whether the relationship 
between white blood cell mRNA and RBC TPMT enzyme activity is relevant 
for drug metabolism.  

The main limitations of our work are that this study was designed based on 
SNP array data and did not investigate gene duplications/deletions or genomic 
rearrangements, which might alter TPMT activity. Additionally, we did not 
investigate epigenetic regulation of TPMT expression (e.g. by non-coding RNAs 
such as microRNAs), which may be a plausible explanation, at least in part, for 
the lack of reliable correlation between TPMT mRNA expression and TPMT 
protein levels in the liver. Finally, the present study was not designed to identify 
genetic variants associated with thiopurine-related toxicity. Thus, we cannot 
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exclude the possibility that genes beyond TPMT are involved in determining 
thiopurine toxicity risk or treatment outcome.  

The identification of novel rare variant alleles beyond TPMT that are 
associated with TPMT activity will require whole genome next-generation 
sequencing approaches. Our meta-GWAS of data from a combined cohort of 
1212 subjects did not reveal any novel factors that were significantly associated 
with TPMT activity. Notably, we did not find confirmation of previously 
reported associations with other genes besides TPMT. Additional studies are 
needed to test whether such prior associations can be replicated. Moreover, in-
depth research studies are needed to clarify the extent to which and the 
mechanisms through which the present findings may explain the inter-individual 
variability seen in TPMT activity.  
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6. CONCLUSIONS 

This thesis provides an overview of different layers of -omics studies exploring 
inter-individual variability in TPMT activity.  
The following conclusions can be drawn from this dissertation: 
1. None of the newly detected markers in TPMT could be used to explain the 

discrepancies seen in TPMT genotype-phenotype correlations; the causes of 
ultra-high TPMT activity remain to be discovered.  

2. We identified a new pharmacometabolomic marker and therapeutic agent. Of 
the 43 biomarkers tested, only TPMT genotype and RBC SAM levels were 
found to influence TPMT activity significantly. The influence of SAM 
levels on TPMT activity was particularly pronounced in TPMT-hetero-
zygotes. 

3. Our studies did not reveal any additional genetic markers outside of TPMT 
that were predictive of TPMT activity. Although our data confirm that 
TPMT genotype is a robust predictor of TPMT activity in most individuals, 
TPMT genotype alone is insufficient to predict TPMT activity reliably. 
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SUMMARY IN ESTONIAN 

Uute tiopuriinmetüültransferaasi aktiivsust mõjutavate  
biomarkerite otsingul 

Alates inimese genoomi (peaaegu) lõpliku nukleotiidse järjestuse avaldamisest 
16 aastat tagasi, uute ja suure läbilaskevõimega järjestus- ehk sekveneerimis-
tehnoloogiate arengu ning sellega kaasnevate suurte andmemahtudega, mis 
sisaldavad informatsiooni individuaalsete genoomide varieeruvuse kohta, on 
personaalmeditsiin saanud peamiseks suunaks inimesegenoomikas. Selle kõige 
olulisem eesmärk on uute ja usaldusväärsete komplekstunnuseid mõjutavate 
leidude juurutamine kliinilisse praktikasse kasutades inimeste genoomiprofiile 
haigusriskide ja ravimivastuse hindamiseks. Farmakogeneetika/-genoomika on 
selle protsessi üks olulisi harusid, mille abil on võimalik muuta raviotsuste 
tegemine täpsemaks määrates igale patsiendile sobivaima ravimi või ravimi-
doosi, arvestades tema individuaalseid geneetilisi eripärasid.  

Üheks oluliseks võtmeteguriks personaliseeritud kasvajate ja immuunhai-
guste ravis on ensüüm tiopuriinmetüültransferaas (TPMT), mis asub raku tsüto-
plasmas. Kuna TPMT rakusisest substraati ei ole veel tuvastatud, käsitletakse 
seda kui faas II ravimimetaboliseerijat, mis vahendab metüülrühma ülekannet 
S-adenosüül-metioniinilt aromaatsetele ja heterotsüklilistele väävliühenditele. 
Nende väävliühendite hulka kuuluvad ka tiopuriinravimid: 6-merkaptopuriin, 
asatiopriin, 6-tioguaniin, mis metülatsiooni tulemusel inaktiveeruvad. Tiopuriin-
ravimeid kasutatakse tänapäeval peamiselt lapseea leukeemia, autoimmuun-
haiguste ravis ning siirdamisjärgse äratõukereaktsiooni vältimiseks. Suures osas 
sõltub TPMT aktiivsusest eelnimetatud ravimite poolt põhjustatud kõrval-
toimete teke. TPMT madala aktiivsuse tõttu tekib indiviididel tiopuriinide 
standarddooside kasutamisel nn ravimimürgistus. Mitmed uuringud on näidanud, 
et TPMT aktiivsus on pöördvõrdelises seoses tsütotoksiliste metaboliitide 
(tioguaniinnukleotiidide) moodustumisega ja kõrvaltoimete esinemisega st, 
mida madalam on ensüümi aktiivsus, seda kõrgem on tioguaniinnukleotiidide 
tase organismis ja vastupidi. 

Populatsiooniuuringutest on selgunud, et TPMT aktiivsus on kirjeldatav tri-
modaalse jaotusmudeli järgi. Valge rassi hulgas läbiviidud uuringud on näida-
nud, et keskmiselt omab ~0,3% indiviididest väga madalat ensüümi aktiivsust, 
ligikaudu 11% on ensüümi aktiivsus osaliselt vähenenud ja 89% on ensüümi 
aktiivsus normaalne. Seega teoreetiliselt on umbes 11% patsientidest ohustatud 
kõrvaltoimete tekkest eelnimetatud ravimite standarddooside kasutamisel. 
Samas on erinevates populatsiooniuuringutes välja joonistunud grupp indiviide, 
kes omavad tavapärasest kõrgemat ensüümi aktiivsust, kuid siiani ei ole leitud 
selle geneetilisi põhjuseid. Mutatsioonid/SNP-d TPMT geenis võivad mõjutada, 
peamiselt vähendades, ensüümi aktiivsust ning seega kutsuda esile kõrval-
toimeid, eelkõige vereloome pärssumist, ravimite standarddooside kasutamisel. 
Samas tavapärasest kõrgema ensüümi aktiivsusega indiviidide ravimine 
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standarddoosidega ei anna soovitud ravitulemust, kuna ravim metaboliseeri-
takse organismis väga kiiresti.  

Hoolimata mitmetest TPMT ensüümi aktiivsust vähendavate TPMT geeni-
variantide avastamisest, on kliinilises praktikas suureks probleemiks TPMT 
genotüügi-fenotüübi erinevused, eriti nn keskmise ensüümi aktiivsusega indi-
viidide seas. See tähendab, et genotüübi ehk TPMT geenivariantide abil ei ole 
võimalik ensüümi aktiivsust õigesti hinnata. On näidatud, et normaalse (wild-
type) TPMT genotüübiga indiviidide seas esineb madalama ensüümiaktiiv-
susega patsiente ja vastupidi, mis tähendab, et tekivad kõrvaltoimed ravimite 
standarddooside kasutamisel või puudub loodetud raviefekt. See fakt annab 
alust uute geneetiliste ja mitte-geneetiliste biomarkerite otsimiseks, et muuta 
geneetilise info kasutamise kliinilises praktikas täpsemaks ja usaldusväärse-
maks. 

Käesoleva töö kirjanduse ülevaates antakse põhjalik ülevaade farmakoge-
noomikast ja selle erinevatest olulistest komponentidest ning samuti aspektidest, 
mis mõjutavad selle kliinilist juurutamist. Lisaks on iseloomustatud TPMT ja 
tiopuriinravimite metabolismiradu, TPMT aktiivsust mõjutavaid teadaolevaid 
geneetilisi variante ning ka uusi avastatud potentsiaalseid biomarkereid. 

Töö eksperimentaalosa on jagatud kahte etappi. Esimene hõlmab esma-
kordselt eestlaste kohordis (n=253) läbiviidud TPMT genotüübi-fenotüübi 
uuringut. Selle raames sekveneerisime TPMT geeni ning tuvastasime teada-
olevaid ja uusi variatsioone. Leidsime, et eestlastel esineb ka kõige rohkem 
TPMT*3A alleeli heterosügootsust, mis on kooskõlas teiste valge rassi uurin-
gutega. Lisaks avastasime kolm uut geenimuutust, kuid nende mõju ensüümi 
aktiivsusele ei ole teada. Samas ei tuvastanud me ühtegi geenivarianti, mida 
võiks seostada väga kõrge TPMT ensüümi aktiivsusega. Haplotüüpide analüüs 
näitas ühe haplotüübi üleesindatust keskmise ensüümi aktiivsusega indiviidide 
hulgas, kuid antud leid vajab edasisi uuringuid.  

Töö teine etapp keskendub mitte-geneetiliste ja uute geneetiliste biomarke-
rite otsingutele. Kõigepealt uurisime suuremas eestlaste kohordis (n=1017) 
mittegeneetilise faktori S-adenosüül-metioniini (SAM) mõju TPMT aktiiv-
susele. Kuna varasematest töödest on teada, et SAM on TPMTle metüülrühma 
doonoriks ning in vitro katsed on näidanud selle varieeruva taseme mõju ensüümi 
aktiivsusele. Meie eesmärk oli näidata tervete inimeste kohordis, et SAMi 
varieeruv tase on seotud TPMT ensüümi aktiivsuse muutustega. Uuringu tule-
mused kinnitasid, et lisaks TPMT genotüübile on teine oluline ensüümiaktiivuse 
mõjutaja SAM ja seda just mutantse alleeli suhtes heterosügootsete, kuid TPMT 
normaalse aktiivsusega indiviidide seas. Samas, enne uue näitaja kliinilisse 
kasutusse rakendamist, tuleb saadud tulemusi kinnitada suuremas uuringus, 
kuna käesolevas töös kuulus sellisse gruppi (heterosügootne genotüüp-nor-
maalne ensüümi aktiivsus) vaid 10 indiviidi ning samuti ei ole selge tuvastatud 
seos tiopuriine manustavatel patsientidel.  

Seejärel viisime läbi suure assotsiatsiooniuuringu (n=1212) leidmaks uusi 
geneetilisi biomarkereid lisaks TPMT geenile, mis võiksid seletada suurt TPMT 
ensüümi aktiivsuse varieeruvust. Uuringusse kaasati tervete eestlaste (n=844) 
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ning saksa päritolu ägeda lapseea leukeemia patsientide kohort (n=245) ja 
maksaproovid (n=123), mis on peamine ravimimetabolismi kude. Assotsiat-
sioonianalüüsi ja meta-analüüsi tulemused näitasid, et ainult TPMT geeni 
variandid olid seotud TPMT ensüümiaktiivsuse varieeruvusega. Samas ei kinni-
tanud me oma töös varem avaldatud uuringute leide. 

Kokkuvõttes näitavad tulemused, et me tuvastasime uue mitte-geneetilise 
biomarkeri, mille edasised kinnitavad uuringud on väga olulised, selle integ-
reerimiseks kliinilisse kasutusse. Samas me ei leidnud uusi ja ei kinnitanud 
teaduskirjanduses varem avaldatud geneetiliste markerite seost TPMT ensüümi 
aktiivsusega. Kuna tulemused on ebaselged, siis kindlasti ei ole võimalik kliini-
lises igapäevapraktikas kasutada ainult TPMT genotüüpi ensüümiaktiivsuse ja 
ravimivastuse ennustamiseks. Hoolimata juhtnööridest geneetiliste markerite 
kasutamise ja tulemuste tõlgendamise kohta arstide igapäevatöös, tuleb väga 
täpselt jälgida patsiendi ravikulgu kasutades siiamaani kaustuses olevaid 
meetodeid ja raviskeeme. 
 

  



72 

REFERENCES 

Aarbakke, J., 1995. Biology and pharmacology of thiopurines. Pediatr Hematol Oncol. 
12, 511–9. 

Adams, R., et al., 2012. Binding sites in membrane proteins – diversity, druggability 
and prospects. Eur J Cell Biol. 91, 326–39. 

Ahmed, S., et al., 2016. Pharmacogenomics of Drug Metabolizing Enzymes and Trans-
porters: Relevance to Precision Medicine. Genomics Proteomics Bioinformatics. 14, 
298–313. 

Al Hadithy, A. F., et al., 2005. Thiopurines in inflammatory bowel disease: pharma-
cogenetics, therapeutic drug monitoring and clinical recommendations. Dig Liver 
Dis. 37, 282–97. 

Al-Judaibi, B., et al., 2016. Genetic Predictors of Azathioprine Toxicity and Clinical 
Response in Patients with Inflammatory Bowel Disease. J Popul Ther Clin Phar-
macol. 23, e26–36. 

Allorge, D., et al., 2005. ITPA genotyping test does not improve detection of Crohn's 
disease patients at risk of azathioprine/6-mercaptopurine induced myelosuppression. 
Gut. 54, 565. 

Alves, S., et al., 2001. Influence of the variable number of tandem repeats located in the 
promoter region of the thiopurine methyltransferase gene on enzymatic activity. 
Clin Pharmacol Ther. 70, 165–74. 

Alves, S., et al., 2000. Characterization of three new VNTR alleles in the promoter 
region of the TPMT gene. Hum Mutat. 15, 121. 

Ames, M. M., et al., 1986. Thiopurine methyltransferase: structure-activity relationships 
for benzoic acid inhibitors and thiophenol substrates. J Med Chem. 29, 354–8. 

Ameyaw, M. M., et al., 1999. Thiopurine methyltransferase alleles in British and 
Ghanaian populations. Hum Mol Genet. 8, 367–70. 

Ansari, A., et al., 2008a. Prospective evaluation of the pharmacogenetics of azathioprine 
in the treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 28, 973–
83. 

Ansari, A., et al., 2008b. Influence of xanthine oxidase on thiopurine metabolism in 
Crohn's disease. Aliment Pharmacol Ther. 28, 749–57. 

Ansari, A., et al., 2002. Thiopurine methyltransferase activity and the use of 
azathioprine in inflammatory bowel disease. Aliment Pharmacol Ther. 16, 1743–50. 

Appell, M. L., et al., 2010. Characterization of a novel sequence variant, TPMT*28, in 
the human thiopurine methyltransferase gene. Pharmacogenet Genomics. 20, 700–7. 

Arenas, M., et al., 2004. Genetic determinants of the pre- and post-azathioprine therapy 
thiopurine methyltransferase activity phenotype. Nucleosides Nucleotides Nucleic 
Acids. 23, 1403–5. 

Arenas, M., et al., 2005. Genetic variation in the MTHFR gene influences thiopurine 
methyltransferase activity. Clin Chem. 51, 2371–4. 

Armstrong, D., Migeon, J, Rolf, MG, Bowes, J, Crawford, M, Valentin, JP., 2008. 
Secondary Pharmacodynamic Studies and In Vitro Pharmacological Profiling. John 
Wiley & Sons, Inc, Hoboken, NJ, USA. 

Axelrad, J. E., et al., 2016. Thiopurines and inflammatory bowel disease: Current evi-
dence and a historical perspective. World J Gastroenterol. 22, 10103–10117. 

Ban, H., et al., 2010. The multidrug-resistance protein 4 polymorphism is a new factor 
accounting for thiopurine sensitivity in Japanese patients with inflammatory bowel 
disease. J Gastroenterol. 45, 1014–21. 



73 

Benmassaoud, A., et al., 2015. Thiopurines in the management of Crohn disease: Safety 
and efficacy profile in patients with normal thiopurine S-methyl transferase 
activity – a retrospective study. Can J Gastroenterol Hepatol. 

Bertholee, D., et al., 2016. Genotypes Affecting the Pharmacokinetics of Anticancer 
Drugs. Clin Pharmacokinet. 

Black, A. J., et al., 1998. Thiopurine methyltransferase genotype predicts therapy-limi-
ting severe toxicity from azathioprine. Ann Intern Med. 129, 716–8. 

Blaker, A. P., et al., 2012. The pharmacogenetic basis of individual variation in thiopu-
rine metabolism. Personalized Medicine. 9, 707–725. 

Bostrom, B., Erdmann, G., 1993. Cellular pharmacology of 6-mercaptopurine in acute 
lymphoblastic leukemia. Am J Pediatr Hematol Oncol. 15, 80–6. 

Brouwer, C., et al., 2005. Thiopurine methyltransferase in acute lymphoblastic 
leukaemia: biochemical and molecular biological aspects. Eur J Cancer. 41, 613–23. 

Brox, L. W., et al., 1981. Clinical pharmacology of oral thioguanine in acute myelo-
genous leukemia. Cancer Chemother Pharmacol. 6, 35–8. 

Brunton, L., et al., 2005. Goodman & Gilman's The Pharmacological Basis of 
Therapeutics. McGraw-Hill Companies. 

BURCHENAL, J. H., et al., 1953. Clinical evaluation of a new antimetabolite, 6-
mercaptopurine, in the treatment of leukemia and allied diseases. Blood. 8, 965–99. 

Cascorbi, I., 2011. P-glycoprotein: tissue distribution, substrates, and functional 
consequences of genetic variations. Handb Exp Pharmacol. 261–83. 

Caudle, K. E., et al., 2016. Standardizing terms for clinical pharmacogenetic test results: 
consensus terms from the Clinical Pharmacogenetics Implementation Consortium 
(CPIC). Genet Med. 

Chan, G. L., et al., 1990. Azathioprine metabolism: pharmacokinetics of 6-mercap-
topurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. J 
Clin Pharmacol. 30, 358–63. 

Cheok, M. H., et al., 2009. Pharmacogenetics in acute lymphoblastic leukemia. Semin 
Hematol. 46, 39–51. 

Chinn, L. W., Kroetz, D. L., 2007. ABCB1 pharmacogenetics: progress, pitfalls, and 
promise. Clin Pharmacol Ther. 81, 265–9. 

Chouchana, L., et al., 2012. Review article: the benefits of pharmacogenetics for 
improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol 
Ther. 35, 15–36. 

Clarke, D. A., et al., 1958. Structure-activity relationships among purines related to 6-
mercaptopurine. Cancer Res. 18, 445–56. 

Coelho, T., et al., 2016. Genes implicated in thiopurine-induced toxicity: Comparing 
TPMT enzyme activity with clinical phenotype and exome data in a paediatric IBD 
cohort. Sci Rep. 6, 34658. 

Coenen, M. J., et al., 2015. Identification of Patients With Variants in TPMT and Dose 
Reduction Reduces Hematologic Events During Thiopurine Treatment of 
Inflammatory Bowel Disease. Gastroenterology. 149, 907–17.e7. 

Colleoni, L., et al., 2012. A New Thiopurine S-Methyltransferase Haplotype Associated 
With Intolerance to Azathioprine. J Clin Pharmacol. 

Collie-Duguid, E. S., et al., 1999. The frequency and distribution of thiopurine methyl-
transferase alleles in Caucasian and Asian populations. Pharmacogenetics. 9, 37–42. 

Colombel, J. F., et al., 2000. Genotypic analysis of thiopurine S-methyltransferase in 
patients with Crohn’s disease and severe myelosuppression during azathioprine 
therapy. Gastroenterology. 118, 1025–30. 



74 

Colonna, T., Korelitz, B. I., 1994. The role of leukopenia in the 6-mercaptopurine-
induced remission of refractory Crohn's disease. Am J Gastroenterol. 89, 362–6. 

Connell, W. R., et al., 1993. Bone marrow toxicity caused by azathioprine in inflam-
matory bowel disease: 27 years of experience. Gut. 34, 1081–5. 

Cosnes, J., et al., 2005. Impact of the increasing use of immunosuppressants in Crohn's 
disease on the need for intestinal surgery. Gut. 54, 237–41. 

Coulthard, S., Hogarth, L., 2005. The thiopurines: an update. Invest New Drugs. 23, 
523–32. 

Coulthard, S. A., et al., 1998. The relationship between thiopurine methyltransferase 
activity and genotype in blasts from patients with acute leukemia. Blood. 92, 2856–
62. 

Dalén, P., et al., 1998. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 
3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther. 63, 444–52. 

de Graaf, P., et al., 2010. Influence of 5-aminosalicylic acid on 6-thioguanosine 
phosphate metabolite levels: a prospective study in patients under steady thiopurine 
therapy. Br J Pharmacol. 160, 1083–91. 

De Ridder, L., et al., 2006. Pharmacogenetics of thiopurine therapy in paediatric IBD 
patients. Aliment Pharmacol Ther. 23, 1137–41. 

DeGorter, M. K., et al., 2012. Drug transporters in drug efficacy and toxicity. Annu Rev 
Pharmacol Toxicol. 52, 249–73. 

Deininger, M., et al., 1994. Purine substrates for human thiopurine methyltransferase. 
Biochem Pharmacol. 48, 2135–8. 

Derijks, L. J., et al., 2006. Review article: thiopurines in inflammatory bowel disease. 
Aliment Pharmacol Ther. 24, 715–29. 

Dervieux, T., et al., 2003. Antagonism by methotrexate on mercaptopurine disposition 
in lymphoblasts during up-front treatment of acute lymphoblastic leukemia. Clin 
Pharmacol Ther. 73, 506–16. 

Dewit, O., et al., 2010. Thiopurine metabolism monitoring: implications in inflam-
matory bowel diseases. Eur J Clin Invest. 40, 1037–47. 

Ding, L., et al., 2012. Hypoxanthine guanine phosphoribosyltransferase activity is 
related to 6-thioguanine nucleotide concentrations and thiopurine-induced leuko-
penia in the treatment of inflammatory bowel disease. Inflamm Bowel Dis. 18, 63–
73. 

Dokmanović, L., et al., 2008. [Importance of genotyping of thiopurine S-methyl-
transferase in children with acute lymphoblastic leukaemia during maintenance 
therapy]. Srp Arh Celok Lek. 136, 609–16. 

Dorababu, P., et al., 2012. Genetic variants of thiopurine and folate metabolic pathways 
determine 6-MP-mediated hematological toxicity in childhood ALL. Pharmaco-
genomics. 13, 1001–8. 

Dubinsky, M. C., et al., 2000. Pharmacogenomics and metabolite measurement for 6-
mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 118, 
705–13. 

Dubinsky, M. C., et al., 2002. 6-MP metabolite profiles provide a biochemical 
explanation for 6-MP resistance in patients with inflammatory bowel disease. 
Gastroenterology. 122, 904–15. 

Duley, J. A., Florin, T. H., 2005. Thiopurine therapies: problems, complexities, and 
progress with monitoring thioguanine nucleotides. Ther Drug Monit. 27, 647–54. 

Eklund, B. I., et al., 2006. Divergent activities of human glutathione transferases in the 
bioactivation of azathioprine. Mol Pharmacol. 70, 747–54. 



75 

Elion, G. B., 1986. Historical background of 6-mercaptopurine. Toxicol Ind Health. 2, 
1–9. 

Elion, G. B., 1989. The purine path to chemotherapy. Science. 244, 41–7. 
Elion, G. B., 1993. The George Hitchings and Gertrude Elion Lecture. The pharma-

cology of azathioprine. Ann N Y Acad Sci. 685, 400–7. 
ELION, G. B., et al., 1951. Antagonists of nucleic acid derivatives. VI. Purines. J Biol 

Chem. 192, 505–18. 
Erb, N., et al., 1998. Pharmacokinetics and metabolism of thiopurines in children with 

acute lymphoblastic leukemia receiving 6-thioguanine versus 6-mercaptopurine. 
Cancer Chemother Pharmacol. 42, 266–72. 

Evans, W. E., et al., 1991. Altered mercaptopurine metabolism, toxic effects, and 
dosage requirement in a thiopurine methyltransferase-deficient child with acute 
lymphocytic leukemia. J Pediatr. 119, 985–9. 

Evans, W. E., Relling, M. V., 1999. Pharmacogenomics: translating functional geno-
mics into rational therapeutics. Science. 286, 487–91. 

Fazel-Najafabadi, E., et al., 2015. Structural and functional impact of missense 
mutations in TPMT: An integrated computational approach. Comput Biol Chem. 59 
Pt A, 48–55. 

Feng, Q., et al., 2010. Thiopurine S-methyltransferase pharmacogenetics: functional 
characterization of a novel rapidly degraded variant allozyme. Biochem Pharmacol. 
79, 1053–61. 

Fessing, M. Y., et al., 1998. Functional characterization of the human thiopurine S-
methyltransferase (TPMT) gene promoter. Eur J Biochem. 256, 510–7. 

Ford, L., et al., 2009. Thiopurine S-methyltransferase genotype-phenotype concordance: 
used as a quality assurance tool to help control the phenotype assay. Ann Clin 
Biochem. 46, 152–4. 

Fotoohi, A. K., et al., 2010. Thiopurines: factors influencing toxicity and response. Bio-
chem Pharmacol. 79, 1211–20. 

Fotoohi, A. K., et al., 2006. Involvement of the concentrative nucleoside transporter 3 
and equilibrative nucleoside transporter 2 in the resistance of T-lymphoblastic cell 
lines to thiopurines. Biochem Biophys Res Commun. 343, 208–15. 

Gabriel, S. B., et al., 2002. The structure of haplotype blocks in the human genome. 
Science. 296, 2225–9. 

Ganiere-Monteil, C., et al., 2004. Phenotype and genotype for thiopurine methyl-
transferase activity in the French Caucasian population: impact of age. Eur J Clin 
Pharmacol. 60, 89–96. 

Garat, A., et al., 2008. Characterisation of novel defective thiopurine S-methyltrans-
ferase allelic variants. Biochem Pharmacol. 76, 404–15. 

Gardiner, S. J., et al., 2006. Two cases of thiopurine methyltransferase (TPMT) 
deficiency – a lucky save and a near miss with azathioprine. Br J Clin Pharmacol. 
62, 473–6. 

Gearry, R. B., et al., 2004. Lack of association between the ITPA 94C>A polymorphism 
and adverse effects from azathioprine. Pharmacogenetics. 14, 779–81. 

Gisbert, J. P., Gomollón, F., 2008. Thiopurine-induced myelotoxicity in patients with 
inflammatory bowel disease: a review. Am J Gastroenterol. 103, 1783–800. 

Gisbert, J. P., et al., 2007. Thiopurine methyltransferase activity in Spain: a study of 
14,545 patients. Dig Dis Sci. 52, 1262–9. 



76 

Gisbert, J. P., et al., 2006. Choice of azathioprine or 6-mercaptopurine dose based on 
thiopurine methyltransferase (TPMT) activity to avoid myelosuppression. A 
prospective study. Hepatogastroenterology. 53, 399–404. 

Gupta, S., Jhawat, V., 2017. Quality by design (QbD) approach of pharmacogenomics 
in drug designing and formulation development for optimization of drug delivery 
systems. J Control Release. 245, 15–26. 

Haglund, S., et al., 2004. Pyrosequencing of TPMT alleles in a general Swedish 
population and in patients with inflammatory bowel disease. Clin Chem. 50, 288–
95. 

Hall, A. G., et al., 2001. The use of denaturing high-pressure liquid chromatography for 
the detection of mutations in thiopurine methyltransferase. J Biochem Biophys 
Methods. 47, 65–71. 

Hamdan-Khalil, R., et al., 2003. In vitro characterization of four novel non-functional 
variants of the thiopurine S-methyltransferase. Biochem Biophys Res Commun. 
309, 1005–10. 

Hamdan-Khalil, R., et al., 2005. Identification and functional analysis of two rare allelic 
variants of the thiopurine S-methyltransferase gene, TPMT*16 and TPMT*19. 
Biochem Pharmacol. 69, 525–9. 

Hamdy, S. I., et al., 2003. Genotype and allele frequencies of TPMT, NAT2, GST, 
SULT1A1 and MDR-1 in the Egyptian population. Br J Clin Pharmacol. 55, 560–9. 

Hanauer, S. B., et al., 2001. Management of Crohn's disease in adults. Am J Gastro-
enterol. 96, 635–43. 

Hawwa, A. F., et al., 2008. Pharmacogenomic studies of the anticancer and immuno-
suppressive thiopurines mercaptopurine and azathioprine. Br J Clin Pharmacol. 66, 
517–28. 

Higgs, J. E., et al., 2010. Are patients with intermediate TPMT activity at increased risk 
of myelosuppression when taking thiopurine medications? Pharmacogenomics. 11, 
177–88. 

Hindorf, U., Appell, M. L., 2012. Genotyping should be considered the primary choice 
for pre-treatment evaluation of thiopurine methyltransferase function. J Crohns 
Colitis. 6, 655–9. 

Hindorf, U., et al., 2006. Adverse events leading to modification of therapy in a large 
cohort of patients with inflammatory bowel disease. Aliment Pharmacol Ther. 24, 
331–42. 

Hindorf, U., et al., 2004. Assessment of thiopurine methyltransferase and metabolite 
formation during thiopurine therapy: results from a large Swedish patient popu-
lation. Ther Drug Monit. 26, 673–8. 

Holmes, S. L., et al., 1979. Human inosine triphosphatase: catalytic properties and 
population studies. Clin Chim Acta. 97, 143–53. 

Hon, Y. Y., et al., 1999. Polymorphism of the thiopurine S-methyltransferase gene in 
African-Americans. Hum Mol Genet. 8, 371–6. 

Honchel, R., et al., 1993. Human thiopurine methyltransferase: molecular cloning and 
expression of T84 colon carcinoma cell cDNA. Mol Pharmacol. 43, 878–87. 

Huh, K., et al., 1976. Tissue distribution and characteristics of xanthine oxidase and 
allopurinol oxidizing enzyme. Jpn J Pharmacol. 26, 719–24. 

Inamochi, H., et al., 1999. Delayed cytotoxicity of 6-mercaptopurine is compatible with 
mitotic death caused by DNA damage due to incorporation of 6-thioguanine into 
DNA as 6-thioguanine nucleotide. J Exp Clin Cancer Res. 18, 417–24. 



77 

Indjova, D., et al., 2003. Phenotypic and genotypic analysis of thiopurine s-
methyltransferase polymorphism in the bulgarian population. Ther Drug Monit. 25, 
631–6. 

Ingelman-Sundberg, M., Cascorbi, I., 2016. Pharmacogenomic or -epigenomic bio-
markers in drug treatment: Two sides of the same medal? Clin Pharmacol Ther. 99, 
478–80. 

Ingelman-Sundberg, M., et al., 1999. Polymorphic human cytochrome P450 enzymes: 
an opportunity for individualized drug treatment. Trends Pharmacol Sci. 20, 342–9. 

Jacqz-Aigrain, E., et al., 1994. Thiopurine methyltransferase activity in a French 
population: h.p.l.c. assay conditions and effects of drugs and inhibitors. Br J Clin 
Pharmacol. 38, 1–8. 

Janke, D., et al., 2008. 6-mercaptopurine and 9-(2-phosphonyl-methoxyethyl) adenine 
(PMEA) transport altered by two missense mutations in the drug transporter gene 
ABCC4. Hum Mutat. 29, 659–69. 

Jayachandran, D., et al., 2015. Model-Based Individualized Treatment of Chemo-
therapeutics: Bayesian Population Modeling and Dose Optimization. PLoS One. 10, 
e0133244. 

Johnson, J. A., 2001. Drug target pharmacogenomics: an overview. Am J Pharma-
cogenomics. 1, 271–81. 

Johnson, J. A., 2003. Pharmacogenetics: potential for individualized drug therapy 
through genetics. Trends Genet. 19, 660–6. 

Kacevska, M., et al., 2012. Epigenetic-dependent regulation of drug transport and 
metabolism: an update. Pharmacogenomics. 13, 1373–85. 

Karas-Kuzelicki, N., et al., 2009. Heterozygosity at the TPMT gene locus, augmented 
by mutated MTHFR gene, predisposes to 6-MP related toxicities in childhood ALL 
patients. Leukemia. 23, 971–4. 

Karas-Kuzelicki, N., Mlinaric-Rascan, I., 2009. Individualization of thiopurine therapy: 
thiopurine S-methyltransferase and beyond. Pharmacogenomics. 10, 1309–22. 

Karas-Kuželički, N., et al., 2014. From pharmacogenetics to pharmacometabolomics: 
SAM modulates TPMT activity. Pharmacogenomics. 15, 1437–49. 

Kessels, M. M., Qualmann, B., 2004. The syndapin protein family: linking membrane 
trafficking with the cytoskeleton. J Cell Sci. 117, 3077–86. 

Kham, S. K., et al., 2009. TPMT*26 (208F–>L), a novel mutation detected in a 
Chinese. Br J Clin Pharmacol. 68, 120–3. 

Kim, H. Y., et al., 2015. Complete sequence-based screening of TPMT variants in the 
Korean population. Pharmacogenet Genomics. 25, 143–6. 

Kirchheiner, J., Seeringer, A., 2007. Clinical implications of pharmacogenetics of cyto-
chrome P450 drug metabolizing enzymes. Biochim Biophys Acta. 1770, 489–94. 

Kirschner, B. S., 1998. Safety of azathioprine and 6-mercaptopurine in pediatric 
patients with inflammatory bowel disease. Gastroenterology. 115, 813–21. 

Konits, P. H., et al., 1982. Phase II evaluation and plasma pharmacokinetics of high-
dose intravenous 6-thioguanine in patients with colorectal carcinoma. Cancer 
Chemother Pharmacol. 8, 199–203. 

Kotur, N., et al., 2015. TPMT gene expression is increased during maintenance therapy 
in childhood acute lymphoblastic leukemia patients in a TPMT gene promoter 
variable number of tandem repeat-dependent manner. Pharmacogenomics. 16, 
1701–12. 



78 

Kotur, N., et al., 2012. 6-mercaptopurine influences TPMT gene transcription in a 
TPMT gene promoter variable number of tandem repeats-dependent manner. 
Pharmacogenomics. 13, 283–95. 

Kozyra, M., et al., 2017. Rare genetic variants in cellular transporters, metabolic 
enzymes, and nuclear receptors can be important determinants of interindividual 
differences in drug response. Genet Med. 19, 20–29. 

Krishnamurthy, P., et al., 2008. Transporter-mediated protection against thiopurine-
induced hematopoietic toxicity. Cancer Res. 68, 4983–9. 

Krynetski, E. Y., et al., 1997. Promoter and intronic sequences of the human thiopurine 
S-methyltransferase (TPMT) gene isolated from a human PAC1 genomic library. 
Pharm Res. 14, 1672–8. 

Krynetski, E. Y., et al., 1995. A single point mutation leading to loss of catalytic 
activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci U S A. 92, 
949–53. 

Krynetski, E. Y., et al., 1996. Genetic polymorphism of thiopurine S-methyltransferase: 
clinical importance and molecular mechanisms. Pharmacogenetics. 6, 279–90. 

Kröplin, T., et al., 1998. Thiopurine S-methyltransferase activity in human erythrocytes: 
a new HPLC method using 6-thioguanine as substrate. Eur J Clin Pharmacol. 54, 
265–71. 

Kubota, T., Chiba, K., 2001. Frequencies of thiopurine S-methyltransferase mutant 
alleles (TPMT*2, *3A, *3B and *3C) in 151 healthy Japanese subjects and the 
inheritance of TPMT*3C in the family of a propositus. Br J Clin Pharmacol. 51, 
475–7. 

Kudo, M., et al., 2008. Functional characterization of human xanthine oxidase allelic 
variants. Pharmacogenet Genomics. 18, 243–51. 

Kurtovic, S., et al., 2008. Glutathione transferase activity with a novel substrate mimics 
the activation of the prodrug azathioprine. Anal Biochem. 375, 339–44. 

Kurzawski, M., et al., 2009. TPMT but not ITPA gene polymorphism influences the risk 
of azathioprine intolerance in renal transplant recipients. Eur J Clin Pharmacol. 65, 
533–40. 

Kurzawski, M., et al., 2012. Polymorphism of genes involved in purine metabolism 
(XDH, AOX1, MOCOS) in kidney transplant recipients receiving azathioprine. Ther 
Drug Monit. 34, 266–74. 

Landy, J., et al., 2011. Novel thiopurine methyltransferase variant TPMT*28 results in a 
misdiagnosis of TPMT deficiency. Inflamm Bowel Dis. 17, 1441–2. 

Laróvere, L. E., et al., 2003. Genetic polymorphism of thiopurine S-methyltransferase 
in Argentina. Ann Clin Biochem. 40, 388–93. 

Lee, C. K., et al., 2012. Detection of a novel single nucleotide polymorphism of the 
human thiopurine s-methyltransferase gene in a Chinese individual. Drug Metab 
Pharmacokinet. 27, 559–61. 

Lee, D., et al., 1995. Thiopurine methyltransferase pharmacogenetics. Cloning of 
human liver cDNA and a processed pseudogene on human chromosome 18q21.1. 
Drug Metab Dispos. 23, 398–405. 

Lennard, L., et al., 2012. Thiopurine methyltransferase genotype-phenotype discor-
dance, and thiopurine active metabolite formation, in childhood acute lymphoblastic 
leukaemia. Br J Clin Pharmacol. 

Lennard, L., et al., 1993. Congenital thiopurine methyltransferase deficiency and 6-
mercaptopurine toxicity during treatment for acute lymphoblastic leukaemia. Arch 
Dis Child. 69, 577–9. 



79 

Lennard, L., Singleton, H. J., 1994. High-performance liquid chromatographic assay of 
human red blood cell thiopurine methyltransferase activity. J Chromatogr B Biomed 
Appl. 661, 25–33. 

Lennard, L., et al., 1987. Thiopurine pharmacogenetics in leukemia: correlation of 
erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide 
concentrations. Clin Pharmacol Ther. 41, 18–25. 

Lennard, L., et al., 1989. Pharmacogenetics of acute azathioprine toxicity: relationship 
to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther. 46, 
149–54. 

Lennard, L., et al., 1997. Thiopurine drugs in the treatment of childhood leukaemia: the 
influence of inherited thiopurine methyltransferase activity on drug metabolism and 
cytotoxicity. Br J Clin Pharmacol. 44, 455–61. 

LePage, G. A., Whitecar, J. P., 1971. Pharmacology of 6-thioguanine in man. Cancer 
Res. 31, 1627–31. 

Lewis, L. D., et al., 1997. Olsalazine and 6-mercaptopurine-related bone marrow 
suppression: a possible drug-drug interaction. Clin Pharmacol Ther. 62, 464–75. 

Lichtenstein, G. R., et al., 2006. [American Gastroenterological Association Institute 
technical review on corticosteroids, immunomodulators, and infliximab in inflam-
matory bowel disease]. Rev Gastroenterol Mex. 71, 351–401. 

Lin, S., et al., 2001. Cloning, expression, and characterization of a human inosine 
triphosphate pyrophosphatase encoded by the itpa gene. J Biol Chem. 276, 18695–
701. 

Lindqvist, M., et al., 2003. Real-time RT-PCR methodology for quantification of 
thiopurine methyltransferase gene expression. Eur J Clin Pharmacol. 59, 207–11. 

Lindqvist, M., et al., 2004. Identification of two novel sequence variants affecting 
thiopurine methyltransferase enzyme activity. Pharmacogenetics. 14, 261–5. 

Lindqvist, M., et al., 2007. Explaining TPMT genotype/phenotype discrepancy by 
haplotyping of TPMT*3A and identification of a novel sequence variant, TPMT*23. 
Pharmacogenet Genomics. 17, 891–5. 

Link, E., et al., 2008. SLCO1B1 variants and statin-induced myopathy – a genomewide 
study. N Engl J Med. 359, 789–99. 

Liu, C., et al., 2016. Genomewide Approach Validates Thiopurine Methyltransferase 
Activity Is a Monogenic Pharmacogenomic Trait. Clin Pharmacol Ther. 

Liu, Y. P., et al., 2015. Association between Thiopurine S-Methyltransferase Poly-
morphisms and Azathioprine-Induced Adverse Drug Reactions in Patients with 
Autoimmune Diseases: A Meta-Analysis. PLoS One. 10, e0144234. 

Loit, E., et al., 2011. Pre-analytic and analytic sources of variations in thiopurine 
methyltransferase activity measurement in patients prescribed thiopurine-based 
drugs: A systematic review. Clin Biochem. 44, 751–7. 

Lowry, P. W., et al., 2001a. Measurement of thiopurine methyltransferase activity and 
azathioprine metabolites in patients with inflammatory bowel disease. Gut. 49, 665–
70. 

Lowry, P. W., et al., 2001b. Leucopenia resulting from a drug interaction between 
azathioprine or 6-mercaptopurine and mesalamine, sulphasalazine, or balsalazide. 
Gut. 49, 656–64. 

Madadi, P., et al., 2007. Safety of codeine during breastfeeding: fatal morphine 
poisoning in the breastfed neonate of a mother prescribed codeine. Can Fam 
Physician. 53, 33–5. 



80 

Marinaki, A. M., et al., 2004. Adverse drug reactions to azathioprine therapy are 
associated with polymorphism in the gene encoding inosine triphosphate 
pyrophosphatase (ITPase). Pharmacogenetics. 14, 181–7. 

Marinaki, A. M., et al., 2003. Genetic determinants of the thiopurine methyltransferase 
intermediate activity phenotype in British Asians and Caucasians. Pharma-
cogenetics. 13, 97–105. 

Matimba, A., et al., 2014. Thiopurine pharmacogenomics: association of SNPs with 
clinical response and functional validation of candidate genes. Pharmacogenomics. 
15, 433–47. 

McLeod, H. L., et al., 2000. Genetic polymorphism of thiopurine methyltransferase and 
its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia. 14, 
567–72. 

McLeod, H. L., et al., 1994. Thiopurine methyltransferase activity in American white 
subjects and black subjects. Clin Pharmacol Ther. 55, 15–20. 

McLeod, H. L., et al., 1993. Azathioprine-induced myelosuppression in thiopurine 
methyltransferase deficient heart transplant recipient. Lancet. 341, 1151. 

Meyer, U. A., 2004. Pharmacogenetics – five decades of therapeutic lessons from 
genetic diversity. Nat Rev Genet. 5, 669–76. 

Meyer, U. A., 2012. Personalized medicine: a personal view. Clin Pharmacol Ther. 91, 
373–5. 

Milek, M., et al., 2009. S-adenosylmethionine regulates thiopurine methyltransferase 
activity and decreases 6-mercaptopurine cytotoxicity in MOLT lymphoblasts. 
Biochem Pharmacol. 77, 1845–53. 

Milek, M., et al., 2006. Thiopurine S-methyltransferase pharmacogenetics: genotype to 
phenotype correlation in the Slovenian population. Pharmacology. 77, 105–14. 

Milek, M., et al., 2012. Post-translational stabilization of thiopurine S-methyltransferase 
by S-adenosyl-L-methionine reveals regulation of TPMT*1 and *3C allozymes. 
Biochem Pharmacol. 83, 969–76. 

Moon, W., Loftus, E. V., 2016. Review article: recent advances in pharmacogenetics 
and pharmacokinetics for safe and effective thiopurine therapy in inflammatory 
bowel disease. Aliment Pharmacol Ther. 

Moriyama, T., et al., 2016. NUDT15 polymorphisms alter thiopurine metabolism and 
hematopoietic toxicity. Nat Genet. 48, 367–73. 

MURRAY, J. E., et al., 1963. Prolonged survival of human-kidney homografts by 
immunosuppressive drug therapy. N Engl J Med. 268, 1315–23. 

Nasedkina, T. V., et al., 2006. Rapid genotyping of common deficient thiopurine S-
methyltransferase alleles using the DNA-microchip technique. Eur J Hum Genet. 
14, 991–8. 

Nayak, R. R., Turnbaugh, P. J., 2016. Mirror, mirror on the wall: which microbiomes 
will help heal them all? BMC Med. 14, 72. 

Norton, R. M., 2001. Clinical pharmacogenomics: applications in pharmaceutical R&D. 
Drug Discov Today. 6, 180–185. 

Ogino, S., Wilson, R. B., 2003. Genotype and haplotype distributions of 
MTHFR677C>T and 1298A>C single nucleotide polymorphisms: a meta-analysis. J 
Hum Genet. 48, 1–7. 

Oselin, K., Anier, K., 2007. Inhibition of human thiopurine S-methyltransferase by 
various nonsteroidal anti-inflammatory drugs in vitro: a mechanism for possible 
drug interactions. Drug Metab Dispos. 35, 1452–4. 



81 

Otterness, D., et al., 1997. Human thiopurine methyltransferase pharmacogenetics: gene 
sequence polymorphisms. Clin Pharmacol Ther. 62, 60–73. 

Pacifici, G. M., et al., 1991. Thiol methyltransferase in humans: development and tissue 
distribution. Dev Pharmacol Ther. 17, 8–15. 

Parks, D. A., Granger, D. N., 1986. Xanthine oxidase: biochemistry, distribution and 
physiology. Acta Physiol Scand Suppl. 548, 87–99. 

Pasipoularides, A., 2016. Genomic translational research: Paving the way to indi-
vidualized cardiac functional analyses and personalized cardiology. Int J Cardiol. 

Patel, J. N., 2016. Cancer pharmacogenomics, challenges in implementation, and 
patient-focused perspectives. Pharmgenomics Pers Med. 9, 65–77. 

Peng, X. X., et al., 2008. Up-regulation of MRP4 and down-regulation of influx trans-
porters in human leukemic cells with acquired resistance to 6-mercaptopurine. Leuk 
Res. 32, 799–809. 

Pillans, P. I., 2008. Clinical perspectives in drug safety and adverse drug reactions. 
Expert Rev Clin Pharmacol. 1, 695–705. 

Pinto, N., Dolan, M. E., 2011. Clinically relevant genetic variations in drug meta-
bolizing enzymes. Curr Drug Metab. 12, 487–97. 

Plumpton, C. O., et al., 2016. A Systematic Review of Economic Evaluations of 
Pharmacogenetic Testing for Prevention of Adverse Drug Reactions. Pharmaco-
economics. 34, 771–93. 

Prefontaine, E., et al., 2010. Azathioprine or 6-mercaptopurine for induction of 
remission in Crohn’s disease. Cochrane Database Syst Rev. CD000545. 

Present, D. H., et al., 1989. 6-Mercaptopurine in the management of inflammatory 
bowel disease: short- and long-term toxicity. Ann Intern Med. 111, 641–9. 

Prudova, A., et al., 2006. S-adenosylmethionine stabilizes cystathionine beta-synthase 
and modulates redox capacity. Proc Natl Acad Sci U S A. 103, 6489–94. 

Relling, M. V., Evans, W. E., 2015. Pharmacogenomics in the clinic. Nature. 526, 343–
50. 

Relling, M. V., et al., 2013. Clinical pharmacogenetics implementation consortium 
guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 
update. Clin Pharmacol Ther. 93, 324–5. 

Relling, M. V., et al., 2011. Clinical Pharmacogenetics Implementation Consortium 
guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin 
Pharmacol Ther. 89, 387–91. 

Relling, M. V., et al., 1999. Mercaptopurine therapy intolerance and heterozygosity at 
the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst. 91, 2001–8. 

Relling, M. V., et al., 1992. Racial and gender differences in N-acetyltransferase, 
xanthine oxidase, and CYP1A2 activities. Clin Pharmacol Ther. 52, 643–58. 

REMY, C. N., 1963. Metabolism of thiopyrimidines and thiopurines. S-Methylation 
with S-adenosylmethionine transmethylase and catabolism in mammalian tissues. J 
Biol Chem. 238, 1078–84. 

Roberts, R. L., et al., 2007. IMPDH1 promoter mutations in a patient exhibiting 
azathioprine resistance. Pharmacogenomics J. 7, 312–7. 

Roberts, R. L., et al., 2008. Trinucleotide repeat variants in the promoter of the 
thiopurine S-methyltransferase gene of patients exhibiting ultra-high enzyme 
activity. Pharmacogenet Genomics. 18, 434–8. 

Roberts, R. L., et al., 2014a. Identification of a novel thiopurine S-methyltransferase 
allele (TPMT*37). Pharmacogenet Genomics. 24, 320–3. 



82 

Roberts, R. L., et al., 2014b. PACSIN2 does not influence thiopurine-related toxicity in 
patients with inflammatory bowel disease. Am J Gastroenterol. 109, 925–7. 

Roblin, X., et al., 2011. Use of thiopurine testing in the management of inflammatory 
bowel diseases in clinical practice: a worldwide survey of experts. Inflamm Bowel 
Dis. 17, 2480–7. 

Rushmore, T. H., Kong, A. N., 2002. Pharmacogenomics, regulation and signaling 
pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab. 3, 481–
90. 

Rutherford, K., et al., 2006. The 108M polymorph of human catechol O-methyl-
transferase is prone to deformation at physiological temperatures. Biochemistry. 45, 
2178–88. 

Sahasranaman, S., et al., 2008. Clinical pharmacology and pharmacogenetics of thio-
purines. Eur J Clin Pharmacol. 64, 753–67. 

Salavaggione, O. E., et al., 2005. Thiopurine S-methyltransferase pharmacogenetics: 
variant allele functional and comparative genomics. Pharmacogenet Genomics. 15, 
801–15. 

Sampath, J., et al., 2002. Role of MRP4 and MRP5 in biology and chemotherapy. 
AAPS PharmSci. 4, E14. 

Sasaki, T., et al., 2006. Three novel single nucleotide polymorphisms of the human 
thiopurine S-methyltransferase gene in Japanese individuals. Drug Metab 
Pharmacokinet. 21, 332–6. 

Schaeffeler, E., et al., 2006. Three novel thiopurine S-methyltransferase allelic variants 
(TPMT*20, *21, *22) – association with decreased enzyme function. Hum Mutat. 
27, 976. 

Schaeffeler, E., et al., 2004. Comprehensive analysis of thiopurine S-methyltransferase 
phenotype-genotype correlation in a large population of German-Caucasians and 
identification of novel TPMT variants. Pharmacogenetics. 14, 407–17. 

Schaeffeler, E., et al., 2001. High-throughput genotyping of thiopurine S-methyltrans-
ferase by denaturing HPLC. Clin Chem. 47, 548–55. 

Schaeffeler, E., et al., 2003. A novel TPMT missense mutation associated with TPMT 
deficiency in a 5-year-old boy with ALL. Leukemia. 17, 1422–4. 

Schaeffeler, E., et al., 2008. Highly multiplexed genotyping of thiopurine s-methyl-
transferase variants using MALD-TOF mass spectrometry: reliable genotyping in 
different ethnic groups. Clin Chem. 54, 1637–47. 

Scheuermann, T. H., et al., 2004. Consequences of binding an S-adenosylmethionine 
analogue on the structure and dynamics of the thiopurine methyltransferase protein 
backbone. Biochemistry. 43, 12198–209. 

Schwab, M., et al., 2002. Azathioprine therapy and adverse drug reactions in patients 
with inflammatory bowel disease: impact of thiopurine S-methyltransferase 
polymorphism. Pharmacogenetics. 12, 429–36. 

Schwahn, B., Rozen, R., 2001. Polymorphisms in the methylenetetrahydrofolate 
reductase gene: clinical consequences. Am J Pharmacogenomics. 1, 189–201. 

Schwarz, D. A., et al., 2016. Precision Medicine in Toxicology. Clin Lab Med. 36, 693–
707. 

Seki, T., et al., 2000. Genomic structure and multiple single-nucleotide polymorphisms 
(SNPs) of the thiopurine S-methyltransferase (TPMT) gene. J Hum Genet. 45, 299–
302. 



83 

Serre-Debeauvais, F., et al., 1995. [Hematotoxicity caused by azathioprine genetically 
determined and aggravated by xanthine oxidase deficiency in a patient following 
renal transplantation]. Presse Med. 24, 987–8. 

Sim, S. C., Ingelman-Sundberg, M., 2011. Pharmacogenomic biomarkers: new tools in 
current and future drug therapy. Trends Pharmacol Sci. 32, 72–81. 

Sissung, T. M., et al., 2010. Pharmacogenetics of membrane transporters: an update on 
current approaches. Mol Biotechnol. 44, 152–67. 

Skrzypczak-Zielinska, M., et al., 2013. High-resolution melting analysis of the TPMT 
gene: a study in the Polish population. Genet Test Mol Biomarkers. 17, 153–9. 

Smid, A., et al., 2016. PACSIN2 polymorphism is associated with thiopurine-induced 
hematological toxicity in children with acute lymphoblastic leukaemia undergoing 
maintenance therapy. Sci Rep. 6, 30244. 

Smith, M. A., et al., 2009. Novel pharmacogenetic markers for treatment outcome in 
azathioprine-treated inflammatory bowel disease. Aliment Pharmacol Ther. 30, 
375–84. 

Somerville, L., et al., 2003. Structure and dynamics of thioguanine-modified duplex 
DNA. J Biol Chem. 278, 1005–11. 

Spanogiannopoulos, P., et al., 2016. The microbial pharmacists within us: a meta-
genomic view of xenobiotic metabolism. Nat Rev Microbiol. 14, 273–87. 

Spear, B. B., et al., 2001. Clinical application of pharmacogenetics. Trends Mol Med. 7, 
201–4. 

Spire-Vayron de la Moureyre, C., et al., 1998a. Genotypic and phenotypic analysis of 
the polymorphic thiopurine S-methyltransferase gene (TPMT) in a European 
population. Br J Pharmacol. 125, 879–87. 

Spire-Vayron de la Moureyre, C., et al., 1999. Characterization of a variable number 
tandem repeat region in the thiopurine S-methyltransferase gene promoter. 
Pharmacogenetics. 9, 189–98. 

Spire-Vayron de la Moureyre, C., et al., 1998b. Detection of known and new mutations 
in the thiopurine S-methyltransferase gene by single-strand conformation poly-
morphism analysis. Hum Mutat. 12, 177–85. 

Squassina, A., et al., 2010. Realities and expectations of pharmacogenomics and perso-
nalized medicine: impact of translating genetic knowledge into clinical practice. 
Pharmacogenomics. 11, 1149–67. 

Srimaroeng, C., et al., 2008. Physiology, structure, and regulation of the cloned organic 
anion transporters. Xenobiotica. 38, 889–935. 

Stocco, G., et al., 2014a. Deletion of glutathione-s-transferase m1 reduces azathioprine 
metabolite concentrations in young patients with inflammatory bowel disease. J Clin 
Gastroenterol. 48, 43–51. 

Stocco, G., et al., 2007. Glutathione-S-transferase genotypes and the adverse effects of 
azathioprine in young patients with inflammatory bowel disease. Inflamm Bowel 
Dis. 13, 57–64. 

Stocco, G., et al., 2014b. Pharmacogenetics of azathioprine in inflammatory bowel 
disease: a role for glutathione-S-transferase? World J Gastroenterol. 20, 3534–41. 

Stocco, G., et al., 2012. PACSIN2 polymorphism influences TPMT activity and 
mercaptopurine-related gastrointestinal toxicity. Hum Mol Genet. 21, 4793–804. 

Sumi, S., et al., 2002. Genetic basis of inosine triphosphate pyrophosphohydrolase 
deficiency. Hum Genet. 111, 360–7. 

Swann, P. F., et al., 1996. Role of postreplicative DNA mismatch repair in the cytotoxic 
action of thioguanine. Science. 273, 1109–11. 



84 

Szumlanski, C., et al., 1996. Thiopurine methyltransferase pharmacogenetics: human 
gene cloning and characterization of a common polymorphism. DNA Cell Biol. 15, 
17–30. 

Szumlanski, C. L., et al., 1992. Human liver thiopurine methyltransferase pharma-
cogenetics: biochemical properties, liver-erythrocyte correlation and presence of 
isozymes. Pharmacogenetics. 2, 148–59. 

Szumlanski, C. L., Weinshilboum, R. M., 1995. Sulphasalazine inhibition of thiopurine 
methyltransferase: possible mechanism for interaction with 6-mercaptopurine and 
azathioprine. Br J Clin Pharmacol. 39, 456–9. 

Tai, H. L., et al., 1997. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) 
encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the 
genetic polymorphism of TPMT activity. Proc Natl Acad Sci U S A. 94, 6444–9. 

Tai, H. L., et al., 1996. Thiopurine S-methyltransferase deficiency: two nucleotide 
transitions define the most prevalent mutant allele associated with loss of catalytic 
activity in Caucasians. Am J Hum Genet. 58, 694–702. 

Tamm, R., et al., 2008. Thiopurine S-methyltransferase (TPMT) pharmacogenetics: 
three new mutations and haplotype analysis in the Estonian population. Clin Chem 
Lab Med. 46, 974–9. 

Tanaka, Y., et al., 2015. Susceptibility to 6-MP toxicity conferred by a NUDT15 variant 
in Japanese children with acute lymphoblastic leukaemia. Br J Haematol. 171, 109–
15. 

Teml, A., et al., 2007. Thiopurine treatment in inflammatory bowel disease: clinical 
pharmacology and implication of pharmacogenetically guided dosing. Clin 
Pharmacokinet. 46, 187–208. 

Thomas, C. W., et al., 2005. Selective inhibition of inflammatory gene expression in 
activated T lymphocytes: a mechanism of immune suppression by thiopurines. J 
Pharmacol Exp Ther. 312, 537–45. 

Tiede, I., et al., 2003. CD28-dependent Rac1 activation is the molecular target of 
azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 111, 1133–45. 

Travis, S. P., et al., 2006. European evidence based consensus on the diagnosis and 
management of Crohn’s disease: current management. Gut. 55 Suppl 1, i16–35. 

Turner, R. M., et al., 2015. Parsing interindividual drug variability: an emerging role for 
systems pharmacology. Wiley Interdiscip Rev Syst Biol Med. 7, 221–41. 

Ujiie, S., et al., 2008. Functional characterization of 23 allelic variants of thiopurine S-
methyltransferase gene (TPMT*2 - *24). Pharmacogenet Genomics. 18, 887–93. 

van der Wouden, C. H., et al., 2016. Implementing Pharmacogenomics in Europe: 
Design and Implementation Strategy of the Ubiquitous Pharmacogenomics 
Consortium. Clin Pharmacol Ther. 

van Dieren, J. M., et al., 2005. ITPA genotyping is not predictive for the development 
of side effects in AZA treated inflammatory bowel disease patients. Gut. 54, 1664. 

van Egmond, R., et al., 2012. High TPMT enzyme activity does not explain drug 
resistance due to preferential 6-methylmercaptopurine production in patients on 
thiopurine treatment. Aliment Pharmacol Ther. 35, 1181–9. 

Van Loon, J. A., Weinshilboum, R. M., 1982. Thiopurine methyltransferase bio-
chemical genetics: human lymphocyte activity. Biochem Genet. 20, 637–58. 

Veerman, A. J., et al., 1996. High cure rate with a moderately intensive treatment 
regimen in non-high-risk childhood acute lymphoblastic leukemia. Results of 
protocol ALL VI from the Dutch Childhood Leukemia Study Group. J Clin Oncol. 
14, 911–8. 



85 

Venkat, R., et al., 1990. Azathioprine and allopurinol: a potentially dangerous combi-
nation. J Intern Med. 228, 69–71. 

Vogel, F., 1959. Moderne Probleme der Humangenetik. Ergebn Inn Med Kinderheilkd. 
von Ahsen, N., et al., 2005. Association of inosine triphosphatase 94C>A and 

thiopurine S-methyltransferase deficiency with adverse events and study drop-outs 
under azathioprine therapy in a prospective Crohn disease study. Clin Chem. 51, 
2282–8. 

Wang, L., et al., 2005. Human thiopurine S-methyltransferase pharmacogenetics: 
variant allozyme misfolding and aggresome formation. Proc Natl Acad Sci U S A. 
102, 9394–9. 

Wei, C. Y., et al., 2012. Pharmacogenomics of adverse drug reactions: implementing 
personalized medicine. Hum Mol Genet. 21, R58–65. 

Weinshilboum, R., Wang, L., 2004. Pharmacogenomics: bench to bedside. Nat Rev 
Drug Discov. 3, 739–48. 

Weinshilboum, R. M., et al., 1978. Human erythrocyte thiopurine methyltransferase: 
radiochemical microassay and biochemical properties. Clin Chim Acta. 85, 323–33. 

Weinshilboum, R. M., Sladek, S. L., 1980. Mercaptopurine pharmacogenetics: mono-
genic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum 
Genet. 32, 651–62. 

Wennerstrand, P., et al., 2012. Structural characteristics determine the cause of the low 
enzyme activity of two thiopurine S-methyltransferase allelic variants: a biophysical 
characterization of TPMT*2 and TPMT*5. Biochemistry. 51, 5912–20. 

Wilkinson, G. R., 2005. Drug metabolism and variability among patients in drug 
response. N Engl J Med. 352, 2211–21. 

Woodson, L. C., Weinshilboum, R. M., 1983. Human kidney thiopurine methyl-
transferase. Purification and biochemical properties. Biochem Pharmacol. 32, 819–
26. 

Wu, H., et al., 2007. Structural basis of allele variation of human thiopurine-S-
methyltransferase. Proteins. 67, 198–208. 

Xin, H., et al., 2005a. Effects of aminosalicylates on thiopurine S-methyltransferase 
activity: an ex vivo study in patients with inflammatory bowel disease. Aliment 
Pharmacol Ther. 21, 1105–9. 

Xin, H. W., et al., 2005b. Thiopurine S-methyltransferase as a target for drug inter-
actions. Eur J Clin Pharmacol. 61, 395–8. 

Yan, L., et al., 2000. Thiopurine methyltransferase polymorphic tandem repeat: 
genotype-phenotype correlation analysis. Clin Pharmacol Ther. 68, 210–9. 

Yang, J. J., et al., 2015. Inherited NUDT15 variant is a genetic determinant of 
mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin 
Oncol. 33, 1235–42. 

Yang, S. K., et al., 2014. A common missense variant in NUDT15 confers susceptibility 
to thiopurine-induced leukopenia. Nat Genet. 46, 1017–20. 

Yates, C. R., et al., 1997. Molecular diagnosis of thiopurine S-methyltransferase 
deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann 
Intern Med. 126, 608–14. 

Yee, S. W., et al., 2010. Pharmacogenomics of membrane transporters: past, present and 
future. Pharmacogenomics. 11, 475–9. 

Zabala, W., et al., 2013. New genetic associations in thiopurine-related bone marrow 
toxicity among inflammatory bowel disease patients. Pharmacogenomics. 14, 631–
40. 



86 

Zaza, G., et al., 2005. Gene expression and thioguanine nucleotide disposition in acute 
lymphoblastic leukemia after in vivo mercaptopurine treatment. Blood. 106, 1778–
85. 

Zelinkova, Z., et al., 2006. Inosine triphosphate pyrophosphatase and thiopurine s-
methyltransferase genotypes relationship to azathioprine-induced myelosuppression. 
Clin Gastroenterol Hepatol. 4, 44–9. 

Zgheib, N. K., et al., 2017. NUDT15 and TPMT genetic polymorphisms are related to 
6-mercaptopurine intolerance in children treated for acute lymphoblastic leukemia at 
the Children's Cancer Center of Lebanon. Pediatr Blood Cancer. 64, 146–150. 

Zhang, L. R., et al., 2007. Efficient screening method of the thiopurine methyltrans-
ferase polymorphisms for patients considering taking thiopurine drugs in a Chinese 
Han population in Henan Province (central China). Clin Chim Acta. 376, 45–51. 

Zhang, W., Dolan, M. E., 2009. Use of cell lines in the investigation of pharma-
cogenetic loci. Curr Pharm Des. 15, 3782–95. 

Zhang, W., et al., 2010. Differences among allelic variants of human glutathione 
transferase A2-2 in the activation of azathioprine. Chem Biol Interact. 186, 110–7. 

Zhou, F., et al., 2016. Recent advance in the pharmacogenomics of human Solute 
Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev. 

Zhou, S. F., et al., 2008. Clinical pharmacogenetics and potential application in 
personalized medicine. Curr Drug Metab. 9, 738–84. 

Zhu, X., et al., 2016. NUDT15 polymorphisms are better than thiopurine S-
methyltransferase as predictor of risk for thiopurine-induced leukopenia in Chinese 
patients with Crohn's disease. Aliment Pharmacol Ther. 44, 967–975. 

Zimm, S., et al., 1983. Variable bioavailability of oral mercaptopurine. Is maintenance 
chemotherapy in acute lymphoblastic leukemia being optimally delivered? N Engl J 
Med. 308, 1005–9. 

Zukic, B., et al., 2010. Functional analysis of the role of the TPMT gene promoter 
VNTR polymorphism in TPMT gene transcription. Pharmacogenomics. 11, 547–57. 

Zur, R. M., et al., 2016. Thiopurine S-methyltransferase testing for averting drug 
toxicity: a meta-analysis of diagnostic test accuracy. Pharmacogenomics J. 16, 305–
11. 

 
  



87 

ACKNOWLEDGEMENTS 

First, I would like to express my enormous gratitude to my supervisor Professor 
Andres Metspalu for giving me the opportunity to be part of his research team 
and for his continuous support, patience, motivation, and knowledge, and to Lili 
Milani for inspiring and motivating me during my last years as a graduate 
student, for being an inspiration to me as a scientist, woman, and mother, and 
also for giving me the opportunity to be involved in her scientific projects.  

My sincere and special thanks go to my colleagues, labmates, and students in 
the Department of Biotechnology. Kristi and Evelin, thank you for your 
guidance during my first years in the lab. Egon, Ervin, Eva, Mari, Viljo, and 
Tõnu, you were the best for creating a positive social atmosphere in- and 
outside of the lab. Maris, Mari-Liis, and Jürgen, you were truly great students. 
You taught me patience, the best trait of all; you gave me the motivation to 
move forward and I will always remember all of the funny moments we shared. 
Of course, Krista and Merike, without you, I would have been totally lost in the 
world of administration.  

My deep gratitude goes to Reedik Mägi for his everlasting calmness when 
explaining to me the details of statistics I never learned. Thank you for your 
help with my data analysis; without your help, it would have been impossible 
for me to make to where I am.  

Eva, I really appreciate your time and knowledge of being my proof-reader. 
I thank all my colleagues at the Estonian Genome Center and all of the co-

authors of my published papers. I really appreciate the people who have been 
with and beside me during these long, yet enjoyable years. I also thank my 
colleagues at Tartu University Hospital, United Laboratories, especially Anu 
Tamm and Rain Lehtme, for giving me the opportunity to finish my PhD 
studies and for the supportive atmosphere you provided me. 

Last but not least, I would like to give my special thanks and hugs to my 
family. To my parents, thank you for keeping me motivated and asking 
questions constantly about my scientific work. To my husband, thank you for 
supporting me in every step I take and to our gorgeous little boy Mattias, thank 
you for enriching my life with everlasting wonderful moments and for making 
me the happiest mom. 
 
  



 
 
 
 
 
 
 
 
 
 

PUBLICATIONS 
 



CURRICULUM VITAE 

Name:  Riin Tamm 
Date of birth: August 12, 1981, Tartu, Estonia 
Contact: University of Tartu, The Institute of Molecular- ja Cell Biology,  

Department of Biotechnology, 23 Riia St, 51010, Tartu 
E-mail: riin.tamm@ut.ee 

Education: 
1997–2000 Miina Härma Gymnasium 
2001–2005 University of Tartu, Bachelor’s degree (Gene technology) 
2005–2007 University of Tartu, magister scientiarum (Gene technology)  
2007–... University of Tartu, Ph.D student (Gene technology)  

 
Professional employment: 
2004–2007 Quattromed HTI Laborid OÜ, technician 
2007–2008  Quattromed AS, reseacher 
2007–2009  Tartu University Hospital, United Laboratories, Department of 

Genetics, laboratory specialist 
2008–2009 University of Tartu, Institute of Molecular and Cell Biology, 

specialist 
2010–2014  Estonian Genome Center of University of Tartu, researcher 
2015–...  Tartu University Hospital, United Laboratories, Department of 

Immune analysis, laboratory specialist  
 

Administrative work: 
2005–... Member of the Estonian Biochemical Society 
2010−...  Board member of the Estonian Society of Human Genetics 
2015−...  Chairwoman of the board of the Estonian Association of 

Gerontology and Geriatrics 
 
Publications: 
Oselin, K; Anier, K; Tamm, R; Kallassalu, K; Mäeorg, U. (2006). Determi-

nation of thiopurine S-methyltransferase (TPMT) activity by comparing 
various normalization factors: Reference values for Estonian population 
using HPLC-UV assay. Journal of Chromatography B-Analytical Techno-
logies in the Biomedical and Life Sciences, 77−83,  
10.1016/j.jchromb.2006.02.031. 

Tamm, R; Oselin, K; Kallassalu, K; Magi, R; Anier, K; Remm, M; Metspalu, A. 
(2008). Thiopurine S-methyltransferase (TPMT) pharmacogenetics: three 
new mutations and haplotype analysis in the Estonian population. Clinical 
Chemistry and Laboratory Medicine, 46 (7), 974−979. 

Kuningas, M; May, L; Tamm, R; van Bodegom, D; van den Biggelaar, A. H. J; 
Meij, J. J; Frölich, M; Ziem, J. B; Suchiman, H. E. D; Metspalu, A; Slag-
boom, P. E; Westendorp, R. G. J (2009). Selection for Genetic Variation 

149



Inducing Pro-Inflammatory Responses under Adverse Environmental 
Conditions in a Ghanaian Population. PLoS ONE, e7795. 

 doi:10.1371/journal.pone.0007795. 
Braschinsky, M; Tamm, R; Beetz, C; Sachez-Ferrero, E; Raukas, E; Lüüs, SM; 

Gross-Paju, K; Boillot, C; Canzian, F; Metspalu, A; Haldre, S. (2010). 
Unique spectrum of SPAST variants in Estonian HSP patients: presence of 
benign missense changes but lack of exonic rearrangements. BMC Neuro-
logy, 10 (1), 17, 10.1186/1471-2377-10-17. 

Tamm, R; Saks, K; Pääsuke, M. (2010). Research on ageing and longevity in 
Estonia. Reviews in Clinical Gerontology, 20 (2), 154−159, 

 10.1017/S0959259810000134. 
Milek, M; Smid, A; Tamm, R; Karas Kuzelicki, N; Metspalu, A; Mlinaric-

Rascan, I. (2012). Post-translational stabilization of thiopurine S-methyl-
transferase by S-adenosyl-L-methionine reveals regulation of TPMT*1 and 
*3C allozymes. Biochemical Pharmacology, 83 (7), 969−976, 

  10.1016/j.bcp.2012.01.010. 
Deelen, J; Beekman, M; Uh, HW; Broer, L; Ayers, KL; Tan, Q; Kamatani, Y; 

Bennet, AM; Tamm, R; Trompet, S; Guðbjartsson, DF; Flachsbart, F; Rose, 
G; Viktorin, A; Fischer, K; Nygaard, M; Cordell, HJ; Crocco, P; van den 
Akker, EB; Böhringer, S ... Slagboom, PE. (2014). Genome-wide asso-
ciation meta-analysis of human longevity identifies a novel locus conferring 
survival beyond 90 years of age. Human Molecular Genetics, 23 (16), 
4420−4432, 10.1093/hmg/ddu139. 

Bonder, MJ; Kasela, S; Kals, M; Tamm, R; Lokk, K; Barragan, I; Buurman, 
WA; Deelen, P; Greve, J-W; Ivanov, M; Rensen, SS; van Vliet-Ostap-
tchouk, JV; Wolfs, MG; Fu, J; Hofker, MH; Wijmenga, C; Zhernakova, A; 
Ingelman-Sundberg, M; Lude Franke, L; Milani, L. (2014). Genetic and 
epigenetic regulation of gene expression in fetal and adult human livers. 
BMC Genomics, 15 (860), 1−28, 10.1186/1471-2164-15-860. 

Karas-Kuželički, N; Šmid, A; Tamm, R; Metspalu, A; Mlinarič-Raščan, I. 
(2014). From pharmacogenetics to pharmacometabolomics: SAM modulates 
TPMT activity. Pharmacogenomics, 15 (11), 1437−1449,  
10.2217/pgs.14.84. 

Tamm, R; Mägi, R; Tremmel, R; Winter, S; Mihailov, E; Smid, A; Möricke, A; 
Klein, K; Schrappe, M; Stanulla, M; Houlston, R; Weinshilboum, R; 
Mlinarič Raščan, I; Metspalu, A; Milani, L; Schwab, M; Schaeffeler, E. 
Polymorphic variation in TPMT is the principal determinant of TPMT 
phenotype: a meta-analysis of three genome-wide association studies. Clin 
Pharmacol Ther. 2016 Oct 22. doi: 10.1002/cpt.540. 

 
Supervised masters’ dissertations (main supervisor): 
Maris Alver “In quest of ageing and longevity associated genetic markers” 

(2012) 
Mari-Liis Reim “Factors influencing the activity of thiopurine methyl-

transferase in human liver” (2013) 

150 



Fellowships: 
2005, 2006  FEBS Youth Travel Fund grant 
2007, 2011  European Human Genetics Conference Fellowship 
2007  EMBO travel fellowship sponsored by the Austrian Research 

Ministry 
2008  diploma for master’s thesis from the Estonian Ministry of Edu-

cation and Research 
2009 Baltic Summer School 2009 Travel Stipend from the EU under the 

Marie Curie Program 
2010 Artur Lind Scholarship from the Estonian Genome Foundation 
2011 DoRa stipend for PhD studies at University of Ljubljana, Slovenia 
  

151



ELULOOKIRJELDUS 

Nimi: Riin Tamm 
Sünniaeg: 12. august, 1981, Tartu 
Aadress: Tartu Ülikool, Molekulaar- ja Rakubiloogia Instituut,  
 Biotehnoloogia õppetool, Riia 23, 51010, Tartu 
E-post: riin.tamm@ut.ee 
 
Haridus: 
1997–2000 Miina Härma Gümnaasium 
2001–2005 Tartu Ülikool, bakalaureuseõpe (Geenitehnoloogia õppekava) 
2005–2007 Tartu Ülikool, magistriõpe, magister scientiarum (Geenitehno-

loogia õppekava)  
2007–... Tartu Ülikool, doktoriõpe (Geenitehnoloogia õppekava)  
 
Teenistuskäik: 
2004–2007 Quattromed HTI Laborid OÜ, laborant 
2007–2008  Quattromed AS, teadur 
2007–2009  TÜ Kliinikumi Ühendlabor, Geneetikakeskus, molekulaar-

diagnostika osakond, laborispetsialist 
2008–2009 Tartu Ülikool, Loodus- ja tehnoloogiateaduskond, Tartu Üli-

kooli Molekulaar- ja Rakubioloogia Instituut, spetsialist 
2010–2014  Tartu Ülikool, Tartu Ülikooli Eesti Geenivaramu, teadur 
2015–...  SA Tartu Ülikooli Kliinikum, Tartu Ülikooli Klliinikum, 

Ühendlabor, laborispetsialist  
 
Teadusorganisatsiooniline ja- administratiivne tegevus: 
2005–... Eesti Biokeemia Seltsi liige 
2010−...  Eesti Inimesegeneetika Ühingu juhatuse liige 
2015−...  Eesti Gerontoloogia ja Geriaatria Assotsiatsiooni juhatuse 

esinaine  
 
Teaduspublikatsioonid: 
Oselin, K; Anier, K; Tamm, R; Kallassalu, K; Mäeorg, U. (2006). Determi-

nation of thiopurine S-methyltransferase (TPMT) activity by comparing 
various normalization factors: Reference values for Estonian population 
using HPLC-UV assay. Journal of Chromatography B-Analytical Techno-
logies in the Biomedical and Life Sciences, 77−83,  
10.1016/j.jchromb.2006.02.031. 

Tamm, R; Oselin, K; Kallassalu, K; Magi, R; Anier, K; Remm, M; Metspalu, A. 
(2008). Thiopurine S-methyltransferase (TPMT) pharmacogenetics: three 
new mutations and haplotype analysis in the Estonian population. Clinical 
Chemistry and Laboratory Medicine, 46 (7), 974−979. 

152



Kuningas, M; May, L; Tamm, R; van Bodegom, D; van den Biggelaar, A. H. J; 
Meij, J. J; Frölich, M; Ziem, J. B; Suchiman, H. E. D; Metspalu, A; Slag-
boom, P. E; Westendorp, R. G. J (2009). Selection for Genetic Variation 
Inducing Pro-Inflammatory Responses under Adverse Environmental 
Conditions in a Ghanaian Population. PLoS ONE, e7795. 

 doi:10.1371/journal.pone.0007795. 
Braschinsky, M; Tamm, R; Beetz, C; Sachez-Ferrero, E; Raukas, E; Lüüs, SM; 

Gross-Paju, K; Boillot, C; Canzian, F; Metspalu, A; Haldre, S. (2010). 
Unique spectrum of SPAST variants in Estonian HSP patients: presence of 
benign missense changes but lack of exonic rearrangements. BMC Neuro-
logy, 10 (1), 17, 10.1186/1471-2377-10-17. 

Tamm, R; Saks, K; Pääsuke, M. (2010). Research on ageing and longevity in 
Estonia. Reviews in Clinical Gerontology, 20 (2), 154−159, 

 10.1017/S0959259810000134. 
Milek, M; Smid, A; Tamm, R; Karas Kuzelicki, N; Metspalu, A; Mlinaric-

Rascan, I. (2012). Post-translational stabilization of thiopurine S-methyl-
transferase by S-adenosyl-L-methionine reveals regulation of TPMT*1 and 
*3C allozymes. Biochemical Pharmacology, 83 (7), 969−976, 

  10.1016/j.bcp.2012.01.010. 
Deelen, J; Beekman, M; Uh, HW; Broer, L; Ayers, KL; Tan, Q; Kamatani, Y; 

Bennet, AM; Tamm, R; Trompet, S; Guðbjartsson, DF; Flachsbart, F; Rose, 
G; Viktorin, A; Fischer, K; Nygaard, M; Cordell, HJ; Crocco, P; van den 
Akker, EB; Böhringer, S ... Slagboom, PE. (2014). Genome-wide asso-
ciation meta-analysis of human longevity identifies a novel locus conferring 
survival beyond 90 years of age. Human Molecular Genetics, 23 (16), 
4420−4432, 10.1093/hmg/ddu139. 

Bonder, MJ; Kasela, S; Kals, M; Tamm, R; Lokk, K; Barragan, I; Buurman, 
WA; Deelen, P; Greve, J-W; Ivanov, M; Rensen, SS; van Vliet-Ostap-
tchouk, JV; Wolfs, MG; Fu, J; Hofker, MH; Wijmenga, C; Zhernakova, A; 
Ingelman-Sundberg, M; Lude Franke, L; Milani, L. (2014). Genetic and 
epigenetic regulation of gene expression in fetal and adult human livers. 
BMC Genomics, 15 (860), 1−28, 10.1186/1471-2164-15-860. 

Karas-Kuželički, N; Šmid, A; Tamm, R; Metspalu, A; Mlinarič-Raščan, I. 
(2014). From pharmacogenetics to pharmacometabolomics: SAM modulates 
TPMT activity. Pharmacogenomics, 15 (11), 1437−1449,  
10.2217/pgs.14.84. 

Tamm, R; Mägi, R; Tremmel, R; Winter, S; Mihailov, E; Smid, A; Möricke, A; 
Klein, K; Schrappe, M; Stanulla, M; Houlston, R; Weinshilboum, R; 
Mlinarič Raščan, I; Metspalu, A; Milani, L; Schwab, M; Schaeffeler, E. 
Polymorphic variation in TPMT is the principal determinant of TPMT 
phenotype: a meta-analysis of three genome-wide association studies. Clin 
Pharmacol Ther. 2016 Oct 22. doi: 10.1002/cpt.540. 

 
 
 

153



Juhendatud magistriväitekirjad (põhijuhendaja): 
Maris Alver “Pikaealisuse ja vananemise geneetiliste markerite otsingul” (2012)  
Mari-Liis Reim “Inimese tiopuriinmetüültransferaasi aktiivsust mõjutavad 
faktorid maksas” (2013)  
 
Stipendiumid: 
2005, 2006  FEBS Youth Travel Fund grant 
2007, 2011  Euroopa Inimesegeneetika Ühingu konverentsi stipendium 
2007  EMBO travel fellowship sponsored by the Austrian Research 

Ministry 
2008  diploma for master’s thesis from the Estonian Ministry of Edu-

cation and Research 
2009 Baltic Summer School 2009 Travel Stipend by the EU under the 

Marie Curie Program 
2010 Artur Linnu stipendium, Eesti Geenikeskus 
2011 DoRa stipendium doktoriõpinguteks ja teadustööks Ljubljana 

Ülikoolis Sloveenia 

154 



155 

DISSERTATIONES BIOLOGICAE 
UNIVERSITATIS TARTUENSIS 

 

  1. Toivo Maimets. Studies of human oncoprotein p53. Tartu, 1991, 96 p. 
  2. Enn K. Seppet. Thyroid state control over energy metabolism, ion trans-

port and contractile functions in rat heart. Tartu, 1991, 135 p.  
  3. Kristjan Zobel. Epifüütsete makrosamblike väärtus õhu saastuse indikaa-

toritena Hamar-Dobani boreaalsetes mägimetsades. Tartu, 1992, 131 lk. 
  4. Andres Mäe. Conjugal mobilization of catabolic plasmids by transpos-

able elements in helper plasmids. Tartu, 1992, 91 p. 
  5. Maia Kivisaar. Studies on phenol degradation genes of Pseudomonas sp. 

strain EST 1001. Tartu, 1992, 61 p. 
  6. Allan Nurk. Nucleotide sequences of phenol degradative genes from 

Pseudomonas sp. strain EST 1001 and their transcriptional activation in 
Pseudomonas putida. Tartu, 1992, 72 p. 

  7. Ülo Tamm. The genus Populus L. in Estonia: variation of the species bio-
logy and introduction. Tartu, 1993, 91 p. 

  8. Jaanus Remme. Studies on the peptidyltransferase centre of the E.coli 
ribosome. Tartu, 1993, 68 p. 

  9. Ülo Langel. Galanin and galanin antagonists. Tartu, 1993, 97 p. 
10. Arvo Käärd. The development of an automatic online dynamic fluo-

rescense-based pH-dependent fiber optic penicillin flowthrought biosensor 
for the control of the benzylpenicillin hydrolysis. Tartu, 1993, 117 p. 

11. Lilian Järvekülg. Antigenic analysis and development of sensitive immu-
noassay for potato viruses. Tartu, 1993, 147 p. 

12. Jaak Palumets. Analysis of phytomass partition in Norway spruce. Tartu, 
1993, 47 p. 

13. Arne Sellin. Variation in hydraulic architecture of Picea abies (L.) Karst. 
trees grown under different enviromental conditions. Tartu, 1994, 119 p.  

13. Mati Reeben. Regulation of light neurofilament gene expression. Tartu, 
1994, 108 p. 

14. Urmas Tartes. Respiration rhytms in insects. Tartu, 1995, 109 p. 
15. Ülo Puurand. The complete nucleotide sequence and infections in vitro 

transcripts from cloned cDNA of a potato A potyvirus. Tartu, 1995, 96 p. 
16. Peeter Hõrak. Pathways of selection in avian reproduction: a functional 

framework and its application in the population study of the great tit 
(Parus major). Tartu, 1995, 118 p. 

17. Erkki Truve. Studies on specific and broad spectrum virus resistance in 
transgenic plants. Tartu, 1996, 158 p. 

18. Illar Pata. Cloning and characterization of human and mouse ribosomal 
protein S6-encoding genes. Tartu, 1996, 60 p. 

19. Ülo Niinemets. Importance of structural features of leaves and canopy in 
determining species shade-tolerance in temperature deciduous woody 
taxa. Tartu, 1996, 150 p. 



156 

20. Ants Kurg. Bovine leukemia virus: molecular studies on the packaging 
region and DNA diagnostics in cattle. Tartu, 1996, 104 p. 

21. Ene Ustav. E2 as the modulator of the BPV1 DNA replication. Tartu, 1996, 
100 p. 

22. Aksel Soosaar. Role of helix-loop-helix and nuclear hormone receptor 
transcription factors in neurogenesis. Tartu, 1996, 109 p. 

23. Maido Remm. Human papillomavirus type 18: replication, transforma-
tion and gene expression. Tartu, 1997, 117 p. 

24. Tiiu Kull. Population dynamics in Cypripedium calceolus L. Tartu, 1997,  
124 p. 

25. Kalle Olli. Evolutionary life-strategies of autotrophic planktonic micro-
organisms in the Baltic Sea. Tartu, 1997, 180 p. 

26. Meelis Pärtel. Species diversity and community dynamics in calcareous 
grassland communities in Western Estonia. Tartu, 1997, 124 p. 

27. Malle Leht. The Genus Potentilla L. in Estonia, Latvia and Lithuania: 
distribution, morphology and taxonomy. Tartu, 1997, 186 p. 

28. Tanel Tenson. Ribosomes, peptides and antibiotic resistance. Tartu, 1997,  
80 p. 

29. Arvo Tuvikene. Assessment of inland water pollution using biomarker 
responses in fish in vivo and in vitro. Tartu, 1997, 160 p. 

30. Urmas Saarma. Tuning ribosomal elongation cycle by mutagenesis of  
23S rRNA. Tartu, 1997, 134 p. 

31. Henn Ojaveer. Composition and dynamics of fish stocks in the gulf of 
Riga ecosystem. Tartu, 1997, 138 p. 

32. Lembi Lõugas. Post-glacial development of vertebrate fauna in Estonian 
water bodies. Tartu, 1997, 138 p. 

33. Margus Pooga. Cell penetrating peptide, transportan, and its predecessors, 
galanin-based chimeric peptides. Tartu, 1998, 110 p. 

34. Andres Saag. Evolutionary relationships in some cetrarioid genera 
(Lichenized Ascomycota). Tartu, 1998, 196 p. 

35. Aivar Liiv. Ribosomal large subunit assembly in vivo. Tartu, 1998, 158 p. 
36.  Tatjana Oja. Isoenzyme diversity and phylogenetic affinities among the 

eurasian annual bromes (Bromus L., Poaceae). Tartu, 1998, 92 p. 
37. Mari Moora. The influence of arbuscular mycorrhizal (AM) symbiosis 

on the competition and coexistence of calcareous grassland plant species. 
Tartu, 1998, 78 p. 

38. Olavi Kurina. Fungus gnats in Estonia (Diptera: Bolitophilidae, Keropla-
tidae, Macroceridae, Ditomyiidae, Diadocidiidae, Mycetophilidae). Tartu, 
1998, 200 p.  

39. Andrus Tasa. Biological leaching of shales: black shale and oil shale. 
Tartu, 1998, 98 p. 

40. Arnold Kristjuhan. Studies on transcriptional activator properties of 
tumor suppressor protein p53. Tartu, 1998, 86 p. 

41.  Sulev Ingerpuu. Characterization of some human myeloid cell surface 
and nuclear differentiation antigens. Tartu, 1998, 163 p. 



157 

42.  Veljo Kisand. Responses of planktonic bacteria to the abiotic and biotic 
factors in the shallow lake Võrtsjärv. Tartu, 1998, 118 p. 

43. Kadri Põldmaa. Studies in the systematics of hypomyces and allied 
genera (Hypocreales, Ascomycota). Tartu, 1998, 178 p. 

44. Markus Vetemaa. Reproduction parameters of fish as indicators in en-
vironmental monitoring. Tartu, 1998, 117 p. 

45. Heli Talvik. Prepatent periods and species composition of different Oeso-
phagostomum spp. populations in Estonia and Denmark. Tartu, 1998, 
104 p. 

46. Katrin Heinsoo. Cuticular and stomatal antechamber conductance to water 
vapour diffusion in Picea abies (L.) karst. Tartu, 1999, 133 p. 

47. Tarmo Annilo. Studies on mammalian ribosomal protein S7. Tartu, 1998, 
77 p. 

48. Indrek Ots. Health state indicies of reproducing great tits (Parus major): 
sources of variation and connections with life-history traits. Tartu, 1999, 
117 p. 

49. Juan Jose Cantero. Plant community diversity and habitat relationships in 
central Argentina grasslands. Tartu, 1999, 161 p. 

50. Rein Kalamees. Seed bank, seed rain and community regeneration in 
Estonian calcareous grasslands. Tartu, 1999, 107 p. 

51.  Sulev Kõks. Cholecystokinin (CCK) – induced anxiety in rats: influence 
of environmental stimuli and involvement of endopioid mechanisms and 
serotonin. Tartu, 1999, 123 p. 

52. Ebe Sild. Impact of increasing concentrations of O3 and CO2 on wheat, 
clover and pasture. Tartu, 1999, 123 p. 

53. Ljudmilla Timofejeva. Electron microscopical analysis of the synaptone-
mal complex formation in cereals. Tartu, 1999, 99 p. 

54. Andres Valkna. Interactions of galanin receptor with ligands and  
G-proteins: studies with synthetic peptides. Tartu, 1999, 103 p. 

55. Taavi Virro. Life cycles of planktonic rotifers in lake Peipsi. Tartu, 1999, 
101 p. 

56.  Ana Rebane. Mammalian ribosomal protein S3a genes and intron-
encoded small nucleolar RNAs U73 and U82. Tartu, 1999, 85 p. 

57.  Tiina Tamm. Cocksfoot mottle virus: the genome organisation and trans-
lational strategies. Tartu, 2000, 101 p. 

58. Reet Kurg. Structure-function relationship of the bovine papilloma virus 
E2 protein. Tartu, 2000, 89 p. 

59. Toomas Kivisild. The origins of Southern and Western Eurasian popula-
tions: an mtDNA study. Tartu, 2000, 121 p. 

60. Niilo Kaldalu. Studies of the TOL plasmid transcription factor XylS. 
Tartu, 2000, 88 p. 

61. Dina Lepik. Modulation of viral DNA replication by tumor suppressor 
protein p53. Tartu, 2000, 106 p. 



158 

62. Kai Vellak. Influence of different factors on the diversity of the bryo-
phyte vegetation in forest and wooded meadow communities. Tartu, 2000, 
122 p. 

63. Jonne Kotta. Impact of eutrophication and biological invasionas on the 
structure and functions of benthic macrofauna. Tartu, 2000, 160 p. 

64. Georg Martin. Phytobenthic communities of the Gulf of Riga and the 
inner sea the West-Estonian archipelago. Tartu, 2000, 139 p. 

65.  Silvia Sepp. Morphological and genetical variation of Alchemilla L. in 
Estonia. Tartu, 2000. 124 p. 

66. Jaan Liira. On the determinants of structure and diversity in herbaceous 
plant communities. Tartu, 2000, 96 p. 

67. Priit Zingel. The role of planktonic ciliates in lake ecosystems. Tartu, 
2001, 111 p. 

68. Tiit Teder. Direct and indirect effects in Host-parasitoid interactions: 
ecological and evolutionary consequences. Tartu, 2001, 122 p. 

69. Hannes Kollist. Leaf apoplastic ascorbate as ozone scavenger and its 
transport across the plasma membrane. Tartu, 2001, 80 p. 

70. Reet Marits. Role of two-component regulator system PehR-PehS and 
extracellular protease PrtW in virulence of Erwinia Carotovora subsp. 
Carotovora. Tartu, 2001, 112 p. 

71. Vallo Tilgar. Effect of calcium supplementation on reproductive perfor-
mance of the pied flycatcher Ficedula hypoleuca and the great tit Parus 
major, breeding in Nothern temperate forests. Tartu, 2002, 126 p. 

72. Rita Hõrak. Regulation of transposition of transposon Tn4652 in Pseudo-
monas putida. Tartu, 2002, 108 p. 

73. Liina Eek-Piirsoo. The effect of fertilization, mowing and additional 
illumination on the structure of a species-rich grassland community. 
Tartu, 2002, 74 p. 

74. Krõõt Aasamaa. Shoot hydraulic conductance and stomatal conductance 
of six temperate deciduous tree species. Tartu, 2002, 110 p. 

75. Nele Ingerpuu. Bryophyte diversity and vascular plants. Tartu, 2002, 
112 p. 

76. Neeme Tõnisson. Mutation detection by primer extension on oligonucleo-
tide microarrays. Tartu, 2002, 124 p. 

77. Margus Pensa. Variation in needle retention of Scots pine in relation to 
leaf morphology, nitrogen conservation and tree age. Tartu, 2003, 110 p. 

78. Asko Lõhmus. Habitat preferences and quality for birds of prey: from 
principles to applications. Tartu, 2003, 168 p. 

79. Viljar Jaks. p53 – a switch in cellular circuit. Tartu, 2003, 160 p. 
80. Jaana Männik. Characterization and genetic studies of four ATP-binding 

cassette (ABC) transporters. Tartu, 2003, 140 p. 
81. Marek Sammul. Competition and coexistence of clonal plants in relation 

to productivity. Tartu, 2003, 159 p 
82. Ivar Ilves. Virus-cell interactions in the replication cycle of bovine 

papillomavirus type 1. Tartu, 2003, 89 p.  



159 

83. Andres Männik. Design and characterization of a novel vector system 
based on the stable replicator of bovine papillomavirus type 1. Tartu, 
2003, 109 p. 

84.  Ivika Ostonen. Fine root structure, dynamics and proportion in net pri-
mary production of Norway spruce forest ecosystem in relation to site 
conditions. Tartu, 2003, 158 p. 

85.  Gudrun Veldre. Somatic status of 12–15-year-old Tartu schoolchildren. 
Tartu, 2003, 199 p. 

86.  Ülo Väli. The greater spotted eagle Aquila clanga and the lesser spotted 
eagle A. pomarina: taxonomy, phylogeography and ecology. Tartu, 2004, 
159 p.  

87.  Aare Abroi. The determinants for the native activities of the bovine 
papillomavirus type 1 E2 protein are separable. Tartu, 2004, 135 p. 

88.  Tiina Kahre. Cystic fibrosis in Estonia. Tartu, 2004, 116 p. 
89.  Helen Orav-Kotta. Habitat choice and feeding activity of benthic suspension 

feeders and mesograzers in the northern Baltic Sea. Tartu, 2004, 117 p. 
90.  Maarja Öpik. Diversity of arbuscular mycorrhizal fungi in the roots of 

perennial plants and their effect on plant performance. Tartu, 2004, 175 p.  
91.  Kadri Tali. Species structure of Neotinea ustulata. Tartu, 2004, 109 p. 
92.  Kristiina Tambets. Towards the understanding of post-glacial spread of 

human mitochondrial DNA haplogroups in Europe and beyond: a phylo-
geographic approach. Tartu, 2004, 163 p. 

93.  Arvi Jõers. Regulation of p53-dependent transcription. Tartu, 2004, 
103 p. 

94.  Lilian Kadaja. Studies on modulation of the activity of tumor suppressor 
protein p53. Tartu, 2004, 103 p. 

95.  Jaak Truu. Oil shale industry wastewater: impact on river microbial  
community and possibilities for bioremediation. Tartu, 2004, 128 p. 

96.  Maire Peters. Natural horizontal transfer of the pheBA operon. Tartu, 
2004, 105 p. 

97.  Ülo Maiväli. Studies on the structure-function relationship of the bacterial 
ribosome. Tartu, 2004, 130 p.  

98.  Merit Otsus. Plant community regeneration and species diversity in dry 
calcareous grasslands. Tartu, 2004, 103 p. 

99. Mikk Heidemaa. Systematic studies on sawflies of the genera Dolerus, 
Empria, and Caliroa (Hymenoptera: Tenthredinidae). Tartu, 2004, 167 p. 

100. Ilmar Tõnno. The impact of nitrogen and phosphorus concentration and 
N/P ratio on cyanobacterial dominance and N2 fixation in some Estonian 
lakes. Tartu, 2004, 111 p. 

101. Lauri Saks. Immune function, parasites, and carotenoid-based ornaments 
in greenfinches. Tartu, 2004, 144 p.  

102. Siiri Rootsi. Human Y-chromosomal variation in European populations. 
Tartu, 2004, 142 p. 

103. Eve Vedler. Structure of the 2,4-dichloro-phenoxyacetic acid-degradative 
plasmid pEST4011. Tartu, 2005. 106 p.  



160 

104. Andres Tover. Regulation of transcription of the phenol degradation 
pheBA operon in Pseudomonas putida. Tartu, 2005, 126 p. 

105. Helen Udras. Hexose  kinases  and  glucose transport  in  the  yeast Han-
senula  polymorpha. Tartu, 2005, 100 p. 

106. Ave Suija. Lichens and lichenicolous fungi in Estonia: diversity, distri-
bution patterns, taxonomy. Tartu, 2005, 162 p. 

107. Piret Lõhmus. Forest lichens and their substrata in Estonia. Tartu, 2005, 
162 p.  

108. Inga Lips. Abiotic factors controlling the cyanobacterial bloom occur-
rence in the Gulf of Finland. Tartu, 2005, 156 p. 

109. Kaasik, Krista. Circadian clock genes in mammalian clockwork, meta-
bolism and behaviour. Tartu, 2005, 121 p. 

110. Juhan Javoiš. The effects of experience on host acceptance in ovipositing 
moths. Tartu, 2005, 112 p.  

111. Tiina Sedman. Characterization  of  the  yeast Saccharomyces  cerevisiae 
mitochondrial  DNA  helicase  Hmi1. Tartu, 2005, 103 p.  

112. Ruth Aguraiuja. Hawaiian endemic fern lineage Diellia (Aspleniaceae): 
distribution, population structure and ecology. Tartu, 2005, 112 p.  

113. Riho Teras. Regulation of transcription from the fusion promoters ge-
nerated by transposition of Tn4652 into the upstream region of pheBA 
operon in Pseudomonas putida. Tartu, 2005, 106 p.  

114. Mait Metspalu. Through the course of prehistory in india: tracing the 
mtDNA trail. Tartu, 2005, 138 p.  

115. Elin Lõhmussaar. The comparative patterns of linkage disequilibrium in 
European populations and its implication for genetic association studies. 
Tartu, 2006, 124 p. 

116. Priit Kupper. Hydraulic and environmental limitations to leaf water rela-
tions in trees with respect to canopy position. Tartu, 2006, 126 p. 

117. Heili Ilves. Stress-induced transposition of Tn4652 in Pseudomonas 
Putida. Tartu, 2006, 120 p. 

118. Silja Kuusk. Biochemical properties of Hmi1p, a DNA helicase from 
Saccharomyces cerevisiae mitochondria. Tartu, 2006, 126 p. 

119. Kersti Püssa. Forest edges on medium resolution landsat thematic mapper 
satellite images. Tartu, 2006, 90 p. 

120. Lea Tummeleht. Physiological condition and immune function in great 
tits (Parus major l.): Sources of variation and trade-offs in relation to 
growth. Tartu, 2006, 94 p. 

121. Toomas Esperk. Larval instar as a key element of insect growth sche-
dules. Tartu, 2006, 186 p.  

122. Harri Valdmann. Lynx (Lynx lynx) and wolf (Canis lupus)  in the Baltic 
region: Diets, helminth parasites and genetic variation. Tartu, 2006. 102 p. 

123. Priit Jõers. Studies of the mitochondrial helicase Hmi1p in Candida albi-
cans and Saccharomyces cerevisia. Tartu, 2006. 113 p. 

124. Kersti Lilleväli. Gata3 and Gata2 in inner ear development. Tartu, 2007, 
123 p.  



161 

125. Kai Rünk. Comparative ecology of three fern species: Dryopteris carthu-
siana (Vill.) H.P. Fuchs, D. expansa (C. Presl) Fraser-Jenkins & Jermy and 
D. dilatata (Hoffm.) A. Gray (Dryopteridaceae). Tartu, 2007, 143 p.  

126. Aveliina Helm. Formation and persistence of dry grassland diversity: role 
of human history and landscape structure. Tartu, 2007, 89 p.  

127. Leho Tedersoo. Ectomycorrhizal fungi: diversity and community struc-
ture in Estonia, Seychelles and Australia. Tartu, 2007, 233 p.  

128. Marko Mägi. The habitat-related variation of reproductive performance of 
great tits in a deciduous-coniferous forest mosaic: looking for causes and 
consequences. Tartu, 2007, 135 p.  

129. Valeria Lulla. Replication strategies and applications of Semliki Forest 
virus. Tartu, 2007, 109 p.  

130. Ülle Reier. Estonian threatened vascular plant species: causes of rarity and 
conservation. Tartu, 2007, 79 p. 

131. Inga Jüriado. Diversity of lichen species in Estonia: influence of regional 
and local factors. Tartu, 2007, 171 p. 

132. Tatjana Krama. Mobbing behaviour in birds: costs and reciprocity based 
cooperation. Tartu, 2007, 112 p. 

133. Signe Saumaa. The role of DNA mismatch repair and oxidative DNA 
damage defense systems in avoidance of stationary phase mutations in 
Pseudomonas putida. Tartu, 2007, 172 p. 

134. Reedik Mägi. The linkage disequilibrium and the selection of genetic 
markers for association studies in european populations. Tartu, 2007, 96 p.  

135. Priit Kilgas. Blood parameters as indicators of physiological condition 
and skeletal development in great tits (Parus major): natural variation and 
application in the reproductive ecology of birds. Tartu, 2007, 129 p.  

136. Anu Albert. The role of water salinity in structuring eastern Baltic coastal 
fish communities. Tartu, 2007, 95 p.  

137. Kärt Padari. Protein transduction mechanisms of transportans. Tartu, 2008, 
128 p. 

138. Siiri-Lii Sandre. Selective forces on larval colouration in a moth. Tartu, 
2008, 125 p. 

139. Ülle Jõgar. Conservation and restoration of semi-natural floodplain mea-
dows and their rare plant species. Tartu, 2008, 99 p. 

140. Lauri Laanisto. Macroecological approach in vegetation science: gene-
rality of ecological relationships at the global scale. Tartu, 2008, 133 p. 

141. Reidar Andreson. Methods and software for predicting PCR failure rate 
in large genomes. Tartu, 2008, 105 p.  

142. Birgot Paavel. Bio-optical properties of turbid lakes. Tartu, 2008, 175 p. 
143. Kaire Torn. Distribution and ecology of charophytes in the Baltic Sea. 

Tartu, 2008, 98 p.  
144. Vladimir Vimberg. Peptide mediated macrolide resistance. Tartu, 2008, 

190 p. 
145. Daima Örd. Studies on the stress-inducible pseudokinase TRB3, a novel 

inhibitor of transcription factor ATF4. Tartu, 2008, 108 p. 



162 

146. Lauri Saag. Taxonomic and ecologic problems in the genus Lepraria 
(Stereocaulaceae, lichenised Ascomycota). Tartu, 2008, 175 p. 

147. Ulvi Karu. Antioxidant protection, carotenoids and coccidians in green-
finches – assessment of the costs of immune activation and mechanisms of 
parasite resistance in a passerine with carotenoid-based ornaments. Tartu, 
2008, 124 p. 

148. Jaanus Remm. Tree-cavities in forests: density, characteristics and occu-
pancy by animals. Tartu, 2008, 128 p. 

149. Epp Moks. Tapeworm parasites Echinococcus multilocularis and E. gra-
nulosus in Estonia: phylogenetic relationships and occurrence in wild 
carnivores and ungulates. Tartu, 2008, 82 p. 

150. Eve Eensalu. Acclimation of stomatal structure and function in tree ca-
nopy: effect of light and CO2 concentration. Tartu, 2008, 108 p. 

151. Janne Pullat. Design, functionlization and application of an in situ synthe-
sized oligonucleotide microarray. Tartu, 2008, 108 p. 

152. Marta Putrinš. Responses of Pseudomonas putida to phenol-induced 
metabolic and stress signals. Tartu, 2008, 142 p.  

153.  Marina Semtšenko. Plant root behaviour: responses to neighbours and 
physical obstructions. Tartu, 2008, 106 p. 

154. Marge Starast. Influence of cultivation techniques on productivity and 
fruit quality of some Vaccinium and Rubus taxa. Tartu, 2008, 154 p.  

155. Age Tats. Sequence motifs influencing the efficiency of translation. Tartu, 
2009, 104 p. 

156. Radi Tegova. The role of specialized DNA polymerases in mutagenesis in 
Pseudomonas putida. Tartu, 2009, 124 p. 

157. Tsipe Aavik. Plant species richness, composition and functional trait 
pattern in agricultural landscapes – the role of land use intensity and land-
scape structure. Tartu, 2009, 112 p. 

158. Kaja Kiiver. Semliki forest virus based vectors and cell lines for studying 
the replication and interactions of alphaviruses and hepaciviruses. Tartu, 
2009, 104 p. 

159. Meelis Kadaja. Papillomavirus Replication Machinery Induces Genomic 
Instability in its Host Cell. Tartu, 2009, 126 p. 

160. Pille Hallast. Human and chimpanzee Luteinizing hormone/Chorionic 
Gonadotropin beta (LHB/CGB) gene clusters: diversity and divergence of 
young duplicated genes. Tartu, 2009, 168 p. 

161. Ain Vellak. Spatial and temporal aspects of plant species conservation. 
Tartu, 2009, 86 p. 

162. Triinu Remmel. Body size evolution in insects with different colouration 
strategies: the role of predation risk. Tartu, 2009, 168 p. 

163. Jaana Salujõe. Zooplankton as the indicator of ecological quality and fish 
predation in lake ecosystems. Tartu, 2009, 129 p. 

164. Ele Vahtmäe. Mapping benthic habitat with remote sensing in optically 
complex coastal environments. Tartu, 2009, 109 p.  



163 

165. Liisa Metsamaa. Model-based assessment to improve the use of remote 
sensing in recognition and quantitative mapping of cyanobacteria. Tartu, 
2009, 114 p. 

166. Pille Säälik. The role of endocytosis in the protein transduction by cell-
penetrating peptides. Tartu, 2009, 155 p. 

167. Lauri Peil. Ribosome assembly factors in Escherichia coli. Tartu, 2009,  
147 p. 

168. Lea Hallik. Generality and specificity in light harvesting, carbon gain 
capacity and shade tolerance among plant functional groups. Tartu, 2009, 
99 p. 

169. Mariliis Tark. Mutagenic potential of DNA damage repair and tolerance 
mechanisms under starvation stress. Tartu, 2009, 191 p. 

170. Riinu Rannap. Impacts of habitat loss and restoration on amphibian po-
pulations. Tartu, 2009, 117 p. 

171. Maarja Adojaan. Molecular variation of HIV-1 and the use of this know-
ledge in vaccine development. Tartu, 2009, 95 p. 

172. Signe Altmäe. Genomics and transcriptomics of human induced ovarian 
folliculogenesis. Tartu, 2010, 179 p. 

173. Triin Suvi. Mycorrhizal fungi of native and introduced trees in the 
Seychelles Islands. Tartu, 2010, 107 p. 

174. Velda Lauringson. Role of suspension feeding in a brackish-water coastal 
sea. Tartu, 2010, 123 p. 

175. Eero Talts. Photosynthetic cyclic electron transport – measurement and 
variably proton-coupled mechanism. Tartu, 2010, 121 p.  

176. Mari Nelis. Genetic structure of the Estonian population and genetic 
distance from other populations of European descent. Tartu, 2010, 97 p. 

177. Kaarel Krjutškov. Arrayed Primer Extension-2 as a multiplex PCR-based 
method for nucleic acid variation analysis: method and applications. Tartu, 
2010, 129 p. 

178. Egle Köster. Morphological and genetical variation within species comp-
lexes: Anthyllis vulneraria s. l. and Alchemilla vulgaris (coll.). Tartu, 2010, 
101 p. 

179. Erki Õunap. Systematic studies on the subfamily Sterrhinae (Lepidoptera: 
Geometridae). Tartu, 2010, 111 p.  

180. Merike Jõesaar. Diversity of key catabolic genes at degradation of phenol 
and p-cresol in pseudomonads. Tartu, 2010, 125 p. 

181. Kristjan Herkül. Effects of physical disturbance and habitat-modifying 
species on sediment properties and benthic communities in the northern 
Baltic Sea. Tartu, 2010, 123 p. 

182. Arto Pulk. Studies on bacterial ribosomes by chemical modification 
approaches. Tartu, 2010, 161 p. 

183. Maria Põllupüü. Ecological relations of cladocerans in a brackish-water 
ecosystem. Tartu, 2010, 126 p.  

184. Toomas Silla. Study of the segregation mechanism of the Bovine 
Papillomavirus Type 1. Tartu, 2010, 188 p. 



164 

185. Gyaneshwer Chaubey. The demographic history of India: A perspective 
based on genetic evidence. Tartu, 2010, 184 p. 

186. Katrin Kepp. Genes involved in cardiovascular traits: detection of genetic 
variation in Estonian and Czech populations. Tartu, 2010, 164 p. 

187. Virve Sõber. The role of biotic interactions in plant reproductive per-
formance. Tartu, 2010, 92 p. 

188. Kersti Kangro. The response of phytoplankton community to the changes 
in nutrient loading. Tartu, 2010, 144 p. 

189. Joachim M. Gerhold. Replication and Recombination of mitochondrial 
DNA in Yeast. Tartu, 2010, 120 p. 

190. Helen Tammert. Ecological role of physiological and phylogenetic diver-
sity in aquatic bacterial communities. Tartu, 2010, 140 p. 

191. Elle Rajandu. Factors determining plant and lichen species diversity and 
composition in Estonian Calamagrostis and Hepatica site type forests. 
Tartu, 2010, 123 p. 

192. Paula Ann Kivistik. ColR-ColS signalling system and transposition of 
Tn4652 in the adaptation of Pseudomonas putida. Tartu, 2010, 118 p. 

193. Siim Sõber. Blood pressure genetics: from candidate genes to genome-
wide association studies. Tartu, 2011, 120 p. 

194. Kalle Kipper. Studies on the role of helix 69 of 23S rRNA in the factor-
dependent stages of translation initiation, elongation, and termination. 
Tartu, 2011, 178 p. 

195. Triinu Siibak. Effect of antibiotics on ribosome assembly is indirect. 
Tartu, 2011, 134 p. 

196. Tambet Tõnissoo. Identification and molecular analysis of the role of 
guanine nucleotide exchange factor RIC-8 in mouse development and 
neural function. Tartu, 2011, 110 p. 

197. Helin Räägel. Multiple faces of cell-penetrating peptides – their intra-
cellular trafficking, stability and endosomal escape during protein trans-
duction. Tartu, 2011, 161 p.  

198. Andres Jaanus. Phytoplankton in Estonian coastal waters – variability, 
trends and response to environmental pressures. Tartu, 2011, 157 p. 

199. Tiit Nikopensius. Genetic predisposition to nonsyndromic orofacial clefts. 
Tartu, 2011, 152 p. 

200. Signe Värv. Studies on the mechanisms of RNA polymerase II-dependent 
transcription elongation. Tartu, 2011, 108 p. 

201. Kristjan Välk. Gene expression profiling and genome-wide association 
studies of non-small cell lung cancer. Tartu, 2011, 98 p. 

202. Arno Põllumäe. Spatio-temporal patterns of native and invasive zoo-
plankton species under changing climate and eutrophication conditions. 
Tartu, 2011, 153 p. 

203. Egle Tammeleht. Brown bear (Ursus arctos) population structure, demo-
graphic processes and variations in diet in northern Eurasia. Tartu, 2011, 
143 p.  



165 

205. Teele Jairus. Species composition and host preference among ectomy-
corrhizal fungi in Australian and African ecosystems. Tartu, 2011, 106 p.   

206. Kessy Abarenkov. PlutoF – cloud database and computing services 
supporting biological research. Tartu, 2011, 125 p.  

207. Marina Grigorova. Fine-scale genetic variation of follicle-stimulating 
hormone beta-subunit coding gene (FSHB) and its association with repro-
ductive health. Tartu, 2011, 184 p. 

208. Anu Tiitsaar. The effects of predation risk and habitat history on butterfly 
communities. Tartu, 2011, 97 p. 

209. Elin Sild. Oxidative defences in immunoecological context: validation and 
application of assays for nitric oxide production and oxidative burst in a 
wild passerine. Tartu, 2011, 105 p. 

210. Irja Saar. The taxonomy and phylogeny of the genera Cystoderma and 
Cystodermella (Agaricales, Fungi). Tartu, 2012, 167 p. 

211. Pauli Saag. Natural variation in plumage bacterial assemblages in two 
wild breeding passerines. Tartu, 2012, 113 p. 

212. Aleksei Lulla. Alphaviral nonstructural protease and its polyprotein sub-
strate: arrangements for the perfect marriage. Tartu, 2012, 143 p. 

213. Mari Järve. Different genetic perspectives on human history in Europe 
and the Caucasus: the stories told by uniparental and autosomal markers. 
Tartu, 2012, 119 p. 

214. Ott Scheler. The application of tmRNA as a marker molecule in bacterial 
diagnostics using microarray and biosensor technology. Tartu, 2012, 93 p. 

215. Anna Balikova. Studies on the functions of tumor-associated mucin-like 
leukosialin (CD43) in human cancer cells. Tartu, 2012, 129 p. 

216. Triinu Kõressaar. Improvement of PCR primer design for detection of 
prokaryotic species. Tartu, 2012, 83 p. 

217. Tuul Sepp. Hematological health state indices of greenfinches: sources of 
individual variation and responses to immune system manipulation. Tartu, 
2012, 117 p. 

218. Rya Ero. Modifier view of the bacterial ribosome. Tartu, 2012, 146 p. 
219. Mohammad Bahram. Biogeography of ectomycorrhizal fungi across dif-

ferent spatial scales. Tartu, 2012, 165 p. 
220. Annely Lorents. Overcoming the plasma membrane barrier: uptake of 

amphipathic cell-penetrating peptides induces influx of calcium ions and 
downstream responses. Tartu, 2012, 113 p. 

221. Katrin Männik. Exploring the genomics of cognitive impairment: whole-
genome SNP genotyping experience in Estonian patients and general 
population. Tartu, 2012, 171 p. 

222. Marko Prous. Taxonomy and phylogeny of the sawfly genus Empria 
(Hymenoptera, Tenthredinidae). Tartu, 2012, 192 p. 

223. Triinu Visnapuu. Levansucrases encoded in the genome of Pseudomonas 
syringae pv. tomato DC3000: heterologous expression, biochemical 
characterization, mutational analysis and spectrum of polymerization pro-
ducts. Tartu, 2012, 160 p. 



166 

224. Nele Tamberg. Studies on Semliki Forest virus replication and patho-
genesis. Tartu, 2012, 109 p. 

225. Tõnu Esko. Novel applications of SNP array data in the analysis of the ge-
netic structure of Europeans and in genetic association studies. Tartu, 
2012, 149 p. 

226. Timo Arula. Ecology of early life-history stages of herring Clupea haren-
gus membras in the northeastern Baltic Sea. Tartu, 2012, 143 p. 

227. Inga Hiiesalu. Belowground plant diversity and coexistence patterns in 
grassland ecosystems. Tartu, 2012, 130 p. 

228. Kadri Koorem. The influence of abiotic and biotic factors on small-scale 
plant community patterns and regeneration in boreonemoral forest. Tartu, 
2012, 114 p.  

229. Liis Andresen. Regulation of virulence in plant-pathogenic pectobacteria. 
Tartu, 2012, 122 p. 

230. Kaupo Kohv. The direct and indirect effects of management on boreal 
forest structure and field layer vegetation. Tartu, 2012, 124 p. 

231. Mart Jüssi. Living on an edge: landlocked seals in changing climate. 
Tartu, 2012, 114 p. 

232. Riina Klais. Phytoplankton trends in the Baltic Sea. Tartu, 2012, 136 p. 
233. Rauno Veeroja. Effects of winter weather, population density and timing 

of reproduction on life-history traits and population dynamics of moose 
(Alces alces) in Estonia. Tartu, 2012, 92 p.  

234. Marju Keis. Brown bear (Ursus arctos) phylogeography in northern Eura-
sia. Tartu, 2013, 142 p.  

235. Sergei Põlme. Biogeography and ecology of alnus- associated ecto-
mycorrhizal fungi – from regional to global scale. Tartu, 2013, 90 p. 

236. Liis Uusküla. Placental gene expression in normal and complicated 
pregnancy. Tartu, 2013, 173 p. 

237. Marko Lõoke. Studies on DNA replication initiation in Saccharomyces 
cerevisiae. Tartu, 2013, 112 p. 

238. Anne Aan. Light- and nitrogen-use and biomass allocation along pro-
ductivity gradients in multilayer plant communities. Tartu, 2013, 127 p.   

239. Heidi Tamm. Comprehending phylogenetic diversity – case studies in 
three groups of ascomycetes. Tartu, 2013, 136 p.  

240. Liina Kangur. High-Pressure Spectroscopy Study of Chromophore-
Binding Hydrogen Bonds in Light-Harvesting Complexes of Photo-
synthetic Bacteria. Tartu, 2013, 150 p.  

241. Margus Leppik. Substrate specificity of the multisite specific pseudo-
uridine synthase RluD. Tartu, 2013, 111 p. 

242. Lauris Kaplinski. The application of oligonucleotide hybridization model 
for PCR and microarray optimization. Tartu, 2013, 103 p. 

243. Merli Pärnoja. Patterns of macrophyte distribution and productivity in 
coastal ecosystems: effect of abiotic and biotic forcing. Tartu, 2013, 155 p. 

244. Tõnu Margus. Distribution and phylogeny of the bacterial translational 
GTPases and the Mqsr/YgiT regulatory system. Tartu, 2013, 126 p. 



167 

245. Pille Mänd. Light use capacity and carbon and nitrogen budget of plants: 
remote assessment and physiological determinants. Tartu, 2013, 128 p.  

246. Mario Plaas. Animal model of Wolfram Syndrome in mice: behavioural, 
biochemical and psychopharmacological characterization. Tartu, 2013,  
144 p.  

247. Georgi Hudjašov. Maps of mitochondrial DNA, Y-chromosome and tyro-
sinase variation in Eurasian and Oceanian populations. Tartu, 2013,  
115 p. 

248.  Mari Lepik. Plasticity to light in herbaceous plants and its importance for 
community structure and diversity. Tartu, 2013, 102 p. 

249. Ede Leppik. Diversity of lichens in semi-natural habitats of Estonia. 
Tartu, 2013, 151 p.  

250. Ülle Saks. Arbuscular mycorrhizal fungal diversity patterns in boreo-
nemoral forest ecosystems. Tartu, 2013, 151 p.  

251.  Eneli Oitmaa. Development of arrayed primer extension microarray 
assays for molecular diagnostic applications. Tartu, 2013, 147 p. 

252. Jekaterina Jutkina. The horizontal gene pool for aromatics degradation: 
bacterial catabolic plasmids of the Baltic Sea aquatic system. Tartu, 2013, 
121 p. 

253. Helen Vellau. Reaction norms for size and age at maturity in insects: rules 
and exceptions. Tartu, 2014, 132 p.  

254. Randel Kreitsberg. Using biomarkers in assessment of environmental 
contamination in fish – new perspectives. Tartu, 2014, 107 p.  

255. Krista Takkis. Changes in plant species richness and population per-
formance in response to habitat loss and fragmentation.Tartu, 2014, 141 p. 

256. Liina Nagirnaja. Global and fine-scale genetic determinants of recurrent 
pregnancy loss. Tartu, 2014, 211 p.  

257. Triin Triisberg. Factors influencing the re-vegetation of abandoned 
extracted peatlands in Estonia. Tartu, 2014, 133 p. 

258. Villu Soon. A phylogenetic revision of the Chrysis ignita species group 
(Hymenoptera: Chrysididae) with emphasis on the northern European 
fauna. Tartu, 2014, 211 p. 

259. Andrei Nikonov. RNA-Dependent RNA Polymerase Activity as a Basis 
for the Detection of Positive-Strand RNA Viruses by Vertebrate Host 
Cells. Tartu, 2014, 207 p. 

260. Eele Õunapuu-Pikas. Spatio-temporal variability of leaf hydraulic con-
ductance in woody plants: ecophysiological consequences. Tartu, 2014, 
135 p.  

261. Marju Männiste. Physiological ecology of greenfinches: information con-
tent of feathers in relation to immune function and behavior. Tartu, 2014, 
121 p. 

262. Katre Kets. Effects of elevated concentrations of CO2 and O3 on leaf 
photosynthetic parameters in Populus tremuloides: diurnal, seasonal and 
interannual patterns. Tartu, 2014, 115 p. 



168 

263. Külli Lokko. Seasonal and spatial variability of zoopsammon commu-
nities in relation to environmental parameters. Tartu, 2014, 129 p.  

264. Olga Žilina. Chromosomal microarray analysis as diagnostic tool: Esto-
nian experience. Tartu, 2014, 152 p.  

265. Kertu Lõhmus. Colonisation ecology of forest-dwelling vascular plants 
and the conservation value of rural manor parks. Tartu, 2014, 111 p. 

266. Anu Aun. Mitochondria as integral modulators of cellular signaling. Tartu, 
2014, 167 p.  

267. Chandana Basu Mallick. Genetics of adaptive traits and gender-specific 
demographic processes in South Asian populations. Tartu, 2014, 160 p. 

268.  Riin Tamme. The relationship between small-scale environmental hetero-
geneity and plant species diversity. Tartu, 2014, 130 p. 

269. Liina Remm. Impacts of forest drainage on biodiversity and habitat qua-
lity: implications for sustainable management and conservation. Tartu, 
2015, 126 p.  

270. Tiina Talve. Genetic diversity and taxonomy within the genus Rhinanthus. 
Tartu, 2015, 106 p. 

271. Mehis Rohtla. Otolith sclerochronological studies on migrations, spawning 
habitat preferences and age of freshwater fishes inhabiting the Baltic Sea. 
Tartu, 2015, 137 p. 

272. Alexey Reshchikov. The world fauna of the genus Lathrolestes (Hyme-
noptera, Ichneumonidae). Tartu, 2015, 247 p. 

273. Martin Pook. Studies on artificial and extracellular matrix protein-rich 
surfaces as regulators of cell growth and differentiation. Tartu, 2015, 142 p. 

274. Mai Kukumägi. Factors affecting soil respiration and its components in 
silver birch and Norway spruce stands. Tartu, 2015, 155 p. 

275. Helen Karu. Development of ecosystems under human activity in the 
North-East Estonian industrial region: forests on post-mining sites and 
bogs. Tartu, 2015, 152 p. 

276. Hedi Peterson. Exploiting high-throughput data for establishing relation-
ships between genes. Tartu, 2015, 186 p. 

277.  Priit Adler. Analysis and visualisation of large scale microarray data, 
Tartu, 2015, 126 p.  

278.  Aigar Niglas. Effects of environmental factors on gas exchange in deci-
duous trees: focus on photosynthetic water-use efficiency. Tartu, 2015, 
152 p.  

279. Silja Laht. Classification and identification of conopeptides using profile 
hidden Markov models and position-specific scoring matrices. Tartu, 2015, 
100 p. 

280.  Martin Kesler. Biological characteristics and restoration of Atlantic 
salmon Salmo salar populations in the Rivers of Northern Estonia. Tartu, 
2015, 97 p. 

281. Pratyush Kumar Das. Biochemical perspective on alphaviral nonstruc-
tural protein 2: a tale from multiple domains to enzymatic profiling. Tartu, 
2015, 205 p 



169 

282.  Priit Palta. Computational methods for DNA copy number detection. 
Tartu, 2015, 130 p.  

283. Julia Sidorenko. Combating DNA damage and maintenance of genome 
integrity in pseudomonads. Tartu, 2015, 174  p.  

284.  Anastasiia Kovtun-Kante. Charophytes of Estonian inland and coastal 
waters: distribution and environmental preferences. Tartu, 2015, 97 p. 

285. Ly Lindman. The ecology of protected butterfly species in Estonia. Tartu, 
2015, 171 p. 

286. Jaanis Lodjak. Association of Insulin-like Growth Factor I and Corti-
costerone with Nestling Growth and Fledging Success in Wild Passerines. 
Tartu, 2016, 113 p.  

287.  Ann Kraut. Conservation of Wood-Inhabiting Biodiversity – Semi-Natural 
Forests as an Opportunity. Tartu, 2016, 141 p. 

288. Tiit Örd. Functions and regulation of the mammalian pseudokinase TRIB3. 
Tartu, 2016, 182. p. 

289. Kairi Käiro. Biological Quality According to Macroinvertebrates in 
Streams of Estonia (Baltic Ecoregion of Europe): Effects of Human-induced 
Hydromorphological Changes. Tartu, 2016, 126 p. 

290.  Leidi Laurimaa. Echinococcus multilocularis and other zoonotic parasites 
in Estonian canids. Tartu, 2016, 144 p. 

291. Helerin Margus. Characterization of cell-penetrating peptide/nucleic acid 
nanocomplexes and their cell-entry mechanisms. Tartu, 2016, 173 p. 

292. Kadri Runnel. Fungal targets and tools for forest conservation. Tartu, 
2016, 157 p.  

293. Urmo Võsa. MicroRNAs in disease and health: aberrant regulation in lung 
cancer and association with genomic variation. Tartu, 2016, 163 p.  

294.  Kristina Mäemets-Allas. Studies on cell growth promoting AKT signa-
ling pathway – a promising anti-cancer drug target. Tartu, 2016, 146 p. 

295. Janeli Viil. Studies on cellular and molecular mechanisms that drive 
normal and regenerative processes in the liver and pathological processes 
in Dupuytren’s contracture. Tartu, 2016, 175 p. 

296. Ene Kook. Genetic diversity and evolution of Pulmonaria angustifolia L. 
and Myosotis laxa sensu lato (Boraginaceae). Tartu, 2016, 106 p. 

297. Kadri Peil. RNA polymerase II-dependent transcription elongation in 
Saccharomyces cerevisiae. Tartu, 2016, 113 p.  

298. Katrin Ruisu. The role of RIC8A in mouse development and its function 
in cell-matrix adhesion and actin cytoskeletal organisation. Tartu, 2016, 
129 p.   

299. Janely Pae. Translocation of cell-penetrating peptides across biological 
membranes and interactions with plasma membrane constituents. Tartu, 
2016, 126 p.   

300. Argo Ronk. Plant diversity patterns across Europe: observed and dark 
diversity. Tartu, 2016, 153 p. 



301. Kristiina Mark. Diversification and species delimitation of lichenized 
fungi in selected groups of the family Parmeliaceae (Ascomycota). Tartu, 
2016, 181 p. 

302. Jaak-Albert Metsoja. Vegetation dynamics in floodplain meadows: 
influence of mowing and sediment application. Tartu, 2016, 140 p. 

303. Hedvig Tamman. The GraTA toxin-antitoxin system of Pseudomonas 
putida: regulation and role in stress tolerance. Tartu, 2016, 154 p. 

304. Kadri Pärtel. Application of ultrastructural and molecular data in the 
taxonomy of helotialean fungi. Tartu, 2016, 183 p. 

305. Maris Hindrikson. Grey wolf (Canis lupus) populations in Estonia and 
Europe: genetic diversity, population structure and -processes, and hybridi-
zation between wolves and dogs. Tartu, 2016, 121 p. 

306. Polina Degtjarenko. Impacts of alkaline dust pollution on biodiversity of 
plants and lichens: from communities to genetic diversity. Tartu, 2016,  
126 p. 

307.  Liina Pajusalu. The effect of CO2 enrichment on net photosynthesis of 
macrophytes in a brackish water environment. Tartu, 2016, 126 p.  

308. Stoyan Tankov. Random walks in the stringent response. Tartu, 2016,  
94 p. 

309.  Liis Leitsalu. Communicating genomic research results to population-
based biobank participants. Tartu, 2016, 158 p. 

310. Richard Meitern. Redox physiology of wild birds: validation and appli-
cation of techniques for detecting oxidative stress. Tartu, 2016, 134 p. 

311. Kaie Lokk. Comparative genome-wide DNA methylation studies of healthy 
human tissues and non-small cell lung cancer tissue. Tartu, 2016, 127 p. 

312. Mihhail Kurašin. Processivity of cellulases and chitinases. Tartu, 2017, 
132 p. 

313. Carmen Tali. Scavenger receptors as a target for nucleic acid delivery 
with peptide vectors. Tartu, 2017, 155 p. 

314. Katarina Oganjan. Distribution, feeding and habitat of benthic sus-
pension feeders in a shallow coastal sea. Tartu, 2017, 132 p. 

315.  Taavi Paal. Immigration limitation of forest plants into wooded landscape 
corridors. Tartu, 2017, 145 p.  

316. Kadri Õunap. The Williams-Beuren syndrome chromosome region protein 
WBSCR22 is a ribosome biogenesis factor. Tartu, 2017, 135 p. 




