
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Vinod Infant Dass John Rozario

Model-based Role Based Access Control for

RESTful Spring applications

Master’s Thesis (30 ECTS)

Supervisor(s): Dr. Luciano García-Bañuelos

Tartu 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Model-based Role Based Access Control for RESTful Spring applications

Abstract:

Model-driven software development is the modern software development methodology that

aims at solving a specific problem by creating the domain models and providing the solution

in a conceptual way. Domain-Specific Language (DSL) is the computer language that al-

lows solving a problem in a specific domain. The goal of this thesis is to develop a software

tool that helps to generate the software codes automatically with Role Based Access Control

for a RESTful application. In this context, we want to provide a resource specification as an

input to the software tool through DSL for describing the database layer components (i.e.

Entity classes and Repositories), the integration layer components (i.e.

Resources/Assemblers, Controllers), and a Role-Based Access Control model to be

associated with a target application. Based on the definitions, our tools will generate code,

including RBAC authentication/authorization related configuration and helper classes.

Thus, the skeleton for the RESTful Spring Boot application with the annotations and basic

code to enforce the RBAC model provided as input.

Keywords:

DSL, RBAC, REST, API, HTTP

CERCS:

P170 - Computer science, numerical analysis, systems, control

3

Mudelipõhine rollidel baseeruv ligipäässüsteem RESTful Spring ra-

kendustele

Lühikokkuvõte:

Mudelipõhine tarkvaraarendus on kaasaegse tarkvara arendamise metoodika, mille eesmärk

on lahendada konkreetseid probleeme, luues domeeni mudelid ja pakkudes lahendust

kontseptuaalsel viisil. Domeenipõhine keel (DSL) on arvuti keel, mis võimaldab lahendada

probleeme konkreetses domeenis. Käesoleva lõputöö eesärgiks on arendada tarkvaraline

vahend, mis aitab luua automaatselt tarkvarakoodi rolli-põhise ligipääsu kontrolli abil

RESTful rakendustele. Selle jaoks soovime pakkuda spetsifikatsiooni, mis läbi DSL-i

sisendi kirjeldaks andmebaasi kihtide komponente (näiteks klassid ja hoidlad), vahekihtide

komponente (st Resources/Assemblers, Controllers), ja rolli-põhise ligipääsu kontrolli

mudelit koos sihtrakendusega. Tuginedes reeglitele, genereerib meie vahend koodi, mis si-

saldab RBAC autentimisega / autoriseerimisega seotud konfiguratsiooni ja abiklasse. See

on kogu RESTful Spring Boot rakenduse tuumik koos kommentaaride ning baaskoodiga,

mille sisendiks on etteantud RBAC mudel.

Võtmesõnad:

DSL, RBAC, REST, API, HTTP

CERCS:

P170 – Arvutiteadus, arvustusmeetodid, süsteemis, juhtimine (automaatjuhtimisteooria)

4

Table of Contents

1 Introduction ... 6

1.1 Context ... 6

1.2 Motivation and problem description .. 6

1.3 Objectives ... 7

1.4 Thesis organization ... 7

2 Background ... 8

2.1 REST .. 8

2.1.1 Architectural constraints ... 8

2.1.2 HTTP methods .. 9

2.1.3 HTTP status codes ... 10

2.2 RESTifying approach ... 11

2.2.1 Domain model ... 11

2.2.2 Resource model ... 12

2.2.3 State model .. 13

2.3 Security ... 14

2.4 Role-based access control (RBAC) .. 16

2.5 Domain Specific Language (DSL) ... 17

2.6 Xtext and Xtend .. 18

3 State of the art ... 20

3.1 Related work ... 20

3.2 Discussion ... 21

3.3 Solution ... 22

4 Contribution .. 23

4.1 DSL specification ... 25

4.2 Code generation .. 30

4.2.1 From Domain model ... 30

4.2.2 From Resource model ... 32

4.2.3 From State model .. 34

4.2.4 From Role Based Access Control model .. 35

4.2.5 Views ... 39

4.3 Discussion ... 43

5 Case study ... 44

5.1 Example application (RentIt) ... 44

5.2 Summary ... 49

5

6 Conclusion and future work .. 50

6.1 Conclusion .. 50

6.2 Future work .. 50

7 References ... 51

Appendix ... 53

I. Grammar implementation .. 53

II. DSL specification ... 55

III. Project setup ... 57

IV. Results of application – Views ... 59

V. License .. 61

6

1 Introduction

1.1 Context

Web applications are ruling the internet world since the 1990s. In today’s world, there are

thousands of web applications. Web applications are usually implemented in programming

languages such as Java, C#, PHP, etc. RESTful applications are becoming very popular

since the early 2000s. RESTful web applications are used in almost all the industries such

as banking, hospitals, government organizations, etc. For example, at first banking was a

manual process, but now internet banking and mobile banking are replacing the manual

banking process.

The RESTful services include CRUD operations such as create, read, update and delete.

These operations make use of GET, POST, PUT and DELETE. Section 2 explains REST1

in detail. RESTful APIs are one of the main elements for web applications. The RESTful

services can be implemented on various platforms according to the requirement specifica-

tions. The RESTful application can also be cross-platform where one application is

implemented in one programming language and another application in another program-

ming language. In this case, both the applications can communicate with each other, share

data and services through REST operations. REST API2 is needed to make a REST call.

Section 5 mentions the development of REST API. All the REST calls are public, but it can

be restricted through security. There are many ways to secure the RESTful API, but one of

the ways is through Role Based Access Control. Section 2.4 describes more about Role

Based Access Control.

1.2 Motivation and problem description

REST web application had already made a significant impact in information technology.

The interest shown towards the development of web APIs during my master studies and

some interests on security services of web applications were the main motivation towards

the selection of this thesis domain.

In today’s world, developing a RESTful API from scratch is the big challenge for develop-

ers. It also takes several weeks and even months to develop APIs. Many companies use the

process flow diagram or state diagrams to represent the entire process of their web applica-

tions. The writing code for the whole application takes long time and also needs more man-

power. If the application has to be secured, then developers need to write code separately

for the security configuration. Apart from back-end code, the developer has to write the

front-end code as well. In the end, this thesis points on following research questions:

1. Is there any way to generate the codes automatically for RESTful Spring Boot web

application?

1 REST means Representational State Transfer which defines the software architecture style of the web appli-

cation [1].
2 API are the sets of requirements where one application communicate with another application [2].

7

2. If possible, then how to generate the security configurations and views automatically

to that web application?

1.3 Objectives

The aim of this thesis is based on the achievement of the following contributions:

 Determine the appropriate security model for the RESTful API.

 Determine a way to generate the codes for RESTful API automatically.

 Develop a software tool to generate the RESTful API with appropriate security fea-

tures.

 Generate the front-end codes for the RESTful application using our software tool.

1.4 Thesis organization

This thesis is organized as follows:

1. Introduction – introduces the general context of the topic, motivation and the prob-

lem of the thesis and the contributions to be achieved.

2. Background – gives an overview of REST and RESTifying approach that includes

the domain model, resource model and REST API and also general overview about

RBAC3.

3. State of the art – illustrates about the related work about this thesis, discussion

about the related work and thesis and the overall solution to be implemented.

4. Contribution – illustrates about DSL specification and the code generation.

5. Case study – shows a case study and summary.

6. Conclusion and future work – concludes the work by making the overall overview

of the thesis and the future work.

3 Role-Based Access Control

8

2 Background

In this chapter, the various technology backgrounds that are needed for this thesis will be

discussed. The concepts that are to be discussed includes the RESTifying approach, RBAC,

DSL, Xtext and Xtend.

2.1 REST

REST stands for Representational State Transfer, is one of the software architecture styles

which was introduced and defined by Roy Fielding in 2000 [19]. REST architecture style is

mainly based on the stateless, client-server and HTTP protocol. This architectural style is a

key aspect in designing network applications and distributed systems. REST does not

completely rely on HTTP but mostly linked with it. The properties of REST play the vital

role in the REST architecture style and make the REST architecture simpler. REST archi-

tecture is a lightweight alternative to other mechanisms like RPC4, SOAP5, and WSDL6.

[20]. Moreover; REST is a platform-independent, and language-independent service. The

following sub-sections explain in detail about REST.

2.1.1 Architectural constraints

REST has a set of constraints to components, data elements, and connectors. The main con-

straints include client-server, stateless, layered system and uniform interface.

1. Client-server:

The client-server constraint is the most common constraint where the user-interface

separates the clients from servers. Some properties or features are not mandatory for

the clients, but some of those properties are important of servers. For example, some

database related codes are not important to be present in client side, but it is more im-

portant for the server. Hence, portability of the code can be improved on the client side.

2. Stateless :

The client-server communication must be stateless in nature. The stateless nature is

because that server must have all the information that are needed to respond to the re-

quest made by the client. The session state entirely depends on the client. In this con-

straint, the properties such as visibility, scalability and reliability are improved based

on different aspects. The main drawback is that is the decrease in the performance of

the network by sending the same data in the cluster of requests.

3. Layered system:

In REST architecture, a client cannot be able to tell how it has been connected to the

end server either directly or through some midway. In the layered system of client-

server connection, the client is connected to the server using client connector, client

4 Remote Procedure Calls
5 Simple Object Access Protocol
6 Web Services Description Language

9

cache, server connector, and server cache. These elements connect the client of the

server, network or the database using the respective connectors.

4. Uniform interface

The visibility of the interactions is improved, and the system architecture can be

simplified by applying the generality principle of software engineering [1]. REST in-

terface is made to support large-gain hypermedia transfer. The uniform interface can be

achieved by having multiple architectural constraints to guide the behaviour of compo-

nents [1]. The four constraints of uniform interface are:

 Identification of resources

 Manipulation of resources through these representations

 Self-descriptive messages

 Hypermedia as an engine of application state.

These constraints are the main principles of REST. The resources know about the struc-

ture of URIs. For example, http://www.anonymous.com/user/190 represents the dy-

namically pulled resource. The representations are mainly to transfer from JSON7 to

XML8 and manipulate them. For example, the JSON snippet shown below describes

the data to create an equipment.

{

“name”:“Excavator”,

“description”:“2.5 ton excavator”

“price”:250.0

}

This JSON is parsed in the server and saved to the database. The messages are mostly

HTTP method which is explained in detail in next sub-section 2.1.2. The hypermedia

indicates the stateless interactions where the server stores the data sent by the client.

2.1.2 HTTP methods

HTTP methods are used to map CRUD operations to HTTP requests [19]. HTTP methods

are used with REST to form as a RESTful service. GET, POST, PUT, and DELETE are the

four main HTTP methods.

1. GET

‘GET’ is used to retrieve the data from the database. The GET requests can be partial

or conditional. The partial request retrieves all the information from the particular table.

The conditional request retrieves only the specific data from the database based on the

condition.

7 JavaScript Object Notation
8 Extensible Markup Language

http://www.anonymous.com/user/190

10

Example:

GET /plant – gets all the plants of the respective table

GET /plants/1 – gets the plant with an ID of 1 of the respective table

2. POST

This HTTP method is mainly used to create a new entity in the table. However, it can

also be used for update an existing entity.

Example:

POST /plant – creates a new plant

3. PUT

Like POST, ‘PUT’ can be used to create a new entity and also used to update an existing

entity in the table. PUT is idempotent [19].

Example:

PUT /plant/1 – update the plant with an ID of 1

4. DELETE

If a resource has to be removed, then DELETE method can be used.

Example:

DELETE /plant/1 – deletes the plant with an ID of 1

2.1.3 HTTP status codes

HTTP response status codes are the codes that are results of the HTTP requests. When an

HTTP request is made from the client, the server will send an appropriate status code along

with the data, if any. The browser translates these status codes. The types of HTTP status

codes are [19]:

 1XX - informational

 2XX - success

 3XX - redirection

 4XX – client error

 5XX – server error

11

2.2 RESTifying approach

The RESTifying approach includes the domain model, resource model, database, and REST

API. Figure 2.1 explains the RESTifying approach. The following sections explains the

artefacts shown in this approach. This approach is a key for creating the RESTful API.

Figure. 2.1 RESTifying approach [3].

In this approach, domain model shows the data that is needed, the resource model gives the

events and ‘behaviour model’ which is also known as state model that defines the states and

the transitions of the RESTful API.

2.2.1 Domain model

Every application/software that we develop has the set of requirements to be fulfilled. The

first step in the software development is creating a domain model. “Domain modelling (aka

ontology modelling) is a method for describing the characteristics of and relationships be-

tween concepts in a specific domain or field of discourse” [4].The service requirements are

modelled as domain model. To define a domain model for the service requirements, some

rules has to be followed. Associations can connect the communication between the elements

of the domain model. The properties of associations include one to many, many to one,

many to many and one of one relationship. As a way of example, Figure 2.2 shows a sim-

plified domain model for a fictive web application from the equipment rental domain that is

used in the context of the course Enterprise System Integration at University of Tartu [22].

12

The main element of this model is PurchaseOrder which has many equipments in it. The

UML9 elements include classes, associations, compositions, generalizations, etc.

Figure. 2.2 Domain model of RentIt system

From the domain model, it is easier to define the elements RESTful API because the core

elements of the RESTful API is the domain model. However, the resource model is needed

to make the CRUD operations because the resource model connects with the database.

2.2.2 Resource model

The resource model is the modified version of the domain model which means that the do-

main model is re-organized to form the resource model. The resource model also defines

the tables in the database. It also connects with REST API. All the data from and to the

REST API is in the resource model of the application.

The resource model is modelled by using resource model profile. Figure 2.3 explains the

resource model profile of RentIt system. The main elements of the resource model profile

include Container, Item, Property, Item and Projection. It is possible to include HTTP10

operations and REST methods in the resource model. So, the RESTful web services can be

defined fully from the resource model.

9 Unified Modeling Language
10 Hypertext Transfer Protocol

13

Figure. 2.3 Resource model of RentIt system

2.2.3 State model

The resource model provides the resources that are needed to build a RESTful API.

However, RESTful API not only depends on the resources, but it also depends on the states

and transitions of the application. So, the state model is needed to define the states and

transitions of RESTful application. An example of state model is shown in Figure 2.4. The

state model has the start state and the end state of the application.

Figure. 2.4 State model of RentIt system [5]

14

So the REST application starts from the start state which travels to the end state. Each state

has a name and the incoming and outgoing transitions. Each transition consists of HTTP

verbs, URL11, and a name. HTTP verbs will be any one of GET, POST, PUT or DELETE.

The URL defines the path by which the specific transaction has to be accessed. In REST

API, the transactions will be formed as methods which do the operations that have to be

done in the particular state. By combing the resource model and state model forms the REST

API. The resource model defines the resource/attributes of each transaction in the state

model. Each transaction the state model has its properties in the resource model along with

the transaction properties defined in the state model. All the states that are mentioned in the

state model will be directed to do some operations in the RESTful API.

2.3 Security

One of the goals of this thesis is to implement security features in a RESTful API. The

security is the way of protecting the system from an anonymous user access. In computer

security, the data should be protected so that only authorized users can only access the data.

This is typically known as Information security. Authentication and authorization are the

two basic concepts in security. Authentication refers to the login access to the system. It

means that the user who is registered to the system all with some role will have some login

credentials to access the system. There are many ways to authenticate into system:

 Conventional username - password system

 Pattern based

 Fingerprint

 Image based

 Voice based password

These types of authentication depend on the user and the system. The system should have

necessary configuration to provide any of these authentication types. Authorization is the

next step of the authentication. The authenticated users will have access to only some parts

of the system. This means of access to the part of the system is known as the system of

authorization. In a network system, all the parts will have access to the administrator

whereas some parts only are accessible to the other users.

For example, the study information system is a web application that have access to all the

teachers and the students. However, the administrator will set the access rights to the stu-

dents and the teacher separately so that the students cannot be able to access the teachers’

private contents. There are many ways to implement security in the computer system.

Different security models can implement the security in the system. Some of the models are

listed and explained shortly below:

11 Uniform Resource Locator

15

1. Access Control List (ACL):

Access Control List is a list of permission that is mapped to an object. It is possible to

set the set of users to access the file in the system. All the entry or command that are

specified in the list is in the form of subject and an operation. Role Based Access Con-

trol is a most alternative this model. The minimized RBAC model is equivalent with

ACL group mechanism.

2. Bell-LaPadula model:

Bell-LaPadula model is a state-machine model which is used in the high-level security

especially in government and military applications. This model is highly enforced ac-

cess control model. The main features of this model include the Strong ★ property and

Tranquillity principle. There are some strict limitations to this model.

3. Biba model:

Biba Model is also known as Biba Integrity Model. It is a formal state-transition system

of security where there is a set of access control rules that are designed to ensure the

data integrity. This type of security model is mainly for the high level of data integrity.

4. Brewer and Nash model:

This type of security was built to provide the security access control which can change

dynamically. This is also known as Chinese wall model, which is constructed upon

information flow model. The goal of this model is to provide the access controls that

mitigate interest conflicts in organizations.

5. Graham-Denning model:

Graham-Denning model is defined as the model that illustrates how subjects and objects

are created and deleted securely. It is mainly used in the distributed systems where it

also shows how to assign access rights. This model is extended by Harrison-Ruzzo-

Ullman security model where the security is based on the commands of respective con-

ditions and operations.

6. Harrison-Ruzzo-Ullman:

This model is an extension of Graham-Denning model. This security is mainly built

for the operating system where the model is for the integrity of access rights in the

system. This model defines a security system that has set of universal rights and set of

commands. The configuration is defined as a description and has a tuple of current sub-

jects, current objects, and access matrix.

7. Lattice-based access control (LBAC):

Lattice-based access control model uses lattices to define the levels of security. It is a

complex model whose access control is any combination of subjects and the objects.

16

It has a different type of security based on the partial order set. For example, if user1 is

only allowed to access file-A if the level of security of user1 is greater than or equal to

file-A.

8. Context-based access control (CBAC):

CBAC is mainly used in the network levels. It has a firewall software features that filters

UDP and TCP packets that are in the application layer of session information. The ben-

efits of CBAC includes:

 Real-time audit trails and alerts

 It can do the deep packet inspection

 Denial of service prevention and detection

9. Mandatory access control (MAC):

MAC security model is the high-level access control model for the operating system. It

has a constraint that the ability of subject to perform some operation on an object. It is

a strong security model that has many implementations.

10. Role-based access control (RBAC):

RBAC is a well-known security model that has been used by most of the enterprises

that can implement MAC. This model focuses on the security model by which it restricts

the access to the system based on the roles. It is the first alternative to Access Control

List (ACL). The three primary rules for this model is:

 Role assignment

 Role authorization

 Permission authorization

With RBAC, it is possible to simulate LBAC. RBAC is widely accepted by many or-

ganizations and hence considered as a best practice security model.

All the above security models provide the security to the computer system. Most of the

security models are applicable for operating systems and the network-side security. Among

these models, ACL, Bell- LaPadula model, Biba model, LBAC and RBAC is suitable for

securing web applications. However, Bell-LaPadula and Biba models are high-level security

models which are complex to implement in web applications. RBAC is the superset security

model for ACL and LBAC. Also, RBAC is widely used and has strong security features.

So, RBAC will be a better selection for RESTful API. Role –Based access model will be

explained more in detail in the next sub-section 2.4.

2.4 Role-based access control (RBAC)

A way of securing the system by restricting the access to the users of the system using

authentication and authorization is called Role-Based Access Control. In RBAC, the sys-

tem/application is secured by using the roles of the users. The RBAC security depends on

17

the types of role that the user has to access the system. The actions which are performed by

the users are called transactions.

There are two types of access in RBAC. They are single role access control and multi-role

access control. In the single role access, the system will always have only one role. The

multi-role access system has a feature of registering a user to multiple roles. Figure 2.5

shows an example of multi-level RBAC. In the multi-level RBAC, the system is restricted

to different roles of the system. Each role has access to an only specific set of transactions.

The set of transactions are pre-defined in the system. When a new member is registered to

the specific role, then the respective set of transactions are applied to that user. One of the

significant uses of RBAC is that the security changes can be made easily.

Figure. 2.5 Example of RBAC model [6].

2.5 Domain Specific Language (DSL)

Domain-Specific Language (DSL) is the computer language that allows solving a problem

in a specific domain. “DSL is a programming language or executable specification language

that offers, through appropriate notations and abstractions, expressive power focused on and

usually restricted to, a particular problem domain” [15]. The main prerequisite for DSL is

the thorough analysis of scenario and also should know about the structure of the domain of

the application. It is better to have the structure of the application to be drawn as models so

that it gives the clear idea to design a DSL.

18

There are many usage patterns for DSL [16]:

 It can be implemented by programming languages which can be later converted to

host general programming language at run-time.

 The embedded form of DSL can be implemented as libraries

 Implementing DSL into the application either let the programmers to write the code

manually or generate the code automatically. These two options can also be done

together.

 Sometimes it can used in command line for processing with the standalone tools by

user operation.

For example, a part of DSL for state model shown in Figure 2.4 is illustrated below. The

DSL shown below describes the states and transitions for creating, accepting, rejecting and

deleting the purchase order.

 states

 state initial

 create => pending_confirmation

 end

 state pending_confirmation

 acceptPO => open

 rejectPO => rejected

 end

 state rejected

 update => pending_confirmation

 end

 state open

 delete => closed

 end

 state closed

 end

 end

2.6 Xtext and Xtend

A framework that is being used for this approach is “Xtext”. Xtext is a framework used for

implementing programming languages or DSLs [13]. It is a plugin that can be added to the

Eclipse framework. In our approach, Xtext is used to develop the DSL for our software tool.

The Xtext project can be created as like creating the normal project in Eclipse.The files and

packages generation in Xtext depends upon the type of the grammar. By the analysis of the

types of grammar in Xtext, there are two main types: Common Terminals and XBase. XBase

creates JVMmodel files in addition to the commonly generated files. For this approach,

Common Terminals grammar type is used. Xtext has five main components. They are:

 Main

 Package that contains Xtext and Xtend files

 Generator

 Scoping

 Validation

19

Xtext generator generates files in separate folders. Parser and Serializer packages are also

present in the Xtext project which parses the code and serializes them respectively. Xtext

files contain the grammar that is needed for writing resource specification. Some rules

should be followed to write the grammar in Xtext file. The Xtext grammar can be run as

Xtext Artifacts.

Xtend is a high-level programming language especially made for Java programmers. It is a

great advantage for Java developer. It is originated from Xtext, and no special plugins

needed for it. It comes along with Xtext package. It is the main part of DSL development

because it generates the codes for the RESTful API. The nature of the Xtend changes on

Xtext grammar. If Xbase grammar model is chosen, then Xtend code should be in JvmMod-

elInferrer. This inferrer extends from AbstractmodelInferrer. This uses the Java Virtual Ma-

chine high-level programming.

20

3 State of the art

This chapter describes the research on the relevant papers and review about the papers. Also,

the discussion about the related work regarding this thesis and the possible solutions to im-

plement.

3.1 Related work

There are some relevant literatures that has been up to review to get the answers for the

research questions mentioned in section 1.2. In 2006, Xin Jin did his master thesis work in

“Applying Model Driven Architecture approach to Model Role Based System” [7] in which

worked on a solution to build a tool-supported framework that uses the Model Driven Ar-

chitecture approach with UML Class Diagram. The reason to review this literature is that

this uses Model Driven Architecture to generate RBAC in XACML document. It shows how

to create RBAC model. This paper focuses on generating security model in XACML12 for-

mat automatically. The generated RBAC model is the class diagram which led the developer

at the beginning of the software design process.

In 2007, Ahn Gail-Joon and Hu Hongxin did a distinguished work “Towards Realizing a

Formal RBAC Model in Real Systems” [8] where the work aims at creating a framework

called RAE (RBAC Authorization Environment). This framework is based on ArgoUML13

which is a UML-based modelling tool which converts the UML RBAC class diagram to

generate Java code automatically. This tool also has specification and validation compo-

nents to specify a more precise way of representing the data. The main idea behind the code

generation is OCL14. The OCL library helps to generate OCL expressions to Java code. This

literature depicts how Java code has been generated for RBAC model and also it shows a

UML class diagram for RBAC model.

Similar to this paper, there is another research work “A UML Profile for Role-Based Access

Control” [9] by Cagdas Cirit and Feza Buluca in 2009. In this paper, the author had proposed

a UML profile for RBAC that gives an access control specifications to the whole develop-

ment process at the beginning of integration process. In this paper, RBAC UML profiling is

done based on its class diagram. UML profiling is done creating the stereotypes for all the

elements of the UML that is to be created. The same UML stereotyping is also done for

RBAC such as user stereotype, role stereotype, permission stereotype and few more security

related stereotypes. The entire UML profiling is validated by using OCL.

In 2012, Manar H. Alafi, James R. Cordy and Thomas R. Dean did a research work on

“Recovering role-based access control security models from dynamic web applications”

[10] where they represented tool called ‘SecureUML.' This paper uses PhpBB 2.0 as an

example. This tool recovers RBAC model from the models of the dynamic web application.

This article also has a future work for a large scale evaluation of the effectiveness test of

12 Uniform Resource Locator
13 ArgoUML is an UML diagramming application written in Java
14 Object Constraint Language

21

this approach. In the mid of 2013, Kaarel Tark did his master thesis on “Role Based Access

Model in XML-based Documents” [11]. In his work, the problem for securing XML docu-

ments has been solved. The solution is to implement RBAC in XML-based documents. In

this approach, DSL used to implement RBAC security in the XML document. This paper

also has the future work of applying the same method with improved XML schema.

When searching for latest model-driven development research papers, two papers were

found. One of them is “Model-driven Development of RESTful APIs” [12] by Vitaliy

Schreibmann and Peter Braun in 2015. This paper uses the DSL approach to generate the

codes for REST API from the state model. However, this approach does not generate views

and not deals with security. It uses the behaviour model that consists of states and transitions

which in turn generate the respective code based on the states. Another paper is “Model-

driven Testing of RESTful APIs” [13] by Tobias Fertig and Peter Braun in 2015. This article

aims at developing the software generator to generate automated test cases. This software

generator also creates the codes for REST API and test cases to test the REST API imple-

mentation. The testing types of this approach also include security testing.

3.2 Discussion

The literature review in section 3.1 gives some hints to make up the solution. The main

literature to be considered is “Model-driven Development of RESTful APIs”. This is be-

cause that this paper has the DSL approach to generate REST API code from the state model.

REST can be formally described by WSDL and WADL15 but not the RESTful APIs [12].

But replacing WADL with RDSL16 simplifies the definition of REST APIs [12]. So the

overall architecture contains RDSL-API which is encapsulated by REST-API. Figure 3.1

below depicts the position of both REST and RDSL APIs.

Due to lack of support of security and API documentation in WADL, it has replaced by

RDSL in this approach. There are few more considerations for RDSL. RDSL describes [14]:

 HTTP headers

 Resources

 URI parameters and templates

 Authentication mechanisms

 Methods that are linked with resources.

There are some topics like Media Types which are not focused in this approach. Another

paper that can be considered is “Applying Model Driven Architecture approach to Model

Role Based System”. Even though this approach deals with XACML, it has the implemen-

tation of RBAC with Model Driven Architecture. The another paper in “Towards Realizing

a Formal RBAC Model in Real Systems” can be taken in to account because this approach

is important for java codes and also implements RBAC.

15 Web Application Description Language
16 RESTful Service Description Language

22

Figure. 3.1 The position of RDSL and REST APIs in relation to current API designs [12].

So, the three papers mentioned above will be considered to make the solution for the prob-

lem described in this thesis. The solution for this thesis problem will be explained in next

section.

3.3 Solution

On deeper research about the papers mentioned in sub-section 3.2, using the implementa-

tions and methodologies can bring the solution to the problem of this thesis. The solution

includes the development of a software generator in which state-resource model generates

the skeleton code of RESTful API through DSL implementation. The developer then has to

add some additional codes in order to make the full application to work more efficiently.

The goal of this approach is to implement the RBAC to generated RESTful API. To achieve

this, RBAC can be applied in DSL in which the Spring security authorization and authenti-

cation codes will be generated along with RESTful API. Also, to view the result of the

RESTful API, the views are also generated through DSL. The user of this software generator

has to specify the state model according to the rules of the grammar.

23

4 Contribution

The main scope of this thesis is the automatic code generation. In this section, we see how

the code is generated by the software code generator from the resource specification. The

subsections will provide details of how the code is being generated from the specification

and setup generated files which are not specific of resource specification.

Let us consider an example of behaviour model shown in Figure 2.4. This is a model that

corresponds to a fictive scenario inspired from the Equipment Rental domain (also known

as the Plant Hire domain [22]), that is used in some courses at Software Engieening

Programme of the University of Tartu. The scenario considers a fictive company, called

RentIt, that provides access to its equipment catalog and allows its customers to place rental

orders (a.k.a. purchase orders) via a web portal. Only a part of this model is taken for

demonstrating this section. The simplified RentIt state model is shown in Figure 4.1. This

RentIt state model illustrates the life cycle of a purchase order. It is basically an equipment

rental system in which the customer chooses the equipment and creates purchase order.

Figure 4.1 Simplified state model of RentIt system

Method name in Model Verb URI

createPO POST /pos

acceptPO POST /pos/{po.id}/accept

rejectPO DELETE /pos/{po.id}/accept

updatePO PUT /pos/{po.id}

closePO DELETE /pos/{po.id}

Table 4.1 Purchase Order methods

24

The purchase order will be created, accepted/rejected, updated or deleted in above model.

Each operations shown in state model have HTTP method and REST path. Table 4.1 shows

the method name, HTTP method and the path of the state model.

Figure 4.2 Domain model of RentIt system

The code generation for this model depend on the resource specification input to the code

generator. The domain model and resource model of RentIt system is shown in Figure 4.2

and Figure 4.3 respectively.

Figure 4.3 Resource model of RentIt system

25

4.1 DSL specification

One of the main parts of this thesis is resource specification. Resource specification is com-

monly defined as an input which is needed to generate the code. In other words, resource

specification is the textual representation of data, resource and state model. Considering the

state model shown in Figure 5.1, the specification of DSL is explained as follows.

From Figure 4.2, purchase order has one or more equipment(s). So, the resource specifica-

tion will have two resources specified. The main part of this resource is ‘resource’ block.

The resource is an optional element in the resource specification. It starts with a word “re-

source” and ends with “end”.

The resource block for Equipment is:

resource Equipment on "/rest/equipments" view "crD"

end

Similarly, the resource block for purchase order is:

resource PurchaseOrder on "/rest/orders" view "CRUD"

end

"/rest/equipments" is the root path of the Equipment controller and view "crD" defines

the equipment has create, read and delete views. "/rest/orders" is the root path of the

Equipment controller and view "CRUD" defines the equipment has create, read, update and

delete views. Each resource declared has a name, path and view. The name of the resource

is a word with only alphabets. The path string is not optional. If a resource does not have

any root path, then it can be written as empty string. An important rule about path string is

if a resource has a path string, then it should be preceded by “/rest”. The resource which has

a word “rest” in its path will be secured. If a path does not have “/rest”, then it will be

automatically added if:

 the path string is not empty

 path string does not have “/rest”

 Resource have view string or have at least an action.

View starts with word “view” and it is optional. Four characters “CRUD” which does the

four operations Create, Read/List, Update and Delete respectively. The characters can be

placed in the string at any index. This word/string is not case-sensitive. The HTML and JS

files will be created based on the CRUD characters in the view string.

The data is an optional in the resource specification. The data starts with a prefix “data”

and ends with “end”. All the data declared has name in left side and type in the right side

with “:” in between. If the data is a list, then the word “many” can be used before data type.

An important rule is if a resource has Create view then resource type has to be postfix by

word “rendered” only if that data is one of the necessary element for creating the resource.

From Figure 4.2, the data for the resources are written to the resource specification. The data

for Equipment is:

26

data

 name: String

 description: String

 price: BigDecimal

end

The data for Purchase Order is:

data

 equipment : many Equipment rendered

 startDate : Date

 endDate : Date

 total : Long

end

In the above data, the data types which has been used should be declared all the above re-

sources in the DSL. The datatype is an optional component in the resource specification.

Whatever the data type that is being used in the resource block, it has to be defined as

‘datatype’. Since we have used String, BigDecimal, Date and Long in the above data, it has

to be declared as data type along with void and Boolean.

datatype String

datatype void

datatype BigDecimal

datatype Date

datatype Long

datatype Boolean

The datatype which is written above should have the import of its respective package. All

the data types declared except String, void, BigDecimal, Date and Long should be imported.

The import is optional component in the resource specification.

import java.lang.Boolean

The ‘actions’ block is an optional component in the resource specification. It should start

with prefix “actions” and ends with “end”. We shall specify actions for Equipment. The

below action block shows create, update and delete methods of Equipment.

actions

 {"id" -> Equipment}

 create(Equipment) : Equipment

 with POST on ""

 update(Equipment) : Equipment

 with PUT on "/{id}"

 Delete() : Equipment

 with DELETE on "/{id}"

end

{"id" -> Equipment} specifies the id corresponds to the Equipment. The below action

block shows the actions of Purchase Order. As we discussed in this section, the methods of

Purchase order: create, update, accept, reject and delete (close).

27

actions

 {"poid" -> PurchaseOrder}

 create(PurchaseOrder) : PurchaseOrder

 with POST on "/pos"

 update(PurchaseOrder) : PurchaseOrder

 with PUT on "/pos/{poid}"

 delete() : PurchaseOrder

 with DELETE on "/pos/{poid}"

 acceptPO(PurchaseOrder) : PurchaseOrder

 with POST on "pos/{poid}/accept"

 rejectPO() : PurchaseOrder

 with DELETE on "pos/{poid}/accept"

end

{"poid" -> PurchaseOrder} specifies the id corresponds to the PurchaseOrder which is

to be mentioned in parameter of the methods. The method names may not be same as in

model because in our approach, the method names are CRUD should be same for all the

mentioned resources. So, ‘PO’ is missing in CRUD operations. Since operations of delete

method is similar to closePO, closePO is termed as delete. In the above case, if a resource

has view string, then it will have some events automatically generated. Those are:

 Create – To create a respective resource

 Update – To updated the respective created resource

 Delete – To delete the created resource

 GetAll – To get all the data resource

 GetOne – To get one specific resource

All these automated events are given public access by default. An important rule is that the

event name should not be duplicated. In case, if any of the above-mentioned events needed

to change or if it is needed to include in states block, then it can be written in actions block.

Only path string can be changed.

The states block is an optional component in the resource specification. This should start

with prefix “states” and ends with “end”. The states block can have any number of states.

Each state starts with name with prefix “state” and ends with “end”. Each state can have any

number of transitions. Transitions are created with action name in the left side and another

transaction name on the right side with implies (=>) in between them. The transactions can

be created only with the events written inside “actions” block and with the existing states.

Both state and transaction are optional.

From Figure 4.1, Equipment does not have any states. So, the Purchase Order states block

is:

states

 state initial

 create => pending_confirmation

 end

 state pending_confirmation

 acceptPO => open

 rejectPO => rejected

28

 end

 state rejected

 update => pending_confirmation

 end

 state open

 delete => closed

 end

 state closed

 end

end

Since ‘closed’ state does not have any transitions in the model, it is left empty without any

transitions in the DSL.

The ‘role’ is an optional component in the resource specification. If any role is not declared

or used, then the generated target application will have a default user as “admin”. If a role

is specified in the specification, then the target application will have username and password

as role name in lowercase letters in addition to admin user. In our example, we have two

roles:

role Customer

role Works_Engineer

The roles are mainly used in methods of ‘actions’ block. If an event in an ‘actions’ block,

has specific roles to be accessed, then it can be written inside [] preceded by word “roles”.

If there are multiple roles for an event, then roles can be separated by comma. If the roles is

not specified, then the respective event is accessed public. When the roles are added to the

actions block of Equipment and PurchaseOrder, all the securities components are added to

the respective resource. The modified Equipment actions block is shown below:

actions

 {"id" -> Equipment}

 create(Equipment) : Equipment

 with POST on "" roles [Works_Engineer]

 update(Equipment) : Equipment

 with PUT on "/{id}" roles [Works_Engineer]

 Delete() : Equipment

 with DELETE on "/{id}" roles [Works_Engineer]

end

‘roles’ mentioned above is optional. roles[Works_Engineer] is that all the operations can

be done only by the works engineer not by any other roles except admin. Since our main

focus is on the purchase order, the full description about the purchase order methods and its

roles are shown in Table 4.2.

29

Method

name in

Model

Method

name in

DSL

Verb URI Roles

createPO create POST /pos Customer

acceptPO acceptPO POST /pos/{poid}/accept Customer, Works Engineer

rejectPO rejectPO DELETE /pos/{poid}/accept Works Engineer

updatePO update PUT /pos/{poid} Customer

closePO delete DELETE /pos/{poid} Customer, Works Engineer

Table 4.2 Purchase Order methods

As described in Table 4.2, the PurchaseOrder’s actions block has been modified as follows,

actions

 {"poid" -> PurchaseOrder}

 create(PurchaseOrder) : PurchaseOrder

 with POST on "/pos" roles [Customer]

 update(PurchaseOrder) : PurchaseOrder

 with PUT on "/pos/{poid}" roles [Customer]

 delete() : PurchaseOrder

 with DELETE on "/pos/{poid}" roles [Customer, Works_Engi-

neer]

 acceptPO(PurchaseOrder) : PurchaseOrder

 with POST on "pos/{poid}/accept" roles [Customer, Works_En-

gineer]

 rejectPO() : PurchaseOrder

 with DELETE on "pos/{poid}/accept" roles [Works_Engineer]

end

The ‘package’ is the first and required element in the resource specification. It starts with

the word “package” which is followed by the package name of the target project.

package com.example

All the above mentioned specifications are the various parts of full resource specification.

The complete resource specification is shown in Appendix-II. This example can be taken as

account to write the new specification along with the respective state model. NB! Writing

wrong resource specification without following the rules mentioned above and DSL will

give the project run-time error which will not generate the code in the target project.

30

4.2 Code generation

In this section, the DSL specification which is described in the previous section is to be

generated as code by the software generator tool.

4.2.1 From Domain model

Models describes the data elements of the RESTful API. The model is the main and basic

component of MVC model which is foundation to the controller and assembler classes.

Models is a package that is being generated automatically with a name “.models” with a

prefix of package name. Models classes are generated from domain model. The Java classes

inside this package are generated based on the resource specification. The purchase order

resource specifications is,

 data

 equipment : many Equipment rendered

 startDate : Date

 endDate : Date

 total : Long

 end

and generated as model as shown below,

@Entity

@Data
public class PurchaseOrder {

 @Id

 @GeneratedValue

 Long id;

 @OneToMany(cascade = CascadeType.ALL)

 List<Equipment> equipment;

 @Temporal(TemporalType.DATE)

 Date startDate;

 @Temporal(TemporalType.DATE)

 Date endDate;

 Long total;

 @Enumerated(EnumType.STRING)

 PurchaseOrderState purchaseorderState;

}

In resource specification, the “data” block is generated as model java classes with respec-

tive resource name. Each model class has an ‘id’ variable generated along with other types.

In the above purchase order model class, the id is annotated with Id and GeneratedValue.

The model class is annotated by Entity and Data. Data is a part of Lombok that gives the

getter and setters of the items that are presented in the model. In resource specification of

purchase order, the equipment data has “many” items, so in the model class equipment is

annotated by “OneToMany”.

31

Equipment model is also generated in a same way like as Purchase Order model. Purchase

order resource contains “states” block in its specification, so an enum purchaseorder-

State is generated. The state names are added to enum file PurchaseOrderState as shown

below. These enum items will be added to the respective resource model class as with Enu-

merated annotation.

public enum PurchaseOrderState {

INITIAL,

PENDING_CONFIRMATION,

REJECTED,

OPEN,

CLOSED;

}

Resources is a package that is being generated with a name “.resources” and a prefix of

package name. Resources classes are generated from Domain model. The Java classes inside

this package are generated based on the resource specification. As like Models, Resources

are also generated from the “data” block of the resource specification with respective re-

source name and a postfix “Resource”. The number java classes created in models package

will be same java classes created in resources package except enum files, if any. The re-

source class of purchase order is shown below,

@Getter

@Setter

@JsonInclude(Include.NON_NULL)

@JsonIgnoreProperties(ignoreUnknown = true)

public class PurchaseOrderResource extends ResourceSupport {

 Long idres;

 List<EquipmentResource> equipment;

 @Temporal(TemporalType.DATE)

 Date startDate;

 @Temporal(TemporalType.DATE)

 Date endDate;

 Long total;

 PurchaseOrderState purchaseorderState;

}

The data in the purchase order resource class is same as in models with the difference in the

data annotations and id is replaced by ‘idres’. But the annotations for the resources are pre-

sent with Lombok annotations- Getter and Setter and JSON annotations. All the classes in

resource package are extends from “ResourceSupport” which is a helper class generated

in utilities. Utilities is a package that is being generated automatically with a name “.utili-

ties” and a prefix of package name. This package contains two Java files ExtendedLink and

ResourceSupport. These files are the mandatory files that will be generated automatically

and independent of resource specification.

32

The repositories are the important elements in MVC that connects with the respective data-

base tables to makes the CRUD operations that are performed by the controller. Repositories

is a package that is being generated with a name “.repositories” and a prefix of package

name. Repository are interface classes that are created from “resource” name of resource

specification with name as resource name with postfix “Repository”. The purchase order

“resource” block is present in resource specification, so the purchase order repository is

generated as,

@Repository

public interface PurchaseOrderRepository extends JpaRepository<Pur-

chaseOrder, Long> {

}

All the repository interfaces in the repositories package extends from JpaRepository which

has its respective model as its parameter.

4.2.2 From Resource model

The controllers are like communication component for the RESTful applications. It com-

municates between back-end and the front-end of the application. It controls the web appli-

cation and makes the necessary operation that are needed for the application. ‘Controllers’

is a package that is being generated automatically with a name “.controllers” and a prefix of

package name. The controllers package contains the controller java classes. The generation

of controller java classes are depend on the resource specification.

If “resource” block is present in resource specification, then the respective controller will

be generated. The generated resource controller java class has the name as “Controller” with

prefix of resource name. All the generated controllers are annotated with RestController and

RequestMapping. RequestMapping parameter is taken from path string (Eg: "/rest") of

the “resource” block. All the controller classes have declared respective repositories and

assemblers. The purchase order controller is generated as,

@RestController

@RequestMapping("/rest/orders")

public class PurchaseOrderController {

@Autowired

PurchaseOrderRepository purchaseorderRepo;

PurchaseOrderAssembler purchaseorderAssembler = new PurchaseOrderAssem-

bler();

EquipmentAssembler equipmentAssembler = new EquipmentAssembler();

}

The controller will have basic CRUD methods: create, update, delete, getAll, getOne. If

anyone of these methods is found as event in actions, then the method will be replaced

respectively. The purchase order controller has many methods in it. Purchase order event

‘accept’ method generation is shown in Figure 4.4. The other Purchase order methods such

as rejectPO, delete, create, update are generated similarly to acceptPO.

33

Event in Resource Specification

 generated as

Method in Controller

Figure 4.4 PurchaseOrder- accept method generation

The event name in the resource specification will be generated as method name. The input

parameter type in specification will be generated as input parameter resource with Re-

questBody annotation. If the return type has “many”, then it will be generated as List of

return type. If the path string contains any “id”, then those id are generated as PathVariable

and placed as input parameter to the method. In all the controllers classes an exception

hander method will be generated. It is annotated with ResponseStatus of NOT_FOUND and

the ExceptionHandler annotation with the parameter of the respective handler classes which

are generated separately in other package. Exceptions package contains exception java clas-

ses. Exception classes are generated with name ‘NotFoundException’ prefix of the respec-

tive resource name. These exception classes supports the respective controllers by handling

the exceptions thrown by the methods in the controller during the run time of the application.

Purchase Order exception is generated as,

public class PurchaseOrderNotFoundException extends Exception {

 private static final long serialVersionUID = 1L;

 public PurchaseOrderNotFoundException(Long id) {

 super(String.format("PurchaseOrder not found! (PurchaseOrder

id: %d)", id));

 }

}

The purchase order exception class is get called during the run time of the application when

the purchase order is not found. Simlarly, the Equipment exceptions class is also generated.

The exceptions class always play a vital role in the controller.

34

4.2.3 From State model

Assemblers are the bridges for the controllers. It is mainly used for generating the links and

for converting model to resource. Assemblers are generated as a package with name ‘.as-

semblers’ and prefix of package name. Assembler package contains assembler Java classes.

These Java classes depend on resource specification. If a ‘resource’ block is present in the

specification, then the respective resource assembler class will not be generated. All the

assemblers that are generated for the resource models are extended from ResourceAssem-

blerSupport which is one of the libraries of the Spring Hateoas. All the resource assemblers

will have only three methods defined in it. Those are two toResource() where one returns

only one resource and other toResource() returns the list of resources. The third important

method is checkRoles which check the roles of the method at the run time. A part of code

generation of purchase order assembler is shown below,

public class PurchaseOrderAssembler extends ResourceAssemblerSup-

port<PurchaseOrder, PurchaseOrderResource> {

 EquipmentAssembler equipmentAssembler = new EquipmentAssembler();

 public PurchaseOrderAssembler() {

 super(PurchaseOrderController.class, PurchaseOrderRe-

source.class);

 }

}

The function definition of toResource() depends on the resource specification. ‘actions’

events and ‘states’ transitions are used to create the links which are added to the created

resource. The state model decides the process flow of RESTful service. The actions and

states in the resource specification plays the main role in the assembler because it creates

the links for the resource. There are two cases about toResource() will be discussed below:

1. With State model :

The assemblers works differently with and without state model. If the resource specifi-

cation contains ‘states’ block with ‘state’ and transactions then, a switch block will

be generated in toResource method. All the state names will be generated as switch

cases, each transaction will be formed as a switch case definition. Every transaction that

is being defined inside a case definition, has an if block where it checks the event roles

with a present role using checkRoles() during the run time of the application.

If there is ‘Initial’ or ‘start’ state in resource specification, it will be ignored in the code

generation and will not be generated as switch cases. Let us consider the actions and

state blocks of purchase order. There are many events and states in the purchase order.

The update purchase order and Pending state is taken as an example for code generation

Figure 4.5 shows how the switch case is generated for update purchase order and Pend-

ing state from the resource specification. Similarly, the other purchase order states such

as rejected, closed, open are also generated as switch cases and the respective transitions

are generated as switch case definitions.

35

 State and transaction in Event in Resource Specification

 Resource Specification

 generated as

Switch case definition in

 Assembler

Figure 4.5 Update () and Pending state code generation.

2. Without State Model :

The state model is optional in resource specification and code generation. Even without

the state model, the assemblers can be generated with the exclusion of switch cases. But

the extended links will be generated. The link generation depends on the ‘view’ string

or events in ‘actions’ of resource specification. In resource specification, if CRUD

methods for a resource is present in actions block, then the links for those events are

generated with roles check, if specific event has roles. If the CRUD method is not pre-

sent in the resource specification, then the links will be generated without roles check

block.

4.2.4 From Role Based Access Control model

The authentication and authorization through RBAC is the main goal of this approach. The

security classes are generated from RBAC security model. The ‘role’ in the resource spec-

ification describes the roles of the target application. The roles which are declared is used

as ‘roles’ as a list in the events of actions block. If some roles is assigned to an event in

resource specification, only those roles can be able to access that specific event. For other

roles, access is restricted to that event.

36

There are two model classes: Users and Authorities which are generated automatically in-

dependent of resource specification. Users is a class for new user registration that has a

username (primary key), password and enabled. Authorities class is a model for assigning a

role (authority) for the user has an id (primary key), username and authority.

public class Users {

 @Id

 String username;

 String password;

 boolean enabled;

}

public class Authorities {

 @Id

 @GeneratedValue

 Long id;

 String username;

 String authority;

}

There are also other two Java resource classes AuthoritiesResource and UsersResource

which will be same as generated in models with Lombok and JSON annotations. Similar to

other repositories such as Equipment repository, UsersRepository and AuthoritiesReposi-

tory are also generated by the generator. These two repositories are used for performing

CRUD operations for users and roles (authorities). These two repositories has two additional

queries for the Read/Find operations. Similar to other controllers generation described in

section 4.2.2, there are some controllers need to be generated for security. Some of the se-

curity controllers are specific of resource specification and some security controllers are not

specific of specification. The security controllers are described in detail below.

The main purpose of AuthenticationController is to provide the initial authentication to the

application. This controller is annotated with RestController and RequestMapping with path

as “/rest/authentication”. From the resource specification,

role Customer

role Works_Engineer

is generated as:

@RequestMapping("/rest/authentication")

@RestController

public class AuthenticationController {

 ObjectMapper mapper = new ObjectMapper();

 @RequestMapping(method=RequestMethod.POST)

 @Secured({"ROLE_ADMIN","ROLE_CUSTOMER","ROLE_WORKS_ENGINEER"})

 public String authenticate() throws JsonProcessingException {

 Object principal = SecurityContextHolder.getContext().getAuthen-

tication().getPrincipal();

 List<String> roles = new LinkedList<String>();

 if (principal instanceof UserDetails) {

37

 UserDetails details = (UserDetails) principal;

 for (GrantedAuthority authority: details.getAuthorities())

 roles.add(authority.getAuthority());

 }

 Map<String,List<String>> map = new HashMap<String,

List<String>>();

 map.put("roles", roles);

 return mapper.writeValueAsString(map);

 }

 @ExceptionHandler(value={SecurityException.class})

 @ResponseStatus(HttpStatus.UNAUTHORIZED)

 public void handleSecurityException() {

 }

}

In the above generated code, Secured annotation’s parameter array is generated from “role”

declaration of the resource specification. If the resource specification does not have any

“role” declaration, then there will be only “ROLE_ADMIN” in parameter array which is

fault user of the application.

SecurityController is used for the redirecting for the login and home page. This controller

is not specific of resource specification. This class has only two methods namely login and

home with parameters of path “/login” and “/#/” respectively. When these methods are

called, they redirects to the login page of the application.

@Controller

public class SecurityController {

 @RequestMapping("/login")

 public String login() {

 Authentication authentication = SecurityContextHolder.getCon-

text().getAuthentication();

 String name = authentication.getName();

 return "static/views/login";

 }

 @RequestMapping("/#/")

 public String home() {

 return "static/views/login";

 }

}

UsersController and AuthoritiesController are the main controllers for user management

and roles management respectively. These controllers are not specific resource specifica-

tion. The main purpose of UsersController is to create a user, delete the user and change the

password of a user. AuthoritiesController class has only one REST method which is used to

create new authority/role for the created/existing user. Similar to the generated assemblers

mentioned in section 4.2.3, there are other two assemblers which are generated mandatorily

in the assemblers package. These assembler Java classes are UsersAssembler and Authori-

tiesAssembler. These assembler classes are not specific of resource specification. These

Java classes are used to create the users and authorities.

38

The security configuration is needed to implement RBAC in the target application. The se-

curity configuration is implemented in SecurityConfiguration class which is partially spe-

cific of resource specification. This java class has four inner static classes:

 UnauthorizedEntryPoint - handles an unauthorized access to the application.

 AuthenticationConfiguration - to get the list of users and authorities from the data-

base using JDBCAuthentication.

 FormLoginWebSecurityConfigurationAdapter - decides the homepage of the ap-

plication and also URL authentications.

 ApiWebSecurityConfigurationAdapter - matches and authorizes the URL of the rest

calls with ‘/rest’.

A preloaded data is needed for the users and authorities. This preloaded data is generated

from RBAC security model. Data package is named as “.data” which is prefixed to the pack-

age name and contains one file schema.sql. This file contains database queries to create two

tables namely users and authorities. The users table has the username and password for the

application. The authorities table has the username and the role of the user. The resource

specification for preloaded data is,

role Customer

role Works_Engineer

The target application will have a default user “admin”. The admin user will have access to

all the URLs of the application. The “role” name(s) in the resource specification generates

the queries in this file to create the user(s) with username and password. The database que-

ries which is generated by code generator from resource specification is shown below:

create table if not exists users (username varchar(50) not null primary

key, password varchar(50) not null, enabled boolean not null)

create table if not exists authorities (id bigint not null primary key,

username varchar(50) not null, authority varchar(50) not null)

insert into users (username, password, enabled) SELECT 'admin', 'admin',

true where not exists (select username, password, enabled from users

where username = 'admin' and password = 'admin')

insert into authorities (id, username, authority) SELECT 1000, 'admin',

'ROLE_ADMIN' where not exists (select username, authority from authori-

ties where username = 'admin' and authority = 'ROLE_ADMIN')

insert into users (username, password, enabled) SELECT 'customer', 'cus-

tomer', true where not exists (select username, password, enabled from

users where username = 'customer' and password = 'customer')

insert into authorities (id, username, authority) SELECT 1001, 'custom-

er', 'ROLE_CUSTOMER' where not exists (select id, username, authority

from authorities where username = 'customer' and authority = 'ROLE_CUS-

TOMER')

insert into users (username, password, enabled) SELECT 'works_engineer',

'works_engineer', true where not exists (select username, password, ena-

bled from users where username = 'works_engineer' and password =

'works_engineer')

39

insert into authorities (id, username, authority) SELECT 1002,

'works_engineer', 'ROLE_WORKS_ENGINEER' where not exists (select id,

username, authority from authorities where username = 'works_engineer'

and authority = 'ROLE_WORKS_ENGINEER')

The above generated schema.sql should be moved to src/main/resources folder of the target

project. The database configuration is needed to connect the database with the target appli-

cation. Configurations are the setup files that are essentials for the project. Configuration

package is named as “.configs” with prefix package name. This package contains Sim-

pleDbConfig file which plays a main role in database configuration of the target project.

The generated database configuration code uses PostgreSQL. So before running the target

project, it is required to install PostgreSQL in the host computer.

This configuration file is not specific of resource specification. This database configuration

uses JDBC authentication. The generated code has prefilled username, password, and URL

as shown in Figure 4.6. These prefilled data can be replaced with other credentials.

Figure 4.6 Database credentials in SimpleDbConfig

All other parts of this file should be left unchanged. Now, the database for the target appli-

cation has been configured successfully.

4.2.5 Views

The main part of MVC model is views. The views are done in HTML and AngularJS. The

views are generated from ‘view’ of resource specification. If ‘view’ is not present, then the

HTML and JS will not be generated. The four operations such as create, read, update and

delete are generated as HTML files and functions in the JS files. The two packages such as

htmls and js are generated for HTML files and JS files respectively. The CRUD operations

string mentioned in the resource specification as,

resource Equipment on "/rest/equipments" view "CRUD"

The respective HTML files are generated by the software generator. The HTML views are

powered by Bootstrap and AngularJS. All the generated HTML files are described below:

index file has imports of all the css and js files used in the target application. The target

application uses bootstrap 3.3.6 and AngularJS 1.5.5. login file is the homepage of the ap-

plication. It contains form fields for user authentication. On the successful authentication, it

directs to main.html. It also has ta button to sign up. main file is generated from resource

specification. The view string in the resource specification creates the menus in the naviga-

tion bar. The Equipment resource view is,

resource Equipment on "/rest/equipments" view "crD"

40

creates the menus in the navigation bar as shown below:

 <ul class="dropdown-menu">

Create Equipment

Create Equipment

The similar code generation for purchase order as well. The menus in the navigation bar

changes according to the user who has login currently. signup file is specific of resource

specification. It contains the form fields for new user registration. The dropdown field is

generated from the resource specification. The resource specification has ‘role’ declared

as like,

role Customer

role Works_Engineer

then those roles are listed as options in the dropdown field as shown below:

<select class="form-control input-lg" required ng-init="urole='ur'" ng-

model="urole">

<option value="ur" disabled>Select User Role</option>

<option value="ROLE_CUSTOMER">Customer</option>

<option value="ROLE_WORKS_ENGINEER">Works_Engineer</option>

</select>

If resource specification does not have ‘role’ declared, then ‘Admin’ is only option added

to the dropdown. On successful account creation, it directs login.html. restricted file is not

specific of resource specification. This file is displayed if the link is not authorized.

changePassword file is not specific of resource specification. It contains a navigation bar

and form fields to change the password for am authenticated user. On successful change of

password, it redirects to login page again. deleteAccount file is also not specific of resource

specification. It contains a navigation bar and a dialog panel to delete account message.

Delete button on successful deleted account redirects to the login page. It also has the alert

message box which responds with messages.

list file is specific of resource specification. If the resource specification has ‘view’ string

with ‘R’ or ‘r’, then list file will be generated with the name ‘list’ and the postfix of the

resource name. This file has a navigation bar and a table to list all the resource data. The

table header is specific of ‘data’ block in resource specification and rows filled with JSON

data from the back-end. In the purchase order resource specification,

data

 equipment : many Equipment rendered

 startDate : Date

 endDate : Date

 total : Long

end

41

is generated as,

<tr>

 <th>Equipment</th>

 <th>StartDate</th>

 <th>EndDate</th>

 <th>Total</th>

 <th>Actions</th>

</tr>

Similarly, the code is generated for Equipment resource as well. There is an actions column

described that has accept and reject buttons. create file is specific of resource specification.

If the resource specification has ‘view’ string with ‘C’ or ‘c’, then this file will be created

with the name ‘create’ and the postfix of resource name. This file has a navigation bar and

a form to create a resource. The form is generated from ‘data’ block of the resource speci-

fication. If a data property has ‘rendered’ and ‘many’, then a button with ‘List’ and postfix

of respective resource name. The table row also has ‘delete’ button to delete the selected

resource. For purchase order data specification,

data

 equipment : many Equipment rendered

 startDate : Date

 endDate : Date

 total : Long

end

From the above resource specification, the form will be generated as follows,

<form class="form-horizontal">

 <div class="form-group">

 <label for="startdate" class="col-sm-2 control-la-

bel">StartDate</label>

 <input type="date" ng-model="startdate" required></input>

 </div>

 <div class="form-group">

 <label for="enddate" class="col-sm-2 control-la-

bel">EndDate</label>

 <input type="date" ng-model="enddate" required></input>

 </div>

 <div class="form-group">

 <label for="total" class="col-sm-2 control-label">Total</la-

bel> <input

 type="text" ng-model="total" required></input>

 </div>

 <div class="form-group">

 <label class="col-sm-2 control-label"></label>

 <button type="submit" class="btn btn-info"

 ng-click="createPurchaseOrder()">

 Create PurchaseOrder

 </button>

 </div>

</form>

42

‘List Equipment’ button is also generated along with the above form, because the specifica-

tion has many and rendered in equipment data block. On successful creation of purchase

order resource, the application will be redirected to respective list page if the user has access.

If there is any field left unfilled in the form, then the resource will not be created.

update file is generated from of resource specification. If the resource specification has

‘view’ string with ‘U’ or ‘u’, then this file will be created with the name ‘update’ and the

postfix of resource name. This generated update file is same as the respective create file

with a difference that this page’s fields are pre-filled. On successful update of resource, the

application will be redirected to respective list page. If there is any field left unfilled, then

the resource item will not be updated. After all these HTML files has been generated, in-

dex.html is moved to src/main/resources -> static and all other HTML files are moved to

src/main/resources > static > views of the target project.

JS files are generated as package ‘.js’ with prefix of package name. Some functions in JS

files are specific of resource specification. Along with the generated HTML files, the re-

spective JS files are created. The two JS files such as main and controllers are generated in

this package. main file is partially specific on the resource specification. If ‘view’ string has

any of these characters ‘CRUcru’ then the respective route will be created with the respec-

tive resource. The routes such as ‘/main’, ‘/changePassword’, ‘/deleteAccount’, ‘/login’ and

‘/signup’ are created without resource specification. RoleBasedAccessService function is

the main function that does the role checks. It checks by matching the roles from the login

credentials with the root scope user variables. If there is an error in authorization, then it

directs the path ‘/restricted’ which has restricted.html view.

controllers file is partially specific of resource specification. This AngularJS file has three

controllers generated which are not specific of resource specification. They are:

 ‘LoginController’ is used for authentication during the user login. It makes the POST

rest calls to a method in SecurtityController.java.

 ‘SignupController’ is used to create new users during the signup. It makes the POST

rest calls to the methods in UsersController.java and AuthoritiesController.java

and does the necessary operations to create new users.

 ‘AccountController’ is used to change password and delete user account. It makes

the PUT and POST rest calls to the methods in UsersController.java to change pass-

word and delete account respectively.

All the above three controllers has some additional operations to validate the requests and

responses. If ‘view’ string in resource specification has any of characters ‘CRUcru’ then the

respective functions such as Create, List and Update with postfixes of respective resource

names will be generated inside the respective controller. After all these JS files has been

generated, these JS files are moved to src/main/resources > static > js of the target project.

43

4.3 Discussion

In this section, the DSL specification and code generation has been discussed. The Equip-

ment rental system is the scenario that had taken for the DSL specification and code gener-

ation. The scenario has been discussed with data, resource and state models at the beginning

of this section. The lifecycle of purchase order such as create, accept and reject purchase

orders is taken for consideration. The DSL specification for Equipment Rental System had

discussed in detail in section 4.1. The DSL specification is written from data, resource, state

and RBAC models which was given as an input to the software generator tool.

The software generator tool generated the code for the target application from the resource

specification in section 4.2. The generated code from the resource specification has been

explained in detail in respective sub sections. The generated models, resources and reposi-

tories are explained in section 4.2.1. The controllers classes generated are discussed in sub

section 4.2.2. Similarly, the state model resource specification and generated assembler clas-

ses are explained briefly in section 4.2.3. The RBAC security classes are the main scope of

this thesis and its code generation is explained clearly in section 4.2.4. The front-end views

are important for the target application. The context about the front-end resource specifica-

tion and its respective code generation was explained clearly in the last subsection. Thus,

the DSL specification and its respective code generation was explained clearly in this sec-

tion which implemented the target application.

The repository for the software generator tool can be found in: https://vinodrockson@bit-

bucket.org/lgbanuelos/secrest.git

The repository for the generated codes of the above mentioned scenario can be found in:

https://vinodrockson@bitbucket.org/vinodrockson/thesis_rentit.git

The project setup can be found in Appendix – III.

https://vinodrockson@bitbucket.org/lgbanuelos/secrest.git
https://vinodrockson@bitbucket.org/lgbanuelos/secrest.git
https://vinodrockson@bitbucket.org/vinodrockson/thesis_rentit.git

44

5 Case study

This chapter describes an example application that has been built using a prototypical

implementation of the DSL introduced in section 4.2 and the summary. The example

application demonstrates the generation of the skeleton of the back-end exposing the

RESTful API, and integrating the RBAC feature in it. The purchase order-related methods

in RentIt- Equipment Rental System, namely creating, accepting and rejecting of purchase

orders, are demonstrated.

5.1 Example application (RentIt)

The full resource specification of this model is shown in Appendix-II. When the generated

application is run, the login page is shown first. From our resource specification we have,

role Customer

role Works_Engineer

Then the application should be able to login with customer, works_engineer and admin. The

login page of the target application is shown in the Figure 5.1. There are other options such

Figure 5.1 Login page of the application

45

as sign up, delete account and change password views and services are also generated for

this application. All the views of these features are shown in Appendix-V with default user

‘admin’. This shows that the application will work even without any roles.

In order to create a purchase order, we need to create an equipment. From resource specifi-

cation the Equipment resource,

actions

 {"id" -> Equipment}

 create(Equipment) : Equipment

 with POST on "" roles [Works_Engineer]

 update(Equipment) : Equipment

 with PUT on "/{id}" roles [Works_Engineer]

 Delete() : Equipment

 with DELETE on "/{id}" roles [Works_Engineer]

end

Firstly, let us take create equipment and the code generated for create equipment is,

@Secured({ "ROLE_ADMIN", "ROLE_WORKS_ENGINEER" })

@RequestMapping(method = RequestMethod.POST, value = "")

@ResponseStatus(HttpStatus.CREATED)

public ResponseEntity<EquipmentResource> create(@RequestBody Equipmen-

tResource equipmentResource)

 throws Exception, EquipmentNotFoundException {

 if (equipmentResource == null) {

 return null;

 }

 Equipment equipment = new Equipment();

 equipment.setName(equipmentResource.getName());

 equipment.setDescription(equipmentResource.getDescription());

 equipment.setPrice(equipmentResource.getPrice());

 Equipment createdEquipment = equipmentRepo.saveAndFlush(equip-

ment);

 EquipmentResource res = equipmentAssembler.toResource(cre-

atedEquipment);

 HttpHeaders headers = new HttpHeaders();

 headers.setLocation(new URI(res.getId().getHref()));

 return new ResponseEntity<>(res, headers, HttpStatus.CREATED);

}

This shows that create () accessible only to Works_Engineer and Admin. Currently, we had

login with Customer. So, if we select ‘Create Equipment’ from Equipment menu, it shows

the restricted access as shown in Figure 5.2 because ‘Customer’ user cannot access this

page. So, let’s login again with ‘Works_Engineer’ user and create equipment.

46

Figure 5.2 Create Equipment- Restricted access.

Since works engineer has access to it, the application allows the access to works_engineer

as shown in Figure 5.3. This shows that the generated application is completely secured with

role based access. The views are depend on the resource specification. The process and view

is similar for update and delete operations.

Figure 5.3 Create Equipment- Success view.

Next step is to create purchase order. From the resource specification of purchase order,

actions

 {"poid" -> PurchaseOrder}

 create(PurchaseOrder) : PurchaseOrder

 with POST on "/pos" roles [Customer]

 update(PurchaseOrder) : PurchaseOrder

 with PUT on "/pos/{poid}" roles [Customer]

 delete() : PurchaseOrder

 with DELETE on "/pos/{poid}" roles [Customer, Works_Engi-

neer]

 acceptPO(PurchaseOrder) : PurchaseOrder

 with POST on "pos/{poid}/accept" roles [Customer, Works_En-

gineer]

 rejectPO() : PurchaseOrder

 with DELETE on "pos/{poid}/accept" roles [Works_Engineer]

end

The generated code for create purchase order method is,

@Secured({ "ROLE_ADMIN", "ROLE_CUSTOMER" })

@RequestMapping(method = RequestMethod.POST, value = "/pos")

47

@ResponseStatus(HttpStatus.CREATED)

public ResponseEntity<PurchaseOrderResource> create(@RequestBody Pur-

chaseOrderResource purchaseorderResource)

 throws Exception, PurchaseOrderNotFoundException, Equip-

mentNotFoundException {

 if (purchaseorderResource == null) {

 return null;

 }

 PurchaseOrder purchaseorder = new PurchaseOrder();

 List<Equipment> tempEquipmentList = new ArrayList<>();

 for (EquipmentResource equipmentResource : purchaseorderRe-

source.getEquipment()) {

 Equipment equipment = new Equipment();

 equipment.setName(equipmentResource.getName());

 equipment.setDescription(equipmentResource.getDescrip-

tion());

 equipment.setPrice(equipmentResource.getPrice());

 tempEquipmentList.add(equipment);

 }

 purchaseorder.setEquipment(tempEquipmentList);

 purchaseorder.setStartDate(purchaseorderResource.getStartDate());

 purchaseorder.setEndDate(purchaseorderResource.getEndDate());

 purchaseorder.setTotal(purchaseorderResource.getTotal());

 purchaseorder.setPurchaseorderState(PurchaseOrderState.PEND-

ING_CONFIRMATION);

 PurchaseOrder createdPurchaseOrder = purchaseor-

derRepo.saveAndFlush(purchaseorder);

 PurchaseOrderResource res = purchaseorderAssembler.toResource(cre-

atedPurchaseOrder);

 HttpHeaders headers = new HttpHeaders();

 headers.setLocation(new URI(res.getId().getHref()));

 return new ResponseEntity<>(res, headers, HttpStatus.CREATED);

}

This shows that create method is accessible only to customer and admin. If we try to access

create purchase order with present works_engineer user, we get restricted access message

as shown in Figure 5.4.So, let’s login again with customer user and create purchase order.

Figure 5.4 Create Purchase Order - Restricted access.

When customer user tries to create purchase order, it has been created successfully as shown

in Figure 5.5. So, this evaluation about create purchase order is correct. The next step is

accepting and rejecting purchase order. The generated code for accept purchase order

method is,

@Secured({ "ROLE_ADMIN", "ROLE_CUSTOMER", "ROLE_WORKS_ENGINEER" })

@RequestMapping(method = RequestMethod.POST, value = "pos/{poid}/ac-

cept")

48

public ResponseEntity<PurchaseOrderResource> acceptPO(PurchaseOrder pur-

chaseorder,

 @PathVariable("poid") Long poid) {

 PurchaseOrder temp = new PurchaseOrder();

 temp.setPurchaseorderState(PurchaseOrderState.OPEN);

 PurchaseOrderResource purchaseorderResource = purchaseorderAssem-

bler.toResource(temp);

 return new ResponseEntity<>(purchaseorderResource,

HttpStatus.OK);}

The generated code for reject purchase order method is,

@Secured({ "ROLE_ADMIN", "ROLE_WORKS_ENGINEER" })

@RequestMapping(method = RequestMethod.DELETE, value = "pos/{poid}/ac-

cept")

public ResponseEntity<PurchaseOrderResource> rejectPO(@PathVaria-

ble("poid") Long poid) {

 PurchaseOrder temp = new PurchaseOrder();

 temp.setPurchaseorderState(PurchaseOrderState.REJECTED);

 PurchaseOrderResource purchaseorderResource = purchaseorderAssem-

bler.toResource(temp);

 return new ResponseEntity<>(purchaseorderResource, HttpStatus.OK);

}

Figure 5.5 Create Purchase Order – Success view.

The generated code for acceptPO() and rejectPO() methods shows that, admin and

works_engineer users have access to both these methods whereas customer user have access

to only acceptPO() method. The acceptPO and rejectPO are shown as buttons in the list of

purchase orders. With the current login user-customer, if we see the list of purchase order

as shown in Figure 5.6, only acceptPO button is shown.

Figure 5.6 Purchase Order List – Customer user view.

49

If we login again with works_engineer user and see the purchase order list, both acceptPO

and rejectPO buttons are shown as in Figure 5.7. This proves that the generate code and

implementation for purchase order is correct as per the resource specification that is men-

tioned above.

Only the skeletons of the acceptPO and rejectPO methods are generated. In order to make

the buttons work, the definitions of these methods has to be re-written.

Figure 5.7 Purchase Order List – Works_Engineer user view.

Hence, the implementation and resulted views of Equipment and Purchase Order is as per

the resource specification, the validity of our approach of developed software tool is con-

sidered as successful.

5.2 Summary

The implementation of this thesis focused on the software generator which generates the

REST API and the views for the application. The views are generated only for AngularJS

and HTML. The implementation doesn’t focus on the thyme leaf pages. This means that

there are no views implemented for the thyme leaf pages which are not the view of Angu-

larJS. The authentication and authentication through RBAC are very well working during

the run time of the application. RBAC authorization generates and shows the links according

to the role of the user.

50

6 Conclusion and future work

This chapter explains about the conclusion and the future work of this thesis. The conclusion

demonstrates the work that has been done for this thesis and future shows an idea about the

continuation of thesis in future.

6.1 Conclusion

The main goal of this thesis is to provide the simple way to develop an application that

exposes its functionality via a REST API. To this end, a Domain Specific Language has

been designed that allows developers to specify the REST API. Based on a REST API

specification, it is possible to generate the skeleton of the application, including the data

access layer (domain model), the controller/service layer (controller), the view layer

(AngularJS user interface) and role-based access code. As a proof of concept, the code

generator produces a fully functional application using Spring Boot and views in HTML

which is powered by AngularJS and Bootstrap. All the necessary files that are needed for

the front-end are already included in the generated view files.

The support to RBAC is added to the application by levering the Spring security framework.

Since the front-end is powered by AngularJS, RBAC functions are also added to the

AngularJS codes. The RBAC functions in JS communicate with the Spring security and

provides the authentication and authorization to the API. The communications are made as

REST calls. There are also front-end views and back-end code to create the users and delete

existing user in the target application dynamically. All the codes that are generated are the

skeleton of the RESTful API. The developer can able to add/modify the existing code. This

approach will surely make the work easier for the developers by reducing the time to develop

the application. It may also reduce the manpower to develop the application.

6.2 Future work

In the code generated by the code generator, there is no option of ‘forgot password’ in the

login page. ‘Add/Change role’ in My Account menu doesn’t work in the current application.

The future work is to optimize the existing software generator framework and add more

features to the generator. The features includes:

 Generating email client with views to reset the password from the login page.

 Generating codes for message notifications with views.

 The implementation automatic code generation for role administration in RBAC [17]

[18] where the super admin will have full rights on the roles of the users in the target

application dynamically. The users may send the add/change roles request to the

admin, the admin has to decide to accept/reject those requests.

51

7 References

[1] Roy Thomas Fielding, Representational State Transfer (REST), In Architectural

Styles and the Design of Network-based Software Architectures (Doctoral

dissertation), University of California, Irvine), Chapter 5, 201. Retrieved from:

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm. [Accessed

on March 19, 2016].

[2] Brian Proffitt, What APIs Are And Why They’re Important, Retrieved from:

http://readwrite.com/2013/09/19/api-defined/. [Accessed on March 19, 2016].

[3] Petri Selonen, From Requirements to a RESTful Web Service: Engineering

Content Oriented Web Services with REST, E. Wilde and C. Pautasso (eds.),

REST: From Research to Practice, 2011, pp: 259–278.doi:10.1007/978-1-4419-

8303-9 11.

[4] A. Chris Bogen and Dr. David A. Dampier, “Preparing for Large-Scale

Investigations with Case Domain Modelling”, in Digital Forensic Research

Workshop (DFRWS), 2005.

[5] University of Tartu's course wiki (2014 fall) - Enterprise System Integration

Practicals-6 page: https://bitbucket.org/lgbanuelos/esi-2014/wiki/Practice6.

[Accessed on April 2, 2016].

[6] David F. Ferraiolo and D. Richard Kuhn, “Role-Based Access Controls”, in

Proceedings of the 15th National Computer Security Conference, 1992, pp. 554 -

563.

[7] Xin Jin, Applying Model Driven Architecture approach to Model Role Based

Access Control System (Master’s thesis), University of Ottawa, Canada, 2006.

[8] Ahn G-J., Hu H., “Towards Realizing a Formal RBAC Model in Real Systems”, in

Proceedings of the 12th ACM Symposium on Access Control Models and

Technologies (SACMAT’07), 2007, pp. 215-224.

[9] Cirit C., Buzluca F., “A UML Profile for Role-Based Access Control”, in

Proceedings of the 2nd International Conference on Security of Information and

Networks (SIN’09), 2009, pp 83-92.

[10] Alalfi M. H., Cordy J. R., Dean T. R., “Recovering Role-Based Access Control

Security Models from Dynamic Web Applications”, in Proceedings of the 12th

International Conference on Web Engineering (ICWE’12), 2012, pp 121-136.

[11] Tark K., Role Based Access Model in XML based Documents (Master’s thesis),

University of Tartu, Estonia, 2013.

[12] Vitaliy Schreibmann and Peter Braun, “Model-driven Development of RESTful

APIs”, in Proceedings of the 11th International Conference on Web Information

Systems and Technologies, 2015.

[13] Tobias Fertig and Peter Braun, “Model-driven Testing of RESTful APIs”, in

WWW 2015 Companion, 2015.

[14] Jonathan Robie, Rob Cavicchio, Remon Sinnema and Erik Wilde, “Describing

RESTful Services Without Tight Coupling”, in Proceedings of Balisage: The

Markup Conference, 2013.

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://readwrite.com/2013/09/19/api-defined/
https://bitbucket.org/lgbanuelos/esi-2014/wiki/Practice6

52

[15] Arie van Deursen and Paul Klint, “Domain-Specific Language Design Requires

Feature Descriptions”, Journal of Computing and Information Technology-CIT,

2002.

[16] Marjan Mernik, Jan Heering, and Anthony M. Sloane, When and how to develop

domain-specific languages, ACM Computing Surveys, 37(4): 316–344,

2005.doi:10.1145/1118890.1118892.

[17] Andras Belokosztolszki, Role-based access control policy administration,

University of Cambridge's Technical Report: 586, 2004.

[18] Ravi S. Sandhu, Edward G. Coyne, Hal L. Feinsteink and Charles E. Youmank,

Role-Based Access Control Models, IEEE Computer Society Press Los Alamitos,

Volume 29 Issue 2, February 1996.

[19] Fielding, R. T.; Taylor, R. N. (2000), Principled design of the Modern Web

 Architecture: 407–416. doi:10.1145/337180.337228.

[20] Learn REST: A Tutorial: http://rest.elkstein.org/. [Accessed on April 7, 2016].

[21] Plant Hire System’s Scenario:

https://courses.cs.ut.ee/MTAT.03.229/2014_fall/uploads/Main/PlantHireSce-

nario.pdf. [Accessed on March 20, 2016].

http://rest.elkstein.org/
https://courses.cs.ut.ee/MTAT.03.229/2014_fall/uploads/Main/PlantHireScenario.pdf
https://courses.cs.ut.ee/MTAT.03.229/2014_fall/uploads/Main/PlantHireScenario.pdf

53

Appendix

I. Grammar implementation

The first step of the implementation is writing the DSL grammar for the code generation.

From this grammar, we can able to write the Xtend code for software generator. The gram-

mer should be written in Xtext file. Grammar implementation is shown below:

Grammar:

grammar org.xtext.example.rsec.RSec with org.eclipse.xtext.common.Termi-

nals

generate rSec "http://www.xtext.org/example/rsec/RSec"

ResourceSpecification :

 {ResourceSpecification}

 'package' packageName=QualifiedName

 (imports+=Import+)?

 (elements+=Type)*;

Type:

 DataType | ResourceType | Roles;

DataType:

 'datatype' name=ID;

Import:

 'import' importedNamespace=QualifiedNameWithWildcard;

QualifiedNameWithWildcard:

 QualifiedName '.*'?;

QualifiedName:

 ID ('.' ID)*;

Roles:

 'role' name=ID;

ResourceType :

 'resource' name=ID ('on' path=STRING)? ('view' views=STRING)?

 ('data'

 properties+=Property+

 'end')?

 ('actions'

 ('{' pathvariable += STRING '->' resource += [Re-

sourceType]

 (',' pathvariable += STRING '->' resource +=

[ResourceType])*'}'

)?

 events+=Event+

 'end')?

 ('states'

 states+=State*

 'end')?

 'end'

;

Event:

54

 name=ID '('(paramType = [ResourceType])? ')' ':' (many ?= 'many')?

 returnType=[Type] 'with' verb=ID 'on' path=STRING (roles ?=

'roles')?

 ('['mrole += [Roles](',' mrole += [Roles])*']')?

;

Property:

 name=ID ':' (many ?= 'many')? type=[Type] (render ?= 'rendered')?

;

State:

 'state' name=ID

 transitions+=Transition*

 'end'

;

Transition:

 event=[Event] '=>' state=[State]

;

The description for the above grammar is as follows:

1. grammar specifies what type of grammar that we want to use in the project

org.xtext.example.rsec.RSec. The type of grammar that we specify here will

decide the type of generator in Xtend and other files in the project.

2. ResourceSpecification is like a container that consist of all the elements that

needed for resource specification. The rule comprises of package name of the target

project, imports of the packages and the Type.

3. Type holds the Datatype, ResourceType and Roles.

4. DataType has the prefix “datatype” followed by name of the data type. The

datatype is used in data to specify the type of the data.

5. Similar to DataType, Import has the prefix followed by the package name of the

DataType.

6. Roles is for the security purpose. It is used of declaring the roles used in the target

application. It has a prefix “role” followed by role name.

7. ResourceType is the main part of this DSL. It consists of data, actions and states.

Each of these has separate rules.

8. Event is the set of rule for actions. The actions are methods where the specific

operations can be performed. Every event has a name with input parameter type

“paramType” and the return type “returnType”. If there are many return types, it

can be prefixed by “many”. The REST type is “verb” and path of the action is de-

fined in “path”. Roles for which the action can be accessed is defined by “roles”

and mrole.

9. Property is the set of rules for defining the data. The type of the data type can be

“many”. The “rendered” is used when the specific data is used in the view.

10. State is the set of rules for states. Each state has many transitions and each state

has a name which has a prefix “state” and closed by “end”.

11. Each Transition consists of event name implies to a state name.

55

II. DSL specification

package com.example

import java.lang.Boolean

datatype String

datatype void

datatype BigDecimal

datatype Date

datatype Long

datatype Boolean

role Customer

role Works_Engineer

resource Equipment on "/rest/equipments" view "crD"

 data

 name: String

 description: String

 price: BigDecimal

 end

 actions

 {"id" -> Equipment}

 create(Equipment) : Equipment

 with POST on "" roles [Works_Engineer]

 update(Equipment) : Equipment

 with PUT on "/{id}" roles [Works_Engineer]

 Delete() : Equipment

 with DELETE on "/{id}" roles [Works_Engineer]

 end

end

resource PurchaseOrder on "/rest/orders" view "CRUD"

 data

 equipment : many Equipment rendered

 startDate : Date

 endDate : Date

 total : Long

 end

 actions

 {"poid" -> PurchaseOrder}

 create(PurchaseOrder) : PurchaseOrder

 with POST on "/pos" roles [Customer]

 update(PurchaseOrder) : PurchaseOrder

 with PUT on "/pos/{poid}" roles [Customer]

 delete() : PurchaseOrder

 with DELETE on "/pos/{poid}" roles [Customer,

Works_Engineer]

 acceptPO(PurchaseOrder) : PurchaseOrder

 with POST on "pos/{poid}/accept" roles [Customer,

Works_Engineer]

 rejectPO() : PurchaseOrder

56

 with DELETE on "pos/{poid}/accept" roles [Works_Engi-

neer]

 end

 states

 state initial

 create => pending_confirmation

 end

 state pending_confirmation

 acceptPO => open

 rejectPO => rejected

 end

 state rejected

 update => pending_confirmation

 end

 state open

 delete => closed

 end

 state closed

 end

 end

end

57

III. Project setup

Running the Xtext project will lead to the new Eclipse application. Since it is very complex

to create a Spring Boot project directly in Eclipse, the better solution is to import a new

Spring Boot project in eclipse. Before this, it is better to install Spring software plugin in

Eclipse. The first step in project setup is to add the Xtend Library in to the project and

make sure that the project has JRE system library and Maven Dependencies. The next

important step is to add the dependencies in “pom.xml”. The list of mandatory dependencies

that are needed are shown below. Sometimes Lombok dependency and other dependencies

may not get effect from pom.xml. In this case, it is better to add the missing dependencies

as an external JARs.

Maven Dependencies:

 <dependencies>

 <dependency>

 <groupId>commons-dbcp</groupId>

 <artifactId>commons-dbcp</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

 </dependency>

 <dependency>

 <groupId>org.projectlombok</groupId>

 <artifactId>lombok</artifactId>

 <version>1.16.8</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

 <scope>runtime</scope>

 </dependency>

 <dependency>

 <groupId>org.postgresql</groupId>

 <artifactId>postgresql</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.hateoas</groupId>

 <artifactId>spring-hateoas</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

 </dependency>

 </dependencies>

58

Make a new folder in your target project and create a new file in that folder with extension

“.rsec”. The resource specification should be written in .rsec file. If you save this .rsec file,

a new folder “src-gen” will be created. This folder should be converted as a source folder.

‘application.properties’ is an important file which will not be automatically generated. It

defines the general properties of the project. It will compiled along with configuration files

during the compilation time. This file can be found under src/main/resources folder. If this

file is not present, then it is better to create this file under this folder. The below mentioned

application properties should be added to this file. This database setup will re-start the da-

tabase on every new run of the application which deletes the old data present in the tables.

To change this re-start, ‘create-drop’ should be replaced with ‘update’.

application.properties:

spring.thymeleaf.cache = false

spring.jpa.database=POSTGRESQL

spring.jpa.show-sql=false

spring.jpa.hibernate.ddl-auto=create-drop

spring.jpa.properties.hibernate.hbm2ddl.import_files=schema.sql

After the code generation, the sql, html and js files should be moved to the specified loca-

tions. If there is any need for code changes in the generated files, it can be done manually

and saved in a newly created source folder inside a new package. If resource specification

is changed and saved, then it will re-create all the files/packages in src-gen source folder

which in turn overwrites the changes in files if made already. The files which are depend on

this modified file may show some import errors because its location has been changed. It is

better to edit those files also in order to avoid compilation error. If it is needed to format the

generated code of a file, then go to that specific file and press ‘Ctrl + Shift + F’.

The final stage of implementation is compiling and running the application. This can be

done by:

 The application can be run by src/main/java -> packagename -> Application.java

 Right click on this file -> Run as -> Java Application

 Now the application will start compiling and run in port 8080 (default).

 Then, go to in the web browser.

If successful application will show the login page. It can be login with any credentials given

in ‘role’ of resource specification with lowercase letters. The username and password will

be same at the beginning. If no ‘role’ is used in resource specification, then ‘admin’ can be

used to login.

59

IV. Results of application – Views

A. Generated Sign up page

B. Generated Main page for admin user

60

C. Generated Change Password page

D. Generated Delete account page

61

V. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Vinod Infant Dass John Rozario,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis Model-based Role Based Access Control for RESTful Spring applications,

supervised by Dr. Luciano García-Bañuelos,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 09.08.2016

