
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Kristine Leetberg

Lab Package: Static Code Analysis

Bachelor’s thesis (9 ECTS)

Supervisor: Dietmar Pfahl

Tartu 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Lab Package: Static Code Analysis

Abstract:

The main goal of this thesis is to enhance the lab materials about static code analysis used in

the course “Software Testing (MTAT.03.159)” in the University of Tartu. The motivation for

the changes is explained and the new materials are introduced in this work. The materials were

applied in the course and received positive feedback. Students’ feedback given after the

execution of the lab is analyzed with suggestions for future improvements given.

Keywords:

Software testing, static code analysis, lab package

CERCS: P170

Praktikumimaterjal: staatiline koodianalüüs

Lühikokkuvõte:

Antud bakalaureusetöö eesmärgiks on luua uus versioon staatilist koodianalüüsi tutvustavast

praktikumimaterjalist, mida kasutatakse Tartu Ülikoolis aines “Tarkvara Testimine

(MTAT.03.159)”. Töös kirjeldatakse nii peamiseid põhjuseid muutusteks kui ka töö käigus

valminud uuenenud materjale. Loodud materjale rakendati eelnimetatud aines ning neile antud

tagasiside oli positiivne. Töö lõpeb tudengite antud tagasiside analüüsiga ning lisatud on ka

soovitusi edasisteks parandusteks.

Võtmesõnad:

Tarkvara testimine, staatiline koodianalüüs, praktikumimaterjal

CERCS: P170

3

Contents
1 Introduction .. 4

2 Background and Existing Materials ... 5

2.1 Course at the University of Tartu “Software Testing (MTAT.03.159)” 5

2.2 Static Code Analysis ... 5

2.3 Last Year’s Lab ... 6

3 Lab Design ... 8

3.1 Tasks and Schedule ... 8

3.2 Lab Materials .. 18

4 Lab Execution .. 21

5 Feedback .. 23

5.1 Feedback Collection .. 23

5.2 Feedback Analysis .. 24

5.3 Future Improvements .. 27

6 Conclusions .. 29

References ... 30

Appendix ... 31

I New Lab Materials ... 31

II Questionnaire feedback ... 32

III License ... 33

4

1 Introduction

Testing is an essential part of the software development lifecycle. In order to ensure high

software quality, different types of testing must be used. The course “Software Testing

(MTAT.03.159)” taught at the University of Tartu introduces many types of testing through

lectures and lab sessions. The starting point for this thesis is the thought that by ensuring the

materials used in the course are as relevant and appropriate as possible, it will help the students

improve the quality of their upcoming projects and work as IT specialists.

Static code analysis is a convenient yet highly effective testing technique for discovering

potential bugs, especially in cases where dynamic testing might fail to find them [1]. Since it

is important to introduce the method to students, a lab focusing on static code analysis has been

in place in the “Software Testing” course. However, the feedback received from the students

about the materials in the previous years has not been the best and therefore the objective of

this work is to enhance the lab materials on static code analysis. The thesis gives an overview

of the enhanced and newly created lab materials, how they differ from the existing materials,

how they were used in practice, and how students perceived them.

The course “Software Testing (MTAT.03.159)” consists of six lab sessions, each introducing

a different testing technique. Every lab introduces a new tool or technique which is then used

to find faults in a given piece of software or software documentation. The feedback given to

the lab about static code analysis was fairly negative with students mostly claiming that the

system under test was too large to be comprehended in the given timeframe, the workload was

too big and the materials were not explanatory enough. Therefore, the enhancements done

within this thesis were targeted to eliminate those problems and help students get familiar with

static code analysis more easily.

In order to improve the materials used in the previous years, several changes were made. To

begin with, a completely new system under test was written specifically for this lab with

carefully chosen bugs seeded into it. Also, a new motivational task was added to the beginning

of the lab to raise the awareness of the need for and use of static code analysis tools.

Furthermore, the homework tasks and the grading scheme were adjusted to fit with the defined

workload of the lab (360 min per student).

The thesis consists of several parts. The second Chapter gives an overview of materials

previously used in the “Software Testing MTAT.03.159” course, focusing on the lab about

static code analysis. Also, principles followed when constructing the lab package for the

materials are explained. The third Chapter focuses on the finished lab materials, explaining the

use of each individual task and pointing out how they were chosen and composed. The fourth

Chapter consists of the analysis of the feedback about the lab given by students who completed

it within the university course. Furthermore, some recommendations for future improvements

are suggested. The thesis ends with a summary where the main results about usage of the

developed materials are stated.

5

2 Background and Existing Materials

This Section gives an overview of the course the lab is part of, the topic of the lab and the

materials that were used in the previous years.

2.1 Course at the University of Tartu “Software Testing (MTAT.03.159)”

“Software Testing” is a 3 ECTS course taught every spring semester at the University of Tartu.

The course explains systematic methods of software testing. According to the official course

page, “Software Testing” aims at introducing the most important aspects of software quality

control as well as various techniques used in testing [2]. The course held in the spring semester

of 2015/2016 consisted of 7 lectures and 6 labs, each lab introducing a new testing technique

in the following order:

1. Issue Reporting

2. Black-Box Testing

3. White-Box Testing

4. Document Inspection and Defect Prediction

5. Static Code Analysis

6. Automated GUI Testing (Regression Testing)

The goal of this thesis is to improve the materials for lab 5 (Static Code Analysis).

2.2 Static Code Analysis

Static analysis [3] is a testing method which involves looking for known error patterns or

unconventional code in order to find faults without ever actually executing the code. The main

advantages of static analysis are [1, 4]:

● It helps to find faults in places that are rarely executed in code;

● It helps to find faults in their exact location in code;

● It helps to maintain records on the faults found since formal documents are usually

created;

● It helps to find code which might cause maintenance issues;

● It helps to detect quality issues earlier in the product development when they are

cheaper to fix;

● It helps to detect security issues.

This means static analysis holds a lot of good qualities. One of the most widely used techniques

for static code analysis is code review [3] in which pieces of code are inspected by other

developers who then report all found faults. Code review has proven to be highly effective in

detecting weaknesses already for a long time [5], and has been recently adapted in several

companies [6]. However, code review can demand a lot of time and money when working on

bigger projects, which has led to the need for automated tools.

In the 1970s Stephen Johnson created a tool called Lint [7], which examined C source programs

and tried to find known error patterns, without ever executing the code. Lint proved to find

many faults that would have normally be revealed during code review much faster and cheaper.

6

Since then, many new automatic code review tools have emerged and they have proven to be

quite effective [8].

2.3 Last Year’s Lab

In the „Software Testing” course, a lab originally created and performed by Vahid Garousi at

the University of Calgary, Canada, introducing static code analysis has been in place for many

years without major changes. The lab introduces a static code analysis tool for Java called

FindBugs1 and uses it on an open-source project called JFreeChart2. Students work in pairs to

complete tasks.

2.3.1 Structure

The lab materials used in the previous years consisted of an instructions document and a zip-

file containing the system under test. The instructions document describes the following main

tasks:

● Familiarizing with running FindBugs and reading on analyzing found warnings by

looking at an example “Call to equals() comparing different types” warning and

deciding whether it is a false-positive or not;

● Analyzing seven randomly chosen bugs other than “Possible null-pointer dereference”

and one “Possible null-pointer dereference” bug;

● Comparing the benefits of static code analysis versus manual code inspection;

● Writing a short feedback about the lab.

The lab gives a total of 10 points, which are distributed as follows:

● 5 points for the analysis of seven randomly chosen bugs other than “Possible null-

pointer dereference”;

● 1 point for the analysis of one “Possible null-pointer dereference” bug;

● 2 points for the comparison of the benefits of static code analysis versus manual code

inspection;

● 1 point for the feedback.

1 http://findbugs.sourceforge.net/
2 http://www.jfree.org/jfreechart/

3 https://eclipse.org/

7

2.3.2 Feedback Analysis

In every “Software Testing” lab students are asked to write a short feedback explaining what

they liked or did not like about the lab. The exact question asked is the following:

“General comments and conclusions on performing the lab. Did you find it a useful practice?

Was it easy to follow? Did you spend too little/too much time on it? Should some parts be

dropped or explained better? Is something missing? Etc. Please try to be constructive.”

After analyzing the feedback for lab 5 “Using Static Analysis Tools to Find Bugs” of the

“Software Testing” course taught in 2014/2015 the following results can be reported.

Negative comments mentioned in more than five feedbacks:

● JFreeChart was too extensive to be fully understood in the given timeframe. A lot of

background information was needed to determine the purpose of a single method;

● Too little information was given on how to analyze the issues;

● The workload was too big since determining whether an issue was a false positive or

not was difficult.

Other negative comments mentioned:

● An outdated version of FindBugs was mentioned in the materials;

● Students would like to have an opportunity to choose between static code analysis tools;

● Problems occurred with using Eclipse and FindBugs;

● Installation and setting up the tool took away most of the time;

● Many of the bugs were very language-specific;

● The system under test did not support different integrated development environments.

Positive comments mentioned:

● FindBugs plugin was easy to use.

Consequently, the system under test, explanations on analyzing found issues and the workload

had to be reconsidered in order to improve the existing materials. Even though it was mentioned

that FindBugs was easy to use, the idea of changing the tool was taken into consideration. Other

open-source tools were such as CheckStyle4, PMD5 and Lint4J6 were considered but FindBugs

seemed to have the best range of warnings and the easiest setup process to help with reaching

the goal of the lab. Students also mentioned that they would like to freely choose static code

analysis tools and integrated development environments instead of being restricted to FindBugs

and Eclipse. However, this aspect is not relevant for the goal of this lab and therefore was left

unchanged to minimize problems such as different options for preferences which may occur

during setup.

4 http://checkstyle.sourceforge.net/
5 https://pmd.github.io/
6 http://www.jutils.com/

8

3 Lab Design

This section gives an overview of the tasks and schedule of the revised lab and introduces the

materials given to the students and lab instructors.

3.1 Tasks and Schedule

The tasks can be divided into two parts, i.e., preparation tasks and homework tasks. Students

are expected to finish at least most of the preparation tasks in the lab with the help of the lab

instructor and complete the homework tasks later.

3.1.1 Preparation Tasks

There are three main tasks which need to be completed before moving on to the homework

tasks:

● Manual Code Inspection Task;

● Tool Setup and Familiarization with the System Under Test;

● Familiarization with the Process of Analyzing an Issue.

Manual Code Inspection Task

The goal of the manual code inspection task is to raise the awareness of the need and usefulness

of static code analysis tools by having students inspect a piece of code manually to try to spot

faults. For this task, the faults are chosen deliberately to be known to the students from previous

courses. The idea is that even very talented students, who might think that they would never

write faulty code, should not be able to find all faults in a reasonable time that a tool would

spot in seconds.

When in the lab session, lab instructors hand out the piece of code found in appendix “First

Task” on paper. Students are given five minutes to find as many faults as they can. Since this

task is meant only for raising students’ awareness, it is not graded in any way and therefore

there is no demand for students to report found faults in writing. After the five minutes have

passed, the lab instructor asks how many and what kind of faults students found, which are

then briefly orally discussed in class. Following the discussion, the lab instructor presents and

explains how all of these and even more faults can be found in just a second with FindBugs.

The piece of code represents a single Java class with 6 variables, a constructor, two getters and

one longer method. The code contains 14 seeded bugs, for example in the following section:

if (name == "Harry"){

 name.replace('r', 'p');

 }

9

One can notice two faults:

1. In the condition of the if-statement two strings are compared using “==”, which leads

to reference equality comparison. It is highly probable that in the case here, the

equals(Object) method should be used instead;

2. Inside the if-statement, the return value of the String.replace(char, char) method is

ignored. Since strings are immutable in Java, the return value of the method should also be

assigned to the variable itself.

Students do not run FindBugs on this piece of code, instead the lab instructors present the

output on the screen. FindBugs only detects true positives in this code. Therefore, students

should be able to find all of them by manual inspection. For example, the first fault noted in

the previous example can be seen in the FindBugs perspective as shown in Figure 1.

Figure 1. FindBugs perspective.

As seen from Figure 1, FindBugs reports 14 faults in the piece of code. The faults were seeded

in the code on purpose, considering aspects talked about in the course “Object-Oriented

Programming”7, faults noted to be common in research [9] and the complexity of the faults.

Some faults, such as self-assignment of fields in constructors where they are not given as

arguments or apparent self-invoking methods which might cause infinite recursive loops are

expected to be noticed easily by most students when examining the code. It is also probable

that many students will notice that some fields are left unused but might not note this down as

a fault even though it should be. Some other faults, even though they are repeatedly mentioned

in the course “Object-Oriented Programming” will most likely stay unnoticed. Examples of

such faults are ignoring the return value of a method, for example a method for modifying

strings and null-pointer dereference in an or-statement, which are easy to be overlooked.

Nevertheless, when the faults are mentioned to the students, they will most probably remember

having heard about these problems before and consequently realize the importance of static

code analysis tools.

7 https://courses.cs.ut.ee/2015/OOP/spring

10

This is a completely new task added to the lab package and therefore a big change in the lab

materials and work flow. In the previous years, the comparison of automatic versus manual

static analysis was addressed in one of the home tasks, where students were asked to compare

the two methods. This year the comparison task was changed since the separate manual code

inspection task is done during the lab.

Tool Setup and Familiarization with the System Under Test

After completing the manual code inspection task, students move on to setting up the necessary

tools and the system under test. There are three main things to set up: Eclipse, the system under

test, which is HospitalSystem in this lab, and FindBugs. HospitalSystem is added to this thesis

as appendix “HospitalSystem”. Before moving on to the technical setup, students get a brief

overview of what the system used in this lab is like and what are its main functionalities.

HospitalSystem is a basic Java application which was created only as a sample project and

should therefore not be thought of as a complete system. The project consists of seven classes

and only allows the user to do some simple actions. The class diagram of the system is shown

in Figure 2. The user interface of the system is shown in Figure 3.

Figure 2. Class diagram of HospitalSystem.

11

Figure 3. User interface of HospitalSystem.

The main functionalities of the system include checking in and out patients and doctors and

seeing the overview of the current status of the hospital.

The tool setup instructions were left mostly unchanged compared to the ones in last year’s

materials, with the exception of updating software version numbers and screenshots. Since

students complained about the system under test used last year and as several other labs in the

“Software Testing” course use sample projects which are specifically adjusted to the learning

goals of a lab, a specific project was created for the static code analysis lab as well. In the

previous years, the system under test was pretty extensive and FindBugs reported 184 warnings

in the project, out of which students were asked to choose 8 to analyze, deciding whether they

are false positives or not. Even though the fact that FindBugs finds nearly 200 potential faults

is a good example of how the tools might work on real-life projects, having less warnings

makes the task easier to comprehend for the students. It reduces the workload of the lab

instructors, since the warnings chosen by different student pairs greatly overlap. This gives the

lab instructors more time for detailed feedback to the students.

Familiarization with the Process of Analyzing an Issue

A big problem in static code analysis tools is the fact that they tend to produce many false

positives. These types of warnings are the most difficult to deal with and the concept might be

difficult to understand for the students at first. One of the tasks that students receive later on is

to determine themselves whether a fault reported by FindBugs is a true or false positive. In

order to help the students realize how to analyze warnings reported by FindBugs, an example

analysis is given as part of the lab materials.

The document can be found in appendix “Analyze an Issue”. It shows an example of a warning

reported by FindBugs and explains how to determine whether the given warning is a false

positive or not by giving two possible implementations of the class where the potential fault

was found. One possible implementation shows the case in which the warning would be a true

positive and the other one shows the case in which the warning would be a false positive. The

students will therefore learn that in order to determine whether a given warning is relevant or

not, they might need to look deeper into the program.

12

Comparing to last year’s lab, little was changed in this section. The description was made a bit

clearer and two possible implementations were brought out instead of one. It is also important

to make sure that students would be familiar with the fault brought as an example, because

otherwise it would be very difficult to quickly realize the difference between the

implementations. The example fault given in the document refers to a possible fault of using

an equals() method to compare objects from different types, which is very similar to the one

used last year. The type of the fault was not changed since faults of this kind are introduced in

the course “Object-oriented programming” which is a preliminary course for “Software

Testing” and therefore makes it very likely that most of the students are familiar with faults of

this kind.

3.1.2 Homework Tasks

There are two tasks that need to be handed in:

● Analyzing bugs;

● Comparing methods.

Analyzing Bugs

In order to reach the goals of this lab, students are asked to run FindBugs on the system under

test and analyze a number of the reported warnings. Each warning needs to be analyzed

separately. To do that, students are asked to fill out a table, where each row corresponds to one

warning. A table with the first row filled in is given to the students as an example and the task

is to fill out the rest of it. Table 1 shows the table with the example given to the students.

Table 1. Bug analysis table with an example.

Bug description

and location

What seems to be the

problem?

Is this a false or a true positive? Should this

bug be fixed?

If yes, then how, otherwise why not?

Exception created

and dropped rather

than thrown

Person.java:15

This code creates an

exception (or error)

object, but doesn't do

anything with it.

This is a true positive and should be fixed.

Besides simply creating the instance of the

exception, it should also be thrown.

The fixed line would be:

throw new Exception("Birthyear cannot be

in the future!");

The system under test for this lab is HospitalSystem, which was built specially for this lab and

bugs seeded into this system were chosen deliberately to be common and understandable. The

new system consists of a total of 731 lines of code, divided between 7 classes. FindBugs finds

potential faults from all different ranks and confidences from the code. There are 15 warnings

in total, which are distributed across classes and should all be understandable taking under

consideration the mandatory courses that the students must have taken before enrolling in the

“Software Testing” course. A class diagram that displays the amount and distribution of

warnings in the code can be seen in Figure 4.

13

Figure 4. Warning distribution in HospitalSystem

Students are asked to analyze 10 warnings, choosing at least one from each rank (Of Concern,

Troubling, Scary, Scariest) and confidence (Low, Normal, High). When running FindBugs on

the target system, all found warnings are reported in the Bug Explorer view. When selecting a

certain warning, students see the location and a short description of the found warning as seen

in Figure 5.

14

Figure 5. HospitalSystem in FindBugs perspective

Having read what FindBugs says about the warning, the task for the students is to understand

why the tool counts this as a fault and mainly, whether the warning is a false positive or not.

While the example warning seen in Table 1 is a clear true positive, students might also

encounter some false positives in the code. For example, FindBugs reports a null pointer

dereference warning as seen in Figure 6.

Figure 6. Possible null pointer dereference as seen in FindBugs perspective.

15

When looking closer at the code, one can see that in fact, this is a false positive, since one of

the if and else if statements is always true and therefore the variable examinationRoom will

always have a value set to it in line 102. However, this is not a good style for coding and

therefore it is also correct for the students to note that the second else if statement could be

changed to an else statement. Students are expected to write a similar analysis as shown in

Table 2.

Table 2. Expected analysis of bug shown on Figure 6 [A1.8].

Bug description

and location

What seems to be the problem? Is this a false or a true positive?

Should this bug be fixed?

If yes, then how, otherwise

why not?

Possible null

pointer

dereference

Hospital.java:10

2

The variable examinationRoom is

initialized as null and later given

values in if-else if statements. Since

there is no else statement, FindBugs

is not sure whether the variable is

always assigned a value before it is

dereferenced.

This is a false positive, since

the if and else if statement

cover all possible situations.

However, this coding style

should be discouraged and the

else if statement should be

replaced by an else clause.

Even though the principles of this task are the same as in the materials for last year, this time

the analysis is asked to be reported in the form of a table, which helps make the task clearer for

the students and also facilitate the work of the lab instructors. Furthermore, the scale of the

system and the number of the faults to be analyzed was changed to fit it better into the given

timeframe.

Comparing Methods

In order to raise the awareness of the use of static code analysis even more, students are asked

to briefly compare the benefits of static testing vs dynamic testing by bringing up at least one

concrete benefit of each method. The expected result is for the students to mention that when

static code analysis is useful for finding faults in areas of the code which are rarely executed,

dynamic testing can find out whether all required functionalities have been implemented and

work as expected.

Last year, students were asked to compare automatic static code analysis versus manual static

code analysis. As this comparison is now covered by the manual code inspection task added to

the beginning of this lab, this task was changed to let the students also think over the benefits

of static code analysis over dynamic testing and vice versa.

16

3.1.3 Schedule

“Software Testing” is a 3 ECTS course where each lab is estimated to take about 8 student

hours per person to complete. These 8 student hours or 360 minutes include the 2 hours or 90

minutes in the lab session and are expected to be spent as follows:

● 45 min – Lab introduction and manual code inspection task;

● 45 min – Tool and system setup;

● 45 min – Getting familiar with the tasks and materials, inspecting the example on

analyzing an issue;

● 150 min – Completing the task on analyzing bugs;

● 45 min – Completing the task on comparing methods;

● 30 min – Feedback and submission.

In order to make sure that the actual workload of an average student corresponds to the expected

values, two experiments were carried out before the lab session to the test some of the tasks.

Experiment 1 was carried out to test and set the time limit for the manual code inspection task

and Experiment 2 to set the deliverables for the task on analyzing bugs.

Experiment 1

In the interest of finding out how many faults an especially talented student will find in a given

timeframe and therefore decide whether the prepared task is suitable or not and how long the

time given to the students should be, four third-year Bachelor computer science students who

have already passed the “Software Testing” course with exceptionally high results were asked

to do the manual code inspection task. The students were asked to go through the given code

while an examiner noted down all of the faults that the students spotted. The results are shown

in Table 3. Faults spotted within the first 5 minutes are listed in the second column and

additional faults found in the next 5 minutes are listed in the third column.

Table 3. Results of Experiment 1.

Student Faults found in 5 mins Additional faults found in next 5 mins

Student 1 1 2

Student 2 3 1

Student 3 6 1

Student 4 3 0

As seen from Table 3, most of the faults were found in the first five minutes and therefore this

seems to be a reasonable time limit, regarding that the additional time did not result in a

significantly higher number of found faults. It should also be noted that the students

participating in the experiment only found a maximum of seven faults in 10 minutes. Therefore,

17

it can be expected that average students will not find all 14 bugs during the given timeframe

and hence the task will fulfil its purpose.

Experiment 2

Last year, students were asked to analyze 8 bugs in total. Since this year a much smaller system

is put under test and the bugs to be examined were intentionally seeded to the code, taking

under consideration the students’ skills acquired in predecessor courses, an experiment was

conducted to determine how many bugs should be given to the students to analyze.

In the interest of finding out how long it takes for students to analyze a fault and therefore later

decide how many faults a pair of students should analyze, 5 third-year Computer Science

bachelor students who have already passed the “Software Testing” course with varying results

were asked to set up the system under test and complete the task on analyzing bugs individually.

In addition, they were asked to note down the time it took them to analyze each warning. The

subjects completed the task by themselves and sent back their results in writing. It is

understandable that time is very valuable and therefore each student analyzed exactly as many

warnings as they had time for. The results are shown in Table 4.

Table 4. Results of Experiment 2.

Student Total time spent Faults analyzed Average time spent on a fault

Student 1 39.2 minutes 7 5.6 minutes

Student 2 54.6 minutes 13 4.2 minutes

Student 3 56.5 minutes 5 11.3 minutes

Student 4 15 minutes 1 15 minutes

Student 5 20 minutes 1 20 minutes

As seen from the previous table, the results seem to vary a lot. A few key points to keep in

mind when looking at the results are that students 1 and 2 completed the “Software Testing”

course last year with very high results, 3 and 4 with average and 5 with a rather low result.

Nevertheless, even though student 2 analyzed the most bugs and achieved the lowest average

time, the analysis was often very poor and even incorrect. Furthermore, even though students

4 and 5 only analyzed 1 fault, they noted that the task was rather complicated and when looking

at the other faults, it seemed that each one would take about 15-20 minutes to analyze.

The results indicate that an average student from the test group would spend around 11 minutes

to analyze a bug individually. Even though working in pairs might reduce that time a little, it

should be considered that the students from the test group had already done a similar task in

last year’s course and were therefore more familiar with the analysis process than the students

who will be taking the lab this year. All in all, based on the experiment, it is expected that an

average student pair will spend an average of 10 minutes to analyze a bug in the code while a

weaker pair will spend around 15 minutes. Considering these metrics and the time estimated to

be spent on this task, students are asked to analyze 10 bugs in total.

18

3.1.4 Point distribution

In the “Software Testing” course, each lab gives a maximum of ten points. Eight points out of

those ten are given for the tasks mentioned above. Two points are given for active participation

in the lab session and for writing a constructive feedback about the lab. Considering those

matters, the ten points for lab 5 are distributed as follows:

1. In-Lab Activity – 1 point;

2. Analyze bugs – 7 points;

3. Compare methods – 1 point;

4. Feedback – 1 point.

3.2 Lab Materials

In order to make the tasks as clear as possible and to make the materials manageable, several

documents were provided both to the students and to the lab instructors. A scheme of all the

documents associated with the lab package can be seen in Figure 7.

Figure 7. Structure of the lab materials.

All of the materials seen in Figure 7 can be found in Appendix 1 under the same titles. All of

the student materials are also available on the “Software Testing” course wiki page. The content

and purpose of each document is explained in the following paragraphs. The student materials

are found in Sections 3.2.1-3.2.6 and the lab instructors’ materials on Sections 3.2.7-3.2.8.

19

3.2.1 Lab 5 Instructions

The first document introduced to the students is a short document meant to be used as a

guideline for the lab. It starts with a general introduction to the topic, tool to be used and system

under test. After the introduction, it presents the order in which the tasks in this lab should be

done. The grading and deliverables are also briefly mentioned at the end. Each Section refers

to the specific document on the wiki page which has detailed information about the given task

or topic.

The instructions document was added to the lab package in order to make the big amount of

information systematized and hence easier to comprehend. Since the lab consists of several

independent tasks, scrolling through a long document can get overwhelming and confusing. In

order to improve this, the material was divided into smaller parts following the example used

in the thesis of Rasmus Sõõru [10] which facilitates navigation between the separate tasks.

Furthermore, this document can be used by the lab instructors to give an overview about the

materials in the beginning of the lab session.

3.2.2 First Task

This is a pdf-document containing the Java code used in the manual code inspection task.

3.2.3 HospitalSystem Overview and Tool Setup

This is a pdf-document containing a short description of the system under test and detailed

instructions on setting up the tool and the system.

3.2.4 HospitalSystem

This is a zip-file of the system under test which is meant to be imported to Eclipse as an existing

project.

3.2.5 Analyzing an Issue

This is a pdf-document that shows an example of a fault reported by FindBugs and explains

how to determine whether the given fault is a false positive or not by giving two possible

implementations of the class where the fault was found.

3.2.6 Lab Deliverables

This is a pdf-document containing details about the point distribution, instructions for the task

on analyzing bugs and comparing methods and also the in-lab activity and general feedback

tasks.

3.2.7 First Task Explanation

This is a pdf-document where all the faults that FindBugs finds in the code given for the manual

code inspection task are listed and each fault is also explained a little. This document is meant

to help the lab instructors in showing and explaining the actual faults that appeared in the code

to the students, after they have finished their task.

20

3.2.8 Grading scheme

This is a pdf-document that represents the same “Lab Deliverables” document that the students

receive, filled out with expected answers for the two main tasks in this lab: analyzing bugs and

comparing methods. This document is meant as a guideline to help the lab instructors with

grading.

21

4 Lab Execution

The “Software Testing” course held in spring 2016 consisted of 6 labs. The materials created

within this thesis were used in lab 5, which took place in seven lab groups between 11th of

April and 14th of April 2016. Each lab group had approximately 20 students and one lab

instructor to help and guide them. There were three lab instructors in total in this course and in

order to make sure they are familiar with the materials, a brief introductory session was held

with them before the actual lab sessions.

Before the lab, students already have some knowledge about the topic. Lab 4, which takes place

two weeks before lab 5, introduces manual inspection of design documents and therefore

already gives students some idea of static analysis. Furthermore, static code analysis is also

mentioned and briefly explained in the lectures taking place before the lab session. No other

specific preliminary work is required for the lab. In the lab itself, lab instructors start by

explaining briefly the topic and the workflow of the lab with the help of the “Instructions”

document. After this introduction, they will hand out “First Task” on paper and discuss the

results afterwards. When the discussion is over, students can look up all of the materials from

the “Software Testing” course wiki page and continue with the individual tasks.

In the labs everything seemed to go according to plan. The preparation tasks went smoothly.

As the manual code inspection was a completely new task, the results were examined in one

lab group and are shown in Table 5. As can be concluded from Table 5 and from examinations

done by the lab instructors in the lab sessions, the task seemed to fulfil its purpose since all

students found some, but not all faults.

Table 5. Results of the manual code inspection task in one lab group (8 students present).

Number of Faults Students with such result

1 or less 0

2 4

3 1

4 3

5 or more 0

The setup of the tool and system did not cause any bigger problems as well. This was expected

since Eclipse with its plugins and existing projects packed into a zip-file are also used in other

labs in the “Software Testing” course.

22

As seen from the marks received for the homework tasks, many students completed their tasks

well and received full marks. Since one of the aims of the “Software Testing” course is to

ensure that all students would be able to complete all tasks given in the labs, this kind of a

result should be thought of as a success. Nevertheless, sometimes students also lost marks for

several reasons. Even though the reasons varied greatly, two mistakes occurred more often:

● Misinterpretation of the false positive warning seen in Figure 6. This fault was

sometimes interpreted as a true positive which indicates that students have not

understood the concept of false positives or have not examined the code deeply enough

and therefore solved the task too superficially;

● Misinterpretation of the true positive warning found in line 25 in the class

ExaminationRoom in the system under test with the following description given by

FindBugs: “ExaminationRoom defines equals(ExaminationRoom) method and uses

Object.equals(Object)”. This fault was sometimes interpreted as a false positive which

indicates to the lack of knowledge on the equals() method in Java or superficial solution

to the task.

23

5 Feedback

In every lab in the “Software Testing” course students are asked to give constructive qualitative

feedback. This task gives one out of the ten maximum points given for a lab. In addition to this

qualitative feedback, an online questionnaire about lab 5 was given to the students in order to

determine the value of the enhanced lab materials and decide what kind of improvements

should be made in the future. A bonus point was given to students who completed the

questionnaire. 67 students participated in total in the lab, out of whom 63 gave qualitative

feedback and 61 filled in the online questionnaire. The details of the collection and results are

presented in the following paragraphs.

5.1 Feedback Collection

The feedback was collected via two different sources. The analysis and suggestions for future

improvements can be found in Sections 5.2 and 5.3.

Qualitative Feedback

Qualitative feedback was collected from the students as part of the lab deliverables. The

question was the following:

“General comments and conclusions on performing the lab. Did you find it a useful practice?

Was it easy to follow? Did you spend too little/too much time on it? Should some parts be

dropped or explained better? Is something missing? Etc. Please try to be constructive and

concrete.”

Online Questionnaire

Additional feedback was collected using a SurveyMonkey8 questionnaire. For evaluation of

the questionnaire a Likert Scale [11] was used, which is a rating scale allowing a person to

express how much they agree or disagree with a statement. The statements given were the

following:

1. “The goals of the lab were clearly defined and communicated”;

2. “The tasks of the lab were clearly defined and communicated”;

3. “The materials of the lab were appropriate and useful”;

4. “The FindBugs” tool was interesting to learn”;

5. “If I have the choice, I will work with FindBugs again”;

6. “The support received from the lab instructors was appropriate”;

7. “The grading scheme was transparent and appropriate”;

8. “Compared to the previous labs, the difficulty/complexity of the lab was”;

9. “Overall the lab was useful in the context of this course”.

For statements 1-7 and 9 there were five options to choose from: “Agree Entirely, Somewhat

Agree, So-So, Somewhat Disagree, Disagree entirely”. The exact form of the options was

chosen based on the ones used in the official student feedback system implemented by the

University of Tartu. Since statement 8 was slightly different, students could choose between:

“Much Lower, Somewhat Lower, The Same, Somewhat Higher, Much Higher”.

8 https://courses.cs.ut.ee/2015/OOP/spring

24

5.2 Feedback Analysis

Most of the feedback received from the students was positive. Nevertheless, some negative

aspects as well as improvement suggestions were also mentioned. In the following Section,

both the positive and negative aspects are analyzed. Results from the online questionnaire can

be found in Appendix 2.

Positive aspects

In the qualitative feedback it was widely mentioned that the lab materials were well-written

and easy to follow, the FindBugs tool was easy to use and the examples given in the materials

were very helpful. Similar tendencies can also be seen from the online questionnaire results.

Three of the questions received exceptionally high results, which are shown in Figures 8, 9 and

10. The results have been conducted into horizontal bar charts, where each one represents the

percentage of students who chose the corresponding option.

Figure 8. Results for the statement “The goals of the lab were clearly defined and

communicated”

25

Figure 9. Results for the statement “The tasks of the lab were clearly defined and

communicated”

26

Figure 10. Results for the statement “The grading scheme was transparent and appropriate”

Negative aspects

Most negative matters mentioned in the qualitative feedback complained about technical

aspects. Students requested that other Integrated Development Environments, especially

IntelliJ9 would be supported to be used in the lab. As mentioned in Section 2.3.2, this problem

is not relevant for the goals of this lab. Furthermore, it was stated in a few feedbacks that

FindBugs works a bit different in some other environments. Also, some students mentioned

that they would like to either use more than one static analysis tool or have the chance to choose

between several ones. Although this problem was not fixed for this year, a possible solution

for next year is adding an extra task in which students are asked to run another tool on the

system and compare the results.

9 https://www.jetbrains.com/idea/

27

Another problem which did not occur from the qualitative feedback but showed clearly in the

online questionnaire results, is the workload of the lab. As seen in Figure 11, the majority of

the students said the workload of the lab was lower than expected. Since the results shown in

Chapter 4 indicate that students usually completed all the tasks very well, one can presume that

the simplification of the lab compared to last year was taken too far. On the other hand, the

new lab materials have created room for more lab-specific tasks. For example, students could

be asked to analyze the warnings more deeply or to compare the FindBugs output with that of

other static analysis tools, as suggested in the previous paragraph.

Figure 11. Results for the statement “Compared to the previous labs, the

difficulty/complexity of the lab was”

5.3 Future Improvements

As appeared from Section 5.2, the complexity of the lab should be increased. Some new, more

difficult faults should be added into the system and students should be asked to analyze

warnings more deeply. For example, in order to give students the chance to use several tools,

a task could be added where students run another tool on the system and compare the outputs.

28

This task can also only be added as a bonus task for students already familiar with other static

analysis tools.

Some other improvements were also suggested by students in their feedback and by the lab

instructors. For example, it was proposed to ask students to install all the necessary tools at

home to increase the productivity of the lab. Also, students would like to have the code for the

manual code inspection task uploaded to the wiki page so that they could easily run FindBugs

on it themselves. To add, it was said that the system under test should be examined manually

before running FindBugs on it. This would allow the students to realize again the use of static

code analysis tools and would force them to get acquainted with the system under test.

29

6 Conclusions

It is essential to assure that students have good materials to work with in order to maximize the

profit of a whole course or a single lab. In this thesis project, a new version of lab materials for

the lab about static code analysis was created. The new materials were used in the “Software

Testing” course. Feedback was collected from the participating students and the result turned

out to be very positive. It was mentioned that the workflow was clear and appropriate and the

materials well put together. Furthermore, students liked the tasks and their descriptions. This

thesis showed that static code analysis is an important and interesting topic which should be

introduced to students. Consequently, in the future, a similar lab should be kept in place in the

“Software Testing” course.

In order to assure that the lab fulfils its purpose and to gain high student satisfaction, a few

improvements could be made to the lab. Firstly, the workload should be adjusted by changing

the requirements for the task about analyzing bugs and/or by adding additional tasks. Since

some students asked for a chance to try out other tools as well, an idea of adding a task where

students are asked to compare the output of several tools was suggested within this thesis.

Overall, since the scope of this was limited, not all possible opportunities were examined. The

next step would be to consider different teaching methods, task types and other aspects which

were not talked about in this thesis, in order to raise the quality of the materials even more.

30

References

[1] B. Johnson, Y. Song, E. Murphy-Hill, R. Bowdidge, "Why don't software developers use

static analysis tools to find bugs?" in 35th International Conference on Software Engineering

(ICSE), IEEE/ACM, 2013, pp. 672-681.

[2] Course Outline (2015). [Online].

https://courses.cs.ut.ee/MTAT.03.159/2015_spring/uploads/Main/swt2015-outline-v1.pdf

(Accessed: 10.05.2016)

[3] I. Sommerville, Software Engineering. Pearson, 2011.

[4] A. Vetro’, M. Morisio, and M. Torchiano, “An empirical validation of FindBugs issues

related to defects,” in 15th Annual Conference on Evaluation Assessment in Software

Engineering (EASE 2011), 2011, pp. 144–153.

[5]M. Fagan, “A history of software inspections,” Software Pioneers: Contributions to

Software Engineering, Springer, 2002, pp. 562–573.

[6] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German, “Contemporary peer

review in action: Lessons from open source development,” IEEE Software, vol. 29, no. 6,

Nov 2012, pp. 56–61.

[7] S. Johnson, Lint: A C Program Checker, tech. report 65, Bell Laboratories, Dec. 1977

[8] S. Panichella, V. Arnaoudova, M. Di Penta, G. Antoniol, "Would Static Analysis Tools

Help Developers with Code Reviews?" in 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), IEEE, 2015, pp. 161-170.

[9] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, W. Pugh, "Using Static

Analysis to Find Bugs", IEEE Software, vol. 25, no. 5, Sept-Oct 2008, pp. 22-29.

[10] R. Sõõru (2015). "Lab Package: Automated GUI Regression Testing", Bachelor's thesis,

the University of Tartu.

[11] S. McLeod (2008), "Likert Scale". [Online]. http://www.simplypsychology.org/likert-

scale.html (Accessed: 10.05.2016)

31

Appendix

I New Lab Materials

Student Materials

 A1.1 – “Lab 5 Instructions”, pdf-document –

https://courses.cs.ut.ee/2016/SWT2016/spring/uploads/Main/SWT2016-lab5-

Instructions-rev1.pdf

 A1.2 – “First Task”, pdf-document –

https://courses.cs.ut.ee/2016/SWT2016/spring/uploads/Main/SWT2016-lab5-

FirstTask-rev1.pdf

 A1.3 – “HospitalSystem Overview and Tool Setup”, pdf-document –

https://courses.cs.ut.ee/2016/SWT2016/spring/uploads/Main/SWT2016-lab5-

HSovToolSetup-rev1.pdf

 A1.4 – “HospitalSystem”, zip-file –

https://courses.cs.ut.ee/2016/SWT2016/spring/uploads/Main/SWT2016-lab5-

HospitalSystem.zip

 A1.5 – “Analyzing an Issue”, pdf-document –

https://courses.cs.ut.ee/2016/SWT2016/spring/uploads/Main/SWT2016-lab5-

Analyzinganissue-rev1.pdf

 A1.6 – “Lab Deliverables”, pdf-document –

https://courses.cs.ut.ee/2016/SWT2016/spring/uploads/Main/SWT2016-lab5-

LabDeliverables-rev1.pdf

Lab Instructor Materials

 A1.7 – “First Task Explanation”

 A1.8 – “Grading Scheme”

For confidentiality reasons lab instructor materials are not made available in the thesis

but will be made available on request.

32

II Questionnaire feedback

Statement Disagree

entirely

Somewhat

Disagree

So-So Somewhat

Agree

Agree

Entirely

Weighted

Average

The goals of the

lab were clearly

defined and

communicated

0.00% 0.00% 8.20% 24.59% 67.21% 4.59

The tasks of the lab

were clearly

defined and

communicated

0.00% 1.64% 9.84% 16.39% 72.13% 4.59

The materials of

the lab were

appropriate and

useful

0.00% 1.64% 6.56% 31.15% 60.66% 4.51

The FindBugs tool

was interesting to

learn

0.00% 1.64% 18.03% 34.43% 45.90% 4.25

If I have the

choice, I will work

with FindBugs

again

4.92% 4.92% 16.39% 45.90% 27.87% 3.87

The support

received from the

lab instructors was

appropriate

0.00% 1.64% 9.84% 26.23% 62.30% 4.49

The grading was

transparent and

appropriate

0.00% 3.28% 8.20% 14.75% 73.77% 4.59

Overall the lab was

useful in the

context of this

course

0.00% 1.67% 3.33% 30.00% 65.00% 4.58

33

III License

Non-exclusive licence to reproduce thesis and make thesis public

I, Forename Surname,

Kristine Leetberg

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of validity

of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Title,

“Lab Package: Static Code Analysis”

supervised by ,

Dietmar Pfahl

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 10.05.2016

