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Passiivsete mobiilipositsiooni sündmuste tõenäosuslik asukoha

hinnang

Kokkuvõte: Uurijad, kes on püüdnud mõista inimeste liikumise mustreid, korjavad andmeid
mobiilivõrkudelt. Mobiilid teevad sündmuse kirjeid iga kord, kui nendega helistatakse, saadetakse
SMSi või kasutatakse Interneti. Sündmuste kirjed sisaldavad informatsiooni sellest, millisesse
võrgu transiiversisse mobiiltelefon oli sel hetkel ühendatud. Võrgu ühe transiiveri leviala saab
kasutada, et püüda positsioneerida telefoni geograa�list asukohta. Kasutades positsioneerimiseks
transiiveri leviala, siis need hinnatavad asukohad pole punktid kaardil, vaid geograa�lised alad,
kus telefon võib olla kui ta on transiiveriga ühendatud.

Mobiilide ühendamine transiiveritega sõltub mitmest muutujast, mis tähendab, et mobiil ei
ole alati ühendatud kõige tugevama signaaliga transiiveriga. See teeb mobiili asukoha hindamise
keerulisemaks, sest transiiverite levialad võivad üksteisest üleulatuda.

Võrguplaan kirjeldab võrgus olevate transiiverite levialasid ning seda kasutatakse, et de�-
neerida transiiverite levialasid.

Selles lõputöös hinnatakse mobiilisündmuste positsioneerimise kvaliteeti ruumilise jaotuse ti-
hedusfunktsioonidega. Luuakse erinevad võrguplaani variandid ja erinevate võrguplaanide kvali-
teeti hinnatakse Bayesi statistikaga ja kasutatakse reaalseid asukoha andmeid. Erinevate võrgu-
plaanide kvaliteeti hinnatakse suurima tõepära meetodiga.

Võrreldi RSSI ja Voronoi põhjal tehtud võrguplaane ja nende modi�catsioone ja leiti, et
Voronoi võrguplaanide puhul paistis asukoha positsioneerimine paremini kui RSSI võrguplaanide
puhul.

Lisaks uuriti, kuidas transiiverite levialade üleulatamisel arvestamine Bayesi meetodiga mõjutab
asukoha positsioneerimise täpsust. Leiti, et Bayesi levialade üleulatamise meetod tegi halvemate
võrguplaanide täpsust paremaks, aga paremate võrguplaanide täpsust halvemaks.

Võtmesõnad: võrguplaan, mobiilivõrk, visualiseerimine, mobiilne positsioneerimine

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteoo-
ria)
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Probabilistic Location Estimate of Passive Mobile Position-

ing Events

Abstract: Researchers, who are trying to understand human mobility patterns, collect data
from cellular telephone networks. Mobiles are creating events every time they are used for calling,
SMS, or the Internet. The events contain the information, in which network cell that mobile was
at the moment of the event. Cell's coverage can be used for estimating the geographical location
of the mobile. The estimated locations are not a point on the map, but the possible area, where
the mobile may be when they are connected to that speci�c cell.

Mobiles connecting to cells are depending on multiple variables, meaning, that a mobile may
not always connect to the cell with the strongest signal. That makes estimation of the mobile
location more di�cult, as the coverage areas may overlap with each other.

Cell plan is a description of cell coverage areas and there are multiple ways for de�ning cell
coverage areas.

This thesis is about estimating mobile events positioning quality with spatial probability
density functions. Di�erent cell plan variants will be implemented and real ground truth location
data is used to �nd the modi�cation that maximizes the likelihood estimation.

RSSI-based and Voronoi-based cell plans and their modi�cations were compared. Results
showed that Voronoi-based cell plans are better for location positioning than the RSSI-based cell
plans.

Furthermore, Bayesian overlapping method was examined to see if applying it would im-
prove location positioning accuracy. It was found that applying Bayesian overlapping methods
improved the accuracy of the worse cell plans, but made accuracy worse for the better cell plans.

Keywords: cell plan, cellular network, visualizing, mobile positioning

CERCS: P170 Computer science, numerical analysis, systems, control
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De�nitions of some basic terms.

Mobile network

Base Station Controller - Part of the mobile network. Controls BTSs in a single location
area. Handles allocation of radio channels, frequency, power, signal measurements, and
handovers within a single location area.

Base Transceiver Station - Mobile equipment access point to the network. Handles speech
encoding, encryption, multiplexing and modulation/demodulation of the radio signals.
Each BTS has an assigned CGI.

Cell - The geographical area covered by a BTS.

Cell plan - Mapping of each cell in the mobile network so each cell has an approximated geo-
graphic area where the ME can connect to that cell. In practice, it is usually de�ned as a
polygon for each cell. In this work we use the same term for the set of continuous SPDF
estimates for each cell in the mobile network.

Handover - Changing ongoing call or data session from one BTS to another.

Mobile Equipment - Physical phone or device what is used for connecting to the cellular
network. Each ME is uniquely identi�ed by the IMEI number.

Network Management System - Part of the mobile network. Handles administrative and
central procedures. Holds data storages warehouses and network handling servers.

Mobile Positioning Data - Data collected with mobile positioning about the mobile device
location and movement.

Mobile Switching Center - Part of the mobile network. Controls BSCs. Handles call and
messaging routing, updating di�erent registries within MSC and the central system, and
handovers between di�erent location areas.

Statistics

Maximum Likelihood Estimation - MLE is a method of estimating population character-
istics from a sample by choosing the values of the parameters that will maximize the
probability of getting the particular sample actually obtained from the population.

Probability Density Function - The PDF of a continuous random variable is a function that
can be integrated to obtain the probability that the random variable takes a value in a given
interval. Formally, the PDF fx(x) of a continuous random variable X is the derivative of
the fx(x) =

dFx(x)
dx .
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1 Introduction

1.1 Motivation

Researchers are trying to understand human mobility patterns. Insight to human mobility could
help with di�erent issues. In urban planning, understanding how people come and go helps
to determine how to build infrastructure, how to reduce tra�c congestions, or how to reduce
pollution. Knowing people home and work locations, helps to plan commuting routes between
work and home. In medicine, it could help to understand how some disease spreads. Human
movement data is needed to analyze this kind of problems. Collecting that data traditionally is
costly. Doing movement surveys and direct observations need time, money and usually, result in
small sample sizes [Becker et al., 2013].

A simpler way to collect data is to use the Mobile Network Operators (MNO) collected
positioning data. Most people in the world use mobile phones and MNO collects events made
when mobiles are used for SMS, calling or the Internet. These events metadata includes the cell
tower where the mobile device was connected at the time of the event. This data is collected for
other purposes but the location info can be used for positioning the mobile devices [Tiru, 2014].

The cell tower is at one point on the map, but that does not mean that the mobile device is
there. Location positioning accuracy could be 100m to 1km in urban areas and in rural areas up
to 30 km [Saluveer et al., 2012]. To describe the possible location area for the mobile device, that
is connected to some cell, cell plans are used to visualizing cell e�ective area coverage. MNOs
usually have details following: each cell tower location on the map; which direction each cell on
the tower is facing; other cell describing attributes [Tiru, 2014]. What they do not always have
is e�ective area coverage information. For that di�erent algorithms are used for generating that
area.

1.2 Structure of the thesis

Chapter 1 has the introduction. It gives an overview of the topic, describing cellular network
and mobile positioning data. After that, there is described what has been previously done in this
topic research and what this thesis will add to that. Chapter 2 describes the data and di�erent
methods what are used in this thesis. Chapter 3 shows the results of the thesis and Chapter 4
contains the conclusions and the discussion about the results.

1.3 Background

1.3.1 Description of the �eld

Mobile technologies. To call another person, you need a mobile phone and the network
connection. So the �rst thing you need is Mobile Equipment (ME), that is your physical phone
or device what is used for connecting to the cellular network. Each ME is uniquely identi�ed
in the network by the International Mobile Equipment Identity (IMEI) number. In Europe,
everyday phone users do not encounter this problem, but ME must be able to operate on a
cellular network. There are two basic technologies in mobile phones: Code Division Multiple
Access (CDMA) and Global System for Mobiles (GSM) [COAI, 2016].

Segan [Segan, 2015] describes what technology you need when you want to buy a new phone
in the United States. In Europe, GSM radio system is used. Problem is that with GSM carriers
verify users with Subscriber Identity Module (SIM) card and CDMA carriers use network-based
whitelists. Phones with only GSM support can not operate in CDMA networks and vice-versa.
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Besides that when you change the phone you just have to take out the SIM in GSM phone and
put it into another phone. In CDMA you need carrier's permission to change the phone.

The main di�erence is in the core radio signaling technology. CDMA uses spread spectrum
signal encoding, which transmits data of each subscriber over the entire frequency spectrum of
the antenna all the time, while GSM assigns a time slot for each subscriber's data where no
other subscriber can have access [Tiru, 2014]. In CDMA �code division� each subscriber unique
key is assigned which is used to decode combined signal into its individual calls. In GSM �time
division� subscriber pieces the call back together from assigned time slots.

Code division method need more processing power, but is more powerful and �exible technol-
ogy and when GSM was upgraded to 3G, it started to use CDMA technology, but it was called
Wideband CDMA (WCDMA) or Universal Mobile Telephone System (UMTS). WCDMA uses
wider channels than CDMA (like the name suggests) but has more data capacity. To increase data
transfer speeds, GSM 3G was upgraded to High Speed Packet Access (HSPA), which is known
as 3.5G. Later HSPA was upgraded to Evolved High Speed Packet Access (HSPA+)(3.75G).

Both systems will be soon upgraded to a common global standard named Long Term Evo-
lution (LTE). LTE is globally accepted 4G wireless standard. Report [OpenSignal, 2016] shows
that currently there are 148 countries with LTE networks and 10 countries are scheduled to go
online with LTE networks. First LTE network was deployed in Estonia 2010 by Telia (then
named EMT), and all three main MNOs had LTE support from the beginning of 2013.

Besides technological platforms CDMA, GSM or LTE, there are also di�erent standards and
protocols that must be supported by the mobile devices. This includes network �generations�
2G, 3G, 4G and frequency bands that they work in. 2G was �rst digital network and had
added a link to the Internet. 3G increased the communication speed and added various value-
added services like video calling, live streaming, mobile internet access, etc. 4G (also known as
LTE) enabled ultra-broadband Internet access, gaming services, and high de�nition television
[Tondare et al., 2014].

In Estonia, 2Gs is supported on bands GSM 900, GSM 1800, 3G on UMTS 900, UMTS 2100,
4G on LTE 800, LTE 1800, LTE 2600 [GSMArena, 2016]. Numbers behind the technologies are
showing in what frequency band they are working (i.e. 900 means that it works in a frequency
band that is near 900MHz).

Public switched telephone network Mobile equipment connects to the network by the Base
Transceiver Station (BTS). It is the antenna that is on top of the radio tower. It carries out radio
communications between the network and the mobile equipment. It handles speech encoding,
encryption, multiplexing and modulation/demodulation of the radio signals [Tiru, 2014]. BTS
has an assigned CGI value. CGI is made of four identi�cation values: Mobile Country Code
(MCC), Mobile Network Code (MNC), Location Area Code (LAC) and Cell Identity (CI). MCC
shows in what country cell is location, MNC to which network operator it belongs to and LAC
shows in which location area it belongs. CI shows cell id, depending on MNOs it may be unique
over all network or unique in LAC [shareTechnote, 2016].

There are two types of BTSs: directional and omnidirectional. BTSs have usually the directed
antennas and one BTS covers 120-180 degree sector of an area and a tower with 3 BTSs will
cover all 360 degrees. Depending on use cases one tower could also hold only one or two BTS
with di�erent sector degrees and for redundancy one tower could also be serviced by several
overlapping BTSs. Omnidirectional antennae transmit in all directions and are usually alone on
their tower [Kwan et al., 2012].

Base Station Controller (BSC) controls a number of BTSs in a proximate geographical area,
that is BTS in a single location area. BSC handles allocation of radio channels, frequency, power
and signal measurements. If ME changes BTS in a single location area, then BSC is responsible
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Figure 1: The Illustration of PSTN and hierarchy of its network components [Tiru, 2014].

for handover procedures. Handover is changing ongoing call or data session from one BTS to
another.

BSCs are controlled by Mobile Switching Centers (MSC). MSCs are one or many, depending
on the size of the MNO. MSC handles the call and messaging routing, updating di�erent reg-
istries within MSC and the central system and handover between di�erent location areas and
MSCs. MSC also contains Visitor Location Register (VLR). VLR is the registry for holding the
information about the location area and the BTS to which ME are connected.

MSC reports to the Network Management System (NMS). All the administrative and central
procedures are done in NMS. Data storage warehouses and network handling servers are also
there. This network with connections to the other MNOs is called Public Switched Telephone
Network (PSTN) and is illustrated in Figure 1.

MNOs could share some of the network equipment and network modules between themselves
(e.g. it is not uncommon to share the antenna between MNOs). There are even virtual MNOs
that do not own any network infrastructure but rent it from other MNOs [Tiru, 2014].

Figure 2: Cell RSSI decreases with
distance increase from the cell site
[Agrawal and Zeng, 2010].

Cell plan. Each BTS has a Cell Identity
(CI), like was mentioned in the last subsec-
tion. Cell is a geographical coverage area,
where ME could connect to that cell BTS. Ra-
dio tower where the BTS is connected is called
the cell site. The cellular network is made of
BTSs and their cells, hence the name. Each
cell can cover a limited number of ME within
the cell coverage area. Capacity is limited by
available bandwidth and operational require-
ments. To give the best user experience, MNO
has to add or remove BTSs and size cells after
the need to handle expected tra�c demands
[COAI, 2016].

BTS with omnidirectional antennae tend
to have cell with a hexagonal pattern, di-
rectional antenna is ofter diamond-shaped
[Kwan et al., 2012]. But in real world shapes
are more distorted by atmospheric conditions, topographical contours or architecture. ME con-
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nects to a BTS over radio signal, so probability for ME to connect to a speci�c BTS is depending
on Received Signal Strength Indicator (RSSI). Signal strength is measured in dBm, further the
ME from BTS is, the lower the dBm value. RSSI change with cell's distortions and overlapping
is illustrated in Figure 2 [Agrawal and Zeng, 2010].

Figure 3: Best serving data where each cell is in
the di�erent color [Calabrese, 2011].

Figure 4: Voronoi tessellation where the rectan-
cle points are cell sites [Calabrese, 2011].

Figure 5: Cell plan with cells are colored by the
frequency. Dots are the cell sites.

When ME is close to the edge of a cell,
where RSSI is low, then handover occurs and
ME is serviced by another BTS. When ME
is near the edges of multiple cells, then ping-
pong e�ect may occur, meaning ME will be
switched from one BTS to another multiple
times in a row. For ME user everything works
�ne, but by BTS positioning, it will show that
ME location starts jumping fast from one cell
to another [Vajakas et al., 2015].

Cell size depends on its frequency and
type. Higher frequency cell's strength will de-
crease faster than with lower frequency. Cells
are categorized by their size from largest to
smallest: macro, micro, pico, femto.

Macro cells main purpose are to cover large
areas. Radius may be up to several kilometers.
Generally most rural and suburban areas are
covered by macro cells.

Micro cells are mostly used in urban areas
with a radius of hundreds of meters. They are
deployed to places with higher tra�c densities,
e.g. large shopping malls.

Pico cells are small cells with radius up
to tens of meters. Used in places with very
high tra�c volume, e.g. train stations or of-
�ce buildings. BTS of pico cells tend to be
omnidirectional.

Femto cells are smallest cells that are used
in residential indoors where the mobile opera-
tor network may not be provided by the oper-
ator. Instead, it may be connected to the dig-
ital subscriber line (i.e. digital data is trans-
mitted over telephone lines) .

These categories are complemented with
two additional types: umbrella and metro
cells. Umbrella cells are the combination of
larger cells with several smaller cells, where a
larger cell is used for providing coverage and
mobility between smaller cells. Metro cells are
very similar to micro cells, but metro cells in-
tegrate all elements required for the BTS oper-
ation in one compact device [Penttinen, 2015].

Cell plan is the mapping of each cell in the
mobile network so each cell has an approximated geographical area where the ME can connect
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to that cell [Vajakas et al., 2015].
CDR gives a cell ID, usually in a form of CGI) where the ME was connected on when some

event happened. That ID gives the cell site geographical location. When BTS is omnidirectional,
then site's location could be good enough for ME location, because it is in the center of its
coverage area. When BTS has a directional antennae, then BTS is at the corner of the coverage
area and mostly ME is somewhere else when it is connected to that BTS. More precise positioning
would be using the center of the coverage area geometry. There are two methods to get the cell
geometry. One is to measure or calculate RSSI measures for any geographical location. MNOs
have special programs for generating best serving data (BSD). Best serving data is cell map that
takes into account cell sector and propagation models and is made on simulated coverage. Each
location in a grid is associated with the BST which covers that location best as shown in Figure
3 [Calabrese et al., 2014]. This method assumes that when ME is in some location where some
BTS has the best serving (RSSI value is better than other cells), then ME would connect to that
cell.

Another way to create the cell geometry is a more simple way without the need for radio
measurements. Free-space propagation is assumed with that all BTSs have the same equivalent
radiated power. With these assumptions, Voronoi tessellation technique could be used on the cell
site locations. Voronoi tessellation partitions the space into cells based on the distance between
each point and the closest BST. Set of points that are closer to the one BST than others is
included to that cell [Csáji et al., 2013]. Resulting graph is shown in Figure 4.

Cell plans in real world are not so clear as in Figure 3 and Figure 4. As mentioned before,
cells can have di�erent frequencies and sizes. They can also overlap to produce better coverage.
Cells with di�erent frequencies do not form cellular-like network, because it is not unusual that
on the same tower two directional BTSs with di�erent frequencies or technologies are directed in
the same direction. When taking into account all the frequencies and technologies that are used
in building the mobile network, picture would be more as seen in Figure 5, where each technology
with its working frequency (e.g. GSM900, UMTS2100) are shown using di�erent color for each
di�erent technology.

Mobile Positioning Data. Collecting people location information by surveys and observation
is too resource-consuming work, a cheaper method for data with bigger sample size would be
mobile data. That is considered most promising data source for measuring the mobility of people
[Tiru, 2014]. Most people in the world has a mobile phone. There are 5 billion subscribers to
mobile networks. Subscriptions devices itself has reached 7.4 billion. Which means that there are
more devices connected to the mobile network than there are people in the world. And that num-
ber is growing around 3 percent per year. That number is so large due to inactive subscriptions,
multiple device ownership and subscriptions for a di�erent type of calls [Ericsson, 2016].

Mobile devices can be used for collecting their location data with mobile positioning. The
mobile positioning means that it is possible to locate devices in time and space with certain
accuracy using technology (e.g. mobile network infrastructure or Global Positioning System
(GPS)) to get the location of the mobile device. That data about the location and movement of
mobile devices is called mobile positioning data.

There are three methods for collecting data.

1. GPS and Assisted GPS (A-GPS)

2. Wireless network (WiFi) location databases

3. Network antenna-based location database
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Assisted GPS is used to speed up �rst GPS location calculation. Usually using WiFi and net-
work antenna-based location databases to pinpoint device location before getting a more precise
reading with GPS [Waadt et al., 2010]. WiFi and network antenna-based location databases
use information about where the given network antenna or WiFi transmitter geographically is
located to predict mobile device location. WiFi and network antenna-based locations are used
when there is not possible to use GPS location. As for GPS to work, there must be line-of-sight
to at least three GPS satellite. So GPS do not work indoors and in the �urban canyons� created
by buildings on either side of a street [Mountain and Raper, 2001].

Network antenna-based location database system with common name Mobile Positioning
System (MPS) is used by MNOs to pinpoint the location of the mobile phones using network
infrastructure. There are di�erent methods to locate a mobile device [Tiru, 2014].

• Cell Global Identity (CGI)

• Trilateration of antenna to device and back

• Angle of received signal

• Timing Advance (TA - radio signal arrival time from antenna to device and back)

A mobile device knows to which cell it is connected and what is that cell's CGI. From MNO side
they can see to which cell the mobile device is connected and what is the cell's identi�cation.
From that MNO can look what is that cell's geographical location and know that the mobile
device must be somewhere near the cell's location as seen in Figure 6. Trilateration is three
sites to pinpoint the location of a mobile device. The angle of received signal uses an array
of smart antennas that help to determine the angle of the incoming radio signal. Then it is
possible to triangulate known signal angles from at least two base stations. Timing Advance
takes into account time needed for the signal to reach mobile device and back to cell station
[Ratti et al., 2006].

Figure 6: Phone location positioning using cell
coordinates[Ahas et al., 2014].

Most commonly CGI+TA+angle of re-
ceived signal is used, where cell's location is
�rst found after cell's identi�er and after that
TA is used for calculating how far the mobile
device is from the cell tower and direction of
the device is determined after the angle on re-
ceived signal [Tiru, 2014].

Mobile positioning data can be collected
with two di�erent methods: active positioning
and passive positioning.

Active positioning. Active positioning
needs active request and usually requires au-
thorization from device owner. When the po-
sitioning request is made then device owner
has to give the consent for the request. Most
people have seen location request pop-ups
on applications and map-related websites or
user had to approve location request when in-
stalling the application . There are also re-

quests made without user consent. User authorization is not needed if location request is done
in the case of emergency. That usually means using MPS, but from July 2016 Estonia and
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the United Kingdom have implemented the Active Mobile Location (AML) system. AML is
emergency call-based location solution in Android phones. When smartphone recognizes that
an emergency call is made, then phone activates its location services and sends that info to the
emergency services automatically before turning the location services o� again [EENA, 2016].

Most usual active positioning is installed applications ability to use the location of the mo-
bile device and positioning work real-time or near-real time. Location Active positioning has
bene�ciaries from di�erent user groups [Ratti et al., 2006].

Active positioning applications can be divided by their target group of users.

• Services for individual users

� Navigation aids

� Geographically distributed yellow pages

� Educational services

• Services for group of users

� Distributed chats and friend tracking

� Location-based gaming

� Tra�c services

� Digital tapestries

� Coordinated actions

• Services for third parties

� Public safety and security

� Family security

� Emergency relief

� Business safety and e�ciency

� Commercial and information services

� Location sensitive billing

� Urban Systems mapping

There are di�erent applications that are used where location positioning is the main intention,
but there are other applications where location data is still collected for value-added services or
statistics. Social media applications (e.g. Twitter and Facebook) do not always need location
data, but the data is still collected [Tiru, 2014].

There are advantages and disadvantages to active positioning compared to passive positioning.
Just like with in person, on-line or telephone surveys, active participation could be requested
and sampling techniques could be used. Data collection is easy because participants only need
to install positioning application to their phone or approve the periodical network-based location
requests. The disadvantage is the need to recruit the respondents, resulting small sample size
[Tiru, 2014].
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Passive positioning. The di�erence in a passive and active positioning is, that passive
positioning does not need to send a request to a mobile device, to position it. Instead of actively
making position request, data is already collected to some database by the MNOs or applica-
tions. This data usually is not collected with the purpose to collect the location. Applications
and MNOs are logging mobile devices activities and these logs can have data that could be
linked to a location [Tiru, 2014]. This data is used mostly internally for business and marketing
purposes (e.g. billing clients, providing statistics, marketing). Location data is used seldom
[Ahas et al., 2011].

Passive mobile positioning data is mostly referred to the data from MNOs. MNOs are col-
lecting a lot of business purposed data, among them are Call Detail Record (CDR). One CDR
contains a lot of technical information about the recorded activity, but the important �elds are
subscriber identi�cation, time of the event and identi�cation of the antenna, where the mobile
device was connected at the time of the activity. CDRs include in and out calls, SMS and MMS
messages activities. If mobile devices use also Internet tra�c, then these activities are also in-
cluded in CDR. MNOs can choose what data they want to store and because of that data about
mobile devices locations and how precise could location detection be may di�er. The size of the
data may also vary, meaning that MNOs may store only 2-3 CDRs or even 200-300 CDRs per
mobile device per day.

People carry their mobile devices always with them, so CDR data gives an overview of human
movements based where they are using their phones. MNOs have also extra info about their
subscribers, there may be also access to additional data about the socio-demographic pro�le
(e.g. gender, age) for each mobile device owner.

The main advantages compared to active positioning is the cost-e�ectiveness of collecting a
large sample of data for all the phone users. With passive data collecting, there is no burden on
the respondents because data is collected automatically [Ahas et al., 2011]. Access to that data
is more di�cult. That is because of privacy. People do not like that other people get access to
that sensitive data like their location history. At the same time, MNOs do not like to share their
data on business related reasons. If MNO would give their CDR data for research, then it would
still not contain the full sample of the whole country. One country can have more than one MNO
providing their services (e.g. Estonia have three main MNO companies: Telia, Elisa, Tele2). If
selecting only one company then sample contains only their clients and mobile devices that uses
their cellular network [Tiru, 2014]. Another problem is the CDR data itself. Even if the data
size is very large, data accuracy itself is not as good as with GPS collected data. In practice,
most CDRs do not have enough information to use more precise positioning methods like using
TA or angle of signal arrival because they need more than one base station, but only the base
station that is carrying mobile communications are recorded in CDRs [Zang et al., 2010].

Data privacy. A big problem with Location Based Services (LBS) is that people do not like
that their movements can be tracked. To encounter that problem there are two solutions. One
is asking each person's permission to track them for research purposes. But this means small
sample size because you have to interact with each one. A second way is to anonymize the data.
That means there is not possible to connect the data with the person whose data it is. Ratti et
al. [Ratti et al., 2006] shows the European Union directives, that ensures people privacy rights.
There are very precise cases when service providers could work with people's privacy data and
when they can give it to third parties. With the European Union directives they can only do
that when they have the consent of the service user and the user is informed of the purpose and
duration of the process. Another way is to analyze and to give that data to the third party to
analyze it, is to anonymize it. Most researchers working with MNOs mobile positioning data are
using anonymized and aggregated data.
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Datasets are anonymized to bypass the problem of privacy, so researchers can not track data
back to the user to whom that data belongs. Researches like [Ahas et al., 2007, Ratti et al., 2006,
Ahas et al., 2011] have to use it to work with the data without the breach of privacy. Ahas et al.
[Ahas et al., 2011] and Tiru [Tiru, 2014] bring out the problem, that anonymizing could lose the
di�erent aspects of the data, that could be useful to research. Wicker [Wicker, 2012] brings out
that anonymizing must be done correctly because with location traces could be de-anonymized
through correlation with publicly available databases.

Besides the people's data privacy, another big problem is MNOs business secrets. They do
not want to share their cell tower locations and information to others. In this thesis users and cell
towers identi�cations and are changed because of privacy issues. Cell towers real geographical
locations are also hidden.

1.3.2 Related work

Passive mobile positioning with CDRs has been used for some time.
Articles [Mountain and Raper, 2001] and [Ahas et al., 2007] used it to research seasonality

of foreign tourists space consumption in Estonia. Article [Ratti et al., 2006] used it to analyze
urban activities in Milan, Italy. Article [Saluveer and Ahas, 2014] describes how passive mobile
positioning can be used to �nd peoples home and work location. But it also mentions that there
are accuracy problems and discusses what kind of extra information should be added to MNOs
CDR data, to get the more precise location prediction (i.e.. take into account that ME location
probability is higher in the places where there are roads, point of interests or buildings.)

Article [Vajakas et al., 2015] used passive mobile positioning with CDR data to reconstruct
people movement trajectories.

Using Voronoi with clustering close BTSs together was used as a cell plan in [Csáji et al., 2013].
They used Voronoi-based cell plan with only omnidirectional cells. They took into account that
ME may be in the other cell area not in the one, it is connected to. They proposed to use BSD
information instead of simple Voronoi. They also used Maximum Likelihood Estimation (MLE)
for estimating the position of frequent locations.

Article [Zang et al., 2010] described the methodology applying Bayesian methods for de�ning
the Spatial Probability Density Functions (SPDF) for mobile positioning. Estimation was based
on Signal-to-Interference-and-Noise Ratio (SINR) calculations. Bayesian probability estimate
was provided for the situations where CGI was the only information to know and no other cells
had good enough SINR. The method was tested on the subset of emergency call data, that was
limited to situations where only one cell was within the reach of the BTS. They found that the
di�erence between the location measured by the GPS and the MLE provided by that method was
improved by 20%, compared to the baseline method. No direct Probability Density Functions
(PDF) tests were performed and they did not consider that the probability to connect to a
speci�c cell will be reduced where other cells are reachable.

Unpublished paper [Vajakas and Vajakas, 2014] created SPDF estimations with Bayesian rule
method. Formulas were created that took into account that probability to connect to a concrete
cell will be reduced in locations where other cells are reachable, but the paper was lacking in real
world tests.

1.4 Contributions of this work

This thesis concentrates on algorithms on how to position mobile devices from CDR information.
Di�erent cell plans creation methods are described and tested with mobile device GPS location
and connected cell CGI data.
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Passive mobile positioning SPDF estimations are used for comparing quality of the cell plans.
This thesis continues the work [Vajakas and Vajakas, 2014] which started the research on SPDF
estimations with Bayesian rule. Important part of the article is added to the appendix C. SPDF
estimations methods with and without Bayesian rule are used to verify if the cell plan overlapping
is important.

The theoretical foundation of SPDF and application of Bayesian rule were devised by Toivo
Vajakas (original ideas) and Jaan Vajakas (ensured mathematical correctness).

The author applied and adapted the theoretical base to concrete technological stack in Reach-
U: devised conversion algorithms for concrete cell plan inputs, implemented the algorithms for
cell plan data processing and evaluation (except the code described in appendix C), analyzed
the results.

Paper [Vajakas and Rõõmusaare, 2016]1 will be published based on the theory of SPDF es-
timations with Bayesian rule and the results of this thesis. Paper that was sent to the review is
included in the Appendix D.

1Jaan Vajakas was not included as an author, because as a Google Inc employee, he did not have time to get
permission from Google Inc.
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2 Methods

2.1 Description of the data

2.1.1 User data

There were �ve test users with the identi�cations 1,2,3,5 and 6. Data collection time period was
almost 8 months: 01.04.2015 - 18.11.2015. User 4 only collected the YouSense data for the �rst
month, and because of that this users data was discarded.

YouSense data. GPS and connected cell information were collected from our test users with
android application YouSense, an active positioning application created by the company OÜ
Positium LBS.

Example collected data is seen in Table 1. The timestamp is in Unix epoch milliseconds. the
application collected GPS locations every 1 second if ME was moving faster than 3 m/s and every
16 seconds if it was moving slower than that. The application turns GPS tracking o� when ME
moves less than 20 meters in 4 minutes or GPS �x could not be obtained for 60 seconds. When
ME starts moving again, GPS tracking will be turn on. There may be caps in the collecting
when the ME do not have its GPS turned on.

Figure 7 shows how many GPS events each user collected in the whole period and how many
events each month.

userid cgi lon lat timestamp accuracy altitude bearing speed

3 248-xx-xx-xxxxxx 26.68574 58.37747 1428003372860 136.0 92.0 NaN 0.0

3 248-xx-xx-xxxxxx 26.6848 58.37752 1428003424837 114.0 43.0 NaN 0.0

3 248-xx-xx-xxxxxx 26.68529 58.3776 1428045720961 147.0 77.0 NaN NaN

3 248-xx-xx-xxxxxx 26.68582 58.3772 1428045942031 67.0 28.0 124.5 0.75

Table 1: YouSense GPS data example.

Figure 7: Users' YouSense event counts per user and per user per month.

CDR data. With our test users permission, we also collected their CDR data from MNO for
the same period as GPS data. CGI values are used for positioning from CDR data because MNOs
do not always have better CDR data for passive mobile positioning than just a CGI value. The
example of the data is seen in Table 2. the timestamp is in Unix epoch seconds. CDR contains
events with di�erent types, this is given in the event column. They could be call, SMS, location
update, etc. This thesis does not take event type into account for positioning.
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Figure 8: Users' CDR event counts per user and per user per month.

Figure 9: CDR GPS counts overview per assessments and per user per assessments.

Figure 8 shows how many CDR events each user made in the whole period and how many
events each month.

userid timestamp MCC MNC LAC CI Event type

3 1427856959 248 xx xx xxxxxx 85
3 1427900159 248 xx xx xxxxxx 85
3 1427980327 248 xx xx xxxxxx 18
3 1427980332 248 xx xx xxxxxx 85

Table 2: CDR data example.

Combining CDR events with GPS data. A program was created to merge CDR and GPS
events. It reads in CDR events and uses GPS data to �nd the ME's real geographical location.
For each CDR event, GPS event �x will be created based on the GPS events before and after the
CDR event time. GPS location selection process is described with Algorithm 1. Each selected
GPS event �x has an assessment for how precise that GPS could be. Overview of the result is
given in Figure 9.

GPS �xes points locations are showed in the Appendix A. Figure A.1 shows location points
over Estonia and Figure A.2 shows close up in Tartu, where the majority of events were made.
There are big lines from yellow dots with assessment �Too far in time� that show how unrealistic
these measurements are. CDR events with GPS �xes with assessment �Too far in time� and �Too
far in location� were discarded. That means from all the events there are 37370 useful CDR
events with GPS �xes.

20



Algorithm 1 CDR and GPS events merging algorithm.
For each user:

• Remove CDR events that are outside of the GPS events time frame, because extrapolation is not supported.

• For each remaining CDR event :

� Use binary search over time-sorted GPS events to �nd the GPS event with the smallest time that is
larger or equal to the CDR event time.

� Found GPS event will be known as the next �x.

� The GPS �x before the next �x is known as the previous �x.

∗ If the next �x is the �rst recorded GPS event, then it will be used as the previous �x and the
next GPS event after that will be the next �x.

� Calculate interpolated GPS �x.

∗ The interpolated GPS �x values are a weighted average of the previous and the next �x with
the time of the CDR event.

· Each GPS �x weight is time di�erence from the GPS �x time to the CDR event time.

� Select assessment for the interpolated GPS �x.

∗ If the previous and the next �x are farther than 15 minutes from the CDR event time, then
assessment is �Too far in time�.

∗ If the previous and the next �x are both closer than 10 seconds from the CDR event, then:

· if both �xes are farther from each other than 100m then �Too far in location� is chosen.

· if both �xes are closer than 100m, then �interpolated �x� is chosen.

∗ if the previous and the next �x are closer than 15 minutes from the CDR event, then:

· if the previous �x is closer than the next �x, then �previous �x� is chosen.

· if the next �x is closer than the previous �x, then �next �x� is chosen.

� Select GPS �x based on the assessment.

∗ With assessments �interpolated �x�, �Too far in location� and �Too far in time�, interpolated
GPS �x is chosen.

∗ With assessments �previous �x�, previous GPS �x is chosen.

∗ With assessments �next �x�, next GPS �x is chosen.

2.2 Cell plan creation techniques

Cell plan can be generated using multiple di�erent approaches.
What method to use depends on the cell plan's purpose. If it would be used for analyzing

network coverages, then cell plan that includes cell's fringe areas could be better. If it would be
used for showing the area where the ME more likely was when it was connected to that cell, then
smaller cell size would give a better location estimation accuracy. This thesis uses cell plans for
positioning ME locations.

Cell plan generation methods in this thesis and the implementation of them are created for
application Demograft. Demograft is a tool for MNOs that uses passive location data of their
customer base to help them analyze their network. It also helps them selecting subscribers
for advertising campaigns. Demograft was developed by Reach-U [Reach-U, 2016] and STACC
[STACC, 2016].

When the �nal intention of a cell plan is known, then generation depends on the available
cell data. Simplest data would be cells identi�cations and their geographical locations. This will
give the most inaccurate cell plan because as there is not any information about the direction
of the cells. So all the cells could be generated as omnidirectional and the cells on the same
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site would have the exact same cell geometry. If data includes direction of the antenna, then
directional cells could be generated and cells on the same site could each have the cell geometry
in the correct direction. If frequency or technology is included, then each di�erent frequency and
technology could have cell plans on separate layers. More cell attributes help to generate more
precise cell shapes. This information is usually given in a Comma Separated Value (CSV) or an
Extensible Markup Language (XML) �le.

When MNOs have the BSD �les or RSSI data and they are prepared to share them, then
this data could be used for generating more real-world-like cell plans. To generate cell plans
from di�erent inputs Cell Plan Calculator was created for Demograft application. This chapter
describes the methods used by Cell Plan Calculator to create cell plans from di�erent input data.

2.2.1 CSV �le input

The basic information for each cell is usually given by the MNOs with simple CSV or XML �le.
Most CSV or XML �les contain cells geographical points(cell site coordinates) with descriptive
metadata. As cell plans are made of geographical coverage areas, then we have to generate areas
from given cell location point and its metadata. Minimum requirement information for each cell
are location coordinates and a cell's CGI, but to get realistic cell shapes, then direction and
frequency is also needed. Basic cell table is shown in Table 3.

Longitude and latitude coordinates for the cell are needed for the site location, without it,
there is not possible to know where the cell should be located on the map.

Direction shows in where the cell is pointed. Missing direction value should show that given
cell is omnidirectional cell and does not have direction (in the Table 3 shown as �null�) . If the
direction is missing for whole data, then we can only assume that every cell in the given data is
an omnidirectional cell.

The frequency for each cell is important because cells in di�erent frequency band should be
separated from each other. If frequency info is missing, then we have to assume that every cell
is in the same frequency. Sometimes instead of frequency column, each frequency is given in a
separate �le.

CGI latitude longitude direction frequency

248-00-01-121 59.568150 24.301561 0 LTE1800
248-00-01-122 59.568150 24.301561 120 LTE1800
248-00-01-123 59.568150 24.301561 240 LTE1800
248-00-01-131 59.175251 24.850207 null UMTS2100

Table 3: Cells basic CSV example.

These requirements are minimal but may not be su�cient for a more precise cell plan. There
may be more information given to each cell. If a cell radius is also given, it can be used for not
letting the cell spread top far. With a cell type, we can tell how big cell area should be and even
could help for deciding if a cell is omnidirectional or not. Normally, the direction �eld should
be enough for knowing if a cell is directional or not, but the practice has shown that MNOs cell
data is not always perfect and having more information about cell's attributes, helps to make
better decisions for creating cell area for each cell.

Using the basic information, there are three ways to generate cell plan. Each method will
create cell plans with di�erent geometry shape.
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Figure 10: Voronoi cell plan with gray arrows as
cell's direction and brown dots as cell sites. A
questionable shape of the cell 3836 is depicted.

Voronoi cell plan. The Voronoi method is
used for generating cell plan that does not
have overlaps between cells in the same fre-
quency. This creates good areas for mobile po-
sitioning but does not take into account that
in reality cells will overlap. This can be �xed
by enlarging each cell after generating Voronoi
cells.

This method is a fast way to divide whole
coverage between each cell, but may create
some irregular shapes, Figure 10 shows big cell
number 3836 that is narrow in the west-east
direction, but the cell direction is almost to
the north.

Voronoi cell plan creation algorithm is de-
scribed in Algorithm 2.

Algorithm 2 Voronoi cell creation algorithm.
For each BTS technology and frequency do following:

• Separate omnidirectional BTS from directional BTS.

• Create omnidirectional BTS cell hexagon geometry based on BTS cell's radius.

• Cluster directional BTS that are close to each other together.

� This is used because MNO does not always site information for BTS.

• Cluster center point will be cell site for each BTS in that cluster.

• Each BTS location will be moved a little in the direction of that BTS cell direction.

� This will force Voronoi diagram builder to build cells for each BTS in the correct direction (one cell
site will have correct sectors).

• Add moved BTS locations to Voronoi diagram builder.

• Build Voronoi diagram

• For each BTS:

� Find geometry in Voronoi diagram that has BTS moved location inside it.

∗ That geometry will be that BTS cell.

∗ Cut cell geometry with that hexagon with BTS maximum radius.

� Set BTS site location back to its original location.

2.2.2 CSV and best serving data �les input

MNOs provide sometimes so-called �best serving data� in raster format. Each frequency cells are
in separate layers. BSD example was shown in Figure 3. For working with each cell geometry,
these �les must be �rst converted from raster to vector format. This is done with ogr2ogr
tool [ogr2ogr, 2016]. As with Voronoi method, there are no overlaps between cells in the same
frequency. Again cell enlargement modi�cation could be added for each cell after creating the
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cell plan.
CSV �les are still used for extra cell plan info, but the geographical areas are taken from the

BSD raster �les.

2.2.3 CSV and RSSI �les input

Figure 11: RSSI cell with its dBm values exam-
ple near water.

As with BSD data, CSV �les are used for all
the extra cell attributes, but geographical data
is taken from the RSSI data. RSSI data is the
biggest in data volume. Each cell in the net-
work has very precise geometries where each
geometry has RSSI what value that cell should
have in that geographical location. Figure 11
shows one cell RSSI values on the map. MNO
holds this data in databases and it needs a
little bit more preprocessing before Cell Plan
Calculator could do anything with it. First
signal strengths period is selected, usually, pe-
riod -80...-83dBm is selected. Per each cell all
the geometries that have the RSSI value in se-
lected period would be downloaded from the
database and the convex hull algorithm will be applied to these geometries. The resulting geom-
etry is polygon where all the selected geometries are inside of it. Shape�le is created from these
polygons and that is used like in the BSD method.

Each cell area was selected according to its RSSI value. Unlike BSD, the cells derived from
RSSI data can overlap in the frequency band. This method could leave some uncovered �holes�
in the whole cell plan coverage - there may be areas where each cell RSSI value is lower than
selected period, this could be improved with selecting RSSI period with lower decibels.

2.2.4 Cell Plan Calculator

Cell plan Calculator takes in a con�guration �le in JavaScript Object Notation (JSON) format.
Everything necessary for its work is described there, but extra �ags can be added to change
calculator behavior. There are �ags for changing the output �le location for easier automation
scripts. MNOs are changing their network day-to-day to adjust to subscribers needs and because
of that cell plans need to be up to date with real world situation.

Cell plan generator was built to work in �ve steps. Generation could skip some steps if they
are not needed for some speci�c MNO.

Parsing CSV �les. First step is parsing CSV(or XML) input �les. This step will read in one
or more CSV �les. Each �le can be described separately to the calculator in the con�guration
�le. As MNOs con�gurations and cell data �les may vary then con�guration �le is made to be
very �exible. A con�guration �le example is in Appendix B. The con�guration �le is used for
reading CSV �les in and then converting them to a speci�c form that all the next step can use.

Parsing rules. Rules are used for con�guring two things: cell's radius and its boolean value
with true if a cell is omnidirectional and false if it is directional. It is used when input �le does
not have a radius or omnidirectional attribute info. Rules are described in a separate �le, which
location is given in con�guration �le. An example of the rules �le is given in Table 4.
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radius|isOmni|expression
50|0|cell_type == "MICRO"
10000|1|frequency == "GSM900"
6000|1|frequency == "GSM1800"
10000|1|true

Table 4: Cell Plan Calculator input rules �le
example.

Rules �le contains three columns, sepa-
rated by a pipe character. The �rst column
has a resulting radius. Radius is used for lim-
iting cell areas from reaching too far from the
cell site. It is used when generating omnidi-
rectional cells: a radius is used for polygons
radius and if Voronoi cell is very large, then it
is also trimmed with radius. Radius depends
on di�erent things, for example, cells with dif-
ferent frequencies have di�erent reaches. The
second column has resulting omni cell boolean value. If the boolean value is true, then Cell
Plan Calculator will generate that cell as omnidirectional. Otherwise, it will be counted as a
directional cell. The last column holds the expression for given rule.In expressions, conditionals
are described for the cells. if they match with cell's attribute, then selected radius and isOmni
parameter values will be chosen to that cell.

The tool will start testing expressions from the �rst one and if expression fails, then will be
moving to the next one. If successful validation has been found, then that radius and omni cell
values will be used. e.g if the �rst expression is successful, then it would not try the next ones.
The last one in the list should be the default value if other expressions have failed.

Expressions are written in MVEL [MVEL, 2016] and its comparison and logical operators
can be used for describing rules. All cell attribute names, which are not removed from input
data with con�guration, can be used as variables in all three �elds. Variables are case sensitive.

Radius, omnidirectional boolean value, and their conditions are selected with MNO represen-
tatives because it is unique with each MNO.

Generating �rst geometry using Voronoi generation method. After parsing rules, ge-
ometry is generated for each cell. Geometry shape style is given in properties.

Replacing �rst geometry if needed, using BSD or RSSI methods. After �rst geometry
generation, cell's geometries that are given in BSD or RSSI input �les will be overwritten. If
both are given, then �rst geometries will be overwritten with BSD geometries and after that
with RSSI geometries.

Add additional modi�cations to the generated cells. There are multiple modi�cations
built for the modifying whole cell plan.

• Cut cell - Will cut the whole cell plan with given geometry. Leaves in only the cells that
intersect with input geometry. Good for cases where you want to work with only one part
of the cell plan

• Enlarge cell - Will enlarge each cell in a cell plan. Enlargement takes in bu�er ratio
parameter. The bu�er will be added to the cell with the radius calculated with this formula:
bu�er ratio to the square root of the cell area.

• Stretch cell - Each cell in a cell plan will be stretched in cell's direction and perpendicular
direction by direction multiplier and perpendicular direction multiplier.

• Convex Hull cell -Takes Convex Hull over cell and cell site for each cell in cell plan. When
using RSSI generated geometries, sometimes cell geometry may not contain cell site itself.
Convex Hull will add cell site to cell geometry.
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• Ellipse cell - Replaces each cell's geometry with ellipse for each cell in cell plan. Ellipse is
an approximation of the original cell geometry.

2.3 Cell plan quality estimation with maximum likelihood (MLE)

MLE principal can be used to compare the quality of di�erent PDF estimates. Higher likelihood
value indicates that the PDF is more precise estimate to the real probability distribution what
generated the measured data.

Likelihood is de�ned as:

L = P(measurements|model). (1)

If we consider simplifying assumption that measurements are independent, then we can apply
simpli�ed formula:

L = P(measurements|model) =
∏
i

P(xi|θ), (2)

where

• θ is a vector of parameters;

• xi are individual measurements.
In practice it is often more convenient to work with the logarithm of the likelihood function,

called log-likelihood:

log L = log P(measurements|model) = log
∏
i

P(xi|θ) =
∑
i

log P(xi|θ). (3)

For applying log-likelihood to cell plan and mobile measurements, formula would be like this:

logL = log P(measurements|model) = log
∏
i

P(xi|Ci) =
∑
i

log P(xi|Ci). (4)

where:

• xi, i = 1...m are mobile events actual locations;

• Ci, i = 1...m are cells that event xi was connected to;

• models are the SDPF cell plans created with methods in appendix C .

The implementation for changing the cell plan polygons into an SPDF was taken from the paper
[Vajakas and Vajakas, 2014] - applied Gaussian blur with kernel proportional to square root of
the cell polygon area. SPDF estimation and its implementation is described in appendix C
because it is necessary part of the thesis and the presentation is not published.

The reason to use continuous SPDF is instead of practically used polygons is that MLE needs
a function that does not equal to zero at any location, or else likelihood value will be zero due
to single outlier in data. Small probability was assigned to outliers so that each ME still has an
probability to be connected to the cell even when it is not near its area of coverage.

Based on the SDPF implementation in the C.1, conditional probability was calculated to
visualize Bayes' rule in�uence to each cell. For each pixel, following probabilities were calculated:

P(Ci|x) =
P(x|Ci)

P(x|Ck)
, (5)

where
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• Ci and Ck is the cell connected from location x;

• x is the ME location.

Formula 5 shows cell connectivity probability for each pixel.
In the Formula 5 we assume that probability to connect to the network is 100%, i.e:∑

i

P(Ci|x) = 1. (6)

Formula 6 means that if ME is at the location x then it must be connected to a cell.
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3 Results

The test area was divided into pixels with the length of 630 meters. The size was selected so it
would be large enough that many pixels would contain multiple experimental GPS data location
points. Raster P′(C|x) were calculated for all the cell plan variants. Cell plan variants were:

• rssi_default - cell plan based on RSSI data, extra modi�cations were not made.

• rssi_A1AP2 - rssi_default cell plan with �stretch cell� modi�cation. Cell's width is stretched
twice.

• rssi_A2AP1 - rssi_default cell plan with �stretch cell� modi�cation. The cell is stretched
twice along the direction of the cell.

• rssi_A3AP1 - rssi_default cell plan with �stretch cell� modi�cation. The cell is stretched
along the direction of the cell three times.

• rssi_convexhull - rssi_default cell plan with �Convex Hull cell� modi�cation.

• rssi_ellipse - rssi_default cell plan with �ellipse cell� modi�cation.

• voronoi_default - cell plan created with Voronoi method, extra modi�cations were not
made.

• voronoi_A1AP2 - Voronoi cell plan with �stretch cell� modi�cation. Cell's width is stretched
twice.

• voronoi_A2AP1 - Voronoi cell plan with �stretch cell� modi�cation. The cell is stretched
twice along the direction of the cell.

• voronoi_A3AP1 - Voronoi cell plan with �stretch cell� modi�cation. The cell is stretched
along the direction of the cell three times.

• voronoi_convexhull � Voronoi cell plan with �Convex Hull cell� modi�cation.

Formula 4 was used for calculating the likelihood of the positioning data with each SPDF raster
variant. MLE results are shown in Figure 12. Horizontal axis shows di�erent users and vertical
axis shows average P(C|x) for CDR data of the given user. Results produced with the same
processing parameters are connected with a line for easier comparison of methods.

Figure 13 shows the SPDF of all the cells along a sequential straight line of pixels. Each
pixel has stacked probabilities of the cells. Upper chart is generated with applying Bayesian
overlapping cell model, lower chart data is generated without considering overlapping e�ects.
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Figure 12: Relative performance of the various cell plan variants: a) contains cell plans with
Bayesian overlapping; b) cell plans without Bayesian overlapping. c) shows e�ect of the Bayesian
overlapping.
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Figure 13: Cells SPDF for sequential line of pixels with and without using Bayesian overlapping
cell model, calculated using Formula 5.
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4 Conclusions

For this thesis, Cell Plan Calculator was designed and programmed. It was designed to be �exible
in order to be able to use the variety of input data. Cell plans were created for passive mobile
positioning. Toivo Vajakas and Jaan Vajakas work on SPDF was used to test which cell plan is
better for estimating mobile locations. Test data was collected from MNO and test users. Prior
SPDF code was used for creating test cases for collected data. Modi�cations were made to SPDF
code to create the stacked probabilities of each cell in each pixel. Results were visualized and
analyzed.

4.1 Discussion

When using di�erent observation data, then MLE values are not comparable. Therefore the
relative performance of di�erent models can be only evaluated for each user data separately.

Surprisingly all the Voronoi-based cell plans seem to have better SPDF estimates than the
RSSI-based. The expectations were that sophisticated RSSI models would be superior to simple
model like Voronoi model.

Cell plan �rssi_ellipse� seems to be most inaccurate based on the SPDF in almost most of
the user data, this should be certainly avoided in practice.

There are notable di�erences in the ranking of the cell plan variants between users.
Figure 13 shows how Bayes' rule changes the likelihood estimations. The results show that

accounting for cell overlap e�ect with Bayes' rule had in the majority of cases positive e�ect.
Figure 12 (c) shows that the best cell plans are not improved by Bayes' rule and worse cell

plans are signi�cantly improved.
In Figure 12 �voronoi_convexhull� and �voronoi_default� are practically identical as these

methods are internally the same.

4.2 Future plans

Research can be continued in multiple directions.
One way is to apply the algorithms to larger data sets. One might recruit a bigger group

of data gatherers for active data collecting, or use crowd-sourcing data. For example, OpenCel-
lId [ope, 2016] collects data with GPS and connected cell's CGI from volunteers. OpenCellId
database has 145273 measurements collected over our test period (120316 measurements in EMT,
19846 in Elisa and 5111 in Tele2).

For more data, it is possible to not to use CDR data at all. Instead use selected data gatherers
or crowd-sourced data, that contain GPS location and the connected BTS information for each
GPS location.

To further the research with SPDF, extra calculations could be done with Bayesian prior.
For example, one could consider GIS layers of roads and buildings. Probability to encounter ME
devices should be higher in near roads and buildings. It is possible to group events not only by
users but by other attributes, e.g. separate urban and rural events, to test how it will e�ect MLE
values. Too �ne-grain subsets may bring up the too small dataset and over-�tting problems.

CDR event type was not taken into account in our analysis. For example, if event type shows
the location update, it might suggest that ME is on the edge of the cell, not somewhere in the
middle of the cell.

31



5 Acknowledgment

Research in the thesis was partially supported by a tra�c applications research project in
Reach-U Ltd and ELIKO and by Location-Based Big Data Algorithms project in STACC. This
research has been supported by the European Union through the European Regional Develop-
ment Fund.

I would like to thank Reach-U Ltd and STACC for giving me an interesting topic for the
master thesis. I would also like to thank Jaan Vajakas for Bayesian formulas I got to use for
testing cell plan algorithms quality. I would like to thank also my supervisor Toivo Vajakas, who
guided my implementation-centric thesis more into a scienti�c thesis. Finally, I would like to
give big thanks to the data gathering participants without whom I had not had the data to test
any methods described in this thesis.

32



References

[ope, 2016] (2016). Opencellid. http://opencellid.org/. [Online; accessed 10-August-2016].

[Agrawal and Zeng, 2010] Agrawal, D. and Zeng, Q. (2010). Introduction to Wireless and Mobile
Systems. Cengage Learning.

[Ahas et al., 2007] Ahas, R., Aasa, A., Mark, Ü., Pae, T., and Kull, A. (2007). Seasonal tourism
spaces in estonia: Case study with mobile positioning data. Tourism Management, 28(3):898
� 910.

[Ahas et al., 2014] Ahas, R., Armoogum, J., Esko, S., Ilves, M., Karus, E., Madre, J.-L., Nurmi,
O., Potier, F., Schmücker, D., Sonntag, U., and Margus Tiru, M. (2014). Feasibility study on
the use of mobile positioning data for tourism statistics. Technical report. [Online; accessed
10-August-2016].

[Ahas et al., 2011] Ahas, R., Tiru, M., Saluveer, E., and Demunter, C. (2011). Mobile telephones
and mobile positioning data as source for statistics: Estonian experiences. presentation for
NTTS.

[Becker et al., 2013] Becker, R., Cáceres, R., Hanson, K., Isaacman, S., Loh, J. M., Martonosi,
M., Rowland, J., Urbanek, S., Varshavsky, A., and Volinsky, C. (2013). Human mobility
characterization from cellular network data. Communications of the ACM, 56(1):74�82.

[Calabrese, 2011] Calabrese, F. (2011). Urban sensing using mobile phone net-
work data. http://researcher.watson.ibm.com/researcher/files/ie-FCALABRE/Urban%
20sensing%20using%20mobile%20phone%20network%20data.pdf. [Online; accessed 10-
August-2016].

[Calabrese et al., 2014] Calabrese, F., Ferrari, L., and Blondel, V. D. (2014). Urban sensing using
mobile phone network data: A survey of research. ACM Comput. Surv., 47(2):25:1�25:20.

[COAI, 2016] COAI (2016). Cellular network architecture. http://www.coai.com/

indian-telecom-infocentre/telecom-infrastructurenetworks. [Online; accessed 10-
August-2016].

[Csáji et al., 2013] Csáji, B. C., Browet, A., Traag, V. A., Delvenne, J.-C., Huens, E.,
Van Dooren, P., Smoreda, Z., and Blondel, V. D. (2013). Exploring the mobility of mobile
phone users. Physica A Statistical Mechanics and its Applications, 392:1459�1473.

[EENA, 2016] EENA (2016). Advanced mobile location is now available in all android phones!
http://eena.org/press-releases/aml-in-android. [Online; accessed 10-August-2016].

[Ericsson, 2016] Ericsson (2016). Ericsson mobility report. https://www.ericsson.com/res/

docs/2016/ericsson-mobility-report-2016.pdf. [Online; accessed 10-August-2016].

[GSMArena, 2016] GSMArena (2016). Network coverage - 2g/3g/4g mobile networks. http:

//www.gsmarena.com/network-bands.php3. [Online; accessed 10-August-2016].

[Kwan et al., 2012] Kwan, M., Cartwright, W., and Arrowsmith, C. (2012). Tracking movements
with mobile phone billing data: A case study with publicly-available data. In Advances in
Location-Based Services, pages 109�117. Springer.

33

http://opencellid.org/
http://researcher.watson.ibm.com/researcher/files/ie-FCALABRE/Urban%20sensing%20using%20mobile%20phone%20network%20data.pdf
http://researcher.watson.ibm.com/researcher/files/ie-FCALABRE/Urban%20sensing%20using%20mobile%20phone%20network%20data.pdf
http://www.coai.com/indian-telecom-infocentre/telecom-infrastructurenetworks
http://www.coai.com/indian-telecom-infocentre/telecom-infrastructurenetworks
http://eena.org/press-releases/aml-in-android
https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
http://www.gsmarena.com/network-bands.php3
http://www.gsmarena.com/network-bands.php3


[Mountain and Raper, 2001] Mountain, D. and Raper, J. (2001). Positioning techniques for lo-
cation based services - characteristics and limitations of proposed solutions. Aslib Proceedings,
53(10):404�412.

[MVEL, 2016] MVEL (2016). Mv�ex expression language. https://github.com/mvel/mvel.
[Online; accessed 10-August-2016].

[ogr2ogr, 2016] ogr2ogr (2016). Gdal:ogr2ogr. http://www.gdal.org/ogr2ogr.html. [Online;
accessed 10-August-2016].

[OpenSignal, 2016] OpenSignal (2016). The state of lte. http://opensignal.com/reports/

2016/02/state-of-lte-q4-2015/. [Online; accessed 10-August-2016].

[Penttinen, 2015] Penttinen, J. T. (2015). The Telecommunications Handbook: Engineering
Guidelines for Fixed, Mobile and Satellite Systems. John Wiley & Sons.

[Ratti et al., 2006] Ratti, C., Frenchman, D., Pulselli, R. M., and Williams, S. (2006). Mo-
bile landscapes: Using location data from cell phones for urban analysis. Environment and
Planning B: Planning and Design, 33(5):727�748.

[Reach-U, 2016] Reach-U (2016). Demograft. http://www.reach-u.com/demograft. [Online;
accessed 10-August-2016].

[Saluveer and Ahas, 2014] Saluveer, E. and Ahas, R. (2014). Using call detail records of mobile
network operators for transportation studies. Mobile Technologies for Activity-Travel Data
Collection and Analysis, page 224.

[Saluveer et al., 2012] Saluveer, E., Silm, S., and Ahas, R. (2012). Theoretical and method-
ological framework for measuring physical co-presence with mobile positioning databases. In
Advances in Location-Based Services, pages 247�266. Springer.

[Segan, 2015] Segan, S. (2015). Cdma vs. gsm: What's the di�erence? http://www.pcmag.com/

article2/0,2817,2407896,00.asp. [Online; accessed 10-August-2016].

[shareTechnote, 2016] shareTechnote (2016). Lte quick reference. http://www.sharetechnote.
com/html/Handbook_LTE_CGI.html. [Online; accessed 10-August-2016].

[STACC, 2016] STACC (2016). Demograft. https://www.stacc.ee/edulood/

eelviimane-naide/. [Online; accessed 10-August-2016].

[Tiru, 2014] Tiru, M. (2014). Overview of the sources and challenges of mobile positioning
data for statistics. In International Conference on Big Data for O�cial Statistics, Beijing
[online][date of reference 6 May 2015]< http: // unstats. un. org/ unsd/ trade/ events/

2014/ beijing/ Margus% 20Tiru .

[Tondare et al., 2014] Tondare, S. M., Panchal, S. D., and Kushnure, D. T. (2014). Evolutionary
steps from 1g to 4.5g. International Journal of Advanced Research in Computer and Commu-
nication Engineering, 3(4).

[Vajakas and Rõõmusaare, 2016] Vajakas, T. and Rõõmusaare, J. (2016). On optimal spatial
probability density estimation of passive mobile positioning events. Unpublished; Accepted
for publication by Baltic Electronics Conference.

34

https://github.com/mvel/mvel
http://www.gdal.org/ogr2ogr.html
http://opensignal.com/reports/2016/02/state-of-lte-q4-2015/
http://opensignal.com/reports/2016/02/state-of-lte-q4-2015/
http://www.reach-u.com/demograft
http://www.pcmag.com/article2/0,2817,2407896,00.asp
http://www.pcmag.com/article2/0,2817,2407896,00.asp
http://www.sharetechnote.com/html/Handbook_LTE_CGI.html
http://www.sharetechnote.com/html/Handbook_LTE_CGI.html
https://www.stacc.ee/edulood/eelviimane-naide/
https://www.stacc.ee/edulood/eelviimane-naide/
http://unstats.un.org/unsd/trade/events/2014/beijing/Margus%20Tiru
http://unstats.un.org/unsd/trade/events/2014/beijing/Margus%20Tiru


[Vajakas and Vajakas, 2014] Vajakas, T. and Vajakas, J. (2014). Optimal estimation of spa-
tial density on mobile positioning data with applications to realtime heatmap visualization.
Unpublished;presented in Mobile Tartu 2014.

[Vajakas et al., 2015] Vajakas, T., Vajakas, J., and Lillemets, R. (2015). Trajectory reconstruc-
tion from mobile positioning data using cell-to-cell travel time information. International
Journal of Geographical Information Science, 29(11):1941�1954.

[Waadt et al., 2010] Waadt, A., Bruck, G. H., and Jung, P. (2010). Positioning Systems and
Technologies, pages 177�211. John Wiley & Sons, Ltd.

[Wicker, 2012] Wicker, S. B. (2012). The loss of location privacy in the cellular age. Communi-
cations of the ACM, 55(8):60�68.

[Zang et al., 2010] Zang, H., Baccelli, F., and Bolot, J. (2010). Bayesian inference for localization
in cellular networks. In INFOCOM, 2010 Proceedings IEEE, pages 1�9.

35



A CDR and GPS �x locations with assessments in Estonia

and close up in Tartu

Figure A.1: Users' GPS �x locations with assessments in Estonia.

Figure A.2: Users' GPS �x locations with assessments in Tartu.
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B Cell Plan Calculator con�guration �le

{
" ru l e s_ l o ca t i on " : " r u l e s . csv " ,
" c l u s t e r_d i s t anc e " : 70 ,
" s t re tch_a_direc t ion " : 1 ,
" s t re tch_ap_direct ion " : 1 ,
"csv_output_path " : " ce l lp lan_with_border . csv " ,
" t y p e 1_ c e l l f i l e s " : [

{
" l o c a t i o n " : " ce l ldata_hspa . csv " ,
" format " : " csv " ,
" s epa ra to r " : "\ | " ,
" c g i_ f i e l d " : "CGI" ,

" technology_generat ion_value " : "3G" ,
" f r equency_f i e l d s " : "BAND" ,
" impor t_f i e ld s " : {

" l a t " : "LATITUDE" ,
" lon " : "LONGITUDE" ,
" d i r e c t i o n " : "AZIMUTH" ,
" rad iu s " : "RADIUS" ,
" f requency " : "BAND"

} ,
" removed_input_fields " : [ ] ,
" coordinate_system" : "DegDec"

} ,
{

" l o c a t i o n " : " c e l l d a t a_ l t e . csv " ,
" format " : " csv " ,
" s epa ra to r " : "\ | " ,
" c g i_ f i e l d " : "CGI" ,
" f r equency_f i e l d s " : "BAND" ,

" technology_generat ion_value " : "4G" ,
" impor t_f i e ld s " : {

" l a t " : "LATITUDE" ,
" lon " : "LONGITUDE" ,

" rad iu s " : "RADIUS" ,
" d i r e c t i o n " : "AZIMUTH" ,
" f requency " : "BAND"

} ,
" removed_input_fie lds " : [ ] ,
" coordinate_system" : "DegDec"

}
] ,
" removed_output_fields " : [ "mcc" ,"mnc" ," l a c " ," c e l l I d " ] ,
" output_order " : [

" c g i " ," l a t " ," lon " ," c lu s t e r_ id " ]
}
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C Mathematical model of Spatial Probability Density Func-

tion

Text of this section is written for the unpublished article [Vajakas and Vajakas, 2014] by Jaan
Vajakas.

Random variables are given by underlining (following the van Dantzig convention). Dot is a
placeholder for an argument of a function.

For each cell C in a cell plan C and each pixel x, we want to compute P(x|C) = P(x = x |C =
C), probability that the EM is at location x if it generates an event in cell C.

In the following, it is described how to do it. The raster P(x = · |C = C) is then the SPDF
of the cell C.

The probability P(x|C) is determined by the Bayes' formula:

P(x|C) = P(C|x)
P(x) , (A.1)

where

• P(x|C) = P(C = C |x = x) is the probability that if an EM is at location x then it is
connected to cell C (rather than any other cell or no cell);

• P(x) = P(x = x) is the Bayesian prior density, i.e. the probability for an ME to be in a
pixel x;

• P(C) = P(C = C) is the probability for ME (at a random location) to be connected to
the cell C, i.e. P(C) =

∑
i P(C|x) P(x) where x ranges theoretically over the world (in

practice, over an area of interests, e.g. one country).

The Bayesian prior P(x), representing our prior belief, can be constructed from population
density data, from road or buildings layers, as people are more likely to be on a road or in a
building.

The probability P(C|x) is computed as follows:

P(C|x) = P(connected|x) · P(C|x, connected), (A.2)

where

• P(connected|x) is the probability that ME is connected to the mobile network (i.e. ME is
able to generate an event), when it is at location x;

• P(C|x, connected) is the probability that ME is at the location x and is connected to the
cell C.

Let S denote the active set of cells that can be connected by the ME, i.e. the set of cells actually
detectable by the ME at a given time moment. A rough estimate of the conditional probability
P(C ∈ S|x) (that a certain cell C is detectable by the ME if the ME is at the point x) is
provided by the MNO in the form of cell polygon: P(C ∈ S|x) is 1 if location x lies inside the
cell's polygon and 0 if outside, so the active set depends deterministically on x. In a more re�ned
model, P(C ∈ S|x) could have non-zero values to re�ect our ignorance of the precise coverage
area and the stochastic nature of cell coverage caused by e�ects like Rayleigh fading and weather
changes.

CDR events can only be received when the ME is connected to the network. Estonia is very
well covered and connection probability is almost 100%. Actual connection rate is unknown.
Therefore, simplify is made and calculate for each raster pixel P′(C|x) ≈ P(C, connected|x).
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For the probability P(C|x, connected) an ad-hoc formula is proposed (in contrast to the
other formulas, that have some theoretical justi�cation): namely, the probability is taken to be
proportional to the square of the probability P(C ∈ S|x), i.e.

P(C|x, connected) = P(C∈S|x)2∑
c∈C P(C∈S|x)2 . (A.3)

Formula A.3 expresses the consideration that radio network tries to avoid using the cell with
lower SINR, i.e. uses �the winner takes (almost) all calls� line of thinking.

The SPDF estimate quality is evaluated with logarithm of likelihood∑
i

log P′(Ci|xi), (A.4)

where i is an index of measurement (one measurement is one CDR with established GPS
location).

C.1 Algorithm for computing the Bayesian PDF of cells and the heat
map aggregate statistics using the cells

For practical use, the computations are separated into two steps: at �rst, the PDF is calculated
for each cell and after that, the calculated PDFs can be used for various statistical calculations.

This particular implementation was optimized towards heat map calculations, where each
cell is given a weight (e. g. the number of people connected to given cell) and raster image is
generated, showing spatial density distribution.

For computations, we represented the probability �eld of each cell as a raster image in the
RAM (random access memory). We used the Web Mercator projection. We had a �xed resolution
called full resolution, which is the resolution we were referring to in the formulas above (when
talking about the heatmap pixel x).

In order to save space, Raster data of the cell PDF was stored in computer memory in lower
resolution. By resolution, we mean pixels per coordinate unit. More precisely, our variable-
resolution raster was a grid of tiles, each tile a square matrix of �oating-point numbers (pixels)
with sidelength a power of two pixels. The admissible resolutions for storing the tiles were the
full resolution and the resolutions a power of two times lower than the full resolution.

The rendering was done at a resolution inversely proportional to the square root of the area
of the polygon (rounded to the nearest higher admissible resolution, or full resolution if no higher
resolution available). This reduction of resolution is justi�ed by the fact the cell shapes have
relatively large spatial uncertainty which is proportional to cell size � larger cells have a larger
uncertainty of the boundary of the cell's actual service area.

For each cell C, we obtained the raster P(C ∈ S|x), the probability that cell C was detectable
at a given location, by rendering the cell's polygon from the cell plan (1 if the pixel is inside the
polygon, 0 if outside, antialiasing on the edges). Optionally we applied a bu�er and smoothing
e�ect (blur) to raster obtained from cell plan. These rasters were used in next step for Bayesian
PDF calculations.

Using the formulas above, we combined the rasters of the probability �elds P(C ∈ S|x)
(uniform-resolution, but di�erent cells possibly at di�erent resolutions) to produce the variable-
resolution rasters P(C|x) and �nally P(x|C). During the computations, we did not reduce
the resolution anywhere. The resulting rasters were stored in memory for use in statistical
calculations.

We implemented heatmap calculation functionality based on Bayesian PDF. For heatmap
calculation one uses the PDF in an appropriate resolution. If PDF is stored in lower resolution
and higher resolution does not exist then available raster is upscaled accordingly.
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Abstract — In passive mobile positioning the cell-level 

measurements must be translated into geographical location, 

which can be expressed as spatial probability density function 

(SPDF). 

In this paper we present the results of a study where we 

compared different methods to estimate SPDF of passive mobile 

positioning. The mobile operators provide spatial data about 

network cells. It is called cellplan. Cellplan can be provided in 

various formats: location of cell towers and azimuth of antennas, 

or radio signal strength levels from radio propagation models, 

etc. Each such source requires specific processing to infer SPDF 

for passive mobile positioning. We investigated the probabilistic 

properties of different processing algorithms on different 

variants of input data. Some investigated methods apply Bayes 

rules to take into account the effects from overlapping neighbor 

cells. The results indicate that even on relatively small dataset 

one can clearly see different accuracy from different processing 

parameters. The accuracy of SPDF varies significantly depending 

on processing parameters.  and sophisticated radio propagation 

models did not have significant advantages over simple 

procedures using Voronoi diagram. (Abstract) 

Keywords — passive mobile positioning; Bayesian location 

estimate; spatial probability density function; PDF, heat map, 

location estimation accuracy 

I.  INTRODUCTION  

A. Motivation 

Passive mobile positioning data, gathered as a by-product 
by mobile operators, has gained much popularity in human 
geography studies due to availability of large samples [1]. 
Mobile positioning data describes the location of a mobile 
station (MS). A MS can be a phone or a modem for a device 
such as a security or environmental sensor. Mobile positioning 
determines the position of a MS with significant spatial 
uncertainty [2].  Spatial uncertainty can be generally described 
as spatial probability density function (SPDF) of location 

The mobile operators provide spatial data about network 
cells. It is called cellplan. Cellplan can be provided in various 
formats: location of cell towers and azimuth of antennas, radio 
signal strength levels from radio propagation models, etc. Each 

such source requires specific processing to infer SPDF for 
passive mobile positioning. In majority of mobile positioning 
papers the effects of cell area overlap are ignored. We 
considered applying Bayesian rule to take into account, 
importance of this effect needed verification.  

The aim of this paper is to describe a methodology for such 
investigation and compare various cellplan SPDF preparation 
methods. 

B. General characteristics of mobile positioning data 

Each passive mobile positioning data record has an attribute 
identifying the mobile network cell the phone was connected 
to, known as the Cell Global Identity (CGI). A cell is the 
geographical area where it is possible to connect to one 
transceiver of a base station. Each cell has limited capacity and 
therefore operators design smaller cells in regions of high 
population density. Neighboring cells have considerable 
overlap. When a mobile phone disconnects from one cell and 
connects to another the event is called a ‘handover’. For mobile 
positioning it is important to know the geographical shape of 
each cell. The actual cell shape depends on many factors, such 
as antenna radiation pattern and height, network load, signal 
attenuation on landscape and indoors, signal reflections, radio 
interference and noise, network configuration parameters such 
as handover threshold and neighbor cell lists [3]. Fig 1 
illustrates the uncertainty present when determining location 
from the fact that phone is connected to particular cell. 

Other location-related attributes in addition to CGI can be 
collected for improved location accuracy, such as distance to 
the antenna or signal strength from neighboring cells. CGI data 
is however still the most scalable passive positioning approach 
and puts the least load on a network, including for the recently 
introduced LTE (Long-Term Evolution) networks [4]. In this 
paper we consider positioning using only CGI data. 

Mobile positioning data can be exported from different 
nodes in the mobile operator’s network, resulting in different 
levels of detail of the data.  The most notable options of passive 
positioning data are call detail records (CDR) and network 
subsystem (NSS) event stream [2]. CDR data has been the 
most widely used option in mobile positioning research. Each 



 

CDR describes a billing-related subscriber activity like starting 
a call or sending a text message. In some configurations mobile 
operator provides also periodic update events that report 
(typically every hour or two) the current location of a mobile. 
The network also generates location update events when a 
phone moves from one location area (a group of closely 
situated base stations) to another [2]. 

Figure 1. Mobile station location uncertainty problem illustration. Suppose we 
know that a MS was connected to cell C1 and want to estimate the probability 

that MS was in location L. The spatial probability distribution of each cell (as 

defined by cellplan) is shown as filled oval areas. The probability estimate is 
affected by cell C2 that also covers location L and by prior knowledge that 

people stay mostly in houses and move on roads and nobody lives in forest. 

C. Related work 

Based on available information the shape of each cell has to 
be defined to give location estimates for mobile positioning. 
Cell data provided by mobile operators can be translated to cell 
shapes as Voronoi polygons by using the assumption that a 
phone connects to the nearest tower [5]; as best server data 
polygons by using the assumption that a mobile phone 
connects to the cell with the strongest signal [6]; or as a raster 
model based on the assumption that the probability to connect 
to a cell is a function of distance from the antenna tower [7].  

A methodology applying Bayesian methods for defining the 
SPDF for mobile positioning was given by Zang et al. (2010) 
[8]. That paper provided a solution for the situation where 
neighbor antennas are present. The estimate was based on 
signal-to-interference-and-noise ratio (SINR) calculations. The 
paper provided a Bayesian probability estimate for situations 
where CGI is the only information known and additionally it is 
known that no other cells had good enough SINR. The method 
was tested against the subset of emergency call data limited to 
situations where only one cell was within the reach of the MS. 
They found that the difference between the location measured 
by GPS and the MLE provided by that method was improved 
by 20%, compared to baseline method. No direct PDF tests 
were performed by Zang et al. (2010) [8]. The Bayesian 
probability formulas in the paper by Zang et al. do not consider 
the effect that the probability to connect to a concrete cell will 
be reduced in locations where other cells are also reachable.  

D. Research problem 

We are investigating how the SPDF estimation quality is 
affected by following factors 

 Different input data (tower coordinates vs radio 
propagation data) 

 Post-processing of data (e.g. enlarging and blurring cell 
boundaries by given factor) 

 How much is result affected by cell overlap effects 

 How much the result depends on MS and location 

II. METHODS 

A. Mathematical model of SPDF  

Given a mobile operator's event logs for some time period, 
we want to map each event probabilistically to geographical 
space where the mobile event occurred. We assign spatial PDF 
to each cell such that PDF defines the probability that the event 
occurred in any given location. We consider here only discrete 
probability densities obtained by dividing the area of interest 
into pixels of appropriate size. 

The radio area network (RAN) consists of a finite set of 
cells, 𝒞. For each cell 𝐶 in the cellplan  𝒞 and each pixel 𝑥, we 

want to compute P(𝑥|𝐶) = P(𝑥 = 𝑥 | 𝐶 = 𝐶) , the probability 

that the MS is at location 𝑥 if it generates an event in cell 𝐶. In 
the following we will describe a method how to do it. (The 

raster P(𝑥 = ∙ | 𝐶 = 𝐶) is then what we call the spatial PDF of 

the cell 𝐶.) 

The probability P(𝑥|𝐶) is determined by the Bayes' 
formula: 

 P(𝑥|𝐶) =
P(𝐶|𝑥)

P(𝑥)
  (1) 

where 

o P(𝐶|𝑥) = P(𝐶̲ = 𝐶 | 𝑥̲ = 𝑥) is the probability 
probability that if a MS at location 𝑥 then it is 
connected to cell 𝐶 (rather than any other cell or 
no cell); 

o P(𝑥) = P(𝑥̲ = 𝑥) is the Bayesian prior density, 
i. e. the probability for a person (or more 
precisely, a mobile station) to be in pixel 𝑥; 

o P(𝐶) = P(𝐶̲ = 𝐶) is the probability for mobile 
station (at a random location) to be connected to 
cell 𝐶, i. e. P(𝐶) =  ∑ P(𝐶|𝑥)P(𝑥)𝑥  where 𝑥 
ranges theoretically over the world (in practice, 
over an area of interest, e. g. one country). 

The Bayesian prior 𝑃(𝑥), representing our prior belief, can 
BE constructed e. g. from population density data, road and 
building layers (people are more likely to be on road or in a 
building). 

The probability 𝑃(𝐶|𝑥) is computed as follows: 

P(𝐶|𝑥) = P(connected | 𝑥) ⋅ P(𝐶 | 𝑥, connected) (2) 

where  



 

o P(connected | 𝑥) is the probability that the MS is 
connected to the RAN at all (i.e., is able to 
generate an event) if it is at location 𝑥, 

o  P(𝐶 | 𝑥, connected) is the probability that if a MS 
is at location 𝑥 and is connected then it is 
connected to cell 𝐶. 

Let 𝑆 denote the active set of the MS, i. e. the set of cells 

actually detectable by the MS at a given time moment. A rough 

estimate of the conditional probability P(𝐶 ∈ 𝑆 | 𝑥) (that a 

certain cell 𝐶 is detectable by the MS if the MS is at point 𝑥) is 
provided by the mobile operator in the form of cell polygon: 

𝑃(𝐶 ∈ 𝑆 |𝑥) is 1 if location 𝑥 lies inside the cell's polygon and 

0 if outside, so the active set depends deterministically on 𝑥. In 

a more refined model, 𝑃(𝐶 ∈ 𝑆 |𝑥) could have non-zero values 

to reflect our ignorance of the precise coverage area and the 
stochastic nature of cell coverage caused by effects like 
Rayleigh fading and weather changes. 

We can only receive CDR events when the mobile phone is 
connected to network. Also, Estonia is very well covered and 
connection probability is almost 100%. We don’t know actual 
connection rate. Therefore, we simplify and calculate for each 

raster pixel P′(𝐶│𝑥) ≈ P(𝐶, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑│ 𝑥).  

For the probability P(𝐶 | 𝑥, connected) we propose an ad-
hoc formula (in contrast to the other formulas in this paper, 
which have some theoretical justification): namely, we take the 
probability to be proportional to the square of the probability 

P(𝐶 ∈ 𝑆 |𝑥), i. e. 

P(𝐶 | 𝑥, connected) =
P(𝐶 ∈ 𝑆 |𝑥)

2

∏ P(𝐶 ∈ 𝑆 |𝑥)2
𝐶∈𝒞

 (3) 

B. Description of test data 

Data consists of GPS measurements of individual persons 
who have installed GPS track recording software into their 
mobile phones, and CDR data for same persons from mobile 
operator. 

For each CDR record we found from GPS track the 
location of person for given time moment. The records not 
covered by GPS track were ignored. We used 4 personal tracks 
from same 8 month time period. Example of data is given on 

Fig 2. 

 

C. SPDF model quality assessment criteria  

We can only receive CDR events when the mobile phone is 
connected to network. Also, Estonia is very well covered and 
connection probability is almost 100%. We don’t know actual 
connection rate. Therefore, we simplify and calculate for each 

raster pixel P′(𝐶│𝑥) ≈ P(𝐶, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑│ 𝑥).  

 

Figure 2. Measured data used for model accuracy estimation. On the left is 

colorscale for count of measurements in grid cell. Each grid cell is 630m 

square 

The quality of SPDF estimate is evaluated with logarithm 
of likelihood  

∑ log P′(𝐶𝑖 | 𝑥𝑖)𝑖  (4)  
where i is index of measurement (one measurement is one 
CDR with established GPS location). 

III. RESULTS 

A. SPDF variants from cellplans 

We divided test area into quadratic pixels of size 630 

meters. For all cellplan variants the values of raster P′(𝐶│𝑥) 
were calculated. As illustration on Fig 3 is cross-section of 
area, showing relative probability of each cell in given point.  

 

B. Model likelihood calculations 

Using the calculated SPDF rasters we calculated with 
formula (4) the likelihood of data given each SPDF variant 
tested. There were two cellplan datasets for same network, one 
based on RSSI (Received Signal Strength Indication) data and 
another on tower+azimuth (used to construct Voronoi 
polygons). Derived variations include: 

 rssi_default –RSSI data, unchanged 

 rssi_A1AP2 –twice stretched beam width  

 rssi_A2AP1 –twice stretched beam along azimuth 

 rssi_A3AP1 –three times stretched along azimuth 

 rssi_convexhull –convex hull over original geometry 

 rssi_ellipse –original approximated with ellipse 

 voronoi_default – tower coordinate data, Voronoi 

constructed 

 voronoi_A1AP2 – stretched twice width of beam 

 voronoi_A2AP1--  stretched twice along the beam 

 voronoi_A3AP1—stretched three times along the 

beam 

 voronoi_convexhull -- original 

 voronoi_ellipse  

The results are shown on Fig 4.  
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Figure 3. Illustration of SPDF of all cells along cross-section of test area along 

a line, showing relative probability of each cell in given location. Horizontal 
axis is pixel number (each pixel is 630m) and vertical axis is stacked 

probabilities of cells. Upper chart is generated with applying Bayesian 

overlapping cell model, lower drawing without considering overlapping 
effects.  

Figure 4. Relative performance of various cellplan variants. Horizontal axis – 
different test phone tracks (subsets of positioning data, with different spatial 

distribution). Vertical axis – average log P(C|x) for CDR records of given 

track. 

IV. DISCUSSION 

The main findings are 

 Some processing variants performed significantly 
better than the others for certain situations, but there 
was no single best method for all situations. When 
backed with large test dataset one could develop a 
mixed processing procedure using different method for 
different areas but it is limited by overfitting concerns.  

 SPDF calculated from RSSI data was not superior to 
simplistic Voronoi-based SPDF. We had expected that 

RSSI input enables much better estimation than tower 
location and azimuth data. 

 The modest dataset consisting of four personal tracks 
characterizes some location sufficiently but is not 
sufficient to give overall picture. 

 Accounting for cell overlap effect with Bayes rule had 
in majority of cases positive effect. The likelihood 
value depended much more on location than Bayes, but 
this need not mean that applying overlap correction 
with Bayesian rule is insignificant. Due to the 
methodology of comparison likelihood is related to 
probability density, and in areas with larger cells the 
SPDF values are expected to be significantly lower, 
thus it need not be the flaw of SPDF estimation. 

In future work we plan to analyze specific situations where 
performance of one or other SPDF estimation variant 
degrades and optimize the methods accordingly. Also we 
plan to investigate effects of previous state, e.g. MS 
approaching cell, or stationary in neighborhood of cell. 
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