
UNIVERSITY OF TARTU 

Institute of Computer Science 

Software Engineering Curriculum 

Vitalii Peretiatko 

Using Robust Rank Aggregation for pri-
oritising autoimmune targets on protein 

microarrays 
Master’s Thesis (30 ECTS) 

Supervisor(s): Dmytro Fishman, M.Sc 

Elena Sügis, M.Sc  

  

Tartu 2016 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

Using Robust Rank Aggregation for prioritising autoimmune targets on 

protein microarrays 

Abstract: 

Autoimmune diseases are very common in the modern world. More and more diseases as-

sociated with an autoimmune process. Autoimmune reaction is a process in which the im-

mune system produces antibodies (autoantibodies) that attack organism’s own cells. Causes 

and mechanisms of autoimmune diseases are yet to be understood. One of the ways to study 

autoimmunity is to explore reasons why certain cells and particularly proteins were attacked 

by autoantibodies. To achieve this, many technologies have been developed and one of 

which is Protein microarray. This technology allows estimating the amount of autoantibod-

ies in patient serum against 9000 unique human proteins. Consequently, applying methods 

of data analysis on this data, bioinformaticians might be able to identify proteins that attract 

prevalent amount of autoantibodies. Knowing these proteins, biologists could conduct ex-

periments and formulate new hypotheses about mechanisms of work and appearance of au-

toimmune diseases. Common data analysis methods focused on how to select only the most 

reliably differing proteins between healthy and diseased groups. Moreover, ignoring the fact 

that in the case of an autoimmune disease - the repertoire of the affected proteins can differ 

greatly between patients. So even single cases of high protein reactivity may carry important 

information for understanding the mechanisms of disease. In this thesis, we propose to apply 

Robust Rank Aggregation algorithm as an adaptive method to identify a wide repertoire of 

reactive proteins. We compared expediency and effectiveness of the classical methods of 

analysis, method recently applied by biologists and RRA on synthetic and real data. Exper-

iments on synthetic data sets with known reactive proteins show that RRA outperforms these 

methods while also being more robust to incorporated noise. Applying RRA on real data 

and conducting an enrichment analysis on lists of reactive proteins for each method, we got 

comparable numbers of proteins overrepresented in the classes associated with biological 

and immune responses.   

Keywords: 

Autoimmunity, autoimmune disease, biomarker, reactive protein, robust rank aggregation, 

enrichment analysis 
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Robust Rank Aggregation meetodi rakendamine autoimmuunsete 

sihtmärkide prioritiseerimiseks valgukiipidel 

Lühikokkuvõte:  

Autoimmuunhaigused on tänapäeva maailmas väga sagedased. Üha enam ja enam haigusi 

on seotud autoimmuunsete protsessidega. Autoimmuunreaktsioon on protsess, mille käigus 

immuunsüsteem toodab antikehasid (autoantikehad) organismi enda rakkude vastu. 

Autoimmuunhaiguste põhjused ja mehhanismid on aga veel selgeks tegemata. Üheks 

võimaluseks, kuidas autoimmuunhaigusi õppida on välja selgitada, miks kindlad rakud ja 

iseäranis just valgud on autoantikehade märklauaks. Selle eesmärgi saavutamiseks on välja 

töötatud mitmesuguseid tehnoloogiaid, kuhu kuuluvad ka valgukiibid. See tehnoloogia 

võimaldab hinnata autoantikehade kogust patsiendi seerumis 9000 unikaalse inimese valgu 

vastu. Seega, rakendades andmeanalüüsi meetodeid on bioinformaatikud võimelised 

tuvastama autoantikehade märklaudvalke. Teades neid valke, saavad bioloogid läbi viia 

edasisi katseid ning formuleerida uusi hüpoteese autoimmuunhaiguste  mehhanismide ja 

esinemise kohta. Traditsioonilised andmeanalüüsi meetodid keskenduvad ainult selliste 

valkude leidmisele, mis erinevad kõige kindlamalt tervete ja patsientide grupi vahel. Need 

meetodid aga jätavad kõrvale fakti, et märklaudvalkude repertuaar võib patsientide vahel 

oluliselt erineda. Seega võib isegi üksikjuhtum sisaldada olulist informatsiooni haiguse 

mehhanismide mõistmisel. Käesolevas lõputöös pakume välja, et Robust Rank Aggregation 

(RRA) algoritmi saab kasutada adaptiivse meetodina leidmaks reaktiivsete valkude 

(märklaudvalkude) laia repertuaari. Me võrdlesime klassikaliste analüüsimeetodite 

otstarbekust ja efektiivsust RRA-ga nii sünteetilistel kui ka pärisandmetel. Katsed 

sünteetilise andmehulgaga ehk andmehulgaga, mille puhul on reaktiivsed valgud teada 

näitavad, et RRA ületab teisi meetodeid olles samal ajal vähem mõjutatud “mürast”. 

Rakendades RRA-d pärisandmetel ning viies läbi rikastusanalüüsi iga meetodi kohta saadud 

reaktiivsete valkude listidega, saime me sarnase arvu valke, mis olid bioloogilise ja 

immuunvastusega seotud klassides üleesindatud. 

Võtmesõnad:  

Autoimmuunsus, autoimmuunhaigus, biomarker, reaktiivne valk, robust rank aggregation, 

rikastusanalüüs 

CERCS: B110 Bioinformaatika, meditsiiniinformaatika, biomatemaatika, biomeetria  
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1 Introduction 

1.1 Autoimmunity 

Over the past decade, understanding of autoimmune disorders has been improved signifi-

cantly [1]. Such diseases are caused by an autoimmune reaction process, which occurs when 

the human immune system starts to produce antibodies that attack body’s own healthy cells 

and tissues1. These antibodies are called autoantibodies.  

According to American Autoimmune Related Diseases Association, there are more than 80 

distinct types of autoimmune disorders, which are associated with an autoimmune re-

sponse2. Typically, women are more frequently affected by autoimmune diseases than men 

[2]. The number of registered cases throughout human population has been increased over 

past 30 years [1]. Multiple Sclerosis International Federation indicated that there are over 

1.6 million cases of the eponymous disease3. Other autoimmune disorders such as Rheuma-

toid Arthritis, Celiac Disease and Autoimmune Hepatitis are also widely spread across the 

planet. However, causes of autoimmune reaction are still unexplored [2, 3]. 

To investigate the mechanisms of autoimmune disease as well as to obtain diagnosis indi-

cators for the each of such disease, scientists must know and understand which human cells 

are exposed to attacks of the immune system. For identifying target proteins, high-through-

put protein microarray technology4 is used. Such technique allows getting a quantitative 

measure of the autoantibodies presence in human serum samples against each of approxi-

mately 9000 unique human proteins. These proteins are immobilized at the protein micro-

array surface. Subsequently, data analysis methods and techniques are applied to identify a 

list of significantly reactive proteins.   

1.2 Problem and Motivation 

Currently, to identify highly reactive proteins, it is a common practice to apply the following 

methods: t-statistics [4, 5], M-statistics [6] and method based on the standard score [7]. T-

statistics is used in DNA microarray analysis to identify differentially expressed genes. M-

statistics was specifically developed for protein microarrays. These methods are aimed to 

                                                 
1 https://en.wikipedia.org/wiki/Autoimmunity  
2 http://www.aarda.org/  
3 https://www.msif.org  
4 https://en.wikipedia.org/wiki/Protein_microarray   

https://en.wikipedia.org/wiki/Autoimmunity
http://www.aarda.org/
https://www.msif.org/
https://en.wikipedia.org/wiki/Protein_microarray


8 

 

discover statistically reliable autoimmune biomarkers, which show significantly bigger re-

activity in disease patients on average than in healthy cohort. In other words, such methods 

might discard high protein reactivity shown in a small proportion of samples because the 

statistical significance of protein reactivity highly depends on average reactivity across sam-

ple groups. A different approach was applied by biologists to address this issue [7]. How-

ever, proposed method that is based on standard score5 (also known as z-score) produces  a 

large number of type I errors – false positives6. Using this approach, biologists get an ex-

tensive set of proteins. However, they compelled to conduct additional experiments to iden-

tify proteins to satisfy their biological hypotheses.  

Overall, reactive proteins might help to provide biological knowledge to diagnose autoim-

mune diseases on early stages. To investigate underlying causes of autoimmune disorders, 

it is crucial to have a wider repertoire of such proteins. Therefore, in this thesis, we study 

the claim that common methods are not well suitable to identify proteins that attract auto-

antibodies only in few patient samples. Consequently, there is a need for a method that de-

fines less false positives than z-score based method as well as a wider repertoire of reactive 

protein than t-test and M-statistics. 

1.3 Contribution 

To find significantly reactive proteins expressed in a very small proportion of samples we 

propose to apply Robust Rank Aggregation algorithm (RRA) [8]. This method is based on 

order statistics7. Therefore, it firstly treats investigated samples separately producing rank-

ing lists. Afterwards, RRA aggregates all the ranking lists producing a final ranking that 

outputs statistical significance of rankings per protein. Thereby, it allows getting proteins 

that are expressed in few samples. 

We conducted various experiments to show that RRA applies to the autoimmunity related 

protein microarray analysis. We compared RRA with differential analysis methods, such as 

t-test and m-statistics as well as with the approach based on the z-score. Moreover, we also 

picked for experiments another order statistics based – method proposed by Stuart et al. [9].  

These tests are done on two different data sets: synthetic and real biological data. Also, we 

                                                 
5 https://en.wikipedia.org/wiki/Standard_score  
6 https://en.wikipedia.org/wiki/Type_I_and_type_II_errors  
7 https://en.wikipedia.org/wiki/Order_statistic  

https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Order_statistic
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experimented with RRA resistance to noise in different levels and compared results with 

other methods. 

1.4 Outline 

Background chapter provides a comprehensive description of the problem as well as bio-

logical insights and Protein Microarray data analysis pipeline.  It describes full workflow to 

identify differentially reactive proteins using protein microarray data. Conventional solu-

tions for biomarker discovery using differential expression analysis are also outlined.  

Methods chapter includes a detailed overview of methods and algorithms for identifying 

reactive proteins. Also, we describe real biological and synthetically generated data sets that 

are used in the experiments. Enrichment analysis is described as a way to characterize and 

interpret obtained lists of reactive proteins. 

Results chapter explains all obtained results of conducted experiments using the approaches 

and methods described in the previous section. Also, the process of characterising results 

using enrichment analysis is shown. 

Discussion gives a brief overview of notable limitations during work on this thesis. We also 

outline the work that should be done in the future. 

Conclusions chapter provides a summary of this thesis outcome. 
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2 Background 

This chapter provides a brief introduction into the immunology and autoimmunity, which is 

necessary to understand the rest of the thesis. It also describes the main techniques and ap-

proaches used to analyse autoimmune-related protein microarray data. 

2.1 Autoimmune Response 

The human immune system is defined as a network-like structure of different cells, tissues 

and organs that collaborate to prevent an organism from the influence of malignant foreign 

substances. These substances are various bacteria, viruses and parasites. Our immune sys-

tem has an ability to recognise and eliminate millions of different types of intruders. To be 

able to carry out its function, the immune system has to distinguish individual’s cells and 

“enemy” substances – antigens [10]. The immune system uses special cells – antibodies to 

detect and eliminate antigens. Under certain circumstances, it produces antibodies that at-

tack body’s own normal cells and tissues. These antibodies are called autoantibodies. Such 

abnormal immune process triggers autoimmune diseases [2, 3, 10].  

It is known that autoimmune diseases can affect almost any organ and tissue of the human 

body. Moreover, many of them affect more than one organ during disease development. 

Aaron Lerner et al. [1] described four groups of autoimmune diseases based on their origin 

and an area of their activity. These are neurological, gastrointestinal, endocrinological and 

rheumatic. Also, some disorders behave themselves very individually. These factors make 

it almost impossible to develop general diagnosis and treatment strategies.  

However, as was previously mentioned, identification of reactive proteins may contribute 

substantially to discovering of autoimmune disease biomarkers candidates. Such biomarkers 

may give extra knowledge to early disease diagnosis as well as may play a key role in accu-

rate distinguishing autoimmune diseases with identical clinical symptoms. Another applica-

tion area of biomarkers is monitoring of illness progressions [11, 12].  

Identification of reactive molecules can be possible analysing specific microarrays with in-

cubated serum samples of diseased and healthy people. 

2.2 Protein Microarrays 

Nucleic acid arrays (DNA arrays) were invented at the end of the previous century and had 

become a standard technology in the gene expression analysis [13]. Initially, such approach 
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defines a process of printing DNA fragments on glass microscope slides in duplicates. Now-

adays, it is possible to insert almost 2 million DNA sequences into a single microarray. 

Fragments of DNA themselves are marked with fluorescent tags. Such labelling gives a 

possibility for specific scanners to read light intensities and convert them into quantitative 

measures [12, 13, 14]. 

However, DNA microarray approach is not suitable for the analysis of complex protein-

based reactions as DNA microarray structure is too simple to meet protein requirements for 

triggering biochemical activities [15]. Therefore, protein-based microarray technology was 

developed with a focus on a retaining protein assembly and related changes. It allows sim-

ultaneously processing many thousands of proteins in considerably short time [16]. Three 

different classes of protein microarrays exist that allow investigating various types of auto-

immunity. They are analytical microarrays, functional protein microarrays and reverse 

phase protein microarrays. Functional protein microarrays are commonly used in autoim-

munity-related researches. The idea of usage exactly this type of protein microarrays is de-

termined by microarray architecture [15].  

In this thesis, we use ProtoArray® Human Protein Microarray8 developed by Thermo Fisher 

Scientific Inc.9 Such microarray consists of 9k unique functional protein peptides that are 

immobilized on the array’s surface. Protein microarray is incubated with human serum or 

other body liquid that contain interactive biomolecules. Zhu et al. state that “when an auto-

antibody presented in human serum associated with an autoimmune diseases recognizes a 

human protein spotted on the array, it can be readily detected with fluorescently labelled 

anti-human immunoglobulin antibodies (e.g., anti-IgG) and a profile of autoantibodies as-

sociated with a disease thus created.” [17] Presence of these labelled auxiliary antibodies 

creates intensity signals that are read by specific microarray scanners producing high-reso-

lution array images. 

Thermo Fisher states that ProtoArrays support a broad range of research applications such 

as immune response biomarker discovery, enzyme substrate profiling, protein-protein inter-

actions and others10. Its main application focus is immune response biomarker discovery as 

it is indicated that this product provides high sensitivity level of candidate detection and 

                                                 
8http://www.thermofisher.com/ee/en/home/life-science/protein-biology/protein-assays-analysis/protein-

microarrays.html  
9http://www.thermofisher.com  
10https://www.thermofisher.com/ua/en/home/life-science/protein-biology/protein-assays-analysis/protein-

microarrays/human-protein-microarrays-overview.html  

http://www.thermofisher.com/ee/en/home/life-science/protein-biology/protein-assays-analysis/protein-microarrays.html
http://www.thermofisher.com/ee/en/home/life-science/protein-biology/protein-assays-analysis/protein-microarrays.html
http://www.thermofisher.com/
https://www.thermofisher.com/ua/en/home/life-science/protein-biology/protein-assays-analysis/protein-microarrays/human-protein-microarrays-overview.html
https://www.thermofisher.com/ua/en/home/life-science/protein-biology/protein-assays-analysis/protein-microarrays/human-protein-microarrays-overview.html
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availability to reproduce experiments in addition to low requirements for biological mate-

rial11. 

The overall quality of protein microarrays and reducing possible sources of defects and var-

iabilities of their production are critical for the analysis. Being sure that scanning results are 

reproducible is essential [12]. 

2.3 Protein Microarray Data Analysis Pipeline 

This section gives an overview of data analysis pipeline used in this thesis for autoimmune 

profiling study starting from data acquisition methods, going through data pre-processing 

and ending with a brief differential expression analysis overview.  

2.3.1 Data Acquisition 

After incubation of a protein microarray and succeeding scanning of fluorescence intensities 

high-resolution images in TIFF format for each protein array are acquired. For distinguish-

ing between printed spots and array background intensity, specific image segmentation soft-

ware is used for each spot delimitation and labelling. To do this, we need exact information 

about spot locations, sizes, distances between them and protein identification numbers. This 

information is provided by GenePix Array List files (stored in GAL format). After loading 

these supplementary files, segmentation software outputs quantitative measures of fluores-

cent signal intensities as well as intensity signals of array background. Obtained results for 

each protein spot in each protein array are stored in GenePix Results files (GPR file format). 

For next steps of data analysis, these files are uploaded into the statistical environment. One 

GPR file represents raw data of one sample of protein array [12].  

                                                 
11https://www.thermofisher.com/content/dam/LifeTech/migration/en/filelibrary/protein-

expression/pdfs.par.16180.file.dat/protoarray%20v5%20irbp-fhr.pdf  

https://www.thermofisher.com/content/dam/LifeTech/migration/en/filelibrary/protein-expression/pdfs.par.16180.file.dat/protoarray%20v5%20irbp-fhr.pdf
https://www.thermofisher.com/content/dam/LifeTech/migration/en/filelibrary/protein-expression/pdfs.par.16180.file.dat/protoarray%20v5%20irbp-fhr.pdf
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Figure 1. Visual representation of protein microarray by PAA package [18] 

Each protein is immobilised twice on protein microarray surface, therefore during data im-

porting process signal per particular protein is obtained by taking a minimum or mean signal 

value between duplicated proteins. Also, all subsequent analysis manipulations are done on 

binary logarithmic transformed signal values. 

2.3.2 Data Pre-processing and Normalization 

To make sure that signal intensities in each data sample are from statistically similar distri-

butions across all of the provided GPR files and can be subsequently processed, it is neces-

sary to eliminate the effects that could appear due to different technical, chemical and phys-

ical external factors. However, it is crucial to preserve biological differences between the 

samples. Applying combinations of pre-processing and cleaning techniques facilitate reduc-

tion of side effects. These practices are focused on detecting and removing outliers as well 

as correcting array background influence. All these techniques were applied using the func-

tionality of the corresponding publicly available R software package limma [19]. 



14 

 

Data normalization is another important step in reducing variabilities between samples pre-

serving the real biological difference. These variabilities are measured in comparison with 

intensities of so-called control proteins – which are also spotted on the protein arrays. Con-

trol proteins are not expected to react with the autoantibodies. Therefore, intensity signals 

of such proteins should be constant across and within arrays and can serve as estimators of 

the normalization process. The most common methods used to normalize signals across 

protein microarrays are quantile12, cyclic loess, variance stabilizing normalization (VSN) 

and robust linear model normalization [6, 20, 21, 22].  Cyclic loess normalization elaborates 

on an idea of MA plot13 to compare log-transformed values and their mean. VSN is aimed 

to scale signal values while the variance tends to be independent of the mean values. In this 

work, Robust Linear Model Normalization (RLM) technique is used. It was reported that 

RLM normalization based on specific control proteins outperforms more traditional meth-

ods such as global and quantile normalization in terms of resistance to outliers as well as 

outlines decreased inter and intra-array variabilities [6]. Furthermore, to reduce possible 

high skewness of the signals’ distribution and even make data more approachable to visual-

isation we use a log transformation of signal intensities. In addition, it helps to approximate 

obtained distribution to the normal one that is required for methods of differential expression 

analysis. 

2.3.2.1 Robust Linear Model Normalization 

Robust Linear Model normalization is built under a process of fitting a linear model using 

robust regression on mean values of weighted least-squares based on the median. Weighting 

and using median instead of the mean estimator provides high robustness to outliers. General 

formula for training robust linear model is: 

𝑦𝑖𝑗𝑘𝑟 = 𝑎𝑖 + 𝑏𝑗 + 𝜏𝑘 + 𝜀𝑟 

Where 𝑎𝑖  -   effect of array 𝑖, 𝑏𝑗  - effect of subarray or block 𝑗, 𝜏𝑘 - effect of the protein 

feature 𝑘 and 𝜀𝑟  - normally distributed around zero random error, 𝑟 – protein spot in range 

from 1 to 2, which states for spot replicate,  𝑦𝑖𝑗𝑘𝑟 – log-transformed initial signal intensity 

for given spot 𝑟 within feature 𝑘 in subarray 𝑗 of array 𝑖.  

                                                 
12 https://en.wikipedia.org/wiki/Quantile_normalization  
13 https://en.wikipedia.org/wiki/MA_plot  

https://en.wikipedia.org/wiki/Quantile_normalization
https://en.wikipedia.org/wiki/MA_plot
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Normalization itself is conducted by subtracting values of array and subarray effects from 

signal: 

𝑦′
𝑖𝑗𝑘𝑟

= 𝑦𝑖𝑗𝑘𝑟 − 𝑎𝑖 − 𝑏𝑗  

Implementation of this method is available in Prospector software14 and R package MASS15.  

2.3.3 Differential Expression Analysis for Biomarkers Identification 

Normalized and pre-processed data obtained from protein microarray experiments allows 

identifying reactive protein signals to distinguish between groups of healthy and autoim-

mune disease samples. Such proteins are called biomarkers. 

Univariate filter methods are considered for biomarker selection such as t-tests and M-sta-

tistic [4, 5, 6], which give us a statistical measure – p-value for each protein feature. As a 

result, the list of differentially expressed proteins sorted by p-values with specified threshold 

is obtained. However, these methods focus on identifying biomarkers for groups distin-

guishing and might drop proteins that show signal reactivities that are not statistically sig-

nificant to distinguish healthy and patient samples.  

2.4 Existing tools 

This section describes existing technologies for analysing protein microarray data. These 

approaches are focused only on identification of candidates for autoimmune diseases bi-

omarkers.  

2.4.1 Thermo Fisher ProtoArray Prospector 

Thermo Fisher Scientific Inc. provides a range of services related to life science field, espe-

cially for the protein biology sector. One of their main assets is an analysis solution Pro-

toArray Prospector software16. In case if commercial ProtoArray Human Protein Array tech-

nology is acquired, limited version of Prospector software can be used free of charge. It 

works only with data obtained from ProtoArray microarray. Full workflow of data analysis 

with front-end interface is provided and consists of data acquisition and loading, pre-pro-

                                                 
14https://www.thermofisher.com/ua/en/home/life-science/protein-biology/protein-assays-analysis/protein-

microarrays/technical-resources/data-analysis.html  
15https://cran.r-project.org/web/packages/MASS/ 
16https://www.thermofisher.com/ua/en/home/life-science/protein-biology/protein-assays-analysis/protein-

microarrays/technical-resources/data-analysis.html  

https://www.thermofisher.com/ua/en/home/life-science/protein-biology/protein-assays-analysis/protein-microarrays/technical-resources/data-analysis.html
https://www.thermofisher.com/ua/en/home/life-science/protein-biology/protein-assays-analysis/protein-microarrays/technical-resources/data-analysis.html
https://cran.r-project.org/web/packages/MASS/
https://www.thermofisher.com/ua/en/home/life-science/protein-biology/protein-assays-analysis/protein-microarrays/technical-resources/data-analysis.html
https://www.thermofisher.com/ua/en/home/life-science/protein-biology/protein-assays-analysis/protein-microarrays/technical-resources/data-analysis.html
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cessing and normalization, selection of algorithms and methods to apply and reporting anal-

ysis results by displaying them throughout application interface and exporting to Microsoft 

Excel file. Data acquisition is represented by loading GPR files. Pre-processing takes into 

account background intensities and conducts normalization, where Robust Linear Model is 

also available as one of the normalization techniques. The next step is dedicated to compar-

ison of two groups of samples, healthy and diseased ones. Particularly, it focuses on identi-

fication of proteins, which show off increased signal intensities in one group compare to 

another.  

 

Figure 2. Screenshots of the ProtoArray® Human Protein Microarray (left) and 

ProtoArray® Prospector software interface (right) 

Turewicz M. et al. [22] proposed a set of improvements for Prospector software workflow 

after analysing large datasets to identify potential diagnosis biomarkers. Suggested improve-

ments cover almost all aspects of default Prospector workflow. Particularly, improvements 

concern the acquisition of raw data methodology, correction of batch effects, available nor-

malization techniques and feature preselection as well as selection methods and feature val-

idation. An improvement regarding data acquisition is the replacement of GenePix Pro 

workflow by fully automatic StrixAluco (Strix Diagnostics, Berlin, Germany) software. 

GenePix Pro is not effective in terms of time needed to handle variance issues. It requires 

manual steps of array partitioning (need of GAL files).  The second improvement concerns 

the lack of a 64-bit version of the software, and this affects the performance of processing 

data sets with a large number of samples. The third problem is a lack of the solution for 
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elimination of batch effects. Batch effects occur due to inconsistencies in spotting conditions 

such as spotting in different labs. The author proposed solutions for this problem relying on 

a particular study described in the article [22]. Therefore, applied approaches cannot be used 

as a general methodology, but the problem is defined and should be taken into account. Next 

addressed issue lies in biomarker candidate selection via M-statistics. The main concern 

about this method provides p-values that are not adjusted for multiple testing, and there is 

no clear statement how unbiased threshold should be selected. As a solution, it was sug-

gested to apply multivariate feature selection and manual selective methods in addition to 

M-statistics. Also, it was stated that the combination of these approaches deprives the batch 

effect issue. The last improvement proposed unbiased validation of selected potential bi-

omarkers using classification algorithm Random Forest on randomly split samples from 

study data into independent training and test sets. Random forest model was trained on the 

training set and consequently tested on the test set. In the result, classification accuracies of 

potential biomarkers were obtained and estimated [22]. These improvements have been in-

cluded in the new versions of Prospector software.  

2.4.2 Protein Array Analyser Package 

Another alternative software tool that analyses ProtoArrays and reports potential biomarker 

candidates is Protein Array Analyzer (PAA) [18].  PAA is provided via the open-source 

Bioconductor [23] software for bioinformatics and is used via R programming language. 

The default pipeline of the package is very similar to the one that is used in Prospector 

software. Moreover, authors state that PAA inherits main Prospector methods and ap-

proaches while being more customizable and fully free of charge.  

The pipeline of PAA contains six main steps. The first part is data importing. Input for the 

analysis represents microarray data in GPR formatted files. Importing itself is done running 

function loadGPR is written and executable in R software environment. This function is 

based on the function read.maimages from limma package [19] imported as a dependency 

for PAA. Additional parameters could be specified if different kind of protein arrays is used 

or other relevant data should be considered. The data is loaded into a specific class of ex-

pression lists EListRaw. 

Regarding pre-processing steps, it provides various functionality for the background correc-

tion, batch effect elimination and normalization. The main distinction (except functionality 

for batch filtering) from the Prospector software on this stage is a precise visualization of 
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the results. All the sub-steps of pre-processing come alongside with suited visualization 

functionality. For instance, the package provides the ability to assist in a choice of normal-

ization technique comparing visualization of raw data and normalized by different tech-

niques showing MA plots or boxplots. Available normalization methods are cyclic loess, 

quantile, Variance Stabilizing Normalization and Robust Linear Model. 

For the differential expression analysis, the package provides two strategies: ordinal t-test 

and M-statistics. Choice of the appropriate method can be made using provided Volcano 

plot visualization of differential features. Such visualization helps to select an appropriate 

threshold for p-values and the computational method itself. Another visualization is pro-

vided to look at the p-values themselves.  

Afterwards, classification methods are used to validate proteins-features that are identified 

as ones capable of distinguishing disease and patient samples. The following step is a feature 

pre-selection that provides functionality to get rid of the distinctively not differential fea-

tures. Subsequently, multivariate feature selection functionality is presented. It can be done 

via following available algorithms: k-cross validation using Random Forest, Random Jungle 

and Support Vector Machine. In the result, package functionality provides an output list of 

differential features with reported classification accuracies. In addition, the package pro-

vides visualization functionality for manual validation of selected features, particularly in-

tensity plots and heatmaps. 

We used PAA package in experiments on synthetic and real data due to its low computa-

tional costs; we used M-statistic implementation as it is developed in C++ and ported to R 

afterwards.  
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3 Data and Methods 

This chapter gives a detailed overview of methods and algorithms for identifying reactive 

proteins. In addition, we describe biological data and generation of synthetic data sets that 

are used in the experiments. 

During work on this thesis, GNU R is used for all steps of data analysis [24]. R is a pro-

gramming language and free of charge, highly extensible software environment for statisti-

cal computing, graphics and statistical software development. In addition, RStudio as an R 

environment and an open-source set of various tools for data analysis is also used [25]. 

3.1 Data 

3.1.1 Synthetic data 

The idea behind the need for synthetic data is that the ground truth about all reactive proteins 

or biomarkers is not known in biological data. To solve this issue, we generated synthetic 

data sets, which are statistically similar to the available biological data. Also, we inserted 

different levels of noise to estimate the robustness of the methods. Datasets with extreme 

noise level were also generated to conduct experiments to define “performance” cut-offs of 

each method. 

Workflow of synthetic data generation starts from picking distribution parameters. We de-

termine the mean and standard deviation of to-be-generated datasets. Eventually, all of the 

samples in this data at this step are synthetic healthy samples. The next step is to define 

dataset dimensions. We decided to generate 100 samples with 1000 protein each. This num-

ber of proteins is chosen to speed up computations. We generated the dataset with given 

dimensions and normally distributed signal values with arbitrary chosen mean and standard 

deviations of healthy samples from the real biological data [26]. Next, 50% of the samples 

are selected to represent patients and rest are a healthy cohort. Insertion of additional signal 

values into patient samples provides us with the ground truth of reactive proteins.  

To prevent reactive signals generation from being biased, we followed the procedure: firstly, 

we randomly chose 5% of proteins to serve as differentially reactive proteins; they represent 

true positives that we are trying to identify. Secondly, we randomly defined the number of 

samples per each reactive protein where extra signal value had been inserted. Thirdly, we 

added to the existing signal randomly generated value drawn from the normal distribution 

with specified mean and standard deviation parameters. Parameters are chosen based on 
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obtained distribution of just-generated healthy group samples. The mean value is three 

standard deviations, and standard deviation equals to one standard deviation of healthy sam-

ples signals.  

Consequently, we got 50 patients and 50 healthy samples of 1000 proteins where 5% of 

proteins were randomly selected to be reactive proteins in patient samples. For experiments, 

we generated 1000 such datasets. 

3.1.1.1 Noise insertion 

Moreover, to observe how well methods are resistant to noise for each of the previously 

generated datasets, we decided to insert artificial noise in two dimensions. Particularly, we 

vary noise coverage on both number of proteins (protein coverage) and number of samples 

across only “patient” group (sample coverage). Moreover, noise can also be inserted to the 

proteins that were previously chosen to be reactive. The noise itself represents addition sig-

nal value added on top of already generated signal and equals to a value drawn from the 

same normal distribution that was used to generate reactive protein signal.  

Noise coverage of proteins is represented by five levels, which are denoted as coefficients: 

0.2, 0.4, 0.6, 0.8 and 1. Iteratively multiplying them by a total number of proteins in the 

synthetic dataset (𝑁𝑃), we get proteins where noise signals are added. Indexes of these pro-

teins are identified at random. So, the number of proteins with added noise (𝑛𝑃) is denoted 

as: 

𝑛𝑃  ∈  (⌊0.2𝑁𝑃𝑖⌋)𝑖=1
5 , where 𝑁𝑃 = 1000 

We defined 20 noise levels of sample coverage per each protein coverage. These 20 levels 

are coefficients to identify the number of samples across synthetic patient samples (𝑁𝑆). 

Moreover, we randomly set which samples per predefined protein are going to be enriched 

with noise. Corresponding number of samples with inserted noise (𝑛𝑆) per noise level is 

defined as:    

𝑛𝑆 ∈ (⌊0.05𝑁𝑆𝑖⌋)𝑖=0
20 , where 𝑁𝑆 = 50 

We assume that in such kind of experiments, control samples usually have signals with low 

noise level or are not affected by noise at all. Therefore, we did not insert noise signals to 

synthetically generated health samples.  
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Overall, we generated 100K datasets (1000 datasets per each of 100 noise levels) out of 

them 1000 datasets without any noise added per each protein noise level. Later, t-statistics, 

M-statistics, z-score-based method, Stuart method and RRA are applied on this data to iden-

tify synthetically generated reactive proteins and to assess methods’ overall performance 

and resistance to noise.  

3.1.2 Real biological data 

To assess relevance and efficiency of Robust Rank Aggregation we used Nagele et al. [25] 

research on Alzheimer’s disease using protein microarray data as a case study. Nagele and 

colleagues intended to identify significantly differentially reactive proteins that are present 

in patient serum samples and determine them as potential biomarkers for Alzheimer’s dis-

ease. Authors reported ten potential biomarkers - proteins that have shown high-level diag-

nostic accuracy score of more than 90%. Differential reactivity analysis through the research 

was done using previously described Prospector Software.  

The case study aimed to replicate data analysis steps of protein microarray data and to apply 

RRA to obtain lists of reactive proteins. Particularly, we implemented almost all algorith-

mic, processing and functional features of Prospector software that were reported in the 

corresponding research article. The main goal for manual implementation of all functional-

ity was to construct utilizable code scripts designed for analysing autoimmune reactivities 

of protein microarray data.  

Biological data has been extracted from Gene Expression Omnibus database17 that contains 

samples with scanned fluorescence signals of Alzheimer’s disease patients serum samples 

(AD) and non-demented disease control samples (NDC) of younger and older population 

separately. The format of data is Genepix resulting files (GPR). Overall, we got 90 samples: 

50 AD and 40 NDC instances.  

After raw data had been acquired, we implemented a workflow for training Robust Linear 

Model using functionality from MASS package [17].  Afterwards, we got pre-processed and 

normalized data that had been ready for protein reactivity analysis using M-statistics, RRA 

and other methods. 

                                                 
17 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29676  

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29676
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3.2 Methods 

This section describes methods that are used in this thesis to identify a wide range of reactive 

proteins. Description of their performance estimation is presented in the next chapter - Re-

sults. 

3.2.1 T-statistics 

One of the methods for the identification of differentially expressed genes or proteins in 

microarray data is a moderated t-statistics [27]. It is evolved from an ordinary t-statistics 

[28]. Under the null hypothesis – no changes in gene expression are observed, and an as-

sumption that the data is normally distributed it is defined as:  

𝑡 =
𝑋̅1 − 𝑋̅2

𝑆𝐸(𝑋̅1− 𝑋̅2
)
 

Where the upper part of the equation stands for the difference in mean log-transformed gene 

signal values and lower part equals to the standard error of the expression above. Substan-

tially, the p-value is identified as a probability that 𝑡 value is as extreme as the observed 

value satisfying the null hypothesis or even bigger. 

However, ordinary t-statistics is poorly efficient in a domain of differential expression anal-

ysis of genes as ordinary version uses data for analysis from only one gene at a time. In 

addition, there is a possibility of the unstable variance of separate genes, which significantly 

affects resulting value. Moreover, the main weakness of the ordinary t-statistics is a need of 

big sample sizes that are commonly small for such kind of research. Therefore, Smyth et.al 

[27] introduced a moderated t-statistics based on fitting a linear model with empirically ob-

tained Bayesian meta-parameters. Particularly, it replaces gene-specific standard error with 

moderated standard error across all genes. According to [27], for gene j it is defined as:  

𝑡𝑔𝑗 =
𝛽̂𝑔𝑗

𝑠𝑔√𝜐𝑔𝑗

 

Where 𝛽̂𝑔𝑗 – contrast estimator – the difference in mean signal values of comparing genes 

(𝑋̅1 − 𝑋̅2), 𝜐𝑔𝑗 – unscaled standard deviation, 𝑠𝑔 – posterior residual sample variances 

that depend on prior estimators with degrees of freedom. These degrees of freedom are de-

livered from the assumptions of normal distribution of contrast estimator 𝛽̂𝑔𝑗 and scaled 
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chi-square distribution of residual variances 𝑠𝑔. Delivered p-values are different from or-

dinary t-statistics p-values by the increase in degrees of freedom amount. 

Full implementation of moderated t-statistics is collected in differential expression analy-

sis R/Bioconductor package limma [19]. Particularly limma provides functionality for fit-

ting model objects, multiple testing corrections across contrast estimators and outputting 

summary tables with the results of the linear model fitting, hypothesis testing and p-values 

adjustment for multiple testing itself. This package was used in our real data and synthetic 

experiments. 

3.2.2 M-statistics 

Identification of biomarkers candidates using M-statistical analysis was initially provided 

by Prospector software. Concisely, M-statistics is an iterative comparison of all signal val-

ues in one group with signals in another group for a certain protein. Then M-value is calcu-

lated, which is the number of times when signal values from the second group are higher 

than the maximal value in the first group. The number of values with signals bigger than the 

second (third, fourth and so on) largest signal in another group are also calculated. The p-

value is defined as a probability of having M-value greater than obtained M-value, which is 

done using hypergeometric distribution18. In result, p-values give a list of differentially ex-

pressed proteins between two groups of healthy people and patients.  

A cutoff value (or threshold) is described as the comparison that returns the lowest p-value. 

This lowest p-value is the significance of the certain protein. Afterwards, proteins are sorted 

by the difference in prevalence between patient and control groups, and top proteins are 

reported as reactive proteins. Prevalence is defined as:  

𝐸(𝑃) =
𝑀𝑚𝑎𝑥 + 1

𝑛𝑦 + 2
 

Where 𝑀𝑚𝑎𝑥- M-value of the corresponding lowest p-value, 𝑛𝑦 - group size 

M-statistics from PAA package was used in all experiments. 

                                                 
18 https://en.wikipedia.org/wiki/Hypergeometric_distribution  

https://en.wikipedia.org/wiki/Hypergeometric_distribution
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3.2.3 Z-statistics as a method for identification of reactive proteins 

Some autoimmune diseases affect a very diverse range of proteins. Therefore, consistently 

reliable mean signal reactivity between 2 cohorts of samples might not occur [29]. To ad-

dress this issue, in recent autoimmunity-related studies scientists have started to apply z-

statistics [7, 29, 30].  

For each signal, z-score tells how far in terms of standard deviations the mean of disease 

group from the mean of signal values of healthy cohort and it is denoted as:  

𝑧 =  
𝑋 −  𝜇

𝜎
 

Where z is the z-score itself, X states for the value of the signal intensity, μ is the signal 

mean of healthy samples and σ is the healthy cohort’s standard deviation.  

Z-statistics identifies the high amount of false positives as its output list of reactive proteins 

linearly depends on the number of patient samples. Consequently, researchers commonly 

define significance threshold number of patients manually. In [7] and [29], authors identified 

significance thresholds relying on their biological hypothesis. That might negatively affect 

impartiality aspect of the research.   

However, we decided to apply z-statistics as a method for detection of reactive proteins to 

compare them with more statistics-based methods. Let us denote the case when z-score ≥ 3 

in at least one patient as a p1z3 method. 

3.2.4 Robust Rank Aggregation 

It is well known that data from biological experiments comes from different origins and is 

obtained in various conditions as well as in the presence of noise sources. That could lead 

to incomparability of the researched data material itself. Therefore, strategies for analysing 

datasets from different sources separately and aggregating the results together are defined 

to be relevant for such spectre of researches. However, aggregation into single result unit is 

very sensitive to assessing aggregation “correctness”, and its interpretation concerns results 

significance for different quality of the data.    

To address described issues, Robust Rank Aggregation (RRA) algorithm was developed by 

R.Kolde et al. as an unbiased and noise-robust method based on the order statistics for anal-

ysis in genomic data applications [8]. Particularly, it focuses on a data aggregation from 
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high-throughput biological experiments while input data structures themselves are repre-

sented as prioritized lists of genes. 

In the domain of autoimmune researches, this method ranks proteins by their signal intensity 

for each sample and outputs results as ranked lists. The next step is a comparison of protein 

position in the ranked list to baseline scenario when all lists are randomly shuffled. In the 

result, it gives a p-value for each protein. These p-values describe the probability to see 

certain protein rank higher in the ranked list rather than in the randomly ordered. P-values 

are also used for re-ranking proteins in the final list and assigning significance score.  

However, to obtain the final ranking list, RRA takes a minimum of p-values across all the 

ranking lists. It means that these p-values are not explicitly p-values themselves. Conse-

quently, there is a need to apply multiple hypothesis testing correction. As the process of 

obtaining exact p-values is computationally expensive and the same to the one developed 

for Stuart method improvement [31], authors of RRA proposed to use multiple testing cor-

rection technique per each obtained p-value. Consequently, newly obtained p-values are 

corrected for multiple testing to find statistically significant protein ranks.  

Robust Rank Aggregation algorithm is designed to be resistant to outliers and noise. Another 

advantage is that its computational costs are low due to linear complexity in respect of input 

size of proteins in the sample [8]. 

Method implementation and data pre-processing for its execution are provided and used 

within R/Bioconductor package RobustRankAggreg [32]. 

3.2.5 Stuart method 

The method by Stuart et al. [9] was chosen for experiments as an another ranking method 

and treated as a direct competitor of Robust Rank Aggregation.   

Stuart method is based on the joint cumulative distribution of the order statistic19 to calculate 

all rank ratios. Initially, it is denoted as: 

𝑃(𝑟1𝑟2, … , 𝑟𝑛) = 𝑛! ∫ ∫ ⋯

𝑟2

𝑠1

𝑟1

0

 ∫ 𝑑𝑠1𝑑𝑠2 ⋯

𝑟𝑛

𝑠𝑛−1

𝑑𝑠𝑛 

Where, 𝑟 – rank ratio of sample 𝑠,  𝑛 – number of samples. 

                                                 
19 https://en.wikipedia.org/wiki/Order_statistic  

https://en.wikipedia.org/wiki/Order_statistic
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Formula to compute the integral above is proposed as: 

𝑃(𝑟1𝑟2, … , 𝑟𝑛) = 𝑛! ∑(𝑟𝑛−𝑖+1 − 𝑟𝑛−1)𝑃(𝑟1𝑟2, … , 𝑟𝑛−𝑖 , 𝑟𝑛−𝑖+2, … , 𝑟𝑛

𝑛

𝑖=1

) 

Where 𝑟𝑖 – rank ratio of data sample 𝑖 and 𝑟0 = 0. 

However, Aerts et al. [31] firstly reports inefficiency of this formula because of its com-

plexity 𝑂(𝑛!). Authors proposed faster version with quadratic complexity 𝑂(𝑛2): 

𝑉𝑘 = ∑(−1)𝑖−1

𝑘

𝑖=1

𝑉𝑘−𝑖

𝑖!
𝑟𝑛−𝑘+1

𝑖
 

Where 𝑃(𝑟1𝑟2, … , 𝑟𝑛) = 𝑛! 𝑉𝑛, 𝑉0 = 1, 𝑟𝑖 – rank ratio of data sample 𝑖. 

Secondly, authors discovered that joint cumulative distribution calculation outputs values 

that cannot be used as p-values but rather as p-scores. Under the null hypothesis, these result 

values are not uniformly distributed. Therefore, they proposed to fit a distribution for every 

possible number of ranks and use such distribution to calculate an approximate p-value.  

Stuart method with improvements by Aerts et al. [31] is implemented in RobustRankAggreg 

package [32] and was used in this thesis. 

3.2.6 Enrichment analysis 

When analysis of microarray protein data discovers statistically reactive proteins, there is a 

need to extract biological knowledge from the results. For this purpose, enrichment analysis 

is used to find groups of proteins that are statistically over-represented in the list of identified 

reactive proteins [33]. The aim of this is to find connections between classes of obtained 

proteins and different diseases. Protein classes are pre-defined by prior biological 

knowledge and describe protein or gene groups that share similar biological functions. Later 

biologists use identified enriched terms in their experiments in laboratories.  

Application of enrichment analysis in this thesis is described in more details in Results sec-

tion. 
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4 Results  

This chapter presents results of experiments using RRA and other methods aimed to identify 

reactive proteins. We conducted experiments on two datasets – synthetically generated and 

real biological protein microarray data. Firstly, we tested methods on synthetic data without 

any noise and with various levels of inserted noise. Later, protein microarray dataset from 

[26] was used to assess the performance on real data. As a result, lists of reactive proteins 

were identified. Enrichment analysis has been performed on these lists in order to interpret 

proteins identified by each method. Enrichment analysis has provided us with lists of sig-

nificantly enriched terms provided as an input for further analysis from the biology point of 

interest. Enrichment analysis was conducted by uploading lists of reactive proteins obtained 

from experiments on real data to g:Profiler [34].  

4.1 Experiments on the synthetic data 

Having generated synthetic data sets and knowing the ground truth of reactive proteins, we 

assessed each method performance and compared them.  

Each tested method outputs p-value for each protein in the synthetic dataset. Multiple testing 

correction was applied on obtained p-values to control the cases where null-hypotheses (pro-

tein is not expressed) were incorrectly rejected. For all the tested methods, we applied Bon-

ferroni20 correction and proteins were sorted by adjusted p-values. Significance threshold 

for all the experiments equals to 0.01. 

We used F1 score as the main method performance metric. It does not take into account true 

negatives in which we are not interested. The F1 measure is based on precision and recall 

metrics. 

Precision in the context of conducted experiments is defined as the number of proteins cor-

rectly identified as reactive (𝑇𝑝), divided by the sum of 𝑇𝑝 and 𝐹𝑝, where 𝐹𝑝 – the number 

of proteins incorrectly identified as reactive. It can be represented by the formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 

Recall is denoted as: 

                                                 
20 https://en.wikipedia.org/wiki/Bonferroni_correction   

https://en.wikipedia.org/wiki/Bonferroni_correction
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 

Where 𝐹𝑛 - the number of inserted reactive proteins but not identified as reactive. 

Thus, F1 score describes harmonic mean of precision and recall, and it is defined as 

𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Score value is in the range between [0, 1] range, where 1 means the best possible perfor-

mance. 

Experiments were conducted on the data with inserted different levels of noise. Results of 

the experiments on the noise-free synthetic datasets report average F1 score value of 1000 

experiment runs per each of the used methods.  Results on the noisy data sets are obtained 

in the same way for varying number of samples and proteins with inserted noise signals.  

Figure 3A and 3B present comparisons of the methods on the data with 20% of proteins 

with added noise. Each facet represents results on the data with the corresponding percent-

age of samples with added noise. 

The first facet stands for the results on synthetic datasets without any noise. 

 

Figure 3A. 20% of proteins got noise insertion per 20 levels of noise in samples. Applied 

methods on the x-axis, reported F1 scores on the y-axis. First facet represents zero noise 

dataset. Each error bar represents one standard deviation of F1 scores uncertainty across 

all 1000 experiments per method and noise in sample.  
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The first facet on this plot shows that Robust Rank Aggregation identified reactive proteins 

with the higher F1 score than all other methods. Such trend is preserved on the second facet 

where noise is present in only two to three patient sample of 200 proteins. Already at this 

point as Figure 3B shows, p1z3 identifies an extremely wide range of proteins - both noise 

signals and all true reactive ones with three standard deviations away from the mean. There-

fore, F1 score for p1z3 remains on the same level for other facets. Though RRA continues 

clearly outperforming other methods until the noise is added in at least 35% of samples per 

protein. Afterwards, all methods show the relatively poor F1 score. 

However, Figure 3A shows the behaviour of M-statistics that cannot be described as empir-

ically logical. On noise-free dataset, M-statistics shows F1 score near 0.25, slightly losing 

it once few noise signals are added. However, at some point of sample coverage, F-score is 

approaching zero. Using PAA package, we discovered that M-statistics produces resulting 

lists with too few identified proteins. Such lists do not outline true positives in a significant 

proportion of experiments. It leads to zeros in recall and precision, consequently making F1 

score undefined.  

 

Figure 3B. 20% of proteins got noise insertion per 20 levels of noise in samples. Applied 

methods on the x-axis, reported number  of identified reactive proteins on the y-axis. First 

facet represents zero noise dataset. 

Stuart method shows low performance across all the facets illustrated in Figure 3A, while 

Figure 3B shows that the reason is in the extremely big amount of false positives – true 

signals lie in 50 proteins while noise is inserted in 200 and number of identified proteins is 
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bigger than 400. However, we can observe that Stuart identifies fewer proteins as reactive 

on higher noise levels in samples. 

Evaluating next level of noise coverage in proteins, Figure 4A shows that Robust Rank Ag-

gregation loses its F1 score across the noise more gradually than t-test and p1z3. This is due 

to the order statistics algorithm behind RRA. Particularly, composed ranking lists are rela-

tively independent of each other before aggregation to the final list. Another order-statistic 

based method – Stuart shows low F1 score across all the noisy and noise-free data sets and 

identifies very many false positives that follow from Figure 4B. 

Z-score based method starts to identify the enormous amount of false positives - proteins 

with noise - very rapidly as Figure 4B illustrates. While t-test shows relatively similar per-

formance as RRA on the small amount of noise, but higher noise level negatively affects 

differential aspect of t-test much more significantly than RRA by increasing the number of 

identified false positives.  

 

Figure 4A. 40% of proteins got noise inserted into 20 randomly chosen sets of samples. 

Applied methods on the x-axis, reported F1 scores on the y-axis. First facet represents zero 

noise dataset. Each error bar represents one standard deviation of F1 scores uncertainty 

across all 1000 experiments per method and noise in sample. 

It was discovered that on higher noise levels while p1z3, Stuart, M-statistics and t-test are 

steadily losing their performance indicators, RRA starts to identify less amount of reactive 

proteins, which eventually slightly increases F1 score.  
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Figure 4B. 40% of proteins got noise insertion per 20 levels of noise in samples. Applied 

methods on the x-axis, reported number  of identified reactive proteins on the y-axis. First 

facet represents zero noise dataset. 

Plots with higher noise levels can be observed in Appendix A.   

Overall, we can see that in perfect conditions when there is no noise, RRA performs slightly 

better than t-statistics. M-statistics, p1z3 and Stuart are significantly outperformed. Address-

ing real-life problems, where data could not be obtained without being subjected to any 

external influences and perfectly pre-processed and normalised, RRA might be a better 

choice showing substantially stronger resistance to noise than other tested methods.  

4.2 Experiments on the real biological data 

Experiments on the biological data are not focused on biomarker identification and valida-

tion of results reported in the related study but rather on the identification of a wide reper-

toire of reactive proteins. Nevertheless, given that we do not know the ground truth of this 

data, we conducted an enrichment analysis to identify significantly enriched terms that are 

present in the obtained lists of reactive proteins and compared the number of identified en-

riched terms between all methods. It is done by uploading lists of reactive proteins and all 

proteins presented in the data to g:Profiler [34]. It is a web tool that calculates a probability 

of having proteins of the specific class (enriched term) overrepresented in the list of proteins 

identified as significantly reactive (query), given all proteins presented in the data (back-

ground) comparing this probability to random chance.  
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Obtained numbers of identified reactive proteins in biological data and enriched terms per 

method are shown in the table below. 

Table 1. Reactive proteins and enriched terms per method 

Method # of identified reactive proteins # of identified enriched terms 

RRA 1782 155 

T-test 360 99 

M-statistics 1261 91 

P1Z3 1210 1 

Method Stuart identified more than 7k reactive proteins (out of 9k proteins overall) and 

wasn’t taken into consideration further.  

However, there is not enough knowledge to say that RRA performs better than T-statistics 

or other methods especially taking into account very large number of identified reactive 

proteins. We also cannot state that the number of identified enriched terms is the appropriate 

measure to estimate the methods.   

On the other hand, Meyer et al. [7] discovered approximately 3000 reactive proteins that 

showed high reactivity in at least one sample and stated that patients with autoimmune dis-

eases could have a wide variety of reactive proteins. That also means that reactivity profiles 

of autoimmune disorders can be highly diverse. 

In the related study [22], authors outlined ten proteins, which they chose as biomarkers can-

didates of Alzheimer’s disease. On Figure 5, we show the intersection of these proteins with 

the identified reactive ones by the tested methods. 
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Figure 5. Venn diagram illustration of amounts of identified reactive proteins per each 

tested method and intersection between reactive proteins.   

Venn diagram shows that all ten proteins from the study were found in RRA and t-test re-

sulting lists of reactive proteins, while M-statistics found nine and p1z3 managed to outline 

only two proteins. 

However, verification of top reactive proteins reported by RRA is not possible as it is im-

possible to get original blood samples of patients and controls that are used in the related 

research. 
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5 Discussion 

When we have shown that Robust Rank Aggregation applies to identify reactive protein 

within the study of autoimmunity, there is room for the experiments using other novel meth-

ods and approaches. Particularly, researchers have recently introduced a number of rank 

aggregation techniques. For example, a network-based method for aggregation of multiple 

ranks for Gene Ontology prediction [35]. Authors of this approach proposed to use network 

information incorporating it into ranking genes or proteins before the aggregation to a final 

list. RRA with integrated network information was also tested against “original” RRA and 

encouraging results were reported in the corresponding article. Another novel approach uses 

multi-objective genetic algorithm [36]. Authors compared it to Stuart method, but proposed 

method have not succeeded in outperforming it across all experiments. However, it might 

also be interesting to test it against RRA. The third approach, which caught our attention, is 

Hybrid Bayesian-rank integration [37]. Authors developed an approach for rank aggrega-

tion, which works with data that is statistically unreliable by using Bayesian reasoning. This 

method is already implemented in R and freely available on the authors’ webpage21. Overall, 

new methods are developing, and they should be tested as approaches to identify lists of 

reactive proteins in the domain of autoimmune disorders.  

To combine into a single workflow all methods that are identified as suitable for the problem 

described in this thesis, as well as to provide an implementation of corresponding methods 

and justify their choice, we see a need in R package. It should provide functionality to apply 

methods that satisfy different prior biological knowledge as well as statistical expectations 

and requirements. Besides pre-processing and cleaning techniques, a choice of normaliza-

tion approaches should be available. Moreover, enrichment analysis should also be inte-

grated to provide input for biologists immediately. All the functionality should come along-

side with a visualisation of each decision to be made. All these steps could be included in a 

continuous research project. 

 

                                                 
21 http://www.pitt.edu/~mchikina/BIRRA/  

http://www.pitt.edu/~mchikina/BIRRA/
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6 Conclusions  

Currently, there is no specific approach to identifying wide range of reactive proteins ana-

lysing protein microarray data. Such reactive proteins might help biologists to understand 

true causes of autoimmunity and to discover possible therapy strategies or to restrain the 

development of autoimmune diseases. In this thesis, we aimed to show that Robust Rank 

Aggregation method is applicable for identification of wide repertoire of reactive proteins. 

We evaluated the approaches meant to discover differentially expressed proteins and com-

pared them with Robust Rank Aggregation. 

We used synthetically generated data sets that resemble real biological data. This data was 

used to support the claim that Robust Rank Aggregation is an alternative approach to t-test 

and M-statistics as well as to p1z3 – z-score based method used by biologists. We showed 

how well methods identify reactive proteins if different set ups of noise signals were added.  

Our results using synthetic data show that RRA performs better than t-test in terms of F1 

score metric. While both t-test and RRA outperform M-statistics, p1z3 and Stuart methods 

on the data without noise. Moreover, experiments with different noise levels reveal impres-

sive resistance of RRA, while t-test started to lose its performance quite early within the 

noise coverage. Other methods show quite poor performances initially, but they are pre-

served closely on the same level across the experiments with noise.         

Furthermore, we experimented with publicly available protein microarray data. Having no 

ground truth about reactive proteins, we cannot assess methods’ performance. However, we 

applied enrichment analysis on the lists of reactive proteins outlined by methods to find 

relevant biological terms, associated with these proteins. Immunology experts can estimate 

biological sense of these findings.  

Nevertheless, we compared numbers of obtained enriched terms. Even though RRA identi-

fied the most proteins as reactive, it also identifies more enriched terms than other methods 

did. Also, a number of enriched terms found by t-test and M-statistics is almost the same 

regardless that M-statistics determined almost 4 times more proteins. These experiments 

were done under the assumption that more enriched terms are identified - the better method 

performs. However, we cannot affirm that such interpretation is correct. In order to estimate, 

which method works, we have to know which enriched terms are correct – but this infor-

mation is unknown. Therefore, there is no clear way to say which method performed better 

from the biology point of view. 
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Appendix 

I. Illustrations 

 

Figure 6A. 60% of proteins got noise inserted into 20 randomly chosen sets of samples. 

Applied methods on the x-axis, reported F1 scores on the y-axis. First facet represents zero 

noise dataset. Each error bar represents one standard deviation of F1 scores uncertain 

 

Figure 6B. 60% of proteins got noise insertion per 20 levels of noise in samples. Applied 

methods on the x-axis, reported number  of identified reactive proteins on the y-axis. First 

facet represents zero noise dataset. 
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Figure 7A. 80% of proteins got noise inserted into 20 randomly chosen sets of samples. 

Applied methods on the x-axis, reported F1 scores on the y-axis. First facet represents zero 

noise dataset. Each error bar represents one standard deviation of F1 scores uncertain 

 

 

Figure 7B. 80% of proteins got noise insertion per 20 levels of noise in samples. Applied 

methods on the x-axis, reported number  of identified reactive proteins on the y-axis. First 

facet represents zero noise dataset. 
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