
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Andre Tättar

Building and Con�guring a Custom

Private Cloud Using Consumer Hardware

Bachelor's Thesis (9 ECTS)

Supervisor: Artjom Lind, MSc

Tartu 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Privaatpilve ehitamine olemasolevatest ressurssidest

Lühikokkuvõte: Pilve kasutamine on tänapäeval moodne trend erinevatele or-
ganisatsioonidele. Selle ajendiks on e�ektiivsus, sest pilv lubab kasutada olemasol-
evaid ressursse kõige paindlikumal ja e�ektiivseimal viisil. Bakalaureusetöö aluseks
oli kapis seisev madala astme riistvara, mida keegi ei kasutanud. Töö põhipanus
on see, et olemasolev riistvara ehitati üles privaatpilveks. Kuna privaatpilve so-
bib pigem kõrgklassi/serveri tasemel riistvara, siis tekitab madala taseme riistvara
mõningaid probleeme, kuid töö näitab, et nendest võib üle vaadata, kuna boonu-
seid on rohkem kui negatiivseid aspekte. Töö lõpptulemuseks on töötav OpenStack
implementatsioon, mida on kerge kasutada igaühel, mis on igalt poolt kättesaadav
ja piisavalt paindlik täitmaks erinevaid Tartu Ülikooli hajussüsteemide uurimisrüh-
ma vajadusi. Saadud infrastruktuur on kergelt skaleeruv ning füüsiliste masinate
lisamine võtab vähem kui 30 minutit. Lisaks tagab OpenStack selle, et projektide
ja kasutajate haldus on väga kerge ning teadlased saavad teha virtuaalmasinaid
vähem kui minutiga.

Võtmesõnad: OpenStack, Mitaka, Ubuntu, privaatpilv

CERCS: T120 - Süsteemitehnoloogia, arvutitehnoloogia

Building and Con�guring a Custom Private Cloud Using
Consumer Hardware

Abstract: Moving into the cloud is a common trend for organizations to use ex-
isting hardware in an e�cient way. organizations speci�cally use private or hybrid
clouds. Existing unused hardware was the main problem in this thesis. The Con-
tribution of this thesis was a description of how to build and con�gure OpenStack
using consumer grade hardware. Using low-end hardware to build a working pri-
vate cloud does have some disadvantages, but in our case, it was not that critical.
In the end, there were more advantages than disadvantages. The end result is a
working implementation of OpenStack, which is easy to use, accessible from any-
where in the world and �exible enough to �ll the needs of Distributed Systems
in University of Tartu platforms. This thesis and con�gurations in appendix pro-
vide a scalable solution - additional compute nodes can be setup with less than
30 minutes. Creation of virtual machines takes less than a minute by using a web

2

interface, which is very easy to understand and use.

Keywords: OpenStack, Mitaka, Ubuntu, private cloud

CERCS: T120 - Systems engineering, computer technology

3

Contents

1 Introduction 6
1.1 General Overview . 6
1.2 Scope . 6
1.3 Objective . 6
1.4 Contribution . 7
1.5 Roadmap . 7

2 Related Work 8
2.1 Literature overview . 8
2.2 Cloud . 9

2.2.1 Private cloud - advantages & disadvantages 10
2.3 Cloud Software "�rst decisions" . 11
2.4 Cloud Computing software . 11
2.5 Hypervisor . 12
2.6 Operating System . 13
2.7 OpenStack . 13

2.7.1 OpenStack Services . 13
2.7.2 Storage projects . 15
2.7.3 Shared Services . 16
2.7.4 Higher-level service . 18

2.8 Extra services . 18
2.9 OpenStack speci�c terms . 19
2.10 Network . 20

2.10.1 Osi Layer 2 and 3 . 20
2.10.2 Routing . 20
2.10.3 VLAN . 22

3 Solution design 23
3.1 Context and Analysis . 23
3.2 Constraints . 24

4 Solution Implementation and Results 28
4.1 Network setup . 28
4.2 Setup . 30
4.3 Benchmarks . 31

4.3.1 Read/Write . 31
4.3.2 Network latency and bandwidth 31
4.3.3 Comments on results . 33

4

5 Conclusion 36

5

1 Introduction

1.1 General Overview

A common trend in computing is that services and organizations are moving into
the cloud, more speci�cally cloud computing. Every person who has a network
capable device probably uses the cloud - be it Dropbox for storage or Gmail for
email. Moving into the cloud has many bene�ts, most notably scaling, reduced
cost, less maintenance, increased availability and �exibility. Cloud is especially
useful with a current business model, where startups are popular and need huge
scaling over small time periods.
In the context of this thesis, private clouds are examined. Private clouds allow
organizations to use existing or new resources in the most general way. Physical
machines limit the use cases for hardware - basically one system per one instance.
Cloud uses virtualization and allows to create any kind of needed resource. For
example, one can have Windows, OS X and Linux operating systems running in
one cloud, which is especially useful if developing applications for Windows, but
all resources use Linux. This gives a lot of �exibility to organizations to create
any kind of system for testing, developing and enterprise systems.

1.2 Scope

Last year I was a member of the team who represented the University of Tartu
in the ISC'15 conference Student Cluster Competition and I was the team leader
[1]. We were given hardware for the competition by our sponsors and after the
competition this hardware was unused. As a consequence, the idea occurred in my
mind to make use of this material and this is how the thesis work came to life.

1.3 Objective

The main objective of this thesis dissertation was to utilize existing resources
such as old or unused hardware and bring it back to life by using them as an
infrastructure for customized private cloud. From this perspective, the idea was
to create and design a new private cloud for distributed system platforms with
a friendly end user interface. In order to achieve the objective, OpenStack was
used as basis platform. Therefore, it was needed to redesign and con�gure the
network. Moreover, creating the friendly interface was achieved by OpenStack
dashboard, which gives nice web interface for users with no knowledge of system
administration, is accessible from anywhere and allows to create projects, where
users can handle their own infrastructure.

6

1.4 Contribution

In this thesis the main contribution can be resolved to:

• Friendly user interface for researchers, without any knowledge about system
administrating.

• Easy project management and creation.

• Custom setup by using clever networking.

• Easy scaling for administrators.

• Review of OpenStack services and their utilization.

• Advantages and disadvantages of the proposed solution.

• Ways to improve the design and customize even further.

1.5 Roadmap

In this section we present how this thesis dissertation is organized. The thesis
contains �ve chapters and they are as follows:

• The �rst chapter provides a general overview of the thesis.

• Chapter 2 contains related work. Overview on related theses and papers will
be given and a discussion of software used. OpenStack is described in detail,
a lot of manuals have been summarized to give a good overview on how it
is implemented and what di�erent services do. Networking concepts used in
OpenStack will be explained.

• Chapter 3 is for solution design - hardware, software used will be provided
and detailed discussion on what the constraints are.

• Solution implementation is described in chapter 4, more speci�cally how
to setup network, how to make many networks on one interface and lastly
benchmarks are given.

• Future work will be discussed in chapter 5. There main upgrades for private
cloud are discussed.

• In the end there is conclusion.

7

2 Related Work

2.1 Literature overview

High performance computing is moving into the clouds and much research has
been done for that �eld, for example, the author in [2] did a similar task to this
thesis � he built a private cloud for Mobile Cloud Lab which is research group
of University of Tartu. He used OpenStack and stated that OpenStack is more
stable than Eucalyptus. The author used KVM as hypervisor and stuck to de-
fault con�gurations/instructions wherever possible. The author used server grade
hardware for their small private cloud setup with 2 network interfaces. The author
experienced problems regarding local I/O and solved the problem with using raid0,
but this was due to the constraint of having to create 25 VMs in parallel.

The decision on which hypervisor to use has been a discussion topic for many
years and one author who contributed to this was Allan [3], who measured the
performance of KVM and Xen. This is particularly interesting for this thesis,
because hypervisor has to be chosen if one wants to build a cloud. The author
has results which show that KVM performs better than Xen. Additionally, it is
shown that virtualization does not add computational or memory overhead, but
has big impact of input-output performance. The author also says that for HPC
in the cloud, there should not be many virtual machines on one node, because if
performance is critical, then instance count should be kept low also.

Every system goes through a process where system implementation is designed,
one good paper on this is [4]. The paper provides valuable information on the whole
setup for private HPC cloud. The authors built a private HPC Cloud with Xen,
Eucalyptus, GlutserFS, Walrus and Puppet. They explained every choice they
made and provided alternatives and reasons why they picked something. The most
interesting was the comparison of virtualization technologies, where they compared
Xen, KVM, VMVare ESX and Virtualbox. They point out three challenges for
HPC Cloud:

1. The Virtualization overhead � virtualization adds another stack to the sys-
tem, for example, Xen adds the Hypervisor. Low latency applications that
are common in HPC are not e�ective on the cloud, because of latency caused
by virtualization.

2. Systems administrating for end-users � researchers might have to set up
their own environment and also have to maintain the system. This might be
challenging for some and it also requires time.

8

3. Application-programming models � current technology is designed for HPC
clusters.

Moreover, another bene�t behind virtualization can be seen in the reduction
of electricity consumption, improvement of utilization, performance isolation, in-
creasement of availability, fault tolerance, ease of management, system security
and �exibility [5].

Another aspect of using unused resources could be the decision of using a cluster
versus cloud. There is a good paper on this [6], where the authors did research into
using community cluster versus Amazon EC2. The main thing for the cloud is that
there is no queue for the users. The authors compared performance of traditional
cluster node and cloud (virtualized) cluster node, with the NAS benchmark, mostly
CPU bound but also in�uenced by network performance. They found that the
cloud nodes are faster. They reported some cons of the system � it is hard to build
images for the cloud from scratch and software has to be manually installed (some
might come with the image provided though). They stated that the cost model
for cloud is di�erent � the user has to pay for CPU cycles, disk storage, IO, IO
requests and additional other fees. In community cluster the user only has to pay
for CPU usage. Also, the cluster hardware prices were included. In the end, they
stated what they found out:

1. HPC cloud is very useful if cluster queues are full and you have time-sensitive
work.

2. Lone researchers without others to share the initial cluster building cost and
low IT sta� support can bene�t from a private HPC cloud.

3. They state that using a community cluster costs 0.15-0.25 dollars, but it
would cost 1.15-1.75 dollars per instance-hour, cloud is approximately 7 times
more expensive.

4. Cloud is 40% faster than a community cluster.

2.2 Cloud

Cloud is a very loose term in computer science. More precisely when people
talk about clouds, they refer to cloud computing and that means using resources
that one can connect to over a network. These resources could be anything from
virtual machine instances and virtual servers to mailhosts and databases hosted
somewhere. Often people have no idea where their resources are physically located
and only know the external Pi address of their instance and use the IP address.
Usually when people talk about the cloud they refer to public clouds like Amazon

9

EC2 or Microsoft Azure. Generally clouds bene�t from less IT management, ac-
cessibility, high computing power, lower costs, scalability and availability.
A great use case example for the cloud could be the following: a user has a very
CPU intensive task and he/she does not have the resources for it, maybe it takes a
year to run this task on the user's machine, the user uses the cloud which �nishes
the job in 12 hours. Now the user only has to pay for those 12 hours used.
Second use case - on a vacation, one does not want to carry data storage drives
with them and use network storage to store their data like pictures, music and
videoclips. Here is where the cloud comes to rescue and o�ers network storage
services like Dropbox, Google Drive and Microsoft OneDrive.

2.2.1 Private cloud - advantages & disadvantages

Private cloud is a cloud resource that is managed, built and used only by one or
more organizations. Access to private clouds is usually limited to organizations
and their partners.
Private cloud advantages over the public cloud are the following:

Greater Reliability Because private clouds belong to one organization, they
have greater control over it and can secure it exactly how they want. This
means that more fault-tolerant and secure network can be created for the
private cloud.

Greater �exibility Services and instances that run on a private cloud are there
for a reason and admins can utilize resources in a better way. This also means
better performance, because usually public clouds are overcommitted.

Going green Companies might have underutilized hardware, like a server that
uses only 5% of maximum performance. Putting these resources in a private
cloud and creating fully utilized hardware will mean less energy consumption
and less maintenance.

Utilize unused hardware Existing hardware that nobody is using could be used
to make a private cloud. This will provide good testing/developing tool for
many purposes. This is also the case for this thesis.

Data security Data security is a concern when using public clouds, because they
are likely targets of hacking - big names like Dropbox, Amazon Cloud Ser-
vices have had their security breached. Using a private cloud, organizations
have much more control over their data. Additionally, depending on where
the data is physically located, it is applicable for di�erent data security laws.

Private cloud disadvantages over Public cloud are following:

10

Greater cost Creating private clouds is costly, hardware costs a lot and know-
how is also expensive.

Easier scalability If very high scaling is needed, it is easier to do it in public
clouds, just click some buttons and instances are added. In a private cloud,
at some point, physical hardware has to be added and con�gured for scaling.

More maintenance In private clouds, organizations have to take care of all hard-
ware and underlying networks, however, there are no hardware and network
maintenance costs in public clouds.

2.3 Cloud Software "�rst decisions"

Deploying any cloud is a challenging task and it should start with decisions regard-
ing software. When making decisions, the primary concern is whether the tool is
open source or not. The aim is to use only open source software. Secondary, the
tool must have good support, because we are making a custom solution. Thirdly,
the tool should be highly customizable.

2.4 Cloud Computing software

Firstly, an open-source cloud computing solution has to be chosen. There are
many options for this, most popular and supported being OpenStack, CloudStack
and Eucalyptus. It is currently most supported with a great user base. From the
beginning we expected a custom setup and OpenStack had most resources on it
with latest releases.

• OpenStack � open source software that controls small to large sized compute,
storage and networking resources, managed by a dashboard. OpenStack is
highly scalable and customizable solution, with a huge amount of documen-
tation. Current installation guides are for openSuse, Suse Linux Enterprise
server, RHEL 7, CentOS 7 and Ubuntu 14.04 [7].

• CloudStack � open source cloud computing software designed to deploy and
manage small and big clusters of virtual machines while being easily scal-
able infrastructure as a service platform. It has a lot of features � a full
and open native API, network-as-a-service, compute orchestration, authen-
tication management, resource accounting and great user interface. Latest
installation manuals are for Ubuntu 14.04, Ubuntu 12.04, CentOS 6 & 7 and
RHEL [8] .

• Eucalyptus � free and open source cloud computing software, mainly de-
veloped for building AWS (Amazon Web Services) compatible private and

11

hybrid cloud environments. Their o�cial documentation shows support for
CentOS 6 and RHEL [9].

As a related work pointed out, Eucalyptus is rather hard to use and we will not
aim at building AWS compatible clouds. Therefore, we can rule Eucalyptus out.
The decision between OpenStack and CloudStack comes down to support and
manuals. OpenStack while being a more mature solution, has more manuals and
is more supported than CloudStack.

2.5 Hypervisor

OpenStack limits our choices on hypervisors. OpenStack Mitaka lists these hyper-
visors [10]:

• KVM (Kernel-based Virtual Machine) - Open source full-virtualization solu-
tion for Linux that has near-native performance using virtualization exten-
sions (AMD-v and Intel VT).

• LXC (Linux Containers) � Would enable to use Docker, but limits the use
cases of the cloud because using containers, because each container has to
use the same kernel as host.

• QEMU � Enables emulation of almost any hardware. Generally used for
testing due to performance being not as good as with Xen or KVM. QEMU
can be used with KVM/Xen for near native performance.

• UML (User Mode Linux) � Generally used for testing, performance is not as
good as with KVM or Xen.

• VMWare vSphere � This is not open source, so we will not consider this.

• Xen (Using libvirt) � Xen using libvirt would be required if XCP is not
supported. This method is not well supported and tested [11].

• XenServer/XCP (Xen Cloud Platform) � XenServer is a commercial version
of XCP by Citrix. XCP uses the Xen hypervisor. Xen hypervisor has near
native performance using hardware virtualization extensions (AMD-v and
Intel VT). XCP adds functionality to Xen hypervisor [12].

• Hyper-V � This is not open source, so we will not consider this.

12

2.6 Operating System

There are many options here as well.

• OpenSuse � Open-source operating system and well documented in Open-
Stack documentation. Does not have a very good Xen support and docu-
mentation.

• Suse Enterprise Server � Not open-source.

• CentOS 7 � Open-source operating system and well documented in Open-
Stack. CentOS is �rst choice for XCP, because of that, there is a lot of
documentation on CentOS, Xen and XCP.

• Red Hat Enterprise Linux 7 � Not open-source.

• Ubuntu � According to Ubuntu, more than 55% of all OpenStack deploy-
ments use Ubuntu [13]. A lot of documentation written for Ubuntu. Ubuntu
is also open-source OS and both Xen and KVM work well with Ubuntu.

2.7 OpenStack

The following paragraph is a summary of the extensive OpenStack manual about
its services, which is available here [7].
Since OpenStack is a huge project, more information on this should be given.
OpenStack supports all types of cloud environments and they aim for a simple
implementation, massive scalability and an extensive list of features. OpenStack
provides Infrastructure-as-a-Service solution through many modules, each module
has its own Application Programming Interface. Some modules are core com-
ponents, which have to be set up, some are optional components. OpenStack
distributes these modules into di�eret services, which are called: Service, Storage,
Shared services and Higher-level services.

2.7.1 OpenStack Services

OpenStack services are as follows:

• Dashboard � Project name is Horizon. This is the graphical web-based user
interface of OpenStack and links together other OpenStack services in order
to view, create and manage resources. It provides easy interface for a lot of
services:

� Authentication � Log in as admins/users

� Upload and manage images

13

� Con�gure access and security for instances � This includes creation of
key pairs, security groups with rules

� Launching, managing, tracking, creating snapshots of images

� Creating and managing networks

• Compute � Project name is Nova. Manages compute instances in Open-
Stack. Consists of di�erent services as well. Nova-api service � link between
dashboard and other nova services. It is the nova controller. Endpoint for
all API calls (OpenStack API, EC2 API, Special Admin API for privileged
users).

� Nova-compute service � This daemon runs on all compute nodes. Cre-
ates virtual machines through hypervisor APIs. Also responsible for
termination. Example hypervisors are XenApi for XenServer/XCP and
libvirt for KVM/QEMU. Daemon accepts orders to launch a KVM vir-
tual machine and updates its metadata in database.

� Nova-scheduler service � When a virtual machine is created, the request
is handled by nova-scheduler and it decides on which compute node to
host this virtual machine.

� Nova-conductor module � Link between the interaction of nova-compute
services and the database. Does not allow nova-compute to access the
cloud database directly.

� Nova-consoleauth daemon � Authorizes tokens to use console proxies
for users. Requirement for nova-novncproxy daemon.

� Nova-novncproxy daemon � Together with nova-consoleauth daemon
provide a remote console or remote desktop access to a running instance
through a VNC connection. Supports browser-based novnc clients.

� Nova client � Allows users to submit commands as a tenant adminis-
trator or end user.

� The Queue � Central hub for messages passed between daemons. Usual
implementations are with RabbitMQ.

� SQL database � Stores information about build-time and run-time states,
like instance types available, instances in use, networks and projects.
Support is for SQL-Alchemy databases, most used are sqllite3 (testing
and developing only), MySQL and PostgreSQL.

• Networking � Project name is Neutron. Goal is to provide network con-
nectivity as a service between OpenStack services, most importantly Nova

14

compute services. It implements the Neutron API. API enables users to de-
�ne and create networks, subnets and ports that other OpenStack services
can use and attach compute instances to networks. Neutron supports Layer
2 and Layer 3 networking. Consists of the following services:

� Neutron API server � Accepts and routes Layer 2 networking, IP address
management and Layer 3 router construct to appropriate OpenStack
Networking plug-in for action.

� OpenStack Networking plug-in and agents � creates networks or sub-
nets, provides ip addressing, plugs and unplugs ports. Plug-ins and
agents di�er depending on vendor and technologies used. Common
agents are L3 agent, DHCP and a plug-in agent.

� Messaging queue � Routes information between neutron-server and all
kinds of agents. Most OpenStack installations use it. Also stores net-
working state for some plug-ins.

2.7.2 Storage projects

OpenStack has several storage projects. Most used are:

• Object Storage � Project name is Swift. This is an optional module of
OpenStack, a multitenant object storage system, capable of managing large
amounts of unstructured data at low cost through a RESTful API. Replicates
and writes objects/�les on multiple drives, which make this a highly scalable,
fast and fault tolerant project. Has many components.

� Proxy servers � Accepts requests to upload �les, modify metadata and
creation of containers.

� Account servers � Administers accounts created by Object Storage.

� Container servers � Administers mapping of folders and containers in-
side Object Storage.

� Object servers � Administers real objects like �les on storage nodes.

� Various preiodic processes � Perform cleaning tasks on data storage.
Ensures consistency and availability when replicating.

� WSGI middleware � Performs authentication, this is usually Keystone.

� Swift client - Allows users to communicate to REST API through CLI.

� Swift-init � Responsile for running the script to initialize building of
the right �le.

15

� Swift-recon � CLI tool that is responsible for gathering metrics and
telemetry data.

� Swift-ring builder � Utility that builds and rebalances storage rings.

• Block Storage � Project name is Cinder. This is an optional module of
OpenStack. Block storage devices for guest virtual machines. Capable in
many con�gurations and drivers such as NFS, iSCSI, CEPH, NAS/SAN and
more. Consists of 5 components:

� Cinder-api � Redirects correct API requests to cinder-volume for action.

� Cinder-volume � Communicates with processes like cinder-scheduler.
Uses message queue to interact with services. Responds to I/O requests
sent to Block Storage service.

� Cinder-scheduler daemon � Determines on which Cinder node to create
volumes. Similar to Nova-scheduler.

� Cinder-backup daemon � Responsible for backing up all types of vol-
umes to a backup storage provider.

� Messaging queue � Used for messaging between Block Storage processes.

2.7.3 Shared Services

OpenStack has 3 shared services. They are listed here:

• Identity Service � Project name is Keystone. It is responsible for authen-
tication and authorization for other OpenStack services. Other OpenStack
services use Keystone as a common uni�ed API. Can be integrated with ex-
isting authentication services like LDAP. Each service used in the OpenStack
cloud must be registered with Keystone. Consists of following components
[11]:

� Server � Using the RESTful API provides authentication and autho-
rization through a centralized server.

� Drivers � Allows the Keystone server to be used with existing/other
authorization infrastructure like a database or LDAP server.

� Modules � These middleware modules live in the OpenStack services
which use Keystone. Using the Python Web Server Gateway Interface,
these modules extract user credentials from service requests and then
send them to a centralized server for authorization.

16

• Image Service � Project name is Glance. It stores and manages virtual
machine disk images. Accepts and handles API requests for disk or server
images and metadata de�nitions. It also supports storage of images on dif-
ferent repository types, for example, normal �le system folder, nfs folder and
object storage. Image service is made of the following components:

� Glance-api � Accepts Image API calls for image storing, retrieving or
discovering.

� Glance-Registry � Handles calls regarding metadata (size, type, token,
etc) about images.

� Database � Stores image metadata. Various options for database, most
popular being MySQL.

� Storage repository for image �les � Handles storing of disk/server im-
ages. Supports normal �le systems, network �le systems, object storage,
RADOS block devices, HTTP and Amazon S3.

� Metadata de�nition service � A standardized API for users, admins,
services and vendors in order to de�ne their own custom metadata.
Metadata is used with di�erent services. The Metadata consists of
a unique key, description, name, constraints, resource types, size and
some more.

• Telemetry � Project name is Ceilometer. This is an optional package. It
collects event and metering data from other OpenStack services. This data
can be used for billing. Consists of two services:

� Telemetry Data Collection service � E�ciently gathers metering data
related to other OpenStack service and stores them.

∗ Compute agent � Runs on compute nodes and gathers resource
utilization data.

∗ Central agent � Gathers information on central management server
regarding utilization statistics for other services except compute
instances.

∗ Noti�cation agent � Agent on one to many central management
servers that keeps an eye on message queue(s) to gather event and
metering data.

∗ Collector � Sends collected unmodi�ed Telemetry data to data store
or external consumer and runs on one to many central management
servers.

∗ API server � Runs on one to many central management servers to
allow data access from data store.

17

� Telemetry Alarming service � Raises alarms when collected data breaks
de�ned rules/quotas.

∗ API server � Runs on one to many central management servers in
order to access data store information regarding alarms.

∗ Alarm evaluator � Runs on one to many central management servers
in order to determine when alarms are raised. It uses statistic
trends over a time period to determine when some threshold will
be crossed.

∗ Noti�cation Listener � Determines when to �re alarms on a central
management server. Alarms are generated automatically depending
on the de�ned rules against an event.

∗ Alarm noti�er � Runs on one to many central management servers
and executes alarms based on threshold evaluations.

2.7.4 Higher-level service

Optional higher-level services are not core components, but make life easier for
integration or orchestration.

• Orchestration � Project name is Heat. This project makes it available to use
higher-level template-based orchestration for describing cloud applications
that get created through OpenStack API calls. Heat integrates other Open-
Stack components into a one-�le template system. One can create almost all
OpenStack resources with Heat like virtual machines, assign IP addresses,
volumes, security groups, users and more. Has advanced functionality to
increase availability and scaling. Consists of 4 components:

� Heat command-line client � Link between Heat-api and AWS Cloud-
Formation APIs.

� Heat-api � Native REST API for OpenStack that sends API requests
to heat-engine using Remote Procedure Call (RPC).

� Heat-engine � Coordinates template launches and gives responses to
API consumer.

2.8 Extra services

There are extra services that OpenStack uses and are required to have a working
cloud. These are not maintained by OpenStack and several options for each service
are available. Services used are:

18

• Network Time Protocol (NTP) � networking protocol for clock synchroniza-
tion. All OpenStack nodes should have the same system time and NTP
servers are used for that. It is highly recommended that controller nodes ref-
erence some other trusted NTP servers and all other nodes have controller
as their NTP server. One suggested implementation that OpenStack uses is
Chrony.

• SQL database � Most OpenStack services store their data on SQL databases.
It should be placed inside the controller node. OpenStack supports many
databases, most notably MySQL and its fork project MariaDB and also other
popular ones like PostgreSQL.

• Messaging queue service (MQ) � It is used in distributed systems to send and
receive messages. It uses a queue as a data structure in order to temporary
store messages when destination service is not responding or is currently
busy. OpenStack makes use of messaging queues to coordinate information
about status and operations among services. Typically runs on controller
node and many MQ services are supported including RabbitMQ, Qpid and
ZeroMQ. Most used and supported is the RabbitMQ.

• Memcached � distributed memory caching. OpenStack uses Memcached to
cache tokens for authentication. As this service is used in authentication,
only OpenStack servers should have access to it. This could be achieved
with �rewalls, authentication and encryption. The Main functionality of
Memcached is to make central authentication faster.

2.9 OpenStack speci�c terms

These terms are de�ned with the help of OpenStack Dev Ops manual [14].

Rings � Used in Swift to determine data location between Object Storage nodes.

Endpoints � Url that can be used in OpenStack to access some service.

Service � Any OpenStack service in Openstack like Nova, Neutron or Keystone.

Roles � Roles de�ne the actions users can do.

Tenants � Groups of users like Service tenants, where each service has their own
user.

Regions � Regions are usually separated OpenStack environments, sharing only
Keystone service for authentication.

19

Security groups � list of �rewall rules that are applied to the virtual machines.

Floating IP address � IP address that is assigned to a virtual machine (VM)
once will be given to the same VM each time it boots. Creation and handling
of �oating IP pools are handled by Neutron.

2.10 Network

Table 1: Osi Model table

OSI Model
Layer Protocol data unit (PDU)

Host layers

7. Application
Data6. Presentation

5. Session
4. Transport TCP/UDP

Media layers
3. Network Packet
2. Data link Frame
1. Physical Bit

2.10.1 Osi Layer 2 and 3

Open Systems Interconnection model (OSI Model) in table 1 is a standardized
reference model which describes how communication is handled between comput-
ers/networks.

Layer2: Data link layer "The data link layer provides error-free transfer of
data frames from one node to another over the physical layer, allowing lay-
ers above it to assume virtually error-free transmission over the link" [15].
Bridging and switching are operated on this layer.

Layer3: Network layer "The network layer controls the operation of the sub-
net, deciding which physical path the data should take based on network
conditions, priority of service, and other factors" [15]. The most important
task of Layer 3 is routing.

2.10.2 Routing

Routing is a fundamental part of any network. IP routing means that if a host
has to send a packet to some other host, routing table will be consulted. The

20

routing table is just a table of routes. Usually, hosts that are connected to at
least one route, know three routes. Host knows about itself and this is usually
referred to as localhost. The host knows about locally connected other hosts in
a LAN network, where hosts are in the same subnet and can communicate with
each other. Thirdly, host knows about everything else, which can be referred to
as default gateway - every packet that host has to send, which is not himself or in
the same subnet, will be sent to the default gateway.
Network address translation (NAT) was designed to conserve IP address space

Figure 1: Simple Masquerade example

by translating private IP addresses (like ones from 10.0.0.0/8 subnet) to public IP
addresses by clever usage of ports. NAT enables to translate a group of private
IP addresses into one public IP address. For example, all tra�c that goes through
university network, will be seen as coming from one IP address. The basic example
of this can be seen in �gure 1. To achieve this, postrouting is required. Postrouting
is altering of packets when they go out from an interface.
One thing that goes together with postrouting to achieve the example is source
NAT (SNAT) or masquerade. Source NAT is the act of changing the IP header
in the source address packet. Masquerade is a special kind of SNAT, because it is
used when the source IP address is not known. If for example router has DHCP
con�gured and IP addresses are dynamic in the network, masquerade has to be
used. Command to achieve NAT postrouting masquerade is very simple. It is
shown on �gure 2.

1 root@pc:~# iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Figure 2: Postrouting masquerade code

On �gure 2 we specify the table(-t) as nat. The table speci�es in what way packet

21

matching is done. -A POSTROUTING means that the command should be appended
to the POSTROUTING chain. -o eth0 means that if packets are moving out from
eth0, then apply this rule. -j MASQUERADE means to do masquerading on the
packets that leave the interface.

2.10.3 VLAN

VLAN (Virtual local area network) is a virtual broadcast domain de�ned in the
data link layer (OSI Layer 2). Because it is virtual, it can exist on top of many
LANs. One great thing about VLAN is that it enables to create multiple subnets
on one ethernet port. Secondly, VLANs enable the creation of separate domains
on top of existing physical network.
Common use is to create a VLAN for management and one public VLAN, so that
public networks don not see the tra�c on management VLAN. One VLAN usually
de�nes their own subnet, so one broadcast domain per subnet. This easily pro-
vides a lot of manageability and security to networks. Example of this is shown
on �gure 3. On the �gure, workstations cannot see any tra�c that is being sent
over management vlan1. Administrators however have access to both services vlan
and management vlan. Switches on the �gure are not included in neither of vlans,
because if someone were to connect a cable to the switch, they would not be able
to see vlan tra�c. This is for security reasons. Additionally, the server can be
accessed from workstations, but it would be easy to con�gure which services can
be accessed from services vlan and which cannot. This example should clarify the
use cases of vlans and explain why it is very easy to make secure networks with
vlans.
Routing between VLANs is required if di�erent VLANs de�ne their own subnets.
This is the case in most situations, because one to one mapping of VLANs and
subnets is often used. For all kinds of routing OSI Layer 3 capable device has to
be used, this can be a router or even a L3 switch (switch with some L3 routing
abilities). In any network, there exists a gateway, let's call it a router. Routing
between VLANs will happen on these gateway machines, if there exists a route
between gateways, a rule for routing between VLANs can be added. Basically
VLANs act like any other network and same rules apply to them (including rout-
ing). They just can have the ability to de�ne many networks on the same network
interface.

22

Figure 3: Simple VLAN example

3 Solution design

3.1 Context and Analysis

In this section, presentation and analysis of the requirements given by Distributed
System Group are written. This later can be resumed as follows:

1. In System Administration (MTAT.08.021) course a virtual machine is given
to each student. Currently there are 81 students registered to the course and
additionally there are virtual machines for testing and for teachers to use.
This means that there are around 90 virtual machines. There exists a very
custom setup right now, which is not scalable and is very hard to maintan.
For example, if a virtual machine of one student is down, it requires much
work to �nd out on where it is located.

2. In Distributed Systems Seminar, �exibility is required, as graduate students
have a need to test di�erent systems or develop systems that are meant to
be used in a distributed manner. For example, a docker based solution was

23

used to load balance between 5 servers.

3. In every research group there is a need to value their research activities
by visualization and simulation. Therefore, a private cloud can be used to
host their machines that show simulations or that are used as backends like
databases for simulations.

4. Researchers need �exibility similar to DS Seminar - they research di�erent
topics and have various needs.

5. Easy scaling, both up and down, is required. Scaling down is required be-
cause there are no courses in the summer, so there is no need for a system
to run on high utilization. Scaling up is required because there can come
courses, where around hundred virtual machines have to be set up.

6. Easy maintenance is a must. There are no full time system administrators in
Distributed Systems Group and maintaining a hundred VMs can be a very
time consuming task.

We hope to satisfy every constraint given here by using OpenStack. In terms of
�exibility OpenStack can use lxc for Docker, KVM/Xen to start any instance and
so on. This covers �exibility requirements and is very easy to setup. OpenStack
by nature is also easily scalable and maintainable so OpenStack is a good solution
to use.

3.2 Constraints

In the practical part of this thesis access to three nodes, each has one ASUS
A58M-A motherboard, one AMD APU, 2x4GB RAM, PSU, SSD hard drive, was
available. The hardware list can be seen in table 2. One port of master CCR1016
router is connected to CRS125 switch that is only used for this thesis. Figure 4
states that controller and compute nodes should have 2 network interfaces (NICs),
other constraints are satis�ed.
This setup faces one mayor problem: ASUS A58M-A has only one network inter-
face (NIC). This means that we have to create virtual networks and basically fake
OpenStack into believing that we in fact have 2 networks.
OpenStack is built in a way that has one management network, there all of Open-
Stack services like Nova and Neutron run and for example Keystone, Swift, Cinder
can only be accessed from management interfaces. This provides extra security
and better performance in clouds, because it separates underlying management
communication from virtual instances communication.
The other network interface (NIC) is used as unbound and is actually left un-
con�gured on setup/con�guration phase. The second NIC will be con�gured by

24

Table 2: Hardware list

Hardware Amount
Motherboard ASUS A58M-A 3
Processor AMD APU A8-7600K 3
CPU Cores 3.1 GHz 4
RAM 4 GB Kingston HyperX 6
Harddrive Samsung SSD 840 EVO 3
Power supply unit (PSU) ARLT PSU 500 W 85% 3
Router Mikrotik CCR1016-12G 1
Switch Mikrotik CRS125-24G-1S-RM 1
Eth link speed 1 Gigabit Ethernet (1GbE)
Avg Combined power usage 75 W

neutron on controller and neutron-linuxbridge-agent on compute nodes.
Additionally, our setup will not setup any storage nodes. First of all, because there
simply is no hard drives. Secondly, because this is currently a testing environment,
usage of much storage space is not expected and everything will �t on the hard
drives of the nodes.
This thesis follows the Mitaka installation for Ubuntu. OS of choice is Ubuntu

Server 14.04 LTS. Hypervisor of choice is KVM. Additionally, we will use Mari-
aDB for SQL database, Chrony as NTP Server, RabbitMQ as a message queue
and Memcached. That is a basic setup and after con�guring these services, the
next task is to set up networking.
The choice for OS was rather easy. Debian is the preferred OS in DS group with
courses teaching Debian, machines running on Debian and personnel is used to it.
Since Ubuntu is based on Debian, we use Ubuntu as our OS. As a bonus, Ubuntu
and Debian have great community support with friendly irc chatrooms. Openstack
also has a lot of content on setting up with Ubuntu and support forums are �lled
with Ubuntu related issues. KVM as a hypervisor was chosen because according
to related work, KVM has near-native performance and is said to be better than
Xen [3]. Additionally KVM is used in OpenStack installation guide for Mitaka
[16].
OpenStack also has a default overcommiting ratio, which means that OpenStack
allows to use more virtual resources than physically available[14]. The default
overcommitment ratio is:

• CPU allocation ratio 16:1

• RAM allocation ration 1.5:1

25

Figure 4: Recommended OpenStack con�guration [16]

This means, that OpenStack allows allocating 16 times more virtual CPUs. AMD
APU has 4 physical cores, so OpenStack would allow using up to 48 Physical cores.
The case is similar to RAM, instead of 8 GB, 12 GB is allowed to allocate.
The idea behind overcommitting is that virtual machines usually do not use all
the resources that they were given. Heavy overcommitting has negative e�ect on
performance. If OpenStack default overcommitting was taken into consideration,
one node could support up to 20 instances. One thing to keep in mind here is that
overcommitting does not mean that you can use more RAM than physically avail-
able. This solution is also very e�cient in terms of power consumption. Each node
uses around 75 W and if one instance uses 1 virtual CPU and 512MB RAM (like
instances given to System Administration students), then we could run around
12-16 instances on one node. Heavy overcommitting is not optimal for this thesis,

26

because the hardware is consumer grade and overheating could be a problem. The
course is usually taken by 60-70 people which means that a controller plus 5 nodes
would be su�cient. Additional nodes for other purposes could also be added.
That means just for the course, energy consumption would be 450 W, which is
very acceptable.

27

4 Solution Implementation and Results

First steps are very easy:

1. Set up and con�gure basic router for simple ethernet network - 10.11.12.0/24

2. Set up switch, basic con�guration, change password

3. Set up hardware and install Ubuntu on each node. The naming convention
should be kept in mind, hostname should be controller for management
node and computeX (X is a number starting from 1) for compute nodes.

4.1 Network setup

1 # apt-get install vlan <- Install vlan packages

2 # modprobe 8021q <- Load 8021q module into the kernel

3 # echo "8021q" >> /etc/modules <- Load 8021q mod on boot

4 # nano /etc/network/interfaces <- Configure network interfaces

5 # ifup vlan10 && ifup vlan2 <- Bring up vlan interfaces

Figure 5: Con�guring Network Interfaces

Like mentioned before, 2 separate networks have to be created for OpenStack.
VLANs are used for this purpose. Setting up VLANs is easy. Following commands
from �gure 5 is all that is needed to set it up. I named my VLANs as vlan2
(unbounded) and vlan10 (management) as can be seen in �gure 6 and network
con�guration �les are in the appendix [17].
Routing for vlan10 has to be done next. There are two options here:

1. Con�gure router as a gateway - This means that vlan10 has to be created
on the router. It is less secure and puts extra overhead on the router.

2. Con�gure controller as a gateway - This means that all vlan10 tra�c will
be routed through controller, which is the gateway for us. Communication
that is happening between OpenStack nodes will not reach the router, but
will remain inside the switch and nodes. This provides us some extra secu-
rity. This is a preferred approach for us, there is no need to occupy router
resources, when there is no need. Management will mostly communicate in-
side vlan10 anyway. However, this means that controller node will have to
act as a router.

28

Figure 6: Network Topology

Con�guring controller to be a router is a bit harder task. All these commands can
be seen in the appendix [17]. Basic things that we do:

1. Allow ipv4 routing on the controller node

2. Allow ipv4 routing on each boot (make it persistent)

3. Allow routing from vlan10 to eth0

4. Allow routing from eth0 to vlan10

5. Add postrouting masquerade to eth0

6. Save �rewall rules and make script to restore �rewall rules on startup

7. Test compute node connectivity to web, ping 8.8.8.8 is a good example.
All nodes except controller should have default gateway as controller node's
VLAN IP address.

29

4.2 Setup

O�cial OpenStack install guide for Ubuntu is straightforward and easy to follow
[16]. I did setup everything according to the guide. Couple of noteworthy things
here:

• There are a lot of (around 20 to 25) di�erent usernames and passwords to
keep track of.

• Hundreds of con�guration options have to be set. Pay very good attention
to them, typos will cause most of the errors.

• All errors that I had were either typos or small parts, which were overlooked
and not con�gured.

• OpenStack services show running status and will not say if they had any
errors, logs or veri�cation commands are of help here.

• When debugging, the option �debug should be used for more information,
for example openstack --debug compute service list.

• When seeing errors, check con�guration �les two times. If errors still per-
sist, go over the con�guration �les one more time. Most of the errors are
miscon�gurations.

• OpenStack IRC and support forums provide answers relatively quickly.

• When con�guring network, keep in mind that our provider network will be
on vlan2 interface.

After a successful installation, but before launching images, vlan2 network has to
be set up because neutron expects a gateway. Here routing for unbound VLAN
(vlan2) has to be con�gured, which is managed by neutron. Routing for vlan2
however has to be done from the router. Lets say that CRS125 switch is connected
to ether10 on CCR1016 router. Following things have to be done for this:

1. Create vlan2 on the router interface ether10

2. Create subnet on vlan2 and assign IP address (this is the gateway)

3. Add source NAT masquerading for the subnet created in step 2. Speci�cally
mark source address as the subnet and outbound interface as the ether1. Here
ether1 is the port on which connection to external networks is established.

Finish up installation with creating subnets with Neutron. Make sure the subnets
created with Neutron are subnets of the network set up on vlan2 by router. Finish
up by powering on some instances.

30

4.3 Benchmarks

As mentioned before in the related work it was proven over and over how vir-
tualization does not add computational or RAM overhead. As a concequence,
computational and RAM performance benchmarking is not needed. However, the
read/write and network performance will be investigated, because this has been
reported as being pitfalls of virtualization [3] [2].
Commands used for benchmarking were ping for latency, iperf for bandwidth,
hdparm for read speeds and for write speeds. Command on �gure 8 was used.
Additionally iperf was used to create heavy loads on networks.

1 time sh -c "dd if=/dev/zero of=testfile bs=128k count=10k && sync";

2 rm testfile

Figure 7: Command used to measure write speed

4.3.1 Read/Write

The write speed test shown on �gure 8 shows the real time of data writing. Sync-
ing shows the real time, otherwise a higher number would be shown, which uses
caching. We measure how long it takes to write �le to a disk. The size of the �le is
1.28 GB. Here the test is run �rst on physical machine, then one virtual machine,
then two virtual machines up to six virtual machines. We see that write scales
up well and splits speed between virtual machines nicely, load is balanced almost
perfectly.
The read speed test uses hdparm with -t and -T parameters for testing and

output the memory bandwidth for bu�ered reads and cached reads. Bu�ered
reads - "speed of reading through the bu�er cache to the disk without any prior
caching of data" [18]. Cache reads - "speed of reading directly from the Linux
bu�er cache without disk access" [18]. The graph is shown on �gure 9. This is
similar to the case of write speeds, KVM does perform very well for disk reads and
writes.

4.3.2 Network latency and bandwidth

The bandwidth test was very simple. We used public iperf server iperf.eenet.ee to
achieve these results. We tested network bandwidth with iperf command, they are
shown on �gure 10. The results show that using VLANs and controller node for
routing does add a bit of overhead, but is not very huge. Overall bandwidth is �ne.

31

Figure 8: Time it takes to write a �le of size 1.28GB

Laptop, virtual machine and controller only have 6 hops to reach the destination,
while compute node has one additional hop - controller node.

Last test was the latency test, the aim of this test is to measure management
VLAN latency when there are network tests ongoing. Average latency is given,
which is measured over 20 tests. Additionally standard error for tests is given.
Because test descriptions are long for �gure 11, they are provided here:

Test1 - Baseline for latency, measured while no load on network. Pinging is between
controller and compute2 node.

Test2 - Pinging is between compute2 and controller node, while virtual machine
that is on compute2 node and another virtual instance on compute1 are
creating heavy load. Compute2 has the virtual machine, which acts as a
client for iperf.

Test3 - Pinging is between compute1 and controller node, while virtual machine
that is on compute2 node and another virtual instance on compute1 are
creating heavy load. Compute1 has the virtual machine, which acts as a
server for iperf.

32

Figure 9: Cached reads and Bu�ered reads

Test4 - Pinging is between controller and compute1, while virtual machine on com-
pute1 acts as a client iperf for public iperf server - iperf.eenet.ee.

Test5 - Pinging is between controller and compute2, while virtual machine on com-
pute1 acts as a client iperf for public iperf server - iperf.eenet.ee.

Test6 - Pinging is between controller, compute1 and compute2, while virtual ma-
chine on compute1 node and virtual machine on compute2 node have iperf
clients running for public iperf server - iperf.eenet.ee.

We see that only one test adds a lot of latency to management VLAN. So the pitfall
de�nately is the network here, but only in some cases heavy loads between virtual
machines would have to be created. This is a disadvantage of this system that
OpenStack tries to avoid by having separate physical networks for management
and virtual machines.

4.3.3 Comments on results

Our proposed private cloud is not meant for heavy workloads. For good network-
ing performance, researchers should use the HPC Center of University of Tartu
to do network heavy tasks. Nevertheless, network is a troubling part of proposed

33

Figure 10: Network Bandwidth from various instances

system.
Input/output for proposed system is completely �ne and in general use case, heavy
read/writes are not expected on the system. Great performance for input/output
is provided by using SSDs.

34

Figure 11: Network latency tests

35

5 Conclusion

The goal of this thesis was to use existing unused hardware into a good use for
Distributed Systems group in the University of Tartu. This goal was achieved by
building a private cloud using OpenStack. In OpenStack manuals, it is stated that
it requires two network interfaces at least to work: however, this thesis pruposes
a design with only one network interface. There appeared to be no resources on
how to achieve this task and a solution was proposed to use VLANs to create two
virtual networks. They act as a management network and an unbounded network
which would be con�gured by Neutron. The proposed solution does have some
pitfalls, like latency drop on the management network, when there is heavy tra�c
on virtual machines. This, however, is not so critical for a testing/developing
private cloud and can be overlooked.
For future work, the testing setup can be upgraded to a better one by using new
resources in the future. Here is a list of the main things which can be improved
upon:

• Storage - Access to 8TB Storage server will be given and the Distributed
Systems group can use it to safely store Glance images and virtual machine
disk �les, like qcow2.

• Diskless setup - There is ongoing work to achieve diskless boot, so if we
set up RAID on the controller node and put compute node �lesystems on
controller, then compute nodes will have NFS root �le system and will boot
with persistant con�gurations. That means it would not be necessary to use
one SSD per node and gives better scaling. This is the current thesis topic
of a fellow student [19].

• Management - Using con�guration management tools it is possible to au-
tomate provisioning of OpenStack components and virtual machines. As a
result, there will be no necessity in doing all con�guration steps manually
next time. This is the current thesis topic of a fellow student [20].

• Custom instances - Creation of custom images has to be researched. This is
due to the fact that System Administration course requires that each student
makes their instance from nothing. This requires more research into what
exactly is needed for System Administration course.

• Network performance after upgrading system - Right now the system is work-
ing �ne, but how will network perform if additional services like management
will be running. Additional overhead will be caused by the fact that instances
will be stored on storage servers and if compute node root �le systems are
on some other node in RAID con�guration. This will require testing.

36

• APU GPU part - Additional power could be added by GPU which is currently
eating little RAM, but it is not used. Research into utilizing GPUs will be
needed.

37

References

[1] �International Supercomputing 2015 conference Student Cluster Competi-
tion - Team Tartu.� http://www.hpcadvisorycouncil.com/events/2015/

isc15-student-cluster-competition/team_tartu.php. Accessed: 2016-
05-10.

[2] V. Kadakas, �Establishing Scienti�c Computing Clouds on Limited Resources
using OpenStack.� Bachelor thesis, 2013. University of Tartu.

[3] A. Trukits, �The Cost of Virtualization for Scienti�c Computing.� Bachelor
thesis, 2013. University of Tartu.

[4] J. Y. S. Moussa Tai�, Abdallah Khreishah, �Building a private hpc cloud
for compute and data-intensive applications,� International Journal on Cloud
Computing: Services and Architecture (IJCCSA), vol. 3, April 2013.

[5] H. N. Palit, X. Li, S. Lu, L. C. Larsen, and J. A. Setia, �Evaluating hardware-
assisted virtualization for deploying hpc-as-a-service,� in Proceedings of the
7th International Workshop on Virtualization Technologies in Distributed
Computing, VTDC '13, (New York, NY, USA), pp. 11�20, ACM, 2013.

[6] A. G. Carlyle, S. L. Harrell, and P. M. Smith, �Cost-e�ective hpc: The commu-
nity or the cloud?,� in Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on, pp. 169�176, Nov 2010.

[7] �O�cial OpenStack Mitaka manual.� http://docs.openstack.org/. Ac-
cessed: 2016-05-10.

[8] �CloudStack.� https://cloudstack.apache.org/. Accessed: 2016-05-10.

[9] �Eucalyptus.� http://docs.hpcloud.com/eucalyptus/4.2.2/

#install-guide/intro.html. Accessed: 2016-05-10.

[10] �OpenStack hypervisors.� http://docs.openstack.org/mitaka/

config-reference/compute/hypervisors.html. Accessed: 2016-05-10.

[11] �Xen And Xen Server.� https://wiki.openstack.org/wiki/XenServer/

XenAndXenServer. Accessed: 2016-05-10.

[12] �XCP Overview.� http://wiki.xen.org/wiki/XCP_Overview. Accessed:
2016-05-10.

[13] �Ubuntu Cloud page.� http://www.ubuntu.com/cloud. Accessed: 2016-05-
12.

38

http://www.hpcadvisorycouncil.com/events/2015/isc15-student-cluster-competition/team_tartu.php
http://www.hpcadvisorycouncil.com/events/2015/isc15-student-cluster-competition/team_tartu.php
http://docs.openstack.org/
https://cloudstack.apache.org/
http://docs.hpcloud.com/eucalyptus/4.2.2/#install-guide/intro.html
http://docs.hpcloud.com/eucalyptus/4.2.2/#install-guide/intro.html
http://docs.openstack.org/mitaka/config-reference/compute/hypervisors.html
http://docs.openstack.org/mitaka/config-reference/compute/hypervisors.html
https://wiki.openstack.org/wiki/XenServer/XenAndXenServer
https://wiki.openstack.org/wiki/XenServer/XenAndXenServer
http://wiki.xen.org/wiki/XCP_Overview
http://www.ubuntu.com/cloud

[14] �OpenStack Dev Ops Manual.� http://docs.openstack.org/

openstack-ops/openstack-ops-manual.pdf. Accessed: 2016-05-10.

[15] �OSI Layer description by Microsoft.� https://support.microsoft.com/

en-us/kb/103884. Accessed: 2016-05-10.

[16] �Mitaka Ubuntu Overview.� http://docs.openstack.org/mitaka/

install-guide-ubuntu/overview.html. Accessed: 2016-05-10.

[17] �Author's github.� https://github.com/crypotex/bscthesis. Accessed:
2016-05-12.

[18] �hdparm manual.� https://www.cl.cam.ac.uk/cgi-bin/manpage?8+

hdparm. Accessed: 2016-05-12.

[19] A. Martoja, �Fault-tolerant networking using linux based systems and con-
sisting of used hardware.� Bachelor thesis, 2016. Working title.

[20] D. T²umak, �Large-Scale Provisioning and Con�guration Management.�
Bachelor thesis, 2016.

39

http://docs.openstack.org/openstack-ops/openstack-ops-manual.pdf
http://docs.openstack.org/openstack-ops/openstack-ops-manual.pdf
https://support.microsoft.com/en-us/kb/103884
https://support.microsoft.com/en-us/kb/103884
http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html
http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html
https://github.com/crypotex/bscthesis
https://www.cl.cam.ac.uk/cgi-bin/manpage?8+hdparm
https://www.cl.cam.ac.uk/cgi-bin/manpage?8+hdparm

Non-exclusive licence to reproduce thesis and make thesis public

I, Andre Tättar (date of birth: 13th of July 1993),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Building and Con�guring a Custom Private Cloud Using Consumer Hardware
supervised by Artjom Lind

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 12.05.2016

40

	Introduction
	General Overview
	Scope
	Objective
	Contribution
	Roadmap

	Related Work
	Literature overview
	Cloud
	Private cloud - advantages & disadvantages

	Cloud Software "first decisions"
	Cloud Computing software
	Hypervisor
	Operating System
	OpenStack
	OpenStack Services
	Storage projects
	Shared Services
	Higher-level service

	Extra services
	OpenStack specific terms
	Network
	Osi Layer 2 and 3
	Routing
	VLAN

	Solution design
	Context and Analysis
	Constraints

	Solution Implementation and Results
	Network setup
	Setup
	Benchmarks
	Read/Write
	Network latency and bandwidth
	Comments on results

	Conclusion

