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Description and application of gene expression data analysis method
Barcode

Abstract:

The main goals of this thesis is to assert whether gene expression data analysis method
Barcode o�ers improvement over the method fRMA and to visualise the di�erence clearly.

First, descriptive part of this thesis focuses on the gene expression data analysis
method Barcode. Barcode is explained by presenting an overview of di�erent Barcode
versions. For each version a description of functionalities and possible uses are given with
emphasis on new functionalities, compared to the older versions.

Second, practical part of this thesis compares Barcode and fRMA method(fRMA
method output is the starting point for Barcode analysis). To compare these two meth-
ods human gene expression dataset of DNA microarray experiment results is used. The
dataset E-TAB-145 contains expression data from 158 human tissue samples. Tissue sam-
ples are �rst manually clustered to use as reference in comparison of these two methods.
Data is then analysed with both Barcode and fRMA. To visualise and compare the result
two statistical methods are separately used: Principal component analysis and Hierar-
chical clustering. For the results of both statisical analysis methods a detailed analysis
is given. In the analysis it is concluded that Barcode really does o�er an improvement
over fRMA. Barcode allows samples to be classi�ed better into clusters - samples of the
same tissue type are separated better from other samples compared to fRMA.

Keywords: Principal component analysis (PCA), Hierarchical clustering, Barcode, gene
expression, microarray experiment data, frozen RMA (fRMA)

CERCS:B110 Bioinformatics, medical informatics, biomathematics, biometrics
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Geeniekspressiooni andmete analüüsi meetodi Barcode kirjeldus
ja rakendamine

Lühikokkuvõte: Käesoleva bakalaureuse töö peamised eesmärgid on üle kontrollida, kas
geeniekspressiooni andmete analüüsi meetod Barcode täiustab meetodit fRMA ja tuua
erinevused visuaalselt välja.

Esimene, kirjeldav osa keskendub geeniekspressiooni andmete analüüsi meetodil Barco-
de. Barcode'i kirjelduse käigus antakse ülevaade erinevatest Barcode'i versioonidest. Iga
versiooni juures on kirjeldatud funktsionaalsused ja nende kasutamine. Põhirõhk on see-
juures pandud uutele funktsionaalsustele võrreldes varasemate versioonidega.

Teises, praktilises osas võrreldakse meetodeid Barcode ja fRMA (fRMA meetodi väl-
jund on Barcode analüüsi alguspunkt). Nende kahe meetodi võrdlemiseks kasutatakse
inimese geeniekspressiooni andmehulka DNA kiibi eksperimentidest. Andmehulk tähise-
ga E-TABM-145 sisaldab 158 inimese koenäidise ekspressiooniandmeid. Kõigepealt jao-
tatakse need koenäidised manuaalselt gruppidesse. Need manuaalselt loodud grupid on
aluseks mõlema meetodi töö hindamisele. Seejärel töödeldakse algseid andmeid nii mee-
todiga Barcode kui ka meetodiga fRMA. Mõlema meetodi tulemuste visualiseerimiseks
ja võrdlemiseks kasutatakse eraldi kahte statistilist meetodit: peakomponentanalüüs (pri-
ncipal component analysis) ja hierarhiline klasterdamine. Mõlema statistilise meetodi
väljunditele on tehtud analüüs ja võrdlus Barcode'i ja fRMA vahel. Vastavate statisti-
liste meetodite väljundite võrdlusest saab järeldada, et Barcode on tõepoolest täiendab
fRMA-d. Barcode võimaldab koenäidiseid apremini õigetesse klastritesse klassi�tseerida -
näidised, mis tulevad samast koest on kasutades Barcode'i paremini ülejnäänud näidistest
eraldatud kui fRMA puhul.

Võtmesõnad:Peakomponentanalüüs (PCA), hierarhiline klasterdamine, Barcode, gee-
niekspressioon, DNA kiibi andmed, fRMA.

CERCS:B110 Bioinformaatika, meditsiiniinformaatika, biomatemaatika, biomeetrika
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1 Introduction

Over time, analysis of human genome has produced large amount of data, including gene
locations and sequences. In addition to this, it is important to know which genes are
expressed in which tissue types, to understand better the processes in each individual
tissue type. Understanding processes that take place in each tissue type, can be used as a
foundation to create more speci�c and more e�ective drugs to cure and prevent diseases
both on individual and collective level. Detecting gene expression di�erences by tissue
types requires standardized method to be successfully used on large data sets. One tool
that helps give answer to that is gene expression Barcode for microarray data [1�3].

Barcode is a method that allows to determine whether a gene is expressed in a given
cell type or not. Also, it allows comparison across multiple cell types since it takes
di�erent expression modes across cel types into account. Barcode method can also be
used to identify new genes in a particular tissue that has not been well studied. Since
Barcode is more immune to lab/batch e�ect than other methods, it can be applied to
a single DNA chip to identify cell type. This property can be used to more e�ciently
classify unknown cells as cancerous because reliable comparison of data across di�erent
studies is possible.

Because it is a reliable approximation of the transcriptome, the Barcode data has been
used in epigenetic studies, to improve ChIP-seq [4] and ChIP-chip [5] data analysis and
to investigate increased heterogeneity in cancer. The barcode data is an important part
of the EpiViz [6] webtool, which links transcriptomic and epigenomic data. The main
bottlenecks for Barcode tool to be more e�cient are limited amount of public data and
inconsistent user-supplied annotations and vocabulary used to describe samples, making
computational curation of data annotation di�cult.

In this thesis, to understand Barcode better, it is explained by presenting an overview
of di�erent Barcode versions. For each version a description of functionalities and possible
uses are given with emphasis on new functionalities compared to the older versions.

Second, practical part of this thesis compares Barcode and fRMA [7] method(fRMA
method output is the starting point for Barcode analysis). To compare these two methods
human gene expression dataset of DNA microarray experiment results is used. The
dataset contains expression data from 158 human tissue samples. Tissue samples are �rst
manually clustered to use as a reference clustering in comparison of these two methods.
Data is then analysed with both Barcode and fRMA. To visualise and compare the
results, two statistical methods are separately used: Principal component analysis and
Hierarchical clustering. For the results of both statisical analysis methods a detailed
analysis is given. The analysis and visualisation is conducted using R and the relevant R
packages.

There are three �les added to the thesis which are mentioned in the appendices.
Firstly, the R code (BcodeThesis.R) used in practical part for drawing plots and applying
Barcode and fRMA methods. Secondly, the text �le (celandtissue.txt) containing relevant
information for R code to work, including manual clustering info. Finally, the text �le
(data.txt) containing Barcode processed data of sample tissues.
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2 Relevant genetic background

2.1 Genomic structures

2.1.1 Nucleic acids

There are two types of nucleic acids: DNA and RNA. Deoxyribonucleic acid (DNA) is a
biomolecule that carries genetic information. DNA consists of four di�erent nucleotides:
adenine - A, guanine - G, cytosine - C and thymine - T. DNA can be found in organisms
mostly double-stranded, consisting of two anti-parallel DNA strands. The binding (an-
nealing) of these two strands is complementary, meaning that the nucleotides that are
connected are A-T and G-C, other pairings can only appear as a mistake. A-T connection
has two hydrogen bonds whereas G-C bond has three, which makes G-C bonds stronger
and more stable.

A A

A

AA

A

C

C C CG

G G

T T T T

T TG

5’

5’

3’

3’
H bonds

DNA strand

Figure 1: Part of double stranded DNA. It can be seen that G-C pairs have 3 hydrogen bonds whereas
A-T pairs have 2 hydrogen bonds, which makes G-C pairs more stable. Also the two strands of DNA
are anti-parallel - notice the 3' and 5' ends are reversed in the strands.

Ribonucleic acid (RNA) is a biomolecule that can act both as carrier of genetic informa-
tion (only in viruses) and e�ector molecule for example, by catalysing biological reactions,
controlling gene expression or mediating cellular signals. Unlike DNA, RNA is mostly
found in single strands, which fold upon themselves to form complementary structure
with itself. Similar to DNA, RNA consists of four di�erent nucleotides, but instead of the
T nucleotide, RNA has U (uracil) nucleotide, which means that binding pairs are A-U
and G-C.

Both DNA and RNA are directional molecules. There are 5' ends and 3' ends in DNA
and RNA. In double-stranded RNA (dsRNA) and dsDNA the two nucleic acid molecules
are in opposite directions. In vivo DNA and RNA are synthesized from 5' end to 3' end.
The relative positions of structures on the DNA strand, including genes, are referred to
as upstream (towards 5' end) and downstream (towards 3' end).

2.1.2 Genome

Genetic material of organism is referred to as genome. It consists of DNA with the ex-
ception of some viruses, which have RNA genome. In eukaryotic (with nucleus, including
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humans) organisms, genome is usually divided into one or more linear double-strands
of DNA which is then further packed into higher structures. Genomes of all eukary-
otic organisms contain two types of regions: gene regions, that consist of exons, introns
and expression regulating sequences, and intergenic regions. The part of genome that is
mostly under observation in genetic studies is exons. Exons are the parts of a genome
that make up the mRNA.

5’ 3’

exons exonsintrons

intergenic regions

Figure 2: Genomic regions. Genome can be largely split into two: gene sequences and inter-genic
sequences. Gene sequences consist of coding parts - exons and non-coding parts - introns and regulatory
sequences.

2.1.3 Genome properties

The properties of primary and secondary structures of DNA/RNA are largely set by
the nucleotide sequence. One such property, very important in genetic studies, is GC%.
GC% means guanine-cytosine content in nucleic acid strand. DNA/RNA sequences with
higher GC% provide more stable double-stranded molecule, for example, able to with-
stand higher temperatures. GC% may be measured in both shorter DNA sequences
and the whole genome. GC% is calculated as follows: (G+C)/(A+T(U)+G+C) where
A and T (U) are other two nucleotides present in DNA (RNA). In microarray studies,
GC% a�ects sensitivity and binding speci�city by increasing sensitivity through increase
in signal intensity and decreasing binding speci�city by being more prone to mismatch
binding [8, 9].

2.1.4 Genes

Genes consist of sequence of nucleotides. The length and combination of nucleotides in
a given gene de�nes the protein or some other gene product a gene codes. In addition
to the sequence of a gene, it is important to know the location of the gene sequence
in genome. In case of humans it is determined by giving number of chromosome and
nucleotide range in this chromosome which belong to that gene. It is also added whether
the gene is located on forward or reverse strand. For example, in Ensembl database for
gene HLA-B the gene location is: Chromosome 6: 31,353,872-31,357,188 reverse strand
[10].

2.2 Gene expression

What de�nes how organism looks like and functions, known as phenotype, is how its
genes are expressed. One gene can have di�erent variants, known as alleles, in di�erent
individuals. These variants code di�erent gene products and when expressed, result in
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di�erent phenotypes. Gene is called expressed when it is used in the synthesis of a
functional gene products. These gene products may be either proteins or functional RNA
(for example tRNA, rRNA).

5’ 3’

Transcription direction

exons exonsintrons

Transcription

Splicing

Translation

RHSTNQULAAIAGG

Amino acids

pre-mRNA

mRNA

Protein

DNA

5’ UTR 3’ UTR

Figure 3: Gene expression. Genes are expressed mostly in direction DNA -> RNA -> protein. Firstly,
based on DNA a pre-mRNA strand is transcribed. The pre-mRNA strand is basically the whole gene
sequence. Then in the process of splicing, introns are cut away from pre-mRNA to produce mRNA.
Finally mRNA in translated in ribosomes into chains of aminoacids that form proteins .

2.2.1 Expression mediators

Genes are expressed through RNA, more precisely, through messenger RNA (mRNA).
mRNA is transcribed from the gene coded in DNA during a process called transcription.
During transcription pre-mRNA, consisting of introns and exons is �rstly transcribed in
5' -> 3' direction based on DNA template. The beginning and the end of the region
to be transcribed are marked by untranslated regions (UTR-s) on the respective ends of
the region. Then the introns are spliced away from the pre-mRNA and remaining exons
are joined to form mRNA. Then the mRNA is translated into protein in cell components
called ribosomes. In translation two other RNA types also play a key role: ribosomal RNA
(rRNA) and transfer RNA (tRNA). Ribosomal RNA is one of the structural components
of ribosomes. Transfer RNA mediates recognition of three subsequent nucleotides of
mRNA, called codon, and provides the corresponding amino acid.

2.2.2 Splicing

Splicing is a process in which introns are cut away from the pre-mRNA and the remaining
exon parts are joined to make up mRNA. Some regions of genome can code several genes
because they have several di�erent splicing sites. Which gene is expressed depends on
which sites are used in splicing. When di�erent sites are used, mRNA ends up with
di�erent sequence, meaning it will be used to translate di�erent gene product, therefore a
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di�erent gene is expressed. The process of using di�erent splicing sites to express di�erent
genes from the same region is known as alternative splicing.

2.2.3 Expression variability

Most genes are expressed di�erently across species, individuals and tissue types [11]. Also,
in di�erent populations and individuals, expression of the same gene in the same tissue
can be di�erent. This means that for the same gene in one tissue there may be several
healthy expression modes. Therefore this within tissue variability has to be taken into
account when de�ning whether the gene is expressed or silenced in the corresponding
tissue [11].

There are some genes that are expressed very similarly across tissues. These are called
high entropy genes.

2.2.4 Transcriptome

Transcriptome is a collection of gene transcripts (mRNA) of one cell, a cell popula-
tion, organisms or even species. Transcriptome includes all genes that are being actively
transcribed at any given time. Transcriptomes are pro�led using DNA microarrays or
RNA-seq. RNA-seq uses next generation sequencing methods to present RNA in a cell
at a given moment.

Similar "-omes" are epigenome - collection of chemical compounds that interact with
DNA [12], and proteome - collection of proteins expressed by a biological unit [13].

2.3 Uni�ed representation of genetic data

Gene ontology (GO) [14] is an initiative to achieve uni�ed representation of both genes
and gene products across all species. This means that controlled vocabulary is devel-
oped and used to describe genes and gene products. Also, uni�ed annotation is added to
genes and gene products. Providing uni�ed structure for the gene data makes it machine
readable, allowing for much faster data analysis. GO helps represent gene and gene prod-
uct properties by providing an ontology of terms for three domains: cellular component,
molecular function, biological process. Each GO term has a term name, unique alphanu-
meric identi�er, a de�nition with cited sources, and a namespace indicating what domain
the term represents. In GO terms may also have synonyms. GO forms a directed acyclic
graph where each term is in a de�ned relationship with one or many other terms. The
relationships can be intra- or interdomain relationships and are species-neutral [15].

Annotating gene data using GO means assigning GO terms to the data. GO annotations
form an annotation database, where there is also reference what was used to make the
annotation (for example an article) and by whom the annotation was made. Both GO
terms and annotations are dynamic databases, subject to changes and additions made by
its collaborators.
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Table 1: Example Gene Ontology term

id: GO:0016049
name: cell growth
namespace: biological_process
def: "The process in which a cell irreversibly increases in ..." [GOC:ai]
subset: goslim_generic
subset: goslim_plant
subset: gosubset_prok
synonym: "cell expansion" RELATED []
synonym: "cellular growth" EXACT []
synonym: "growth of cell" EXACT []
is_a: GO:0009987 ! cellular process
is_a: GO:0040007 ! growth
relationship: part_of GO:0008361 ! regulation of cell size

2.4 Usage of microarrays in genetic studies

2.4.1 DNA microarrays

DNA microarray, also referred to as Gene chip or DNA chip, is a series of microscopic
DNA spots attached to a solid surface. In A�yMetrix Genechip arrays Each spot has
1.4 ∗ 106 short single-stranded DNA or RNA fragments [16], known as probes (also as
oligos), attached to it. In gene experiments the probes can be designed di�erently, for
example to identify unique transcripts or common transcript sequence segments.

Probes are used to hybridise a cDNA sample, called target, under speci�c conditions.
cDNA samples are generated from mRNA by reverse transcription [16]. The phenomenon,
called hybridisation, that microarray studies utilise is the ability of single-stranded DNA
and RNA sequences to bind (anneal) to complementary strands. In case of microarrays,
the hybridised single strands are probe and target.

Targets have usually some �uorophores attached to them, for example biotin [16]
or molecules that are later used to bind �uorophores. The �uorophores or �uorophore
binders used are usually small non-protein organic molecules so that they do not perturb
the hybridisation.

The targets are then injected to microarray to hybridise, after which the weakly- and
non-hybridised targets are washed away. When the �uorophore has not been previously
attached to the targets then it is done in the process of washing. Probe-target hybridi-
sation is detected and quanti�ed by measuring �uorescence intensity caused by targets
present on the spot after washing. More intense �uorescence means more probes have
hybridised, meaning stronger binding [16]. Stronger binding generally means more pre-
cisely matched probe-target and therefore more probable expression of the corresponding
gene.

Then the used �uorophore, �uorescence intensity, probe and target of each spot and
wavelength used to get �uorescent reaction are all recorded, making up the raw microarray
data open for further analysis [16].
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Figure 4: Microarray probe-target hybridisation [17]. Targets have �uorophores attached to them. The
�uorophores are usually small non-protein organic molecules so that they do not perturb the hybridi-
sation. The targets are added to microarray to hybridise, after which the weakly- and non-hybridised
targets are washed away. Probe-target hybridisation is detected and quanti�ed by measuring �uorescence
intensity caused by targets present on the spot after washing. More intense �uorescence means more
probes have hybridised, meaning stronger binding. Stronger binding generally means more precisely
matched probe-target and therefore more probable expression of the corresponding gene.

2.5 Processing microarray data

For raw microarray data to present any real information, it has to be thoroughly processed
�rst. The data is subject to many biases, like lab/batch e�ect, cross-hybridisations and
poorly performing probe sets that have to be removed �rst. To remove these biases,
negative control experiments are usually done. Negative control experiments ensure there
is no e�ect where there should not be and also de�ne the value of the experiment which
refers to no e�ect. Even after trying to remove these biases, processing methods make
mistakes, which can be used to compare their e�ectiveness. For example, false positive
rate (false expressed gene calls made out of all expressed calls) can be used for that
purpose.

2.5.1 Lab-batch e�ect

Lab e�ect or batch e�ect means that measured results from the samples depend on the
lab/batch the samples came from [18]. Lab/batch e�ect is most commonly caused by
small di�erentiations in how the batch of samples was made. The lab/batch e�ect can be
found by running a control experiment on the sample from the same batch. If the e�ect
is known then it can be computationally removed from the measurements which makes
it possible to produce meaningful data.

"Lower levels" for lab/batch e�ect are array e�ect and probe e�ect. Array e�ect is
caused by di�erences single arrays have, compared to each other. Probe e�ect is due to
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di�erences in probe properties, for example di�erent probe lengths or GC%.

2.5.2 Cross-hybridising

Cross-hybridising is a probe-target hybridisation phenomenon in which the target binds
to the probe to which it was not intended to bind [19]. The wrong probe has rather
similar nucleic acid sequence to the intended probe, resulting in a weaker hybridisation,
but strong enough not to be washed away. This false binding causes background noise,
interfering with measurement interpretation [19]. To de�ne the background noise values,
a negative-control experiment can be conducted. This means that all targets would
provide only probe-target hybridisations that are by nature cross-hybridisations, giving
the default background noise values to be used in calculations.

2.5.3 Poorly performing probe sets

Probe set is called poorly performing when it provides too many false-positive or false-
negative results. The causes for a probe set to perform poorly are most likely incorrectly
chosen probe and/or target sequences leading to cross-hybridisation or no hybridisation
at all. The probe set can also appear to perform poorly when background noise is falsely
read or expression-threshold values are set incorrectly.

2.5.4 Puri�ed cell types

One way to reduce potential biases in microarray experiments is to use probe/target
material obtained from puri�ed cell types [20]. Purifying a cell type means isolating a
cell population of same phenotype. By adding identifying markers to the cells of interest,
they can be extracted from cell suspension to form a puri�ed cell population with the
phenotypic trait of interest [20], for example cancerous cells. Cell types can also be
puri�ed based on physical traits, for example such as weight - puri�ed with centrifugation,
or magnetic bead separation which uses antibody-antigen binding [20].

2.6 Other relevant methods of genetic studies

2.6.1 Next generation sequencing

Second generation sequencing, or as it is more frequently used, next generation sequencing
(NGS) techniques o�er an alternative to microarrays. NGS allows direct RNA, DNA anal-
ysis. NGS includes ultra-high throughput sequencing technologies, which allow for much
faster sequence analysis than microarrays. [21] The information gathered from a sample
with these new techniques is comparable to that in a single array enabling identi�cation
of di�erentially expressed genes. In addition to that, these new methods allow better
discovery of low-expressed genes, alternative splice variants and new transcripts [22]. For
RNA-s the technique that uses NGS is called RNA-seq.

2.6.2 ChIP technologies

ChIP-seq, short for chromatin immunoprecipitation sequencing is a method that analyses
protein-DNA interactions [4]. Mostly it is used to analyse how chromatin-associated
proteins like transcription factors and other regulate gene expression. The DNA sites
that interact with these proteins can be isolated by chromatin immunoprecipitation.
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Immunoprecipitation uses an antibody that speci�cally binds to a protein to precipitate
it out of a solution. These sites are then used to combine a library of DNA sites bound to
the protein of interest in vivo. Sequencing of the DNA fragments is done simultaneously
using a genome sequencer. ChIP-chip [5], also known as ChIP-on-chip is technology
similar to ChIP-seq, but in this case the DNA fragments are analysed using microarray
technology, hence the "chip" part in the name.

2.7 Microarray analysis methods

2.7.1 RMA

RMA, short for robust multiarray average is a preprocessing algorithm for A�ymetrix
gene expression microarrays [23]. RMA allows background correction, normalisation and
summarisation in a modular way. Normalisation and summarisation require several arrays
to be simultaneously analysed. The ability to use information across samples allows RMA
to produce a �tted parametric model for probe e�ects and improve outlier detection.
Using this �tted parametric model allows the quality metrics to be set [7]. RMA cannot
be used to process arrays individually or in small batches, which hinders its use in clinical
studies. Also, data sets that are preprocessed separately cannot be compared [7]. RMA
does not use information gathered from use of mismatch probes. Mismatch probes are
di�erent from perfect match probes by one base at central position to serve as control
probe for cross-hybridisation.

2.7.2 Frozen RMA

Frozen RMA (fRMA), similarly to RMA, is a microarray data analysis tool. Unlike RMA,
fRMA allows analysing individual or small microarray batches [7]. This is achieved
by using information from large publicly available microarray databases. Based on the
publicly available data, probe-speci�c e�ect estimates and variances are computed and
frozen. When analysing new data sets, these frozen values are used to normalise and
summarise the data from this new set. fRMA single array results are comparable with
RMA batch results and when analysing multiple batches, fRMA outperforms RMA by
removing batch e�ect.

2.7.3 PAM

Predictive Analysis of Microarrays (PAM) [24] is a statistical class prediction tool for gene
expression data which uses nearest shrunken centroids method [25]. Nearest shrunken
centroids method de�nes gene subsets that are best used to describe the corresponding
gene classes. The method �nds a standardised centroid for each gene class. The standard-
ised centroid is the average gene expression value for each di�erent gene in each class and
it is divided by within-class standard deviation for the speci�c gene. Each new sample is
classi�ed by taking its gene expression pro�le and comparing it to class centroids. The
closest class centroid, measured in squared distance, is the predicted class of that new
sample. Shrunken centroid means that each class centroid is moved ("shrunk") towards
the overall centroid for all classes by a user-de�ned threshold amount, always moving it
towards zero, but never past it. For example, centroids with values of 2.7 and -3.8 with
threshold value 2.0 would be moved to 0.7 and -1.8 respectively. Centroid with value 0.8
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would be moved to zero. This kind of shrinking reduces e�ect of noisy genes and allows
for some automatic gene selection [25].
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3 Gene expression Barcode

Over time, analysis of human genome has produced large amount of data, including gene
locations and sequences. It is important to know which genes are expressed in which
tissue types, to understand better the processes in each individual tissue type. Under-
standing processes that take place in each tissue type, can be used as a foundation to
create more speci�c and more e�ective drugs to cure and prevent diseases both on indi-
vidual and collective level. Detecting gene expression di�erences by tissue types requires
standardized method to be successfully used on large data sets. Without standardisation
and large sets of reference data, studies are unable to reliably de�ne expressed genes,
because they are prone to produce false positives, especially medical studies, where data
sets tend to be small. One tool that helps solve that is Gene Expression Barcode for
microarray data [3]. Barcode eliminates data shortage by providing standardised data
from public data sets. This means that by using Barcode, experiments can be conducted
on only a few samples at once.

3.1 Barcode 1.0

3.1.1 De�ning expression thresholds

In Barcode 1.0 [1] tool microarray experiment value thresholds that indicate gene expres-
sion are de�ned by gathering public datasets of microarray gene expression experiments
in which genes are already stated as expressed or silenced. Raw data is obtained for more
than hundred experiments and pre-processed with RMA 2.7.1.

Then for each gene the median log2 expression estimate is computed and an empirical
density smoother is used to estimate the expression distribution of that gene across tis-
sues. Cross-validation [26] is used to choose the smoothness parameter. The mode with
the lowest intensity is considered the expected intensity of an unexpressed gene. Esti-
mates with even lower intensity are used to de�ne the standard deviation of unexpressed
genes. Estimates that are six or more standard deviations (de�ned by cross-validation
assessment) larger than unexpressed mean correspond to expression. Only genes with
two or more distribution modes are included to exclude repetitive information. Genes
with only one mode are considered either expressed or unexpressed in all tissues.

Figure 5 shows the estimations for two human genes. The vertical line shows the
cut-o� between expressed and unexpressed intensity. Box plots on the right show clearly
which genes are above the cut-o�, meaning expressed.

Additionally, these genes have manufacturer provided expression calls: A - absent, M
- marginal, P - present. The calls are marked with lines above and below the density
plots. The orange lines represent absent calls and blue and green represent marginal and
present calls respectively. Figure 5 shows that expression calls based on single-array data
are inconsistent with Barcode and not useful.

3.1.2 Original prediction algorithm

In Barcode 1.0 [1] the expression barcodes are produced by �rst assigning each sample a
speci�c barcode - a vector of zeros and ones, each number representing one gene. Based
on whether the gene is considered expressed or not the number is set 1 or 0. For de�ning
expression states of samples, previously de�ned expression thresholds are used. Then
the barcode for each tissue is set by averaging the zeros and ones of the samples. This
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Figure 5: De�ning of expression threshold, Barcode 1.0. The vertical line shows the cut-o� between
expressed and unexpressed intensity. Box plots on the right show clearly which genes are above the
cut-o�, meaning expressed. Additionally, these genes have manufacturer provided expression calls: A -
absent, M - marginal, P - present. The calls are marked with lines above and below the density plots. The
orange lines represent absent calls and blue and green represent marginal and present calls respectively.
The manufacturer provided expression calls based on single-array data appear to be inconsistent with
Barcode and not useful [1].

means that tissue barcode can contain any value between 0 and 1. For classifying a new
sample, its barcode is computed and then the barcode is compared with existing tissue
barcodes by calculating the Euclidean distance from each tissue barcode. The tissue type,
that minimises this distance is the predicted tissue type. Euclidean distance between two
barcodes, and therefore samples, can be interpreted as the number of genes that are
expressed in one sample and not in the other.

3.1.3 Testing

Barcode 1.0 tool is tested on six datasets including clinical data, by comparing the bar-
codes to prede�ned ones, where state of expression is already known. Using odd-one-out
cross validation, Barcode 1.0 compared to tool PAM [25], outperforms PAM in all cases
but two where it performs just as well. Performance in this case is measured in precision
percentage on distinguishing normal tissue types from the disease types. Barcode 1.0
is tested vs PAM also on independent data sets not included in the original database.
Using prediction algorithm Barcode 1.0 shows far better results than PAM and what is
more important, Barcode 1.0 shows consistent results with the testing done on the six
datasets whereas PAM failed to show that consistency. The reason for PAM failing on in-
dependent datasets but Barcode 1.0 not, is that Barcode 1.0 greatly alleviates lab/batch
e�ect by being more immune to the changes in the intensity values and therefore chance
of false-positives or false-negatives is reduced.
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3.2 Barcode 2.0

3.2.1 Probability of Expression

Probability of Expression (POE) [27], is a statistical algorithm that is used to model
logarithmically transformed (log2) intensities in Barcode 2.0 and 3.0 [2, 3] tool. In Barcode
tool a speci�c version of POE is used to obtain an estimate of silenced and expressed
intensity values for each gene. [2] The version is as follows:

(yijg|θjg) ∼ N(θjg, σ
2
g)

θjg|µg ∼ (1− pg) ∗N(µg, τ
2
g ) + pg ∗ U(µg, Sg)

µg ∼ N(ξ, λ2)

τ 2g ∼ IG(α, β)

(1)

In the model, yijg is the observed fRMA log2 intensity for gene g in sample i and tissue
type j. For each gene/tissue type there is an average observed intensity found, which is
marked as θjg. It is assumed that these average observed intensities follow a combination
of normal distribution for silenced values and an uniform distribution for expressed values.
These are marked as N(µg, τ

2
g ) and U(µg, Sg) where Sg is the interval from the silenced

mean to saturation. It is also assumed that silenced means (µg) are from a normal
distribution and silenced variances (τ 2g ) are from an inverse gamma distribution.

3.2.2 De�ning expression thresholds

In Barcode 2.0 tool de�ning expression thresholds is done by gathering public datasets of
microarray gene expression experiments from which it is possible to create large database
of (binding) intensities. The aim is to create silenced distribution for each gene, which
means that there has to be some experiment in which all genes are silenced. For that
negative control experiments with yeast are conducted. The yeast RNA hybridizes to the
probes on the human microarrays similarly to cross-hybridizing human RNA, meaning
any observed signal is the result of background noise and thus provides the experimental
data in which all genes are silenced. Unlike barcode 1.0, the background estimation
also takes into account the across-tissue distribution data from POE. By including these
samples' data and using their average observed intensities it is possible to estimate the
silenced distribution for each gene. Using Probability of Expression algorithm (POE)
silenced and e�ectively expressed thresholds for each gene are set, allowing expressed
genes to be marked as 1 when calculated value is above threshold and silenced as 0 when
calculated value is below threshold.

POE takes into account variability within tissue, variability within expression state
and uses information across genes to allow comparison across all genes and tissues. This
addition, compared to Barcode 1.0, allows to have more tissue speci�c data which allows
to more speci�cally identify tissue type of the target DNA, observe di�erent expression
modes of one gene across tissue types. POE also uses relevant expression info from other
genes to call expression states.

3.2.3 Testing

To test Barcode 2.0, public data from GEO [28, 29] and Array Express [30] is used:
HGU133a (13824 samples), HGU133plus2 (18656), Mouse4302 (9652). After manually
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curated annotation 78, 131, 89 (respectively) di�erent normal and cancer cell types (at
least 5 for each tissue type) is left. In each cell type, for each gene the proportion
of samples for which that gene is called expressed is computed. These values de�ne
estimated transcriptome for each cell type. For validation of these transcriptomes, genes
expressed in CD4+ T cells, cerebellum, liver and skeletal muscle were grouped by gene
ontology. Functional annotation clustering using DAVID [31, 32] shows that the most
enriched biological groups are really those expected for a given tissue, for example muscle
contraction related genes in skeletal muscle (Table 2).

Table 2: Functional annotation clustering using DAVID. Functional annotation clustering using DAVID
shows that the most enriched biological groups are really those expected for a given tissue, for example
muscle contraction related genes in skeletal muscle.

Liver Skeletal Muscle
GO Term ES GO Term ES
Cellular ketone metabolism 26.2 Muscle Contraction 15.8
Monocarboxylic acid metabolism 16 Muscle Organ Development 9.1
Organic acid 15.7 Striated muscle 7.1
catabolism tissue development
Steroid 11.4 Energy derivation by 5.9
metabolism oxidation of organic compounds
Wound healing 10.7 Anatomical structure development 4.5

3.2.4 Performance

Barcode 2.0 shows to be very consistent in expression calls, where majority of genes are
marked as 1 or 0 (expressed or silenced) and most of the non-calls are caused by minority
of the genes allowing to assume that these are either due to poorly performing probe sets
or these are high entropy genes.

Table 3: Comparison to other methods. Barcode 2.0 outperforms competing methods EBI , Bodymap,
TiGER by �nding more expressed genes (Expressed) and achieving lower false positive rate (FP%) [2].

Method Tissue Expressed FP, %
Barcode Kidney 761 13
TiGER Kidney 320 13
EBI Kidney 245 14
Barcode Liver 695 21
TiGER Liver 295 41
Bodymap Liver 36 25

As seen in Table 3, Barcode 2.0 outperforms competing methods EBI [33] (determines
whether gene is up- or down-regulated in cell type), Bodymap [34] (assesses expression
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strength of genes in tissue type), TiGER [35](determines tissue type based on expression
sequence tags which are short cDNA sequences that represent parts of expressed genes) by
�nding more expressed genes (Expressed) and achieving lower false positive rate (FP%).
For these methods to be comparable, gene lists from each of the resources are obtained
and with DAVID [31] gene identi�ers are converted to Ensembl ID-s [36] for use with the
second.gen RNA sequencing data which is then to be compared to the threshold rates
and used to determine false positive rate.

3.3 Barcode 3.0

3.3.1 New data in Barcode 3.0

Barcode 3.0 triples the amount of data for platforms existent in Barcode 2.0 and thus
improves the barcodes for these platforms. Barcode 3.0 also adds three new platforms.
The change in the data used can be seen in Table 4.

Table 4: Changes in data for Barcode 3.0 [3]

A�ymetric GeneChip Barcode 2.0 sample number Barcode 3.0 sample number
U133A 13824 23936
U133 plus 2.0 18656 63331
U133A 2.0 0 8528
Human Gene 1.0 ST 0 10309
MOE430 2.0 9652 32241
Mouse Gene 1.0 ST 0 10505

Addition of the newer, ST gene platforms makes it possible to extend barcode technology
from 3' in vitro transcription to whole gene arrays. ST platforms represent microarrays
where probes that are hybridised with targets from not only the 3' end but the entire gene
sequence. These arrays have to be preprocessed a bit di�erently to distinguish between
batch-e�ect susceptible probes and probes that target the exons involved in alternative
splicing. For this, fRMA [7] implementation that includes both probe-e�ect and exon-
e�ect parameters needs to be used.

3.3.2 Barcode 3.0 data quality

The data in public databases is submitted open vocabulary and open structure, therefore
most of the public data used is not computationally curatable and has to be manually
curated for the Barcode 3.0 [3]. Currently annotation data is collected and most useful
text �elds are identi�ed. Then normal and tumor tissue type samples are manually
identi�ed for parameter estimation and also to be classi�ed as tissue or puri�ed cell type.

After the publication of Barcode 2.0, a single-array measure of quality was developed
and used to show that 10% of publicly available HGU133a and HGU133plus2 microarray
data is of poor quality. In Barcode 3.0 this quality measurement is used to �lter poor
quality arrays to improve estimates of the null mean and variance. User of Barcode 3.0
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is allowed to set the quality threshold. Improved quality control and increase in input
data provides improved estimates of barcode parameters and therefore better estimation
of absolute gene expression.

Barcode 2.0 and 3.0 parameter estimates are similar. Estimates of the null means
were highly correlated between platform existent in both Barcode versions and only 1%
of the null means di�ered by >1. There were a few genes whose null mean changed
by >2 between versions which could be due to some poor quality arrays in Barcode 2.0
training data or additional training data in Barcode 3.0 providing more accurate estimate
of the null mean. Either way, it shows that considerable improvements can be made by
improving quality of arrays and incorporating additional data.

3.3.3 Barcode 3.0 Bottom-Up research

Barcode data needs to be easily usable in studies that include only some genes at once.
For this, Barcode 3.0 has new suite of data mining and analysis tools to allow researchers
query the database for changes at individual gene level without being obscured by great
amount of extraneous results.

Since each probe set works di�erently on an array, reliability and e�cacy of each
probe set must be taken into consideration. For this purpose, probe reliability evaluation
is provided in graphical form and for e�cacy evaluation user is provided with across
tissue distribution of the corresponding gene, average entropy of probe set (reliability
measurement) and a probe page to enable sharing among researchers. For example, there
are nine probe sets for ESR1 gene on the u133 plus 2.0 microarray platform. When
examining across-tissue distribution of these probe sets, only one of these probe sets,
205225_at achieves a z-score>5 (considered to be evidence of expression) in a variety of
tissues. This is strong evidence that 205225_at is only one of these probe sets that can
measure ESR1 expression [3].

By examining the distribution of average z-scores across tissues and cell types, abilities
of di�erent probe sets to detect gene expression can be compared and thus their suitability
for the experiment can be evaluated by looking at expression distributions.

Barcode has two di�erent search methods added. First, a researcher can identify
the genes and experiments of interest and directly download the preprocessed data for
analysis. Secondly, consensus data for tissues and puri�ed cell types can be downloaded
and compared, for example normal breast and breast tumors. To check for potential
confounding e�ects from false positives, one could graph A�ymetrix [37] control probe
sets along with the gene of interest.

3.3.4 Barcode 3.0 Single-array results

As opposed to regular approach of checking expression of speci�c parameter in patients
by pooling against each other patients who have the parameter expressed and those who
do not, receiving patient speci�c (single-array) result in Barcode 3.0 tool can be done
by looking at each sample independently and determining parameter status and then
looking at other genes of interest for that sample. This removes the potential bias from
pre-categorising patients allowing further subdivision to be easily and more correctly done
and thus more di�erences to be determined.

As the genome, epigenome and proteome all interact with the transcriptome, the
barcode estimations will be of interest to a broad community of researchers. The frma
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R/BioC package [38] with the frmavecs data packages [39] for each supported platform,
allows one to easily incorporate barcode data into one's own analyses.

3.4 Conclusion

Barcode tool allows to determine whether a gene is expressed or not in a given cell type.
Also, it allows comparison across multiple cell types since it takes into account di�erent
expression modes. Barcode tool can also be used to identify new genes in a particular
tissue that has not been well studied. Since Barcode tool is more immune to lab/batch
e�ect than other tools, it can be applied to a single chip to identify cell type and it
can be used more e�ciently to classify cancer because it allows to perform reliable data-
comparison across di�erent studies. Additionally, it was shown that the genes are better
clustered by tissue type rather than by species allowing to remove species-speci�c biases.

Because it is a reliable approximation of the transcriptome, the Barcode data has
been used in epigenetic studies, to improve ChIP-seq and ChIP-chip data analysis and
to investigate increased heterogeneity in cancer. The barcode data is an important part
of the EpiViz [6] webtool, which links transcriptomic and epigenomic data. The main
bottlenecks for Barcode tool to be more e�cient are still somewhat limited public data and
inconsistent user-supplied annotations and vocabulary used to describe samples, making
computational curation of data annotation di�cult. Barcode data can be incorporated
in researchers analysis using the frma R/BioC package with frmavecs data packages for
each supported platform.
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4 Application of the Barcode tool

This section describes the application of Barcode tool - a practical part of this thesis.
Firstly, the description of data used in application will be given and preprocessing of it
is explained. Secondly, the applying of Barcode tool to data and obtaining comparison
data is described. Thirdly, a detailed explanation is given on how di�erently processed
data is compared in the application process. Lastly, interpretation and conclusions are
presented.

4.1 Data description

The data used for application is obtained from a database of functional genomics experi-
ments ArrayExpress [30]. The chosen data set of gene expression microarray experiment
data, marked as E-TABM-145 in ArrayExpress, contains 158 di�erent probe-target hy-
bridisation intensity value vectors from 79 di�erent human cell lines and tissues. Each
vector has intensities for hybridisations with 22283 di�erent probes. The samples are
gathered with experiments done on A�ymetrix GeneChip microarrays with probe set
based on annotation package human genome hgu133a. Hence the type name A�ymetrix
GeneChip Human Genome HG-U133A (A-AFFY-33).

Each sample in this data set is represented with a CEL [40] �le containing gene
espression experiment data from the microarray of the respective sample. Each CEL �le
has a header in which the parameters of the �le are described and an intensity section,
which contains the calculated intensity of each pixel on the microarray. The inensity
part of CEL �les is fairly large with each containing more than 500 000 rows each of
which contains �ve data points. The CEL �les are accompanied by a sdrf �le which
has descriptive parameters for each of the CEL �le eg. organism part, organism, clinical
history.

4.2 Preprocessing data

Preprocessing of the CEL �les is done in R [41]. CEL �les are read into R using the
ReadA�y function from the a�y package [42]. Using ReadA�y, in this particular case
without any arguments, produces an A�yBatch object, which is a class representation
for the intensities from multiple arrays of the same CEL type.

From there fRMA analysis tool is applied to normalise and summarise the data based
on frozen values which are already created in fRMA based on publicly available data sets.
Finally, to obtain a matrix of gene-level exprerssion values, fRMA object is converted to
ExprrssionSet object with the R command exprs(frmaobject).

4.3 Creating expression barcode

The barcode algorithm estimates which genes are expressed and which are unexpressed
in given microarray data. Barcode uses fRMA-based expressionset objects as a starting
point. Barcode object is created by determining whether the fRMA intensities from the
new array are within the estimated distributions. Obtaining these fRMA intensities is
described above.

By default the output of the barcode function is a vector of ones and zeros denoting
which genes are estimated to be expressed (ones) and unexpressed (zeros). There are also
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other options - LOD score [43] vector, z-score vector or p-value vector. In this thesis, the
default option of zeros and ones is used.

4.4 Clustering processed samples and visualising the di�erences

between fRMA and Barcode

In order to compare Barcode and fRMA, two visualisation tools were applied: principal
component analysis (PCA) and hierarchical clustering.

4.4.1 Principal component analysis

PCA [44] is a tool for �nding and visualising patterns in high-dimensional data. PCA
�nds the best possible characteristics, the ones that summarize the dataset as well as
possible. The characteristics, called principal components, do not have to mean anything
by themselves, these are just to bring out the patterns in data better. The �rst principal
component bisects a data cloud with a straight line in a way that explains the most
variance of the data. The second principal component cuts through the data orthogonal
to the �rst, again in a way that covers most of the variance not explained by the �rst
component. The third component would be orthogonal to the preceding components and
�t the residuals from those, and so forth. The way principal components are designed, al-
lows them to be compared and prioritised. Prioritising the components allows some more
low-variance dimensions that do not carry any useful information to be easily dropped
from further analysis.

In Figure 6 an example of dataset with two characteristics is shown. This dataset can
be plotted as points in a plane. To bring out variation, PCA �nds a new coordinate system
in which every point has a new (x,y) value. The new axes, �rst and second principal
components, do not actually mean anything by themselves, these are linear combinations
of old characteristics that are chosen to explain as much variance as possible.

Figure 6: Principal components of 2D data. The dataset on the left has two characteristics and therefore
can be plotted as points in a plane. To bring out variation, PCA �nds a new coordinate system in which
every point has a new (x,y) value. The new axes, �rst and second principal components, do not actually
mean anything by themselves, these are combinations of old characteristics that are chosen to explain as
much variance as possible [45].
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With three dimensions, PCA is more useful, because it's hard to see through a cloud
of data. In the Figure 7, it is shown how �rst two principal components project through
3D data. Basically what PCA has done is choosing the best angle to look at the data
cloud and then project it to 2D using the �rst two principal components. The PCA
transformation ensures that the horizontal axis PC1 has the most variation, the vertical
axis PC2 the second-most, and a third axis PC3 the least.

Figure 7: Finding �rst two principal components of 3D data. With three dimensions, PCA is more
useful, because it's hard to see through a cloud of data. It is shown how �rst two principal components
project through 3D data. Basically PCA has chosen the best angle to look at the data cloud and then
projected it to 2D using the �rst two principal components. The PCA transformation ensures that the
horizontal axis PC1 has the most variation, the vertical axis PC2 the second-most, and a third axis PC3
the least [46].

When performing PCA, it is useful to normalize the data �rst. Because PCA seeks to
identify the principal components with the highest variance, if the data are not properly
normalized, attributes with large values and large variances (in absolute terms) will end
up dominating the �rst principal component when they should not. Normalizing the
data gets each attribute onto more or less the same scale, so that each attribute has an
opportunity to contribute to the principal component analysis. PCA in this thesis is done
using R function "prcomp".

4.4.2 Plotting PCA

To compare and interpret the PCA plots better, the samples were manually grouped and
labelled. Both morphological and functional properties of the tissues were taken into
account when manual grouping was conducted. Functional properties were given higher
priority in de�ning the group in which tissue belongs because these are expected to a�ect
gene expression more than morphologic properties.

Manual grouping is provided only for samples that make up a group of at least 4 (2
unique tissue types). The groups are: Brain - 38 (samples), Blood - 24, Autonomous
nervous system - 10, Covering epithel - 4, Blood processing - 6, Testis - 10, Lung - 4,
Glandular cells - 16, Lymph system - 6, Adrenal system - 4, Tumor - 12. Each group is
colour-coded. The samples that could not be grouped with the others are coloured as grey
on the plots. Some of the samples are not grouped because of the lack of information
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about the origin of the tissue, these are marked as "unclassi�ed" and are not used in
analysis of PCA plots.

The PCA plots themselves are designed so that the axis title is the number of the
principal component it represents. For example, when axes titles are "1" and "2" then it
means that the axes represent �rst and second principal components respectively.

4.4.3 fRMA PCA

Only �rst nine principal components were closely examined and plotted, because further
components each explained 1% or less of total variance and did not provide any interesting
information on the initial plots for all components. Of the �rst nine components only
�rst, second, third and seventh component appear to separate some tissues. Rest of the
nine components which do not show any separation are not displayed unless they appear
on the same plot with the four mentioned components.

The only tissue that �rst component appears to separate is Blood (pink), visible on
1-2 plot top right corner. However, as 2-3 plot shows, second component does better
job at separating Blood (middle right side). 2-3 plot also seems to separate Tumor and
lymph system samples from other samples and also Autonomous nervous system and
Brain samples, but these separations are much less clearer. Other tissue types do not
appear to be separated clearly enough to be analysed.

As seen on 2-3 middle "row" and 3-4 plot middle "column", third component also
does quite well in separating Blood, although not as well as second component. Third
component provides the best separation of Brain (right side of the 3-4 plot and top left
of the 2-3 plot), although the separation between Brain and Blood is obstructed because
Brain cloud (blue) intersects with the Blood (pink) as seen on 3-4 plot.

Seventh component separates Testis as seen on 6-7 plot bottom left corner.
All in all, fRMA PCA plots do o�er clear picture on the separation of Brain, Blood

and Testis, but for other tissue types no clear separation appears. This means that fRMA
PCA plots indicate that clustering of new (unknown) samples can be con�dently done
only for the three mentioned tissue groups but not for the others.
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Figure 8: fRMA PCA, plots 1-2,2-3,3-4,6-7. First component separates Blood (pink), visible on 1-2
plot top right corner. However, as 2-3 plot shows, second component does better job at separating
Blood (middle right side). 2-3 plot also seems to somewhat separate Tumor (brown) and lymph system
(green) from other samples and Autonomous nervous system (orange) and Brain samples (blue). Third
component also does well in separating Blood (plots 2-3, 3-4), although not as well as second component.
Third component seems to do the best job at separating Brain (top left corner of 2-3, right side of 3-4).
Seventh component separates Testis as seen on 6-7 plot bottom left corner. All in all, the separations
between tissues are non-existent for most of the tissues and clearly visible only for tissues like Brain,
Blood and Testis.
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4.4.4 Barcode PCA

Only �rst nine principal components were closely examined and plotted for the same
reasons as in fRMA PCA. On Barcode PCA plots it is clearer how tissue types are
separated by components than it is on fRMA PCA plots. Of the �rst nine components
only second, �fth and sixth components separate some tissues which is one less component
than in fRMA case. Rest of the components are not plotted unless they appear on plots
with the three mentioned components.

First component does not separate any tissues and does not appear to separate even
groups of tissues. 1-2 and 2-3 plot show that second component separates three di�erent
tissues from each other and also from other tissues: Brain (blue) - bottom part of 1-2 plot
and bottom left on 2-3, Autonomous nervous system (orange) - clear line in the middle of
1-2 plot, cluster in the top of 2-3, and Blood (pink) - top part of 1-2 and bottom right of
2-3. Also, second component separates Tumor and lymph system from other tissues. The
second component of Barcode PCA corresponds to this of fRMA where second component
separated the same tissues. In Barcode case however, the separation in Brain, Blood and
Autonomous nervous system is visibly clearer.

On plots 5-6 and 6-7 it is visible that the �fth and sixth component both separate
Testis from other tissues - bottom left of 5-6 plot and middle left of 6-7, and do the same
for Tumor - top of the 5-6 plot and right side of 6-7.

All in all, as with fRMA, Barcode PCA plots separate clearly Brain, Blood and Testis.
However, unlike fRMA, Barcode separates two more tissues clearly: Autonomous nervous
system and Tumor. For other tissue types, the separation remains unclear.
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Figure 9: Barcode PCA, plots 1-2, 2-3, 5-6, 6-7. Plots 1-2 and 2-3 show that second component separates
three di�erent tissues: Brain (blue) - bottom part of 1-2 plot and bottom left on 2-3, Autonomous nervous
system (orange) - clear line in the middle of 1-2 plot, cluster in the top of 2-3, and Blood (pink) - top
part of 1-2 and bottom right of 2-3. Also, second component separates Tumor and lymph system from
other tissues - towards right side of 2-3 plot. On plots 5-6 and 6-7 it is visible that the �fth and sixth
component both separate Testis from other tissues - bottom left of 5-6 plot and middle left of 6-7, and
do the same for Tumor - top of the 5-6 plot and right side of 6-7.
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4.4.5 PCA comparison

Firstly, neither fRMA nor Barcode PCA plots o�er satisfying results to whether the
Barcode methodology is a clear improvement to fRMA or not. The PCA plots present
themselves in too similar manner to draw any certain conclusions. There are however
some di�erences.

As seen on Figure 10 the second component of Barcode PCA separates the same
components as second fRMA component. On fRMA plot, bottom left corner, Brain and
Autonomous nervous system are separated from other tissues but not from each other.
In Barcode case however, the separation between Brain (blue), and Autonomous nervous
system (orange) is visibly clearer - both in the bottom part of the plot. Separation for
Blood (pink) is equal to fRMA.
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Figure 10: The second component of Barcode PCA separates the same components as second fRMA
component. In Barcode case however, the separation between Brain (blue), and Autonomous nervous
system (orange) is visibly clearer. Separation for Blood (pink) is equal.

None of the fRMA plots separates Tumor (brown), sixth component of Barcode PCA
however separates Tumor clearly, as seen on Figure 11. This indicates that Barcode
can be used to de�ne unknown samples as Tumor or non-Tumor, which is important for
medical use.
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Figure 11: Sixth component of Barcode PCA separates clearly Tumor samples (brown) on the right side
of the plot. This indicates that Barcode can be used to de�ne unknown samples as Tumor or non-Tumor.

All in all, the PCA comparison of fRMA and Barcode methods remains unconclusive,
because on one hand, comparison of Barcode and fRMA PCA plots shows Barcode to
have better results in separating Brain, Blood, Testis, Tumor and Autonomous nervous
system, last two being the di�erence clearly standing out between fRMA and Barcode.
However, on the other hand it is not clear whether Barcode method improves, impairs or
leaves unchanged the analysis of the tissues which are not separated by PCA.

Therefore, although Barcode has indications to better fRMA in Tumor sample detec-
tion and also for Brain, Blood, Testis and Autonomous nervous system, for conclusive
results some other analysis method needs to be used too.

4.4.6 Hierarchical clustering analysis

Hierarchical clustering analysis (HCA) [47] is a clustering method that builds a hierarchy
of clusters. The hierarchy can be built two ways - "bottom up" and "top down".

"Bottom up" means that each observation starts in its own cluster, and pairs of most
similar clusters are merged as one moves up the hierarchy. "Top down" means that all
observations start in one cluster, and splits are performed recursively as one moves down
the hierarchy.

In order to decide which clusters should be combined/where split, a measure of dissim-
ilarity between sets of observations is required. Usually it is done by use of appropriate
metric [47] (for example euclidean distance between pairs of observations) and linkage
criterion (for example complete-linkage) setting the dissimilarity of sets as a function
of the pairwise distances of observations in the sets. In general, the merges and splits
are determined in a greedy manner. The results of hierarchical clustering are usually
presented in a dendrogram.
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Figure 12: An example hierarchical clustering dendrogram [48].

Hierarchical clustering in this thesis is done with hclust function in R with correlation
by Pearson correlation coe�cient as distance measure. Hclust performs clustering by
using a set of dissimilarities for the objects being clustered. Hclust implements iterative
"bottom-up" clustering. At each stage when two objects i and j are clustered (i ∪ j),
then the distances have to be recomputed between the new cluster and all other clusters.
In hclust this is done by Lance-Williams dissimilarity update formula:

d(i ∪ j, k) = αid(i, k) + αjd(j, k) + βd(i, j) + γ|d(i, k)− d(j, k)| (2)

αi, αj, β and γ de�ne the agglomerative criterion. Values of α, β and γ depend on the
used clustering method. In case of complete-linkage method α = 0.5, β = 0 and γ = 0.5.
This results in

d(i ∪ j, k) = 1

2
d(i, k) +

1

2
d(j, k) +

1

2
|d(i, k)− d(j, k)|

which can be rewritten as

d(i ∪ j, k) = max{d(i, k), d(j, k)}

There are several di�erent clustering methods provided in hclust. In this thesis complete-
linkage method is used, because it avoids cluster chaining and separates clusters the most.
Complete-linkage means that the distance between two clusters is de�ned by the greatest
distance between any two elements from these clusters.

Hclust orders each subtree so that the tighter cluster is on the left (i.e visually, the
cluster with the lower connection bar is tighter and therefore on the left). Single obser-
vations are the tightest clusters possible.

4.5 Plotting hierarchical clustering

To validate and compare the clusters of Barcode and fRMA, the same manual clustering
was used as in PCA. The plots are based on hierarchical clustering and are designed to
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check whether there are di�erences between fRMA and Barcode processing. The plots
should be interpreted as follows. Firstly, labels of di�erent tissue and cell types are
coloured based on the manual labelling. The less disperse the samples of the same colour
are, the better is the clustering. When looking at colours one has to also look whether
the colours belong to the same larger cluster or are they in di�erent bigger clusters side-
by-side.

Secondly, the higher the bar connecting two samples (sample groups), the more dif-
ferent the samples are, meaning that new samples can be classi�ed more con�dently. The
plots are drawn with ape package [49] from R.

4.5.1 fRMA clustering

Hierarchical clustering performed on fRMA data is shown on Figure 13. First thing
to be noticed is that bars that connect samples are relatively low. This means the
di�erence between the samples is not so big, which could lead to false-clustering and
false classi�cation of unknown samples. fRMA clustering provides two clearly separated
clusters: Blood and Brain.

Brain samples appear very similar to each other and are clustered far from other
tissues with the exception of olfactory bulb (responsible for the sense of smell) samples
that are clustered very far from other brain tissues. This could be because olfactory bulbs
function separately from other parts of brain and can be viewed as a relay station from
cranial nerve I. However, because olfactory bulbs are located inside the skull and is often
classi�ed as part of brain, in this thesis olfactory bulb is manually grouped as a brain
tissue. Because brain samples are so di�erent from other samples, clustering samples as a
brain can be done with high con�dence. On the other hand, the similarity between brain
tissues means when more exact tissue type is required, the clustering is not so con�dent
at all.

Blood samples appear to be clustered better than brain samples. The cluster is rather
far from other clusters, but the di�erence between di�erent blood tissues is also greater
and di�erence between same tissues is small relative to the di�erence of di�erent blood
tissues. This means that even the exact tissue type can be clustered con�dently.

Other clusters that appear not so clearly, but are worth mentioning are Testis, Tumor
and Lymph system. Testis samples are grouped together and relatively far from other
tissues with the exception of one stranded sample, that cannot be explained. Tumor
samples are also well clustered, however, there is a bronchial epithelial sample in this
cluster, which should not be there and again, cannot be explained. Lymph system tissues
are not so far apart from other tissues as Tumor and Testis, but still grouped together.
There are two marrows samples also next to the lymph system cluster, which can be
correct because some marrow cells have very similar functionality, but these marrow
samples could not be grouped more speci�cally due to lack of information on them.
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Figure 13: Hierarchical clustering of fRMA data. First thing to be noticed is that bars that connect
samples are relatively low. This means the di�erence between the samples is not so big, which could
lead to false-clustering and false classi�cation of unknown samples. It is visible from the mixed order of
colours that more similar tissues are not clustered well. The 150 to 315 degrees part of the clustering
shows that tissues and tissue groups have very little di�erence. This has resulted for example in throwing
glandular cell samples apart from each other. Also there are some tissues which appear to be displaced
due to just having values that do not correspond to morpho-functional clustering, for example covering
epithelial, blood processing and lung.

In Figure 13 it is visible from the mixed order of colours that more similar tissues
are not clustered well. The 150 to 315 degrees part of the clustering shows that tissues
and tissue groups have very little di�erence, because height of the bars connecting those
clusters is small. This however means, that small di�erences in data can cause mixup of
the clustering tree branches resulting in uninformative clustering. This has resulted for
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example in throwing glandular cell samples apart from each other. Also there are some
tissues which appear to be displaced due to just having values that do not correspond to
morpho-functional clustering, for example covering epithelial, blood processing and lung.

4.5.2 Barcode clustering

Hierarchical clustering performed on Barcode data is visualised on Figure 14. First thing
to be noticed is that bars that connect samples are high and even more so for di�erent
tissues. The di�erence between the samples is rather big, therefore reducing the proba-
bility of falsely clustering and classifying unknown samples. This allows to negate some
of the problems that are present in fRMA clustering, therefore more meaningful clusters
appear.

In case of Barcode clustering Brain samples again form their own cluster with the
exception of olfactory bulb, which seems to support the hypothesis proposed for this
anomaly in fRMA clustering section. Unlike fRMA clustering, Barcode separates Brain
samples and di�erent brain tissue types from each other almost as much as other tissue
clusters. This still allows to con�dently cluster samples as Brain but in addition allows
to de�ne the exact type of brain tissue con�dently.

Blood samples again appear to be clustered better than brain samples, but the dif-
ference is much smaller. The cluster is still rather far from other clusters, with the
di�erence between di�erent blood tissues being enough for the exact tissue type to be
clustered con�dently.

Unlike fRMA, there are many more clusters that are grouped by their expected func-
tional and morphologic traits. Most importantly Tumor samples are clearly apart from
other tissues, which is useful for medical studies seeking to classify unknown samples
as tumor on not tumor. Also Autonomous nervous system, Blood processing, Covering
epithelial and Lung samples have achieved secluded clusters.

Glandular cell cluster appears deceptively to be close together when looking at labels.
However, when looking at cluster tree, the glandular cell samples are divided into two
clusters, where one group is more closer to adipose tissue, unknown uterus, testis and
olfactory bulb samples. The clustering is much better than in fRMA where Glandular
cells are scattered all over, but the division probably has some disruptive e�ect. Some
part in division can be attributed to the fact that Glandular cell group is the most weakly
bound of the prede�ned groups, but the e�ect should not be that big.

Based on the secluded colour groups on Figure 14, it is visible that samples are quite
well clustered. Mostly the clusters make sense and are well secluded. However, there are
still some anomalies such as cardiac myocyte samples being far apart, probably due to
quality of data, or previously mentioned glandular cell division into two subclusters.
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Figure 14: Hierarchical clustering of Barcode data. The bars that connect samples and show how
much di�erence there is are high and even more so for di�erent tissues. This allows to negate some of
the problems that are present in fRMA clustering, therefore more meaningful clusters appear. Unlike
fRMA, there are many more clusters that are grouped by their expected functional and morphologic
traits. Most importantly Tumor samples are clearly apart from other tissues, which is useful for medical
studies. Based on the secluded colour groups, it is visible that samples are quite well clustered. Mostly
the clusters make sense and are well secluded.
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4.5.3 Clustering comparison

Both fRMA and Barcode clusterings appear to be quite well grouped for functionally
distinct tissue groups like brain and blood. However in case of smaller and more similar
groups like glandular cells, blood processing tissues and lung, Barcode clustering clearly
outperforms fRMA. The di�erence can be attributed to both Barcode separating samples
more by converting expression values to binary and the improved expression detection
algorithm in Barcode method.

Although visible in overall comparison of the plots, the ability of Barcode to separate
samples better compared to fRMA is most drastically visible in Brain cluster. When in
fRMA cluster the bars of all Brain samples appear to be more or less the same height,
then Barcode cluster presents more jagged cluster, meaning that the di�erence of tissues
is presented more clearly. Other cluster where it can be more clearly seen is Testis and
Autonomous nervous system.

In terms of clustering tissues by their trait similarity Barcode outperforms fRMA.
The di�erence is more clear in similar tissue groups. For example, in fRMA clustering
the Glandular cells, Lung and Blood processing are so far apart that the improvement
visible in Barcode cannot be attributed only to binarisation of the data. This presents
also clear evidence that Barcode algorithm for expression detection is better than it is in
fRMA.

All in all, based on the two clusterings it can be said that Barcode o�ers a considerable
improvement to fRMA without any visible downsides.

4.6 Results

Both PCA and hierarchical clustering indicate that Barcode o�ers improvement in de�n-
ing expression states of genes. However, the results of PCA visualisations alone are
inconclusive. There are some small di�erences in how much Barcode and fRMA separate
samples from di�erent tissues and in that Barcode is visibly better in big sample groups.
The revealed di�erences between Barcode and fRMA are not big enough to draw certain
conclusions. More importantly, PCA plots cannot be used to determine whether the
Barcode method compared to fRMA is better, worse or same on small sample groups.
Therefore the di�erences that PCA reveals can be used as supporting results for more
conclusive analysis results, but not sole evidence of Barcode superiority.

Hierarchical clustering o�ers far better overview of Barcode and fRMA di�erences than
PCA. Firstly, because Barcode turns expression calls into binary, hierarchical clustering
shows that each sample type is separated from other types clearly more than in fRMA
case. Secondly, Barcode clusters sample types better based on the manual morpho-
functional clustering of sample tissues created as a reference for this thesis. Both results
are also supported by the �nding of the PCA conducted in this thesis.

Separating each sample type more clearly both within and between tissue clusters
allows new unknown samples to be clustered more precisely with more con�dence and
thus de�ne the type of this unknown sample. This means that Barcode o�ers better
results than fRMA in one of its main applications which is to de�ne the tissue type of
unknown samples for small sample batches. Also it enables to detect larger shifts in gene
expression within one tissue for small sample batches which is very important in medical
studies.
There is also one side-result found which was not the intended aim of this thesis. This
results is also not mentioned in the original Barcode development articles.
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5 Discussion

The thesis clearly shows that Barcode method is an improvement to fRMA method. This
is supported by both PCA and hierarchical clustering results which show Barcode to be
more e�cient in separating samples within one tissue and also separating di�erent tissue
types from one another. This allows clearer lines to be drawn between tissue types and
therefore observe anomalies in gene expression for a speci�c tissue better.

The manual grouping of sample tissues for reference in comparing Barcode and fRMA
is simple on purpose. To avoid mistakes in grouping tissues, the tissue types which could
not be con�dently grouped were left out of the analysis, unless these were clearly in the
wrong place. This makes it possible to claim fairly certainly that the tissues that are
grouped are grouped correctly and thus the di�erence between Barcode and fRMA for
these tissues can be assessed correctly. Any possible misgroupings are addressed in the
respective part of the thesis.

During the thesis one side-result appeared: reduction in data size after Barcode process-
ing. Most of the numbers used in gene expression microarray experiment data analysis
are large �oating point numbers. This kind of numbers take up quite a lot of data space.
Barcode method allows this data to be binarised, meaning the space taken up would be
much less. For data used in this thesis, Barcode output data takes up roughly ten times
less space than both fRMA output data and non-standardised expression data. For large
scale studies that base only on the knowledge of whether gene is expressed this reduction
of data size would save up a lot of valuable space. Also the reduced data size would allow
computational methods to retrieve the data with less e�ort and/or in less time.

The fact which slowed down the work was insu�cient sample description. The reason
that samples had to be grouped for reference manually and why some of the information
on samples had to be manually added for clustering and PCA, was that samples did not
have su�cient information of origin tissue type. Missing was information for linking the
samples into larger groups and sometimes the sample description was too broad. For
example, samples "marrow" did not have added speci�cations of which kind of bone mar-
row was the sample from. There were also plenty of brain samples, but none of these had
information that the unifying group would be brain. The fact that uneven/insu�cient
information on samples hampers computational analysis and requires manual work was
also mentioned in the original Barcode articles. The solution that was proposed there -
introducing GO terms in more experiment data - would have also saved a lot time and
e�ort in this thesis, therefore illustrating the need for uni�ed representation of sample
information for experimental data.

Barcode method has potential to be more widely used in not only bioinformatics studies
but also in purely clinical and genetic studies. This would require the method to be
implemented in software application other than as R package or a web application form.
The software application would ease the use of Barcode method and would therefore
widen the range of specialists that could be able to use the method.
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Appendices

A. R Code

The R code used in practical part for drawing plots and applying Barcode and fRMA
methods is accompanied separately.

B. Tissue and sample information

The text �le (celandtissue.txt) containing relevant information for R code to work, in-
cluding manual clustering info is accompanied separately.

C. Barcode data

The text �le (data.txt) containing Barcode processed data of sample tissues is accompa-
nied separately
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