
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Vishal Desai

Model-driven engineering of Hypermedia
REST applications

Master’s Thesis (30 ECTS)

Supervisor(s): Luciano García-Bañuelos

Tartu 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Model-driven engineering of Hypermedia REST applications

Abstract:

Many tools have been developed that generate the skeleton of a basic REST-based
application following the model-view-controller design pattern. However, little atten-
tion has been paid to developing tools that support Hypermedia-enabled applica-
tions, despite the increased interest shown by the software industry to this style of
applications. The objective of this research is to come up with a solid, feasible and
efficient solution to take, as input, the structural and behavioural REST models of
an application and generate a skeleton of Hypermedia REST application program-
ming interface. What is required is a target framework for generation of the code.
To begin with, the focus would be on Java with Spring boot framework and Spring
MVC structure. The scope of this research is limited to Java language only. Later
on, it could be possible to expand to other languages. Firstly, there is a need to know
what kind of inputs or models would be required. REST modelling consists of two
parts: structural modelling and behavioural modelling. Structural modelling is usually
done with class diagrams while behavioural modelling is usually done with state
charts. The output generation part has to be developed in a manner that it would
allow, in future, to generate code for various languages. This would serve as a
guideline for future work. In this paper, we introduce RestGen, a simple, intuitive yet
powerful domain specific language (DSL) that helps developers to specify a REST
API and that generates the skeleton of a Spring-based Java application that com-
plies with the intended API. The DSL has been implemented as an Eclipse plugin,
which demonstrates the feasibility of the approach.

Keywords: REST, Spring HATEOAS, Hypermedia, Code generation, Xtext

CERCS: P175

iii

Mudelipõhine Hypermedia REST rakenduste programmeerimine

Lühikokkuvõte:

On välja töötatud mitmeid töövahendeid, mis genereerivad elementaarse REST-
põhise rakenduse kondikava järgides model-view-controller disainimustrit. Ent on
pööratud vähe tähelepanu arendamaks töövahendeid, mis toetavad Hypermedia
poolt lubatud rakendusi, vaatamata tarkvaratööstuse poolt näidatud huvi kasvule
seda tüüpi rakenduste vastu. Selle uurimuse eesmärk on leida kindel, teostatav ja
efektiivne lahendus, et võtta sisendina rakenduse struktuursed ja käitumuslikud
REST mudelid ja genereerida hüpermeedia REST rakenduse programmeerimise
liidese kondikava. Vajalik on sihtraamistik koodi genereerimiseks. Alustuseks on va-
jalik keskenduda Javale Spring Boot raamistikuga ja Spring MVC struktuuriga. Selle
uurimuse ulatus piirdub ainult Java keelega. Hiljem on võimalik laieneda ka teistele
keeltele. Esmalt on tarvis teada, missuguseid sisendeid ja mudeleid oleks vaja.
REST modelleerimine koosneb kahest osast – struktuurne modelleerimine ja käitu-
muslik modelleerimine. Struktuurset modelleerimist viiakse tavaliselt läbi klassidi-
agrammidega, samas kui käitumuslikku modelleerimist teostatakse seisunditabe-
litega. Väljundi genereerimise osa peab olema välja töötatud viisil, mis lubaks tule-
vikus genereerida koodi erinevate keelte jaoks. See oleks suuniseks tööde jaoks
tulevikus. Selles töös me tutvustame RestGeni – lihtsat, intuitiivset, kuid võimast
domeenispetsiifilist keelt (ingl domain specific language, DSL), mis aitab arendajatel
määratleda RESTi rakendusliidest API (ingl Application Programming Interface) ja
genereerib Spring-põhise Java rakenduse, mis ühildub ettenähtud APIga. DSL on
kasutusele võetud Eclipse pluginina, mis demonstreerib antud meetodi teostata-
vust.

Võtmesõnad: REST, Spring HATEOAS, Hypermedia, Koodi genereerimine,

Xtext

CERCS: P175

iv

Table of Contents

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Problem Statement .. 1

1.3 Procedure .. 1

2 Background ... 2

2.1 Common Words and Concepts ... 2

2.1.1 Meta-model ... 2

2.1.2 Application Programming Interface (API) .. 2

2.1.3 Domain-specific language (DSL) ... 2

2.1.4 XML [5] .. 2

2.1.5 JSON [6] .. 2

2.1.6 JVM [7] ... 2

2.1.7 REST ... 3

2.1.8 HATEOAS [10] .. 5

2.2 Overview of tools ... 6

2.2.1 Domain Specific language (DSL) ... 6

2.2.2 Xtext [13] .. 6

2.3 Survey of Existing Technology .. 7

2.3.1 Apiary IO [17] ... 7

2.3.2 Swagger [18] ... 7

2.3.3 RAML [19] .. 7

2.3.4 RestUnited [20] ... 7

2.3.5 Restlet Studio [21] ... 7

2.4 Shortcomings of Existing technology .. 8

3 Research method ... 9

3.1 Scope .. 9

3.2 Steps ... 9

3.2.1 Information required from the user when creating a REST [1] application with

HATEOAS. ... 9

3.2.2 Syntax [2] to ensure that this information can be taken as input from the user

while modelling. .. 10

3.2.3 A DSL that would take the identified inputs and would then generate the code.

 12

4 The RestGen language .. 13

4.1 Methodology ... 13

v

4.1.1 Scenario for Analysis .. 13

4.1.2 Analysis and design ... 14

4.1.3 Domain modelling ... 15

4.1.4 Resource modelling ... 16

4.1.5 Behavioural modelling (State diagram) .. 17

4.2 RestGen Syntax .. 18

4.2.1 Terminology .. 19

4.3 Mapping the information from User ... 24

4.3.1 Package and project structure .. 24

4.3.2 Application specific files ... 25

4.3.3 Resource specific files ... 25

5 Code generation .. 36

5.1 Parsing Input ... 36

5.1.1 About Xtext ... 36

5.1.2 Requirements ... 36

5.1.3 Getting started ... 36

5.2 Generating code from Input .. 39

5.2.1 Contents ... 39

5.2.2 Resource specific files ... 41

5.2.3 Spring application files ... 47

6 Conclusions ... 49

6.1 Work completed so far ... 49

6.1.1 Primary objectives ... 49

6.1.2 Collateral work .. 49

6.2 Future work .. 49

7 References ... 50

Appendix ... 53

I. Installation .. 53

Eclipse-based IDE ... 53

Creating a project .. 53

II. Code for RgDsl.xtext .. 55

III. Code for RestGenOutputConfiguration.java .. 57

IV. Code for RgDslGenerator.java ... 58

V. Equipment rental scenario using RestGen (rentit.rg) ... 70

VI. Generated Code for PurchaseOrderResource.java ... 72

vi

VII. Generated Code for PurchaseOrderResourceAssembler.java 73

VIII. Generated code for PurchaseOrderRestController.java.. 75

IX. Generated code for PurchaseOrder.java ... 78

X. Generated code for PurchaseOrderNotFoundException.java 80

XI. Generated code for PurchaseOrderStatus.java ... 81

XII. License .. 82

Figure 1. Domain model of Rentit .. 15

Figure 2. Resource model of Rentit .. 17

Figure 3. State diagram of a PurchaseOrder ... 18

1

1 Introduction

1.1 Motivation

 REST applications have become popular over the years which has led to many

tools having been created to generate REST applications. However, enough attention has

not been paid to address Hypermedia based REST applications. These applications are

increasingly becoming popular and the interest for developing code generation tools for

these applications has increased over the years.

 The objective of this research is to come up with a solid, feasible and efficient

solution to take, as inputs, the structural and the behavioural aspects and then generate

the basic skeleton code for the REST [1] application along with its Hypermedia support.

1.2 Problem Statement

 REST [1] modelling consists of two parts: the structural modelling and behav-

ioural modelling [2]. Structural modelling is a product of class diagrams of an applica-

tion whereas, behavioural modelling is a product of the state chart of the dynamic clas-

ses of the application. With the use of these models, an application can be represented

showing its REST [1] properties.

 It is possible to design a Hypermedia-enabled REST [1] application using the

structural and the behavioural REST models. Thereafter, these models are interpreted by

a developer with the aim of gathering information necessary to write the code. With a

predefined scope and a target framework, we can select the specific information neces-

sary to generate the code. Then, a tool can be created to allow the user to specify the

structural and behavioural aspects of the application in such a way that it provides the

selected information necessary to generate the code. Therefore, this paper aims at an-

swering the following questions:

 How can we generate the skeleton of a Hypermedia REST application by taking the

required inputs from the user?

o What kind of inputs, in general, are required to generate a REST application

with Hypermedia support?

o How will we be able to gather information from the user about the structural and

behavioural aspects of the application?

o How will we be able to use the information provided to generate the end code?

1.3 Procedure

 Studying the current state of the art, it should take into account the limitations as

well as the potential plus points of existing technology. Knowing the possibility of exist-

ing project creation procedures, this paper would aim at achieving results that would en-

hance the overall project creation process by including Hypermedia [3] support. The fol-

lowing would qualify as the milestones for this research:

 Identify information required from the user when creating a Hypermedia REST

application.

 Create a syntax to get the above-mentioned information from the user while mod-

elling and then create a suitable DSL editor using the syntax.

 Create a code generation tool that would take the information provided by the user

in the editor and generate the Hypermedia REST application.

2

2 Background

2.1 Common Words and Concepts

 Before moving further into the paper, one must understand some vocabulary as-

sociated with the domain. Some of these are concepts are essential to the understanding

of the research and the further sections of this paper.

2.1.1 Meta-model

 A higher level model that defines “the structure and meaning“ [2] of the model

itself. According to Silvia Schreirer in ’Modeling Restful applications’ [2] a meta-model

is responsible for the syntax of the model, and plays a vital role in model driven ap-

proaches.

2.1.2 Application Programming Interface (API)

 A detailed documentation of a software component enlisting its methods, proper-

ties, hierarchy, inheritance, and visibility.

2.1.3 Domain-specific language (DSL)

 A problem-oriented programming language that consists of abstractions and no-

tations specific towards a solution to the problem rather than a generic form. [4]

2.1.4 XML [5]

 An extensible markup language is a flexible hierarchical text format which is used

widely as a standard for data transmission payload format.

2.1.5 JSON [6]

 JavaScript Object Notion is a data transmission and interchange format widely

used owing to its simple parsable format which allows its use with a variety of program-

ming languages.

2.1.6 JVM [7]

 Java virtual machine is a layer of component technology that plays a middleman

role in between the Java language and the host machine its operating system. This allows

Java language to be independent of the machine and its operating system.

3

2.1.7 REST

 Representational State Transfer [1] refers to a software architectural style that fol-

lows guidelines on the footpath of hypertext transfer protocol [1] making it currently the

most favoured web architectural styles for modern distributed systems and web applica-

tions.

2.1.7.1 Web services and Resource Oriented Architecture

 Restful web services by Richardson et al [8] states the difference between REST

and resource oriented architecture. Though it might sound the same but REST is a set

of guidelines and resource oriented architecture is more specific.

 Resource oriented architecture [8] is the architectural design of a service, based

on individual perception and individual understanding of REST concepts. Every web

service providing REST services, having its own resource oriented architecture, has

some common REST concepts.

 Every organisation would have its own architecture. This would definitely be

RESTful if the guidelines are followed but they may not necessarily be the same. There

is a great variety of choice with which one could design the architecture of the web

service using the REST guidelines.

2.1.7.2 Resource

 Fielding [1] in his dissertation describes a resource as any object, item or infor-

mation that can be named. E.g. a dog, a cat or today’s weather etc. would qualify as a

resource.

 When many resources can be categorised as a particular type, then we come across

the concept of a container. A container is a collection of all resources of the same type.

Every container will contain resources that have similar properties, but different iden-

tities. For example, dogs will qualify as the container and a dog named ‘Jimmy’ will

qualify as a resource of that container.

2.1.7.3 REST API design

 Masse et al REST API design rulebook [9] provides some very useful guidelines

for designing the API and the URIs.

 Resource Identifier and URI

 Every resource is uniquely identified by a Resource Identifier [1]. The service

provided this resource can be reached by the Uniform Resource Identifier (URI) [1]

of the resource. For a single unique resource, its URI and its Resource Identifier are

both unique. This enables service provision directly related to the resource involved.

 Every resource, as we know, is identified by a Resource Identifier and addressed

using a Uniform Resource Identifier [1]. To build a URI, we would follow the fol-

lowing guidelines.

4

1 Forward slash ‘/’

 The design of a REST API follows a hierarchical structure i.e. every time a ‘/’ is

seen, it would be perceived as a hierarchical division. Very similar to the HTTP

addresses, a URI of the domain will serve as the highest level of the hierarchy and

all that follow would be the next levels.

2 Hyphen ‘-’

 Hyphens may be used to make the URI easy to interpret and for better user read-

ability. A hyphen could be used to link two words which in general language would

be separated by a single space. From the API perspective, these words would

collectively provide a meaningful concept.

3 Underscore ‘_’

 Underscore should not be used in the URI design [9] because of a very common

universally accepted practice of providing blue text colour and underlining font for

a link, resulting in underscore making the link difficult to interpret.

4 Use of lower case letters only

 Use of lowercase letters would be preferred as uppercase letters could sometimes

cause problems.

5 Path variables

 Parameters that serve a dual purpose: function parameters to the invoked control-

ler method and a part of the URI of the resource, are the path variables. The resource

identifier is the most common path variable as it serves a purpose in the

identification of a resource in the controller as well as the URI of that resource. [10]

6 Path parameters

 Parameters that do not play an important role in the URI of the resource but play

a major role in the controller methods invoked, qualify as path parameters. These

are mostly key-value parameters commonly used for queries. [10]

7 Hierarchy

 The hierarchy of a URI is maintained by the use of ‘/’. Every resource will have

a container class that holds multiple instances of the same resource type. This con-

tainer is the first level of hierarchy for that resource type. We would put a ‘/’ fol-

lowed by the resource identifier that would identify for us a unique element from

the container and that would be our target resource. Further, the hierarchy may also

be applied with the use of ‘/’ as the designer deems fit. [1]

5

 HTTP methods

 Once we know the URI of a resource, we can perform a set of basic operations on

it. As per the HTTP basics, the methods such as GET, PUT, POST, DELETE [11]

can be applied while addressing a URI.

1 PUT [11] method must be used to update a resource

 When a resource is ready to be updated the preferred HTTP method to invoke

would be PUT.

2 POST [11] must be used to create a new resource

 When a new resource is meant to be created then the preferred HTTP method to

invoke is a POST method.

3 DELETE [11] must be used to remove a resource

 When a resource is meant to be deleted the preferred HTTP method to invoke is

a DELETE method.

4 GET [11] must be used to query a resource

 When a resource is meant to be queried then the preferred HTTP method to invoke

is a GET method.

2.1.8 HATEOAS [10]

 Hypermedia as the Engine of Application State [10] refers to a web application

framework by Spring [12] which provides the ability to build Java-based REST [1] ap-

plications with hypermedia [3] support.

 A hypermedia web application, in contrast to traditional service-oriented architec-

ture based web applications, will provide information on possible navigation options

within the response. This eliminates the need to make requests to a staged specification

whenever there is a need to make requests. HATEOAS [10] provides two main concepts

that allow the application to have dynamic navigation possibilities.

 Relation

 Relation or simply rel [10] is the relation between the current resource that is em-

bodied in the response and the resource that the link navigates to. The value of rela-

tion can either be a string value or ‘self’. In the case of a string value, the resulting

URI of the linked resource would be the URI of the current resource suffixed with ‘/’

and the string value.

 In the case of ‘self’, this would imply that it is a self-referencing link and the URI

of the resulting resource will be the same as current resource. [10]

6

 Link

 A link or href [10] is the embedded link within the response body of the resource.

This is the absolute URL or the linked resource. The hashed combination of a relation

and a link together represents a single hyperlink. [10] Hyperlinks are embedded

within the body of the resource in the list named links. [10] This list holds all the

hyperlinks for the resource.

 A JSON [6] representation is given below,

2.2 Overview of tools

2.2.1 Domain Specific language (DSL)

 A DSL is a problem-oriented programming language that consists of abstractions

and notations specific towards a solution to the problem rather than a generic form. [4]

This aims at solving the problem at the program level. These are usually smaller lan-

guages with a very small scope.

 With modern programming languages following a strict syntax along with a vast

base, sometimes there arises a need to have something smaller, that the existing languages

do not provide free from complexity. With only the handful of required parsing and link-

ing mechanisms that one needs for the purpose of fulfilling the requirements of the appli-

cation, a DSL plays an important role in such cases where one can incorporate self-de-

signed rules and syntax to accomplish a particular task.

 Later in the paper (section 4), a detailed explanation would be given regarding the

creation of a DSL.

2.2.2 Xtext [13]

 Xtext is an Eclipse [14] based tool for creating DSLs. It allows you to create your

own languages. It also provides the possibility to generate files from the provided infor-

mation. Along with that it could also be useful for generating a UML [15] based model

input because it supports other eclipse based tools like Ecore and Ecore model [16]. Xtext

is extensively used in this research.

{

 "purchaseorder": {

 "startDate": "2014-12-31T22:00:00Z",

 "endDate": "2015-01-02T22:00:00Z",

 "links": [

 {

 "rel": "confirmation",

 "href": "/purchaseorder/75648/confirmation"

 }

]

 }

}

7

2.3 Survey of Existing Technology

 This study has been carried out in order to identify any existing technology that

may be following the guidelines or the same objective. The following are the technologies

that were studied to get an idea of the current state of the art.

2.3.1 Apiary IO [17]

 This is a tool that allows users to create a mock REST [1] API before beginning

the coding. This is useful as it allows us to perform integration tests with the use of a

mock service but does not generate code.

2.3.2 Swagger [18]

 This allows us to have a very neat and clean representation of our REST [1] ap-

plication. It also allows us to test our API interface endpoints with a very friendly user

interface. But it does not have a support for Spring’s hypermedia framework [3] i.e.

HATEOAS [10].

2.3.3 RAML [19]

 RAML is a language that can be used to model a REST [1] application. It has a

variety of features and a unique syntax that makes representing a REST [1] application

understandable. The shortcoming of RAML [19] is that it is limited to modelling struc-

tural aspects [2] of a REST [1] application. The behavioural aspects [2] like hyperlinks

are not supported. In modern REST frameworks like Spring’s HATEOAS [10], defining

links between resources play a major role.

2.3.4 RestUnited [20]

 RestUnited is another REST [1] API generator that allows the end user to give

resource [1] information. It can generate the skeleton in a number of languages. This is

limited to Structural aspects [2] of an application. There is no hypermedia [3] support in

RestUnited.

2.3.5 Restlet Studio [21]

 Restlet Studio is a REST [1] API generator with a web interface. It allows the user

to create a REST [1] application and specify resources [1] along with hyperlinks [3]. This

works well as it can generate the code we need. But it does not follow a model-driven

approach [22]. In the sense of modelling, Restlet Studio does not offer a modelling meth-

odology. The user is expected to have a model ready and put the data into the interface

step by step. Thus, it can be seen that this does not serve the required purpose of reducing

manual work. This is because the modelling is expected to be already achieved, and in

the end, feeding information into a web interface is an extra work as such.

8

2.4 Shortcomings of Existing technology

 After thorough research on the existing technology, it can be concluded that al-

most all of them do not have proper support for Spring HATEOAS [10] framework to

develop a REST [8] application. The behavioural aspects are covered by some of them

but with different frameworks. As we focus on Spring HATEOAS [10] we are in need of

something that supports it. The following is a list of existing technologies that have been

studied.

Name Pros Cons

Apiary Useful to test

mocks for REST

API.

 Does not generate

code.

Swagger Good documenta-

tion and testing of

API. Code genera-

tion available.

 Does not support

behavioural as-

pects.

RAML Start to End design-

ing of API with

documentation.

 Does not generate

code.

 Does not incorpo-

rate behavioural

aspects

RestUnited Can generate code

in several lan-

guages.

 Does not incorpo-

rate behavioural

aspects.

 Not free.

Restlet

Studio
 Provides a friendly

user interface.

 Does not incorpo-

rate behavioural

aspects.

 Does not provide

a model-driven

approach.

Table 1. Shortcomings of Existing Technologies

 Some of the technologies are really good for use with the structural aspects [2] of a

REST application but they have limited support for behavioural aspects [23]. The following

table shows the survey of the existing technology and their evaluation.

9

3 Research method

 This section will highlight how the research was carried out and the procedure

that was followed.

3.1 Scope

 By knowing the language and framework that would be used, we can have a good

idea on how the end code would look like. For that, we needed to clearly define the scope

of the research. Using Spring boot application reference guide [24] we can clearly define

the structure of the code and naming conventions.

 The scope of this research would be limited to creating a REST [1] application

using the following technologies:

 Java 7+ [25]

 HATEOAS [10]

 Spring boot application and structure [24]

3.2 Steps

 We have identified certain technologies that could help us in achieving the goals.

Also, we have chosen some related work that could help us in defining a proper DSL.

However, we have also analyses the potential drawbacks and shortcomings of the selected

technologies and related work.

In order to achieve the goal we have followed the following steps:

3.2.1 Information required from the user when creating a REST [1] applica-
tion with HATEOAS.

 To know what information is required from the user, it is important to know what

kind of inputs are required during the coding. For this, it is necessary to write the code

manually in accordance with Spring boot application guidelines [24] to understand the

inputs.

 After coding and careful examination of the end code the following files were

identified to be related to every resource in our REST [1] application. These files will be

explained in detail with an example in Section 4.

Files for resource

‘PurchaseOrder‘

Information required

PurchaseOrderRe-

source.java

@XmlRootElement name

Fields with types

Cardinalities if applicable

10

PurchaseOrderRestCon-

troller.java

@RequestMapping value for Class

Functions with Mapping and HTTP request

type

Parameters and Response Status for func-

tions

PurchaseOrder-

Status.java

States enumerations

PurchaseOrderResource-

Assembler.java

Transition between states

HTTP method type, output function, output

mapping for Transitions

Table 2. Files with information expected from the user

 Name of the resource

 The name of the resource is used in multiple places: the class declaration of all

files, the names of all files and the root element name of resource.

 Container mapping

 The container mapping is the URI mapping declaration for the entire container. In

HATEOAS, this is achieved by mapping the rest controller class with use of request

mapping annotation. Thus, all the functions in the controller will be mapped relative

to the mapping done for the controller.

 Function mapping

 The function mapping is the URI mapping declaration for every function in the

rest controller. In HATEOAS, this is achieved by mapping each function with its own

request mapping annotation. The annotation will have an attribute value which will

identify this information.

 Cardinality

 Cardinality is required during generation of entity files by helping in declaration

of the cardinality of all other entities that are contained by the subject entity.

 HTTP method type

 The HTTP method type, which is invoked on each state transition, is also required

to generate hyperlinks. In HATEOAS, this is done by mapping each function with its

own request mapping annotation which has an attribute method. This will store the

information.

 States of dynamic resources

 The list of all the states of the dynamic resource is required in its controller func-

tions and hyperlinks generation. This is achieved by creating an enumeration.

3.2.2 Syntax [2] to ensure that this information can be taken as input from
the user while modelling.

 Now that we have identified our inputs from the user, we need to come up with a

syntax with the help of three chosen papers.

 The study of the following papers has been conducted in order to come up with a

suitable DSL to model a REST application. The objective was to study existing meta-

models and to come up with a DSL which ensures that all required inputs are incorporated

while modelling a Spring HATEOAS [10] application.

11

3.2.2.1 Modeling RESTful applications [2] by Silvia Schreier

 This paper provides a very simple approach to Modelling REST application by

use of Ecore meta-model from Eclipse.

 A very simple example of Google Picasa model is provided with related concepts.

The paper addresses some core REST concepts like resource and resources, resource

types, states and transitions, links and conditions etc.

 These concepts used in the meta-model can be linked to a REST API and automa-

tion can be performed. The concepts of behavioural aspects of a REST application are

thoroughly specified in this paper.

 The concept of Action in this paper is thorough. The paper has categorised various

actions to suit different situations. Different Actions can be made on the resources, which

would trigger a state change. This eventually led to the idea of providing many options in

the transitions section of the DSL which will be described in detail later in the paper

(section 4).

3.2.2.2 Towards a Model-Driven Process for Designing ReSTful Web Services
[22] by Selonen et al

 This paper provides a step by step approach to developing REST services. The

paper addresses structural as well as behavioural modelling of an application. The exam-

ple used in this paper is an airline booking system. The structural and behavioural models

are provided.

 This paper offers an approach to conceptualise domain-specific information and

resource-oriented information within the common boundaries of a single structure model.

The behavioural canonicalization model provides enough information about the applica-

tion with respect to the addressees and data holders. In this paper, instead of using state

chart model approach for behaviour modelling, the use of behavioural canonicalization is

resorted to, which, instead of perceiving the application as in many states, only perceives

addressees and their bystanders which hold information and the actions that an addressee

will perform. Here, addressees are resources along with accepted requests and bystanders

are the information holders.

3.2.2.3 Modeling Behavioral RESTful Web Service Interfaces in UML [23] by Por-
res et al

 This paper provides yet another approach to model-driven development where

they address the structural as well as behavioural aspects of a REST application. This

paper uses a simple hotel reservation scenario to explain the approach.

 The structural modelling in this paper gives a very concrete idea about the URIs

of the REST API. A strict hierarchy is maintained and that makes it very easy to determine

the resource paths.

 The structural modelling here is termed as a Conceptual model that has a collec-

tion and each collection has its element that can be addressed through the collection itself,

maintaining hierarchy with its resource identifier. Hence, after the end of the conceptual

modelling of an application, we end up having a system that serves hierarchy and follows

the links to reach other resources. Every link ends with a new addition to the current URI.

12

So as we keep moving down the hierarchy, the model itself dictates the paths to the re-

sources that serve as the URI. This idea would eventually be used in the code generation

mechanism of this thesis, to reach the resources declared, from the root.

 The behavioural model follows state chart based approach where the system is

conceptualised as a bunch of states. Every state has a pre-condition and a post-condition.

And then there is a transition with action and trigger. This concept of action and trigger

has helped in this research in creating the concept of transitions, which would be ex-

plained further in section 4.

 Following shows the analysis of the three papers in accordance with our require-

ments identified above.

Required Info Selonen
[22]

Schreirer
[2]

Porres
[23]

Cardinality yes no yes

Container Mapping
values

yes yes yes

Function Mapping
values

yes yes yes

Parameters yes yes no

Transition Mapping
values

no no yes

Function for transi-
tion

yes yes no

Table 3. Review of papers

 From the above analysis, it can be noted that there is some or the other missing

requirement in the existing papers. So there is a need to make a new meta-model that

would incorporate all the above-required information.

3.2.3 A DSL that would take the identified inputs and would then generate the
code.

 In this step, we create a DSL using Xtext [13]. This DSL would conform to the

syntax which we have formulated in the previous step. After that we would use the gen-

erator functionality of Xtext [13] to generate the end code.

 This step must also ensure that the information taken from the user will be taken

in a very user-friendly way. The user should be able to write the information in a syntac-

tical fashion and with minimum typing.

 There could also be a possibility to bring in diagrammatic input methods, but this

would be a secondary priority or a potential future work. The priority in this research

would be to come up with a syntax that would allow the user to input the information with

minimum repetition of keyboard typed words.

13

4 The RestGen language

 RestGen is a very simple, elegant and easy domain-specific language that allows

the end user to specify the structural and behavioural characteristics of an application and,

in turn, generates a Spring HATEOAS [10] code from it. The generated code will be in

Java.

 As discussed earlier in this paper the scope of this work will be limited to Spring

boot applications [24]. This section will help you understand the DSL more clearly. We

will focus on a particular scenario viz. the equipment rental scenario [26], specifically

handpicked to contain several situations of interest.

 Every file that is to become a RestGen file is suffixed with a file extension of .rg

after which it is well recognised as a RestGen file.

 To understand how RestGen works, let us first understand the methodology that

governs the idea of the language.

4.1 Methodology

 The Institute of Computer Science at the University of Tartu conducts a course

called Enterprise Systems Integration (ESI) [27] which deals with providing students with

a good foundation to work and research on REST [1] services with the Spring framework

[12]. Following concepts, which govern the overall methodology of the research, are

based on a few concepts introduced during the course.

4.1.1 Scenario for Analysis

 The following is a scenario obtained from the University of Tartu’s web portal for

the above-mentioned course [27]. It has been used exclusively in courses conducted at

the University. The scenario chosen for this research is a subset of the bigger equipment

rental scenario in which there are two systems. For the purpose of this paper, we will

focus on only one of the systems.

4.1.1.1 The equipment rental Scenario [26]

 The scenario we would use for analysis would be a simple one based on online

renting of equipment. Rentit is a company that rents heavy machinery like cranes, tractors,

etc., to its customers via an online renting portal. Note, that in this domain, a piece of

machinery is often referred to as a plant and, hence, we adopt this same convention.

 The portal provides a catalogue of plants to view. A Plant has a name, company

name, id and price per day. After careful review of the catalogue, the order can be placed

by the customer in the form of a PlantHireRequest which contains the id of the Plant, the

date of hire and date of return.

 The PurchaseOrder contains the start and end dates of the rental period, the Plant

id and the total cost excluding additional costs. The status of the purchase order will be

open, once created. An executive will review the order and confirm or deny it. If it is

confirmed then the delivery is made. If it is denied, then an email is sent to the customer

to notify the decision with the reasons thereof, after which the customer can send a fresh

plant hire request.

 A purchase order can be cancelled or updated within 18 hours prior to the date of

hire. In the case of updating the purchase order, the new start date should have more than

14

18 hours of difference from the time of update to the time the plant has to be available as

per the revised period of hire.

 After the delivery is made, it can be accepted by the customer or rejected. In the

case of rejection, the plant is brought back and based on the customer’s remarks, the Pur-

chaseOrder could be reopened and a fresh delivery made. Once a delivery is accepted

and the plant returned, the purchase order is marked as closed and an Invoice is created.

 The Invoice which is unpaid is sent to the customer’s email. The customer will

review the Invoice, and if the customer accepts the invoice, then the payment should be

made. If the payment is made then the invoice is marked as paid. If the invoice is unpaid

for more than 7 days then a reminder email is sent to the customer.

4.1.2 Analysis and design

 The phase of analysis will undergo a process of identification of resources within

our scenario text. During analysis, it is essential to understand every sentence within the

scenario text. This includes grammar of the language it is written in. The structuring of a

sentence in the written language plays a major role in the identification process. For the

analysis phase, we make use of some guidelines.

4.1.2.1 Resources and Entities

 Every noun encountered in our scenario will qualify as a potential resource, entity

or property. The importance of a noun found in the text is also essential to come to a

decision. Finding a noun does not necessarily mean that it is a resource but, it sure

does qualify it to be one. If semantically the noun is found important then it can be

considered as a resource. Nouns can be spotted differently in different languages. In

the English language for example, a noun could be spotted when seen to be used by a

definite or an indefinite article like ‘a’, ‘an’, ‘the’, ‘that’ etc.

 E.g. in the scenario above, ‘A PurchaseOrder’ and ‘the database’ both qualify as

a potential resource. But semantically only PurchaseOrder can be a resource. Also

startDate and endDate qualify as properties of a resource etc.

4.1.2.2 States and Transitions

 The tense of the verb ‘being’ within the text usually helps us identify the state of

a resource. Once we have identified the nouns that semantically qualify them as re-

sources or entities, the tense of the verb ‘being’ that describe them can give us infor-

mation about the state of the resource. Once again, semantically the tense of the verb

should be important. If the verb is in its present tense i.e. ‘is’ then it would identify the

current state of the resource in the context of the sentence. The future tense like ‘be-

come’, ‘will be’, ‘would be’, or simply ‘be’ would identify the future state(s) of the

resource from its current state.

 E.g. in the scenario, ‘the Invoice which is unpaid’ implies that the current state of

the invoice is UNPAID etc.

4.1.2.3 Relations

 Prepositions, in general, help us identify relations between two resources or be-

tween resources and actions. Once we have identified the resources, we can analyse

them semantically to find potential relations between two entities or resources.

15

 One must analyse the prepositions used to identify the meaning. The preposition ‘of’

for instance would imply the content of a resource.

 E.g. in the scenario, ‘The status of the purchase order’ implies that PurchaseOrder

contains a Status.

4.1.2.4 Actions

 Verbs help us in identifying actions. Actions semantically important such as ‘Pur-

chaseOrder can be accepted by the customer or rejected’ implies that ‘accepting’ is an

action.

 Verbs usually help us identify functions within our application. E.g. accept and

reject would be two functions on the resource PurchaseOrder etc.

4.1.3 Domain modelling

 The classic domain model can be useful in distinguishing the entities from the

resources. Entities most of the times end up also being resources but in many cases there

are resources that may never be an entity in the application. Search related resources or

the resources that only carry information can qualify as such resources. These resources

will not be present on the domain model.

 Domain model will consist of anything that will be tangible to the lower-layer

persistence of the application which plays a role in providing data to the higher level API.

Usually, the domain model will begin with the data model of the application which con-

sists of all the entities. Once refined, it will contain only the most important entities which

will play an active role in providing data to the higher level API, and then it becomes a

domain model. The entities which provide this data will remain while other will not be a

part of the domain model.

Figure 1. Domain model of Rentit

16

4.1.4 Resource modelling

 Resource modelling is the next step towards designing a REST API. The resource

model would usually begin with the domain model. The domain model will consist of

data which can be transformed into data required for the higher level API. It can happen

that in some situations the entities that exist in the domain model are not present in the

resource model. This is because though the entities play a role in determining the outcome

of the resource model the entities themselves are not present in the resource model be-

cause they are not available at the higher API level.

 The key entities that remain in the resource model will become the resources. The

collections that remain will become containers. Every single element of this container

will become an individual resource. Associations from domain model will become refer-

ences (ref). Every reference will reflect on the API as a rel (relation) in the URI.

 Every container and resource combination will have basic Create, Read, Update,

Destroy (CRUD) functions. There would be five functions as listed below:

 Create will be performed by a POST on the container. And Read all will be per-

formed by a GET on the container. Read one will be performed by a GET on the item by

use of a path variable in the URI being the identity of the single item. The update will be

performed by a PUT on the item and Destroy will be performed by a DELETE on the

item.

 If a resource contains another resource, then it will be connected to that resource

by a relation. This relation will be represented by a GET on the name of the resource in

relation with the URI of the resource, e.g. /purchaseorder/{id}/plant, etc.

Action HTTP method

used

Invoked on Mandatory

parameters

Read all resources GET Container -

Create one resource POST Container body

Read one resource GET Resource id

Update one resource PUT Resource id, body

Destroy one resource DELETE Resource id

Table 4. Five basic CRUD functions

17

Figure 2. Resource model of Rentit

 This leads to the following endpoints,

 /purchaseorder – GET and POST

 /purchaseorder/{id} – GET, PUT and DELETE

 /purchaseorder/{id}/plant - GET

 /plant – GET and POST

 /plant/{id} – GET, PUT and DELETE

 /invoice – GET and POST

 /invoice/{id} – GET, PUT, DELETE

 /invoice/{id}/purchaseorder – GET

4.1.5 Behavioural modelling (State diagram)

 Key resources in the resource model will have multiple states. These are the re-

sources whose behaviour changes as the application reaches the new stage in the life cy-

cle. Every resource whose behaviour changes, will have a status identifier within it. This

identifier will determine the current state of the resource. Every state will have transitions.

A transition can be from one state to another and can be triggered by an HTTP request on

that resource.

 E.g. in the scenario [26], a PurchaseOrder has many states. Based on the infor-

mation we get from the scenario, we can model a state diagram to represent the various

states and the transitions between them. In ESI [27], the methodology includes the use of

HTTP requests and the resource URI as triggers for each state transition. This makes it

easier to understand the state transition in a RESTful way and helps in representing the

actions.

18

Figure 3. State diagram of a PurchaseOrder

4.2 RestGen Syntax

 Now that we know the scenario, let us take a look at how it would cope with the

proposed language, RestGen. In this section, we will address the DSL that we developed

to gather information needed for building a REST application with Spring HATEOAS

[10]. XText [13] provides a nice platform to create rules and logic for preparing a DSL.

Making use of xtext’s features we built an editor with a certain syntax. In order to avoid

unnecessary user input, the syntax has been designed in a very simple manner. This sec-

tion will help you understand the syntax. The editor will identify files with the extension

.rg as a RestGen file.

 The motive was to collect all the structural and behavioural [2] aspects of the

model from the user with minimum syntactic complexity. Considering this requirement

we had to come up with a simple, understandable syntax for the user.

 The basic syntax of the .rg file is the following,

package somepackage
dbconf {
..
}
internal someinternalresource {
datatypes declarations …
 states {
 ..
 }
 transitions {
 ..
 }
}
More internals …

19

4.2.1 Terminology

 For the language that is needed, this section will help enlighten some special terms

that one should know before we could proceed. These terms have been used to describe

various elements in the syntax of this language. In order to understand the examples used

while explaining these terms, you would need to read the equipment rental scenario [26]

in section 4.1.1.1.

4.2.1.1 Package

 A spring project like other Java [25] based frameworks relies on packaging the

classes in proper order. The package generally would hold the ‘base package’ for the

project. E.g. ee.ut.rentit etc. A package would be the first information to be declared in

the DSL [4]. A package could be declared by using the keyword package followed by the

package string, such as the following,

4.2.1.2 Database Configuration

 Every project requires database configuration to be able to perform persistence

operations. Spring HATEOAS [10] is no exception. Configuration of the database must

be provided at the project level. In our DSL, this would be the second declaration after

the package declaration. Database configuration will consist of the following inputs,

 database

 Will choose the database name that would be used by the application. Declared

using keyword database. Would be a string declaration hence in single quotes.

 username

 Will provide a username. Declared using the keyword username. Provided in sin-

gle quotes.

 password

 Provides a password for the access. Declared using keyword password. Written

in single quotes as a string.

 host

 Provides hostname. Declared using keyword host. Provided in single quotes.

 port

 A numerical value that would provide the port for connection. Declared using

keyword port.

 All this information would be provided with the dbconf declaration. The above

configurations would be embraced in curly braces after the dbconf keyword.

package ee.ut.rentit

dbconf {
 database 'rentit-test2'
 username 'postgres'
 password 'letmein'
 host 'localhost'
 port 5432
}

20

4.2.1.3 State

 A state is one particular user-defined state [10] of a particular resource. It

is declared within the embracement of the states keyword and simply noted by its

name which is a string. If there are more than one states then they are separated by a

comma.

 Preferably, this string could be one which follows the Java naming con-

ventions for constants which are named in a capital snake-case fashion, but the user

has the freedom to name it as preferred. In the end code, the name that is defined here

will be used as it is.

4.2.1.4 States

 States is a collection of multiple defined state. This collection can also be

an empty collection. If not empty, it will qualify as an enumeration. We need this

information because we need to know the different states that a particular resource

can have. The embracement contains multiple state separated by a comma. It is de-

fined using the keyword states and the information is wrapped around within two

curly braces. It is defined within the declaration on an internal after the datatypes.

E.g. the states of PurchaseOrder from the scenario [26],

4.2.1.5 Transitions

 A transition as the name suggests is a transition between two state. A transition

will have numerous sub-entries to be filled by the user. A transitions declaration is

a collection of multiple transition. It is defined within the declaration of an internal

after the declaration of states. This collection is always empty, when the collection

states is empty.

 Trigger combination

 A transition will have a trigger in the form of a combination of an HTTP method

type [28] and a relation to the current resource. A relationship or rel is a term that

Spring [10] uses to define a self-referencing hyperlink. This means that a particular

resource can have a link to itself but only after performing a minor change to itself.

In this case, the change would be a change in state. A rel will make sure that this

transition will create a resource for the action that this transition performs along with

its URI. A combination of HTTP method type and a rel will make every transition in

the resource a unique one.

 Input for HTTP method type could be one of the four compatible method types:

GET, POST, PUT and DELETE [11] with the keyword with. Input for rel will be a

single quoted string with the keyword on.

states {
 OPEN,
 APPROVED,
 DENIED,
 ACCEPT,
 REJECT,
 CLOSED
}

21

 From state

 This one will define the state from which the transition would take place. This

means that when this transition takes place, the current state of the resource must be

what is mentioned here. Input can be one of the defined states. It is identified as the

state preceding the keyword to.

 To state

 This one will define the new state of the resource. This means that after the tran-

sition takes place the state of the resource would change to this one. Input can be one

of the defined states. It is identified as the state succeeding the keyword to.

 Controller function

 Every transition will have some effects on the resource. In the simplest of

situations, it will be the change in state. For this to happen, the logic has to be added

in the rest controller. The controller function is usually referenced while creating

links hence there is a need to know the name of the controller function. In reality,

this should not be needed as we can create a name of our own, but this functionality

will allow the user to give a name in accordance with the Java naming conventions

for functions.

 Input will be in the form of a single-quoted string with the keyword using. The

Syntax for transition will be as follows,

E.g. all transitions of PurchaseOrder from the scenario [26],

 Here OPEN is a state and APPROVED is another state. When a resource is at state

OPEN, it will have a relationship which would allow transition to another state which

is APPROVED. This hyperlink accepts a POST request on the current resource and

the logic for changing the state will be defined in ‘approvePO’ function of the con-

troller. Same with OPEN to DENIED etc.

4.2.1.6 Internal resource (Internal)

 An Internal resource is one which is specific to the domain of the application. In

other words, this resource originates at the application and has an entity representation in

the domain model. Every element of the resource model that is also a part of the domain

model will qualify as an internal. E.g. from the scenario, a PurchaseOrder will qualify

as an internal. Also, the container for the resource in the resource model does not need to

be declared as an internal. E.g. declaration of PurchaseOrder in the .rg file will suffice.

transitions {
 OPEN to APPROVED using 'approvePO' with POST on 'approval'
 OPEN to DENIED using 'denyPO' with DELETE on 'approval'
 APPROVED to ACCEPT using 'acceptPO' with POST on 'acceptance'
 APPROVED to REJECT using 'rejectPO' with DELETE on 'acceptance'
 ACCEPT to CLOSED using 'closePO' with DELETE on 'closure'
}

OPEN to APPROVED using 'approvePO' with POST on 'approval'

22

 These resources have an entry in the database. These resources are the ones which

have been created from an entity in the domain model. Every entity will have a collection

in the database. Every collection can be converted into a container for the resource type.

 From the equipment rental scenario [26] above, the application domain has a re-

source called PurchaseOrder. This resource is a part of the application’s domain model

and will have an entry in the database. A collection of this entity can be converted into a

list of PurchaseOrderResource which will serve as a container, and a specific Pur-

chaseOrderResource can be found by its resource identifier. We can make sure of this by

putting the identity of the resource in the URI, hierarchically after the container and fur-

ther creating a URI for each resource with the identifier on the path or the URI as a path

variable [10]. With this, we can make sure that every PurchaseOrderResource will have

a URI which will hold its identity and have a unique URI for itself. Also, the container

for PurchaseOrderResource will have a URI for itself.

 An internal resource can be declared using the keyword internal followed by other

information which is enclosed in curly braces. Other information that has to be enclosed

is explained below.

 Datatypes

 An internal resource will first have some data types. These datatypes are the same

as JVM provided data types such as String, Long etc. These will follow a simple dec-

laration syntax.

 <javaType> <name>

 E.g. datatypes of PurchaseOrder from the scenario,

 Internal Datatypes

 An internal resource itself can serve as a datatype for another internal resource.

We come across several scenarios where a resource comprises of other resources. For

example, from our equipment rental scenario, a PurchaseOrder will have a Plant.

 In this case, we need two things. First, we need the resource which is to be placed as a

datatype in the internal resource to be defined before we define the current one. Sec-

ond, we need to provide cardinality information. Along with this we also need to pro-

vide a name to this datatype as an unquoted string. We have to prefix the datatype with

a cardinality one from the following: OneToOne, OneToMany, ManyToMany and

ManyToOne.

 The syntax for an Internal Datatype is as follows,

 <cardinality> <internalDatatype> <name>

 E.g. internal datatype in PurchaseOrder from the scenario,

java.util.Date startDate
java.util.Date endDate

OneToOne Plant plant

23

 The syntax for an Internal consists of the keyword internal followed by first the

datatypes then the internal datatypes embraced in curly braces.

 E.g. the complete declaration of PurchaseOrder from the scenario,

4.2.1.7 External Resource (External)

 An external resource is one that does not originate in the application domain but,

either in the business logic of the application or in the domain of another application that

would interact with the application. If originating in another application, this can come to

the application as an input along with the request from the originating application. This

case is considered only for situations when predevelopment knowledge of such interac-

tion will be known, like in the case of the equipment rental scenario [26], where the

knowledge of RentIt and BuildIt interaction is known. The other situation is when the

resource originates at the application but does not have a representation in the domain.

This resource is important for the application because it serves as an information carrier

that the application uses to fulfil its business logic.

 Since this resource originates from another application or it does not necessarily

have a place in the application’s domain model, this resource would not have an entity

entry in the database. Hence, there would be no need for creating entity specific files for

such a resource. Every resource that is a part of the resource model but not a part of the

domain model will qualify as an external.

 In the equipment rental scenario [26] above, we see one such resource called

PlantHireRequestResource. This resource does not originate from the application but

since it has certain information such as start date and end date etc. which could be bene-

ficial for the creation of a PurchaseOrder and its resource, there is an option to create it.

internal PurchaseOrder {

 java.util.Date startDate
 java.util.Date endDate

 OneToOne Plant plant

 states {
 OPEN,
 APPROVED,
 DENIED,
 ACCEPT,
 REJECT,
 CLOSED
 }

 transitions {
 OPEN to APPROVED using 'approvePO' with POST on 'approval'
 OPEN to DENIED using 'denyPO' with DELETE on 'approval'
 APPROVED to ACCEPT using 'acceptPO' with POST on 'acceptance'
 APPROVED to REJECT using 'rejectPO' with DELETE on 'acceptance'
 ACCEPT to CLOSED using 'closePO' with DELETE on 'closure'
 }
}

24

 Datatypes

 Same as an internal resource, an external resource will also have some datatypes

provided by the JVM [7] such as int, float, String etc. These will serve as the proper-

ties of this class and will determine the properties of the resource. The syntax is same

as that of an internal resource’s datatype.

 <javaType> <name>

 E.g.

The syntax for external consists of the keyword external followed by the data

types embraced in curly braces separated by a line.

4.3 Mapping the information from User

 Now that we know how to write the .rg file and the information we need to put

into the same, let us take a look at how this information is used in the generation of the

end code. The information from the .rg file is used in specific places (single or multiple

places) in the end code.

 In order to achieve this, we needed to first have a look at the end code. Knowing

the end code helped us understand the resource specific entries in each class that we write

in java.

 The following files will be generated for every internal declared within our .rg

file. For the sake of example let us consider the resource PurchaseOrder from our sce-

nario.

4.3.1 Package and project structure

 In our DSL, we provide an input called package. The information provided here

comes to use when creating the package structure of the end code. The information pro-

vided here will serve as the base package for the project. The subsequent layers in the

packaging structure will be relative to this base package.

 In a Spring project, we observe that Spring creates some folders for us when we

create a new spring project using initializr. The only folder that RestGen is concerned

with or makes changes into is the src/main/java folder. RestGen will create all the pack-

ages in this folder. The first and foremost package that is created is the base package we

discussed above.

 The base package will contain two main files. The application file and the data-

base configuration file. The application file contains the runner class for our application,

which contains the main function used to run the Spring boot application. The database

configuration file contains the standard JDBC setup.

java.lang.Float total

external PlantHireRequest {

 java.lang.String name
 java.lang.Float total
}

25

 From the information provided in the package declaration in our .rg file, we as-

sume that the string value included as the last element in the package string is the name

of the application, and will be used while naming these two files. This string value will

be prefixed to Application.java and DatabaseConfiguration.java to create two of these

files.

4.3.2 Application specific files

 As per the observation, some files are application specific and need to be created

only once. These files do not have any resource related information and lie at a higher

level in the application. Some of these are the spring application files such as Applica-

tion.java and DatabaseConfiguration.java, while some are Utility files like ResourceSup-

port.java and ExtendedLink.java etc.

 The following are the files generated that come into the category of Application

specific files. For the sake of example let us consider the files for a project with package

declaration of ee.ut.rentit.

4.3.2.1 RentitApplication.java

 This file contains the runner class of the application. The class contains the main

function which runs the spring boot application.

4.3.2.2 RentitDatabaseConfiguration.java

 This file contains the basic JDBC setup for the application. The class being anno-

tated with @Configuration allows Spring framework to consider this as a configuration

file. The information provided in the dbconf declaration in the .rg file will be used over

here.

4.3.2.3 ResourceSupport.java

 This is Spring framework’s base class file that allows easy creation and manipu-

lation of hyperlinks within a resource.

 No information from the .rg file is required to generate this file.

4.3.2.4 ExtendedLink.java

 This is an extension of Spring’s Link class which allows the creation of links with

traditional href and rel, as well as another entry called method which represents the

method name in the controller function.

 No information from the .rg file is required to generate this file.

4.3.3 Resource specific files

 As per our observation, some file types are common to all resources in a Spring

HATEOAS project. Every resource in the application will have one specific file of the

type. Knowing the syntactical structure of a Java class file, the Spring style of coding and

following the Java naming conventions, we have created patterns to map information pro-

vided in the .rg file to its target in the .java files for every internal that has been declared.

 In this paper, we would provide the details using the resource PurchaseOrder

from the above equipment rental scenario [26], and the files so generated.

26

4.3.3.1 PurchaseOrderResource.java

 This file is stored in the .rest package relative to the base package. This file is the

resource file in terms of Spring boot application [24]. This is a simple java class with an

annotation XMLRootElement [12] with name attribute which gives it the name for XML

[5] or JSON [6] conversion.

 This class extends ResourceSupport class described above. Extending resource

support will allow the class to inherit some useful functions and features that would allow

it to swiftly create and manipulate hyperlinks [10].

 This class will be required for both, resources that originate at the application or

internal as well as resources that do not originate at the application or external.

 This class will be annotated with @XMLRootElement with attribute name which

would bear the name of the resource. The same name would be used to represent the

resource in XML [5] and JSON [6] formats. Along with this, it would contain functions

and data types along with their getters and setters. We would use the identity, id as a Long

as per Spring boot guidelines. [24]

Resource specific information in this file is as follows,

 Name of the file (prefix to Resource.java)

 In the example, the name of the file is PurchaseOrderResource.java where the

word PurchaseOrder comes from the name of the resource. This is so because it will

make it easier to read and understand as well as easy to locate this file once all the files

are created.

 This information is available and made use of from the name of the internal in the

DSL suffixed with ‘Resource’.

 Name for the Class (prefix to Resource)

 Could be named anything but once again in order to make things simpler, we

would name the class the same as that of the file followed by ‘Resource’.

 This information is available and made use of from the name of the internal in the

DSL suffixed with ‘Resource’.

 Name for the xml/json (value of the name attribute of @XMLRootElement)

 Every resource represented by a JSON [6] or XML [5] would have a root element

name. This allows the recipient application to differentiate between different re-

sources. We would name it the same as that of the class but in lower case. This is to

follow the Spring naming conventions. [24]

 This information is available and made use of from the name of the internal in the

DSL after converting it to lowercase letters.

@XmlRootElement(name="purchaseorder")
public class PurchaseOrderResource extends ResourceSupport{

27

 Datatypes

 Java [25] data types can be declared as attributes of the class. These would serve

as property fields of the resource. The values of these attributes will serve as the data

that would be transferred by this resource. Every field will also have a getter function

to get the value and a setter function to set a new value to the field.

 This information is available and made use of from the datatypes declared in an

internal in the DSL.

 Embedded resources (other resources of the application that are contained by this

resource)

 Any already defined resources can serve as data types of another resource depend-

ing on the resource model of the application. This means that one resource can contain

another. In the Equipment rental scenario [26] we observe that a PurchaseOrder con-

tains Plant. Hence its resource will contain the resource of Plant etc.

 This information is available and made use of from the internal datatypes declared

in an internal in the DSL.

4.3.3.2 PurchaseOrder.java

 This file will be stored in the .models package relative to the base package. This

is the classic entity class in the model-view-controller world for a PurchaseOrder. This

will have an annotation @Entity [12] which will induce the features of persistence. This

class will serve as the domain model representation of the resource. This class will only

be required for resources that originate at the application or internal (section 4.2). This

would be, same as the resource file, containing datatypes with getters and setters. Again,

we would have an identity, id as a Long. This class will only be needed for the resources

that are native to the application.

 Date startDate;

 public void setStartDate(Date startDate) {
 this.startDate = startDate;
 }

 public Date getStartDate() {
 return startDate;
 }

 Date endDate;

 public void setEndDate(Date endDate) {
 this.endDate = endDate;
 }

 public Date getEndDate() {
 return endDate;
 }

PlantResource plantResource;

28

 From the equipment rental scenario [26] above, the PlantHireRequest will not

have a PlantHireRequest.java class, because it does not originate at the application, but

originates at the client and comes to the application as a payload in the body of the request.

But, a Plant will have a Plant.java class, because it originates at the application and is

sent to the client along with the response to the request by the client.

Resource specific information in this file is as follows,

 Name of the file

 In our scenario, we have a PurchaseOrder.java which serves as an Entity [12]

class for the internal defined. The name of the class has to be the name of the resource

in order to make things simpler as well as for better understanding of the code structure

in the future after it has been generated. This will make it easier to categorise the file

and associate it with the resource.

 This information is available and made use of from the name of the internal in the

DSL.

 Name for the Class

 Would be the same as the name of the file to make things simpler. Also having

the name same as that of the prefix name of the resource file will make it easier to

locate after the class has been defined.

 This information is available and made use of from the name of the internal in the

DSL.

 E.g. for PurchaseOrder from the scenario,

 Datatypes

 Java data types can be declared as attributes of the class. These would serve as

fields of the entity. In most cases the domain model will differ from the resource model

and the fields of the resource will be different from the fields of the entity, but to begin

with, we will assume that the fields are same and later on it can be altered by the user

as the software development cycle proceeds.

 This information is available and made use of from the datatypes declared in an

internal in the DSL.

 E.g. for PurchaseOrder from the scenario,

@Entity
public class PurchaseOrder {

 Date startDate;

 public void setStartDate(Date startDate) {
 this.startDate = startDate;
 }

 public Date getStartDate() {
 return startDate;
 }

29

 Entity Datatypes (other Entities [12] of the application contained by this entity)

 Any already defined entities can serve as data types of another entity depending

on the domain model of the application. This will include cardinality by means of an

annotation.

 E.g. in the Equipment rental scenario [26], we have a PurchaseOrder having one

to one association with Plant. We can use the annotation @OneToOne before the dec-

laration of the attribute Plant.

 This information is available and made use of from the internal datatypes declared

in an internal in the DSL.

 E.g. for PurchaseOrder from the DSL example,

4.3.3.3 PurchaseOrderRestController.java

 This will be the class that defines all the rest endpoints [10]. It will contain all the

functions that are available as REST [1] services. This will be required by internal (sec-

tion 4.3).

 This class will have the annotation @RestController [10] and for every specific

function, it may have the annotation @RequestMapping [10]. This annotation will have

three mainly used attributes viz. method which will inform spring about the HTTP [1]

method type that would trigger this function, value which will inform spring about what

relation or URI [1] path this function will occupy in the application and it’s endpoints and

finally, produces which will inform spring about the media type of the response, XML

[5] or JSON [6] etc.

 In this class, the functions usually have a direct access to the database with the use

of repositories. Every function will perform some operation on the database. Hence, we

need an autowired repository for the resource in question. The @Autowired [12] annota-

tion will allow the repository to be used in the class.

 The behavioural aspects [2] of a resource also play a vital role in the generation

of this class. According to the behaviour of the resource, different functions need to be

placed here in this class to make a change to the state of the resource. This adds up to the

complexity of coding this class, as the states of the resource and their transitions have to

be known before we can write this class.

 @OneToOne
 Plant plant;

 public void setPlant(Plant plant) {
 this.plant = plant;
 }

 public Plant getPlant() {
 return plant;
 }

30

 E.g. in the Equipment rental scenario [26] above, PurchaseOrderResource has

different states like OPEN or REJECTED etc. So depending on the number of possible

transitions from the current state, we will have those many numbers of functions in this

class that would in turn serve as the hyperlinked [3] resource functions. These would have

to be included in this class.

Resource specific information in this file include,

 Name of the file

 The name of the file will have the name of the resource as a prefix to the RestCon-

troller.java to associate it with the resource. Naming the file as such will also make it

easier to locate.

 This information is available and made use of from the name of the internal in the

DSL suffixed with ‘RestController.java’.

 Name of the class

 To make things simpler, the name of the class will be thesame as that of the file.

The name of the resource will be used as a prefix to the RestController. This name will

be later used in the ResourceAssembler class, explained subsequently in this section.

Along with this, the class will also be mapped to a string value equal to lowercase of

the name of the resource. This is done so by use of @RequestMapping annotation of

Spring.

 This information is available and made use of from the name of the internal in the

DSL suffixed with ‘RestController’.

 E.g. for PurchaseOrder from the DSL example,

 Name of the persistence repository

 A repository in the Spring [12] world is an interface that has functionalities to

perform persistence operations on the database. It is annotated with @Repository [12]

and would also extend the JPARepository [12]. The JPARepository will have two at-

tributes, first will be the entity [12] class and the other will be the data type of the

identity field, which in our case has been standardised to Long. We will use this as the

datatype of identity for both resource and entity.

 The RestController will have many functions that will need to perform persistence

operations. Injecting a repository will enable the RestController to have the

functionality to perform such operations. So the declaration of the repository has an

advantage. Injecting is done with the use of @Autowired [12] annotation before the

declaration of the repository.

 This information is available and made use of from the name of the internal in the

DSL suffixed with ‘Repository’.

 E.g. for PurchaseOrder from the DSL example,

@RestController
@RequestMapping(value = "purchaseorder")
public class PurchaseOrderRestController {

@Autowired
PurchaseOrderRepository purchaseOrderRepository;

31

 HTTP method types

 For every function we have to specify what kind of HTTP [1] method type would

trigger the function. This is achieved by declaring an annotation @RequestMapping

[12] with attribute method. The value of the method is an enumeration called Request-

Method. It can have the enumeration types GET, POST, PUT, DELETE, PATCH, OP-

TIONS etc. [28]

 This contributes to the combination of HTTP [1] method type along with the URI.

Every function that represents a resource must have a unique combination of HTTP

method type and URI [1].

 We have to make sure that we represent all the functions declared in the rest con-

troller with an HTTP method type since there would be no default method type.

 This information is available to us and made use of with the HTTPMethodType in

every transition of the internal.

 URI mapping

 Every function that is declared in the rest controller has to be mapped to a URI

[10]. URI mapping can be achieved by declaring an annotation @RequestMapping

[12] with the attribute value. The value can be a String value with ‘/’ used to mark the

beginning of a relative path or relationship.

 In Spring’s [12] rest controller, a hierarchical approach towards mapping is fol-

lowed. The first level of the hierarchy is the class and then the function. So the class

itself can be annotated with @RequestMapping [12]. If so done, then the functions

within the class will all be prefixed with the mapping of the class. If not, then the

functions will follow its own mapping.

 In our scenario, we see that a PurchaseOrderResource will have many functions

within its rest controller. Some of the function will have a separate mapping, like the

ones that represent state change etc. But they all belong to the resource PurchaseOr-

der, hence we can map the class itself as ‘purchaseorder’ so that everything that fol-

lows will have a relationship with ‘/purchaseorder’.

 This makes it easier to locate a resource on the web. Also, it would represent the

container class of this resource. After a resource is created it would have a unique

identifier, which would be a Long, and a new relation would be made relative to the

current URI [1] which would define the URI for the particular resource, an individual

PurchaseOrder. The relation would look like ‘/purchaseorder/<identity>’.

 This information is available to us and made use of from the rel in every transition

of the internal.

 Functions for state transitions

 Every state transition that we define will have a corresponding method in the con-

troller that will perform the function of state change. This function will be triggered

by an HTTP [1] call based on the trigger and method type. The transition functions

will only be available in the controllers of those internal that have states with at least

one state defined. The resources that do not have any states will not need to have these

functions since there would be no transitions.

 This information is available and made use of from the controllerFunction prop-

erty of every transition of the internal.

32

 Transition functions are mostly same as regular functions in the declaration, i.e.

they have an annotation @RequestMapping with attributes method corresponding to

Spring’s RequestMethod [10] enumeration and value corresponding to the string rela-

tive path for the URI [1].

 Apart from that the function contains some internal logic which is basically the

change of state from one to another with the use of the autowired spring repository

[12] interface.

 E.g. for the following transition in PurchaseOrder from the DSL example,

 The corresponding entry in the controller would look like,

 CRUD functions

 CRUD basically stands for Create, Read, Update, and Destroy. These are the most

basic of the persistence functions. The names are pretty much straight forward, giving

us an understanding of the functions. In essence, every CRUD function has a corre-

sponding HTTP [1] request function type. Create can be achieved by a POST [28]

request, Read can be achieved by a GET [28] request, Update can be achieved by a

PUT or PATCH [28] request and finally Destroy can be achieved by a DELETE [28]

request.

 These are merely conventions but play a vital role in the modelling of robust and

understandable REST [1] APIs. On the other hand, since they are merely conventions,

the practice has shown a variety of usages and one which does not break the code but

would simply make it hard to understand. In order to follow a standard, we will follow

the correspondence mentioned in the above.

 These functions, similar to other functions in the controller, are annotated with

@RequestMapping [10] with method and value attributes whose values correspond to

Spring’s RequestMethod [12] enumeration and relative path respectively. Some func-

tions are mapped on the container while some are mapped on individual resources. In

case it is mapped on the container then the value attribute of mapping will hold a rela-

tion without the unique identifier and simply imply the container. Whereas, if the func-

tion is mapped to an individual resource then the unique identifier of the resource must

be known while making the request. Hence, by simple convention we put it as a path

variable. The path variable should also be defined within the functions signature as a

parameter with its type, which in the case of identity will be a Long along with an

annotation @pathvariable [12].

@RequestMapping(method = POST, value = "{id}/acceptance")
public PurchaseOrderResource acceptPO(Long id) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 purchaseOrder.setPurchaseOrderStatus(ACCEPT);
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return purchaseOrderResourceAssembler.toResource(purchaseOrder);
}

APPROVED to ACCEPT using 'acceptPO' with POST on 'acceptance'

33

 According to Spring’s conventions, every resource has five basic CRUD func-

tions. RestGen will use these five basic CRUD functions for every resource.

1. GET on the container

 This will return a list of all resources within the container.

2. GET on the individual resource with identity as path variable.

 This will return the individual resource identified.

3. POST on the container

 This will create a new resource in the container.

4. PUT on an individual resource with identity as path variable

 This will update or change the state of the individual resource identified.

@RequestMapping(method = GET)
public List<PurchaseOrderResource> getPurchaseOrders() {
 List<PurchaseOrder> purchaseOrders =
 purchaseOrderRepository.findAll();
 return purchaseOrderResourceAssembler.toResources(purchaseOrders);
}

@RequestMapping(method = GET, value = "{id}")
public PurchaseOrderResource getPurchaseOrder(@PathVariable Long id) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 return purchaseOrderResourceAssembler.toResource(purchaseOrder);
}

@RequestMapping(method = POST)
public PurchaseOrderResource createPurchaseOrder() {
 PurchaseOrder purchaseOrder = new PurchaseOrder();
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return purchaseOrderResourceAssembler.toResource(purchaseOrder);

}

@RequestMapping(method = PUT, value = "{id}")
public ResponseEntity<PurchaseOrderResource> updatePurchaseOrder(
 @PathVariable Long id,
 @RequestBody PurchaseOrderResource
 purchaseOrderResource) {
 PurchaseOrder purchaseOrder =
 purchaseOrderRepository.findOne(id);
 purchaseOrder = purchaseOrderResourceAssembler
 .fromResource(purchaseOrder, purchaseOrderResource);
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return new ResponseEntity<PurchaseOrderResource>
 (purchaseOrderResource, HttpStatus.OK);
}

34

5. DELETE on an individual resource

 This will delete the individual resource identified.

4.3.3.4 PurchaseOrderStatus.java

 This would be an enumeration of all the different states that a particular resource

can be in during the application’s lifecycle. This will be simple and only the information

about the states would suffice during coding.

 This would only be a part of internal (section 4.2). This will be an attribute in the

entity class of this resource.

 Information required for this file is available and used from the states section of

every internal in our DSL.

E.g. from the scenario, for a PurchaseOrder,

4.3.3.5 PurchaseOrderResourceAssembler.java

 This is a class that would extend ResourceAssemblerSupport of Spring [10]. The

ResourceAssemblerSupport class provides a bridge between an entity and its resource.

Once again this would mean that this class is not applicable to external since it would not

have any entity to represent in the domain model.

 So, for all internal, this class would provide an easy conversion of the domain

model information to its resource model counterpart. In a classic sense, this class would

assemble a resource and make it ready for transfer.

 This class would be responsible for adding hyperlinks [10] to a resource with the

use of many convenient functions. Hence, the behavioural aspects [2] of a resource will

play a vital role in the generation on this class. Based on the current state of a resource

the hyperlinks [10] to be added will vary.

@RequestMapping(method = DELETE, value = "{id}")
public ResponseEntity<Void> deletePurchaseOrder(Long id) {
 purchaseOrderRepository.delete(id);
 return new ResponseEntity<Void>(HttpStatus.OK);
}

public enum PurchaseOrderStatus {
 OPEN,
 APPROVED,
 DENIED,
 ACCEPT,
 REJECT,
 CLOSED
}

35

E.g. for the following transitions in the .rg file,

The following entries will be made in the Resource assembler class of the corresponding

internal,

 In the equipment rental scenario [26] above, the PurchaseOrderResource could

transit from state OPEN to either APPROVED or to REJECTED. Hence, at state OPEN,

it will have two hyperlinks, but once it transits to CLOSED then there are no more transits

available. Hence, in this state it will have no hyperlinks [10].

 The toResource() function of this class will be extensively used in the rest con-

troller as it would assemble the resource for delivery in almost all the functions with

HTTP method type as GET [28].

 Information required for linking in this file is available and used from the

transitions block of the internal in our DSL.

4.3.3.6 PurchaseOrderNotFoundException.java

 Not the most interesting ones, but this exception would be thrown when a partic-

ular resource is not found by the controller when its GET [28] function is invoked.

 The name of the internal is used to name this file.

OPEN to APPROVED using 'approvePO' with POST on 'approval'
APPROVED to ACCEPT using 'acceptPO' with POST on 'acceptance'

switch (purchaseOrder.getPurchaseOrderStatus()) {
 case OPEN:
 purchaseOrderResource.add(
 new ExtendedLink(linkTo(methodOn(
 PurchaseOrderRestController.class)
 .approvePO(purchaseOrder.getId()))
 .toString(), "approval", "POST"));
 break;
 case APPROVED:
 purchaseOrderResource.add(
 new ExtendedLink(linkTo(methodOn(
 PurchaseOrderRestController.class)
 .acceptPO(purchaseOrder.getId()))
 .toString(), "acceptance", "POST"));
 break;
 case ACCEPT:
 break;
 case REJECT:
 break;
 case CLOSED:
 break;
 default:
 break;
}

36

5 Code generation

5.1 Parsing Input

 In the earlier sections, we learnt about what information is required to generate

the code in our chosen scope and framework. Also, we created a DSL [4] to take it as

input from the user. We took a look at the DSL and we understood how to write a .rg file.

This section will help understand the use of Xtext and Xtend that allowed the goal to be

achieved.

5.1.1 About Xtext

 Xtext is a framework which is based on eclipse [14], which provides a useful set

of rules and definitions which, in turn, provide a good base for creating one’s own gram-

mar. With Xtext [13] one can accomplish parsing, linking and compiling. That, coupled

with the possibility to export the product out as a plugin to the two most popular integrated

development environments for Java: IntelliJ idea [29] and eclipse [14], makes it an ideal

choice for this part of the research.

5.1.2 Requirements

 To begin with we need an IDE [30] to build our Xtext [13] DSL [4]. During the

course of research carried out for this paper, the IDE used for developing the DSL was

Eclipse Mars.1 Release (4.5.1) which has an out of the box support for Xtext. However,

in general, to be able to use Xtext, one may do any of the following:

 Installation eclipse afresh, with Xtext support available on eclipse downloads section

[31] on the website.

 Or Install the Xtext plugin [32] and Xtend plugin [33] available in the plugin section

on eclipse’ website onto any eclipse based integrated development environment, e.g.

standard Eclipse release, Spring Tool Suite etc.

 Or Install the Xtext plugin [34] available in the plugin section on eclipse’ website

onto IntelliJ idea.

5.1.3 Getting started

 Once we have our IDE [30] we can begin with making the DSL [4]. Create a new

Xtext [13] project by new > project > xtext project.

 Select a project name. This will correspond to your project. The field language

name corresponds to the name of your language that you create. In the case of this project,

the name selected was restgen.rgdsl and prefixed with the domain of the University of

Tartu. For the sake of simplicity let us call this as our base package. As for the name of

the language, the selections was RgDsl. For the sake of simplicity let us call this Language

name.

Project name: ee.ut.restgen.rgdsl

Language name: ee.ut.restgen.rgdsl.RgDsl

Extension: .rg

37

 You may opt to select SDK support or UI support. In this paper, we will only

address the DSL [4]. Once you have created your project you will notice your project

package. In the src folder, you will notice the base package, or in other words, the package

that you selected while creating the project, along with some other packages. In the base

package you will notice a file named after your language and with the extension, you

opted to use. In our case, RgDsl.rg was the name.

 This file would be the main grammar file where all the rules will reside. In this

file, one can create the parser with the syntax discussed in the previous section. After

much research and work the writing of the DSL [4] was complete. In order to do so, some

basics were needed to be understood.

5.1.3.1 Parser-Rules

 The first two lines are the package and generator instance respectively. The main

logic behind the DSL [4] starts after this. Every declaration in xtext [13] takes place in

terms of ParserRules [35]. These are basic set of rules that define the every element

of the language. In other words, every element in the language is a rule. A rule may

consist of other rules. The first and foremost rule is the main parser-rule. Everything

within the language is contained in this rule.

5.1.3.2 Keywords

 Everything that qualifies as keywords within the language would come under sin-

gle quotes. It may be placed within a rule or before or after a rule. There are some

reserved keywords that xtext has placed for special purposes. Some of the encountered

keywords are listed below, [35]

Keywords Meaning

‘.’ Placing a dot between IDs can manipulate the

qualified name

ID Unique identifier of a rule marked by the as-

signed name

name A variable serves as the name of the rule and as-

signed with a String

enum Enumeration

terminal Any form of ordered Rule like Number system

etc.

Table 5. Native keywords of Xtext

38

5.1.3.3 Operators

 Xtext [13] provides a variety of operators of which some had been used. The op-

erators used in the DSL [4] for this research are, [35]

Operator Meaning

+= Used to declare a collection of a Rule

* Used to multiple occurrences including none

= Used for declaring a variable to a Rule

‘ ‘ Used for declaring keywords strings

.. Used for declaring a Range (numbers, alphabets

etc.)

| Logical OR operator. E.g. Rule1 | Rule2 etc.

[] Used to reference a rule defined

: Marks the beginning of a rule definition

; Marks the end of a Rule definition

Table 6. Operators of Xtext

 After following the conventions of Xtext [35], the DSL incorporating the required

syntax has been prepared and a copy of it is available in the appendix as RgDsl.rg

 Once the DSL has been created we can generate Xtext artefacts [35]. This would

allow us to treat the language we just created as an incorporation in an editor. By default,

eclipse editor has an option to include Xtext artefacts if they are available by means of

applying the Xtext nature to the parser logic.

 To generate Xtext artefacts, in eclipse select the run as from menu of the language

file and choose the option Generate Xtext Artefacts. [36] This will create the required files

and once done you will notice a .mwe2 file created in your base package. This file consists

of all project level information. In order to place the generated files in proper folders, we

realised the need to manipulate the workflow section of this file. As well as there was a

need to create a class that would extend IOutputConfigurationProvider and override the

default output configuration. This solution was found on the internet as an open infor-

mation. [37] By doing this one would enable the files generated to be placed in a proper

folder structure, which in our case is as per a spring boot project. The file was named

RestGenOutputConfiguration.java. Refer to the following subsection for the code gener-

ation mechanism and to the appendix for the above-mentioned file.

39

5.2 Generating code from Input

 In the above subsection, we dealt with the challenge of creating an editor with a

parser that would enable the use of the syntax we formulated. So far we have managed to

get input from the user in the format that we wanted. Now comes another challenge, the

phase of generating output code from the input.

 There will be a file generated, after generating the artefacts, having extension

.mwe2, in the base package. This file, as mentioned before, holds all the project level

information and will help in generating the end code as well. In eclipse, select this file

and select the MWE2 Workflow option from its run as menu. This will create all the gen-

erators for the DSL. [38]

 Alongside the base package, you will notice another package suffixed .generator.

In this package, there would be a .xtend file. This is the main generator file and all the

logic behind end code generation would reside here. Similar to the DSL writing in the

previous section, writing logic to this file also needs some understanding of common ba-

sics. After research and understanding of this .xtend file, the generator mechanism was

written. Refer to RgDslGenerator.xtend in the appendix for the code. [38]

 The file will contain a class named after the language name chosen, and this class

will implement IGenerator interface of Xtext. [39] The IGenerator interface has a func-

tion doGenerate which has to be overridden. This function will be invoked during the

generation process. There are two input parameters to this function. First, the instance of

the Resource class which is a Xtend representation class for the .rg model that we would

write in the editor. Second, an instance of IFileSystemAccess class of Xtext [39]. This

instance is created by Xtext automatically during the generation process based on the

output configuration we setup as explained in the previous subsections.

 With the use of the IFileSystemAccess (FSA) instance, we can create files with

specified contents. The logic behind the content of each file was based on the research

carried out in the section 4 i.e. the file contents required by a fully working Spring

HATEOAS [24] project following the naming conventions. We already know what files

are needed and their names. We could use the FSA instance to create these files and give

them the content string with the use of its generateFile function [39]. This function would

take as input parameters the name of the file including the source directory relative to the

project’s main directory. We know the name of the file but as for the source directory, we

would get the information from the fullyQualifiedName property [38]. This holds the

name of the element along with the base package we specified. We could extract the base

package and then convert it into directory type ‘/’ delimited string which would, in turn,

give it the file name along with its proper source directory. The second input parameter

is the content of the file. For the content, one can simply provide a string e.g. ‘Hello

world!’ etc. In our case the contents would most definitely be more than ‘Hello world’

and involving some amount of logical derivation. Hence, it was easier to use a separate

function for each file to be derived which would take care of the logic behind writing

specific lines.

5.2.1 Contents

 The contents of each .java file could be divided into three sections. First, the pack-

age of the file. Second, the imports area which will hold the imports from other packages

within the application. Third, the body part which would contain the class declaration and

all the Spring annotations etc. As mentioned above, we would use the facility of function

definitions within our generator to provide the contents of each file.

40

 A function can be declared with the use of the Xtext keyword def followed by the

input parameters to the function encompassed in round braces i.e. ‘(‘ and ‘)’. The body

of the function serves as a string building area. The body is encompassed between triple

quotes i.e. ‘’’. What lies between these two ‘’’ and ‘’’ is what will be written into the file.

[38]

 Some files that need to be generated are application specific, thus will not hold

any resource specific information. They will not hold any resource specific contents and

hence will be created once. The resource specific files will have to be created for all the

resources declared in the .rg file. In the doGenerate [39] function we make use of the

generateFile [39] function of the FSA instance to create a file. For files that are resource

specific, it is achieved by looping through the instance of Resource, which is the first

parameter to the doGenerate function and is an iterable that contains all the elements of

the DSL, which in our case would include external and internal resources. Further, we

make a call to the functions we created for internals and externals respectively by making

a simple check. The declarations for the creation of the non-resource specific files were

made outside the loop and would be called only once.

 A Xtend [38] function also allows special operations within these boundaries.

These operations can be performed by use of logic within logical blocks. Anything that

is written outside any logical block will not be treated to perform dynamic content oper-

ations, but will be considered merely as strings. [38] During the course of this research

there were encounters with a few of them which have been listed below. [35]

Keywords Meaning

« Beginning of dynamic content logic

block

» End of dynamic content logic block

<IF condition> Begin if block with condition

<ENDIF> End of if block

<FOR variable: collection> Begin of For loop with input collection

and an iteration variable

<ENDFOR> End of For block

val A value object. Needs to be declared

within a dynamic content block.

Table 7. Xtend keywords and Operators

 For writing the imports we needed to declare an import manager instance. Xtext

provides a class called ImportManager which holds information of all JVM based

datatypes declared within a rule while writing the .rg file. This solution was found on the

internet as an open information. [40] Looping through the import manager instance helped

us create a dynamic logic to write the imports for each file. In many files, some non-JVM

imports were needed but almost all of them were known to us since they were all part the

41

same project and Spring imports. Hence, it could be achieved with the use of for loops.

With the use of ImportManager and for loop we managed to write the logic to declare

imports.

 For the body, some of the files needed dynamic contents but it was manageable

with the use of above mentioned dynamic content blocks. When the files are generated

they are placed in their proper source directory because of the configuration placed in

RestGenOutputConfiguration.java. This will override the default configuration. The files

generated can be overwritten any time. The generation merely creates an initial version

for the user and the user can later edit the files or make changes to the .rg file.

5.2.2 Resource specific files

 These files will be generated for all the internal resources declared in the DSL [4].

The following files would be generated for a resource called PurchaseOrder from the

equipment rental Scenario [26]. With the use of fullyQualifiedName [39] function of

Xtext [13], it is possible to extract the package information of Internal e. The last segment

of the fullyQualifiedName is the name of the internal itself. Hence, we need to skip that

to get the proper base package. All these files contain resource specific information in

certain places. The following are all the files that will be generated for an internal e.

5.2.2.1 PurchaseOrderResource.java

 Package

 These range of files will be placed in .rest after the base package.

 The @XMLRootElement annotation [12]

 This will contain the name of the resource in lower cases as a string value to the

attribute name. The name property of internal e will give the name of the internal

resource.

 The class declaration

 This will contain the name of the resource with the first letter capitalised and suf-

fixed with ‘Resource’ to maintain naming conventions. It will also extend the Re-

sourceSupport class that would incorporate some resource generation features.

 JVM declaration

 For the JVM declaration, we would loop through the datatypes property of Inter-

nal e, which as per our DSL [4] is a list of all JVM [7] datatypes declared in that

internal. Along with that, we must also declare getters and setters for the same.

package «e.fullyQualifiedName.skipLast(1)».rest;

(name="«e.name.toLowerCase»")

public class «e.name»Resource extends ResourceSupport{

42

 Internal resource declarations

 For the internal resource declarations, we have followed the same steps and made

use of a for loop [35]. Looping through property internals of an internal will give us

individual internal resource datatype declarations.

5.2.2.2 PurchaseOrder.java

 The resource specific information is gathered from the variable Internal e in the

generator file.

 Package

 These range of files will be placed in the package .models after the base package.

 Name of the class

 The name of the class will have the name of the resource with the first letter cap-

italised.

 JVM declaration

 Like the earlier file, this will be similar. We need to declare all JVM datatypes

declared in the DSL [4] along with their getters and setters.

«FOR f:e.datatypes»
 «manager.serialize(f.dataType.type)» «f.name»;

 public void set«f.name.toFirstUpper»(«f.dataType.simpleName» «f.name») {
 this.«f.name» = «f.name»;
 }

 public «f.dataType.simpleName» get«f.name.toFirstUpper»() {
 return «f.name»;
 }

«ENDFOR»

«FOR i:e.internals»
 «i.internal.name.toFirstUpper»Resource «i.internal.name.toFirstLower»Resource;

 public void set«i.internal.name.toFirstUpper»Resource(
«i.internal.name.toFirstUpper»Resource «i.internal.name.toFirstLower»Resource) {
 this.«i.internal.name.toFirstLower»Resource =
 «i.internal.name.toFirstLower»Resource;
 }

 public «i.internal.name.toFirstUpper»Resource
 get«i.internal.name.toFirstUpper»Resource() {
 return «i.internal.name.toFirstLower»Resource;
 }
«ENDFOR»

package «e.fullyQualifiedName.skipLast(1)».models;

@Entity
public class «e.name» {

43

 Other entity declarations

 Unlike the previous file, this one will have the declarations of other entities. The

cardinality will also play a role here. The use of property cardinality will play a role.

In the spring application cardinality is denoted by declaring one of Spring’s sup-

ported cardinality annotations. [12]

5.2.2.3 PurchaseOrderRepository.java

 The resource specific information is gathered from the variable Internal e in the

generator file.

 Package

 These range of files will be placed in the package .repositories after the base package.

 Interface declaration

 The Interface declaration will contain the name of the resource

«FOR f:e.datatypes»
 «manager.serialize(f.dataType.type)» «f.name»;

 public void set«f.name.toFirstUpper»(«f.dataType.simpleName» «f.name») {
 this.«f.name» = «f.name»;
 }

 public «f.dataType.simpleName» get«f.name.toFirstUpper»() {
 return «f.name»;
 }

«ENDFOR»

«FOR i:e.internals»
 @«i.cardinality»
 «i.internal.name.toFirstUpper» «i.internal.name.toFirstLower»;

 public void set«i.internal.name.toFirstUpper»(
 «i.internal.name.toFirstUpper» «i.name») {
 this.«i.name» = «i.name»;
 }

 public «i.internal.name.toFirstUpper» get«i.name.toFirstUpper»() {
 return «i.name»;
 }
«ENDFOR»

package «e.fullyQualifiedName.skipLast(1)».repositories;

@Repository
public interface «e.name»Repository extends JpaRepository<«e.name», Long>
{
}

44

5.2.2.4 PurchaseOrderRestController.java

 The resource specific information is gathered from the variable Internal e in the

generator file.

 Package

 These range of files will be placed in the package .rest.controllers after the base

package.

 Class declaration

 The class declaration will contain the name of the resource.

 Repository injection declaration

 In usual practice, all persistence operations in spring application’s controllers are

performed by the repository injections. The repository injections will include the re-

pository interface declaration of the controller class in question as well as the repos-

itories of all the internal datatypes of that resource.

 Class requests mapping

 The class itself will be mapped with the name of the resource. This would allow

proper URL structuring by making sure that every function within the class will be

mapped in relation with the main mapping i.e. the name of the resource. [12]

 E.g.

 GET /purchaseorder/<identity>

 POST /purchaseorder

 GET /purchaseorder/<identity>/plant

 All of these are part of the same controller and they have one thing in common; the

leading relation on the URL mapping i.e. ‘purchaseorder’. This is achieved by map-

ping the class itself.

package «e.fullyQualifiedName.skipLast(1)».rest.controllers;

@RestController
@RequestMapping(value = "«e.name.toLowerCase»")
public class «e.name»RestController {

 @Autowired
 «e.name»Repository «e.name.toFirstLower»Repository;

«FOR internal: e.internals»
 «internal.internal.name.toFirstUpper»ResourceAssembler
 «internal.internal.name.toFirstLower»ResourceAssembler =
 new «internal.internal.name.toFirstUpper»ResourceAssembler();
«ENDFOR»
 «e.name»ResourceAssembler «e.name.toFirstLower»ResourceAssembler =
 new «e.name»ResourceAssembler();

45

 Mapping the class is achieved by,

 Uses of instances of the resource

 In a lot of cases, there will be known usages of the instances of resource related

Classes within the controller. These could include the resource assembler or resource

class itself or the repository. By use of naming conventions one can properly judge

where the name of the resource would appear in such usages and based on this we

managed to place the name of the resource in proper places so as to achieve the out-

come.

 For example, the following is the generic function to create a GET function for a

resource identified by its identity.

 Take a look at the different places where we have used «e.name» or

«e.name.toLowerCase» to achieve the objective.

 Controller functions

 We know a few functions that a REST controller will have for every resource. But

many of them depend on the states and transitions defined for that resource in the

DSL. This part incorporates the behavioural aspects of the resource, as it uses the

input and it's state transition information to create functions in the controller that are

mapped accordingly. To do this we needed to loop through the property transitions

of Internal e, which according to the DSL we studied earlier, is a collection of all the

transitions defined for that internal.

@RequestMapping(value = "«e.name.toLowerCase»")

 @RequestMapping(method = GET, value = "{id}")
 public «e.name»Resource get«e.name»(@PathVariable Long id) {
 «e.name» «e.name.toFirstLower» =
 «e.name.toFirstLower»Repository.findOne(id);
 return «e.name.toFirstLower»ResourceAssembler.
 toResource(«e.name.toFirstLower»);
 }

«FOR transition: e.transtions»
@RequestMapping(method = «transition.methodType»,
 value = "{id}/«transition.rel»")
 public «e.name»Resource
 «transition.controllerMethod.toFirstLower»(Long id) {
 «e.name» «e.name.toFirstLower» =
 «e.name.toFirstLower»Repository.findOne(id);
 «e.name.toFirstLower».set«e.name»Status(«transition.toState.name»);
 «e.name.toFirstLower»Repository.saveAndFlush(«e.name.toFirstLower»);
 return «e.name.toFirstLower»ResourceAssembler.
 toResource(«e.name.toFirstLower»);
 }
«ENDFOR»

46

5.2.2.5 PurchaseOrderResourceAssembler.java

 The resource specific information is gathered from the variable Internal e

in the generator file.

 Package

 These range of files will be placed in the package .rest.utils after the base package.

 package «e.fullyQualifiedName.skipLast(1)».rest.utils;

 Class declaration and constructor

 The class declaration will contain the name of the resource. The constructor of

this class will contain the name of the resource in two places: one for the name of the

rest controller class and the other for the name of the resource class.

 toResource function

 The toResource function is a major function of this class. This function plays a

major role in the behavioural aspects of an HATEOAS project. The main objective

of the function is to assemble the resource with all its properties and hyperlinks.

Every time a resource is created it will have certain hyperlinks which are merely

performed by the add function of the resource class. The add function comes from

add function of ResourceSupport class that we defined.

public class «e.name»ResourceAssembler extends
 ResourceAssemblerSupport<«e.name», «e.name»Resource>{

 public «e.name»ResourceAssembler() {
 super(«e.name»RestController.class, «e.name»Resource.class);
 }

 switch («e.name.toFirstLower».get«e.name»Status()) {
 «FOR state: e.states»
 case «state.name»:
 «FOR transition: e.transtions»
 «IF state == transition.fromState»
 «e.name.toFirstLower»Resource.add(
 new ExtendedLink(linkTo(methodOn(
 «e.name»RestController.class)
 .«transition.controllerMethod.toFirstLower»(
 «e.name.toFirstLower».getId()))
 .toString(),
 "«transition.rel»",
 "«transition.methodType»"));
 «ENDIF»
 «ENDFOR»
 break;
 «ENDFOR»
 default:
 break;
 }

47

 In order to know the hyperlinks, we need to know the possibilities based on the

current state of the resource and the transitions defined. A hyperlink will be a URL

link embedded within the resource. For instance, a state change can be invoked by

making a POST request to a particular URL defined as a link within the resource. This

means that the links will be different as the resource transits from one state to another.

This information will be available in the property transitions of Internal e, in our ex-

ample. In our end code, we would make use of a switch case in Java to achieve the link

adding process.

 So for the generator, we made use of a for loop [35] again to loop through the

transitions property.

5.2.2.6 PurchaseOrderNotFoundException.java

The resource specific information is gathered from the variable Internal e in the

generator file.

 Package

 These range of files will be placed in the package .rest.exceptions after the base

package.

 Class declaration and constructor

 For the class declaration and the constructor the name of the resource is sufficient.

5.2.3 Spring application files

 The spring HATEOAS application requires some classes to be written. These files

are not specific to the resource. Hence, they will not need Internal or External resource

information for their generation. One of these files will require database configuration

information from our input DSL. Since these files are common for the entire application,

they will be generated only once. Hence, we do not need to loop through any elements of

our DSL but one which is the main element or main rule of our DSL since that is where

all the project level information will lie when writing into the .rg file. This is unlike the

files in the above subsection which depended on Internal and External. For these files

only project level information would be needed, more specifically the database configu-

ration which is available in the property databaseConfiguration of the main rule (Re-

sourceModel) as per our DSL. Along with that, we need the name of the project which is

available as the last segment of the base package. The base package is available with the

use of function fullyQualifiedName, which is a Xtext function that holds the package in-

formation for every element in the DSL. This function can be applied to every element in

the .rg file. Let us assume our project is named ‘Rentit’ and the package that we set is

‘ee.ut.rentit’, the following would be the files generated that follow this specification,

package «e.fullyQualifiedName.skipLast(1)».rest.exceptions;

public class «e.name»NotFoundException extends Exception {
 private static final long serialVersionUID = 1L;

 public «e.name»NotFoundException(Long id) {
 super(String.format("«e.name» not found! («e.name» id: %d)", id));
 }
}

48

1. RentitApplication.java

 This file would be the main file of the application. This file is a runnable file and

this is the file that starts up a Spring application. The information required for this file

is only the name of the project. We get this information from the base package by

extracting the last segment from that. The input to our content generation function for

this would be the base package which is available with the use of the

fullyQualifiedName function. This file will be placed in the base package itself.

2. RentitDatabaseConfiguration.java

 This file will configure the database for the project. As per the scope of this re-

search only Postgres has been incorporated. The information required for this file is

available in the databaseConfiguration property of the main rule of our DSL. The pa-

rameter to the content generation function would be the main rule in the DSL, in our

case ResourceModel rm.

 The following files only need base package information for generating the code.

They will both be placed in the package .rest.utils after the base package.

3. ExtendedLink.java [27]

 This is a Spring provided file and it is used for providing useful functions to create

hyperlinks in the resource assembler.

4. ResourceSupport.java [27]

 This is also a Spring provided file and is used for providing useful functions for

resource building.

49

6 Conclusions

6.1 Work completed so far

6.1.1 Primary objectives

 It can be concluded that the questions from the problem statement have been an-

swered.

 We have managed to find out all the resource-specific information that is needed

from the user for writing a Spring HATEOAS [10] application.

 We have managed to incorporate the structural and behavioural aspects [23] of a

REST application into a DSL using Xtext along with an editor. [13]

 Further, managed to parse the information from it and generate code by creating

a generator using Xtend. [38]

6.1.2 Collateral work

 We have managed to export the project as a plugin for all eclipse based IDEs.

 We have tested a Spring HATEOAS application with the equipment rental sce-

nario [26] on Spring Tool Suite 3.7.2.RELEASE version.

 We have managed to make the plugin available as an Eclipse project update site

[14] on github. [41]

6.2 Future work

 In the future, there are plenty of things that could be done. Some of the things in

our minds are the following:

 Dynamic database configuration supporting multiple databases.

 A plugin for the IntelliJ idea.

 Functionality for resource querying.

 Diagrammatic representation with the use of Ecore module of Eclipse.

 Auto-generation of test classes for the same output code.

 Auto-generation of Frontend views for the same resources.

50

7 References

[1] R. T. Fielding, Architectural Styles and the Design of Network-based Software

Architectures, Irvine: University of California, 2000.

[2] S. Schreier, „Modeling RESTful applications,“ ACM, New York, 2011.

[3] „What is hypermedia,“ Smartbear software, 2016. [Võrgumaterjal]. Available:

https://smartbear.com/learn/api-design/what-is-hypermedia/. [Kasutatud 9 May 2016].

[4] A. v. Deursen, Domain-Specific Languages: An Annotated Bibliography, Amsterdam:

Sigplan Notices, 2000.

[5] „XML W3,“ W3 schools, 2016. [Võrgumaterjal]. Available: https://www.w3.org/XML/.

[Kasutatud 9 May 2016].

[6] „Json home,“ Json, 2016. [Võrgumaterjal]. Available: http://www.json.org/. [Kasutatud 9

May 2016].

[7] „JVM,“ Oracle, 2016. [Võrgumaterjal]. Available:

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html#jvms-1.2. [Kasutatud 9

May 2016].

[8] L. Richardson, RESTful Web APIs, Sebastopol: O'Reilly Media, 2007.

[9] M. Messe, REST API Design Rulebook, Sebastopol: O'Reilly Media, 2011.

[10] „Understanding HATEOAS,“ Pivotal software, 2016. [Võrgumaterjal]. Available:

https://spring.io/understanding/HATEOAS. [Kasutatud 9 May 2016].

[11] „HTTP methods,“ HTTP, 2016. [Võrgumaterjal]. Available:

http://www.w3schools.com/tags/ref_httpmethods.asp. [Kasutatud 9 May 2016].

[12] „Spring framework,“ Pivotal software, 2016. [Võrgumaterjal]. Available:

https://spring.io/. [Kasutatud 9 May 2016].

[13] „Xtext website,“ 13 Nov 2015. [Võrgumaterjal]. Available:

https://eclipse.org/Xtext/index.html.

[14] „Eclipse Home,“ 2016. [Võrgumaterjal]. Available: https://www.eclipse.org/. [Kasutatud

18 May 2016].

[15] „UML,“ 2016. [Võrgumaterjal]. Available: http://www.uml.org/what-is-uml.htm.

[Kasutatud 9 may 2016].

[16] „Eclipse Ecore,“ 2016. [Võrgumaterjal]. Available: http://www.eclipse.org/ecoretools/.

[Kasutatud 18 May 2016].

[17] „Apiary Website,“ [Võrgumaterjal]. Available: https://apiary.io/how-it-works. [Kasutatud

13 Nov 2015].

[18] „Swagger Website,“ 13 Nov 2015. [Võrgumaterjal]. Available: http://swagger.io/.

[19] „RAML website,“ 13 Nov 2015. [Võrgumaterjal]. Available: http://raml.org/.

[20] „RestUnited Website,“ 13 Nov 2015. [Võrgumaterjal]. Available: https://restunited.com/.

[21] „Restlet Studio,“ 13 Nov 2015. [Võrgumaterjal]. Available: http://studio.restlet.com/.

[22] P. Selonen, „Towards a Model-Driven Process for Designing ReSTful Web Services,“

IEEE, Los Angeles, 2009.

[23] Porres, „Modeling Behavioral RESTful Web Service Interfaces in UML,“ ACM, New

York, 2011.

51

[24] „Spring Boot application,“ 2015. [Võrgumaterjal]. Available:

https://docs.spring.io/spring-boot/docs/current/reference/html/index.html. [Kasutatud 20

Nov 2015].

[25] „Java home,“ Oracle, 2016. [Võrgumaterjal]. Available:

https://www.oracle.com/java/index.html. [Kasutatud 9 May 2016].

[26] P. Selonen, „Enterprise System Intergration,“ %1 From Requirements to a RESTful Web

Service: Engineering Content Oriented Web Services, Berlin, Springer science+Business

media, 2011, pp. 259-277.

[27] „Enterprise System Intergration Home page,“ 2014. [Võrgumaterjal]. Available:

https://courses.cs.ut.ee/2014/esi/fall/Main/HomePage. [Kasutatud 18 May 2016].

[28] „Spring HTTPMethodType,“ Spring Framework, 2016. [Võrgumaterjal]. Available:

https://docs.spring.io/spring/docs/current/javadoc-

api/org/springframework/http/HttpMethod.html. [Kasutatud 9 May 2016].

[29] „intellij,“ 2016. [Võrgumaterjal]. Available: https://www.jetbrains.com/idea/. [Kasutatud

18 May 2016].

[30] „IDE,“ [Võrgumaterjal]. Available:

http://searchsoftwarequality.techtarget.com/definition/integrated-development-

environment. [Kasutatud 9 May 2016].

[31] „Eclipse downloads,“ 2016. [Võrgumaterjal]. Available:

https://www.eclipse.org/downloads/. [Kasutatud 18 May 2016].

[32] „Xtext eclipse plugin,“ 2016. [Võrgumaterjal]. Available:

https://marketplace.eclipse.org/content/xtext. [Kasutatud 18 May 2016].

[33] „Xtend plugin,“ 2016. [Võrgumaterjal]. Available:

https://marketplace.eclipse.org/content/eclipse-xtend. [Kasutatud 18 May 2016].

[34] „Xtext idea plugin,“ 2016. [Võrgumaterjal]. Available:

https://plugins.jetbrains.com/plugin/8072?pr=idea. [Kasutatud 18 May 2016].

[35] „xtext documentation,“ 2016. [Võrgumaterjal]. Available:

https://eclipse.org/Xtext/documentation/301_grammarlanguage.html. [Kasutatud 18 May

2016].

[36] „Xtext Editor tutorial,“ 2016. [Võrgumaterjal]. Available:

https://eclipse.org/Xtext/documentation/102_domainmodelwalkthrough.html. [Kasutatud

18 May 2016].

[37] „Output outlet for xtext,“ 2015. [Võrgumaterjal]. Available:

http://stackoverflow.com/questions/10350022/how-to-add-multiple-outlets-for-generated-

xtext-dsl. [Kasutatud 15 Nov 2015].

[38] „Xtext generator tutorial,“ [Võrgumaterjal]. Available:

https://eclipse.org/Xtext/documentation/103_domainmodelnextsteps.html. [Kasutatud 18

May 2016].

[39] „xtext api docs,“ 2016. [Võrgumaterjal]. Available:

http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.9/. [Kasutatud 18 May 2016].

[40] „JVM and Import manager,“ 2016. [Võrgumaterjal]. Available: http://www.rcp-

vision.com/1573/using-jvm-types-in-xtext-2-1-and-the-importmanager/?lang=en.

[Kasutatud 13 Feb 2016].

[41] „Github,“ [Võrgumaterjal]. Available: https://github.com/. [Kasutatud 18 May 2016].

[42] V. Desai, „RestGen update site,“ 2016. [Võrgumaterjal]. Available:

http://vishalkirandesai.github.io/. [Kasutatud 18 May 2016].

52

[43] „spring initialzr,“ 2016. [Võrgumaterjal]. Available: https://start.spring.io/. [Kasutatud 18

May 2016].

[44] „Maven Jackson codehaus,“ [Võrgumaterjal]. Available:

http://mvnrepository.com/artifact/org.codehaus.jackson/jackson-mapper-asl/1.9.13.

[Kasutatud 18 May 2016].

[45] „Maven dbcp,“ [Võrgumaterjal]. Available: http://mvnrepository.com/artifact/commons-

dbcp/commons-dbcp/1.4. [Kasutatud 18 May 2016].

[46] „Postgres Sql Home,“ Postgres Sql, 2016. [Võrgumaterjal]. Available:

http://www.postgresql.org/. [Kasutatud 9 May 2016].

[47] „Java for loop,“ 2016. [Võrgumaterjal]. Available:

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html. [Kasutatud 18 May

2016].

53

Appendix

I. Installation

 To install the application you must have installed an eclipse based IDE. The pro-

ject is setup as a plugin on a github [41] page. The address to it is the following, [42]

 http://vishalkirandesai.github.io

Eclipse-based IDE

1. Open up the eclipse IDE.

2. Open Help > Install new software…

3. Select Add.

4. Write any name in the Name box.

5. Write the address above to the Location box.

6. Tick the plugin RestGen from the list and select Finish.

Creating a project

 If you have installed STS then you can create a Spring boot app [24] from the IDE

itself. If you have another eclipse based IDE then you would have to create a spring

boot app from the spring initializr [43] website. https://start.spring.io/

 While creating a new Spring starter Project, either STS or from initializr, select

the following components to be added to your Project,

 Web

 Web services

 HATEOAS

 JPA

 PostgreSql

Once created some more dependencies need to be added before we can begin. In the

pom.xml file in your Project, in the dependencies section, add the following depen-

dencies,

 Codehaus Jackson [44]

<dependency>

 <groupId>org.codehaus.jackson</groupId>

 <artifactId>jackson-mapper-asl</artifactId>

 <version>1.9.13</version>

</dependency>

 Commons-dbcp [45]

<dependency>

 <groupId>commons-dbcp</groupId>

 <artifactId>commons-dbcp</artifactId>

 <version>1.4</version>

</dependency>

54

 Once the Project builds, we are ready to begin. In the main directory of the Project,

create a file. Name it whatever you have named your project, but in lowercase letters,

followed by .rg as an extension, e.g. rentit.rg etc. This would be your main editor file

for the RestGen DSL. When prompted by the IDE to select introduction of Xtext

nature to the Project, select yes.

 Start by declaring the package. The package should be the same as that in your

Project. E.g. if the Project is ee.ut.Rentit, then the same should be declared in the .rg

file as well. This will be the base package of the application. Then, declare the dbconf.

After declaring dbconf, you can declare, in any order, one or more internals or exter-

nals. Xtext nature allows the project to build on save. Once you save the .rg file, the

entire project will build and your files will be generated in the correct folders.

 You can start the application by running the project as a Spring boot application.

[24] Note that all the mappings will be created, but you would still need to feed data

into your database before you can make use of the application.

55

II. Code for RgDsl.xtext

grammar ee.ut.restgen.rgdsl.RgDsl with org.eclipse.xtext.xbase.Xtype

generate rgDsl "http://www.ut.ee/restgen/rgdsl/RgDsl"

ResourceModel :
 'package' name = QualifiedName

 'dbconf' '{' databaseConfiguration = DatabaseConfiguration '}'
 (elements += ResourceType)*
;

DatabaseConfiguration:
 'database' dbName = STRING
 'username' username = STRING
 'password' password = STRING
 'host' host = STRING
 'port' port = NUMBER
;

terminal NUMBER:
 ('0' .. '9')(NUMBER)*
;

QualifiedName:
 ID ('.' ID)*
;

ResourceType:
 Internal | External
;

enum Cardinality:
 onetoone = "OneToOne" | onetomany = "OneToMany" | manytoone = "Many-
ToOne"
;

External:
 'external' name = ID '{'
 (datatypes += DataType)*
 '}'
;

Internal:
 'internal' name = ID '{'
 (datatypes += DataType)* &
 (internals += InternalDataType)*
 'states' '{'
 (states += State(','states +=State)*)?
 '}'
 'transitions' '{'
 (transtions += Transition)*
 '}'
 '}'
;

State:

56

 name = ID
;

Query:
 queryName = STRING 'taking' params = QueryParams 'on' rel = STRING
'giving' responseBody = DataType|Internal
;

QueryParams:
 firstParam = DataType
 (','otherParams += DataType)*
;

enum HTTPMethodType:
 get = "GET" | post = "POST" | put = "PUT" | delete = "DELETE" | patch
= "PATCH"
;

Transition:
 fromState = [State] 'to' toState = [State] 'using' controllerMethod =
STRING 'with' methodType = HTTPMethodType 'on' rel = STRING
;

DataType:
 dataType = JvmTypeReference name = ID
;

InternalDataType:
 cardinality = Cardinality internal = [Internal] name = ID

;

57

III. Code for RestGenOutputConfiguration.java

package ee.ut.restgen.rgdsl;

import java.util.Set;

import org.eclipse.xtext.generator.IFileSystemAccess;
import org.eclipse.xtext.generator.IOutputConfigurationProvider;
import org.eclipse.xtext.generator.OutputConfiguration;

import static com.google.common.collect.Sets.newHashSet;

public class RestGenOutputConfiguration implements IOutputConfigurationPro-
vider {

public final static String DEFAULT_OUTPUT_FINAL = "DEFAULT_OUTPUT_FINAL";

/**
* @return a set of {@link OutputConfiguration} available for the generator
*/
 public Set<OutputConfiguration> getOutputConfigurations() {
 OutputConfiguration defaultOutput =
 new OutputConfigurtion(IFileSystemAccess.DEFAULT_OUTPUT);
 defaultOutput.setDescription("Output Folder");
 defaultOutput.setOutputDirectory("./src-gen");
 defaultOutput.setOverrideExistingResources(true);
 defaultOutput.setCreateOutputDirectory(true);
 defaultOutput.setCleanUpDerivedResources(true);
 defaultOutput.setSetDerivedProperty(true);

 OutputConfiguration onceOutput =
 new OutputConfiguration(DEFAULT_OUTPUT_FINAL);
 onceOutput.setDescription("Output Folder");
 onceOutput.setOutputDirectory("./src/main/java");
 onceOutput.setOverrideExistingResources(true);
 onceOutput.setCreateOutputDirectory(true);
 onceOutput.setCleanUpDerivedResources(false);
 onceOutput.setSetDerivedProperty(true);
 return newHashSet(defaultOutput, onceOutput);
 }

}

58

IV. Code for RgDslGenerator.java

package ee.ut.restgen.rgdsl.generator

import com.google.inject.Inject
import ee.ut.restgen.rgdsl.rgDsl.External
import ee.ut.restgen.rgdsl.rgDsl.Internal
import ee.ut.restgen.rgdsl.rgDsl.ResourceModel
import javax.xml.bind.annotation.XmlRootElement
import org.eclipse.emf.ecore.resource.Resource
import org.eclipse.xtext.generator.IFileSystemAccess
import org.eclipse.xtext.generator.IGenerator
import org.eclipse.xtext.naming.IQualifiedNameProvider
import org.eclipse.xtext.naming.QualifiedName
import org.eclipse.xtext.xbase.compiler.ImportManager

import ee.ut.restgen.rgdsl.rgDsl.Cardinality

/**
 * Generates code from your model files on save.
 *
 * see http://www.eclipse.org/Xtext/documentation.html#TutorialCodeGeneration
 */
class RgDslGenerator implements IGenerator {

@Inject extension IQualifiedNameProvider

 override void doGenerate(Resource resource, IFileSystemAccess fsa) {
 var basePackage = "";
 for(rm: resource.allContents.toIterable.filter(ResourceModel)) {
 basePackage = rm.fullyQualifiedName.toString("/");
 fsa.generateFile(
 basePackage + "/" + rm.fullyQualifiedName.lastSegment.toFirstUpper+
 "Application.java", "DEFAULT_OUTPUT_FINAL",
 rm.fullyQualifiedName.createApplication)
 fsa.generateFile(
 basePackage + "/" + rm.fullyQualifiedName.lastSegment.toFirstUpper+
 "DatabaseConfiguration.java", "DEFAULT_OUTPUT_FINAL",
 rm.createConfiguration)
 }

 for(e: resource.allContents.toIterable.filter(Internal)) {
 fsa.generateFile(
 basePackage + "/rest/utils/ExtendedLink.java", "DEFAULT_OUTPUT_FINAL",
 e.createExtendedLinkSupport)
 fsa.generateFile(
 basePackage + "/rest/utils/ResourceSupport.java", "DEFAULT_OUTPUT_FINAL",
 e.createResourceSupport)
 fsa.generateFile(
 basePackage + "/models/" + e.name +".java", "DEFAULT_OUTPUT_FINAL",
 e.createEntity)
 fsa.generateFile(
 basePackage + "/repositories/" + e.name + "Repository.java",
 "DEFAULT_OUTPUT_FINAL", e.createRepository)
 fsa.generateFile(
 basePackage + "/rest/exceptions/" + e.name + "NotFoundException.java",
 "DEFAULT_OUTPUT_FINAL", e.createResourceException)

59

 fsa.generateFile(
 basePackage + "/rest/utils/" + e.name + "ResourceAssembler.java",
 "DEFAULT_OUTPUT_FINAL", e.createResourceAssembler)
 fsa.generateFile(
 basePackage + "/rest/" + e.name + "Resource.java", "DEFAULT_OUTPUT_FINAL",
 e.createResource)
 fsa.generateFile(
 basePackage + "/rest/controllers/" + e.name + "RestController.java",
 "DEFAULT_OUTPUT_FINAL", e.createRestController)
 fsa.generateFile(
 basePackage + "/models/" + e.name + "Status.java", "DEFAULT_OUTPUT_FINAL",
 e.createStatus)
 }

 for(e: resource.allContents.toIterable.filter(External)) {
 fsa.generateFile(
 basePackage + "/rest/" + e.name + "Resource.java", "DEFAULT_OUTPUT_FINAL",
 e.createResource)
 }
 }

// Application part
 def createApplication(QualifiedName basePackage) '''
package «basePackage.toString»;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class «basePackage.lastSegment.toFirstUpper»Application {

 public static void main(String[] args) {
 SpringApplication.run(«basePackage.lastSegment.toFirstUpper»Applica-

tion.class, args);
 }
}

 '''

// Configuration part
def createConfiguration(ResourceModel rm) '''
package «rm.fullyQualifiedName.toString»;

import java.net.URI;
import java.net.URISyntaxException;

import javax.sql.DataSource;

import org.apache.commons.dbcp.BasicDataSource;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class «rm.fullyQualifiedName.lastSegment.toFirstUpper»DatabaseConfiguration

{

 @Bean
 public DataSource dataSource() {

60

 URI dbUri;
 try {
 String username = "«rm.databaseConfiguration.username»";
 String password = "«rm.databaseConfiguration.password»";
 String url = "jdbc:postgresql://«rm.databaseConfiguration.host»:
 «rm.databaseConfiguration.port»/«rm.databaseConfigura-

tion.dbName»";

 String dbProperty = System.getenv("DATABASE_URL");
 if(dbProperty != null) {
 dbUri = new URI(dbProperty);

 username = dbUri.getUserInfo().split(":")[0];
 password = dbUri.getUserInfo().split(":")[1];
 url = "jdbc:postgresql://" + dbUri.getHost() + ':' + dbUri.get-

Port() + dbUri.getPath();
 }

 BasicDataSource basicDataSource = new BasicDataSource();
 basicDataSource.setUrl(url);
 basicDataSource.setUsername(username);
 basicDataSource.setPassword(password);

 return basicDataSource;

 } catch (URISyntaxException e) {
 return null;
 }
 }
}
'''

// Extended link part
 def createExtendedLinkSupport(Internal e) '''
package «e.fullyQualifiedName.skipLast(1)».rest.utils;

import javax.xml.bind.annotation.XmlType;

import org.springframework.hateoas.Link;

@XmlType(name = "_link", namespace = Link.ATOM_NAMESPACE)
public class ExtendedLink extends Link {
 private static final long serialVersionUID = -9037755944661782122L;
 private String method;

 protected ExtendedLink(){}

 public ExtendedLink(String href, String rel, String method){
 super(href, rel);
 this.method = method;
 }

 public String getMethod(){
 return method;
 }

 public void setMethod(String method){
 this.method = method;
 }

61

}

 '''

// Resource support part
 def createResourceSupport(Internal e) '''
package «e.fullyQualifiedName.skipLast(1)».rest.utils;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlTransient;

import org.codehaus.jackson.annotate.JsonProperty;
import org.springframework.hateoas.Link;

@XmlTransient
public class ResourceSupport extends org.springframework.hateoas.ResourceSupport{
 @XmlElement(name = "_link", namespace = Link.ATOM_NAMESPACE)
 @JsonProperty("_links")
 private final List<ExtendedLink> _links;

 public ResourceSupport(){
 super();
 this._links = new ArrayList<>();
 }

 public void add(Link link) {
 if(link instanceof ExtendedLink)
 this._links.add((ExtendedLink) link);
 else
 super.add(link);
 }

 public List<ExtendedLink> get_links() {
 return Collections.unmodifiableList(_links);
 }

 public void remove_links() {
 _links.clear();
 }

 public Link get_link(String rel) {

 for (Link link : _links) {
 if (link.getRel().equals(rel)) {
 return link;
 }
 }

 return null;
 }
}

 '''

// Entity part

62

 def createEntity(Internal e) '''
package «e.fullyQualifiedName.skipLast(1)».models;

 «val importManager = new ImportManager(true)»
 «val mainMethod = compileEntity(e, importManager)»
«IF !importManager.imports.empty»
 «FOR i:importManager.imports»
import «i.toString»;
 «ENDFOR»
«ENDIF»
«FOR i:e.internals»
import «i.internal.fullyQualifiedName.skipLast(1)».models.«i.internal.name»;
import javax.persistence.«i.cardinality»;
«ENDFOR»
import javax.persistence.Entity;
import javax.persistence.Enumerated;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import static javax.persistence.EnumType.STRING;
«mainMethod»
 '''

def compileEntity(Internal e, ImportManager manager) '''

@Entity
public class «e.name» {

 @Id
 @GeneratedValue
 Long id;

 public Long getId() {
 return id;
 }

 @Enumerated(STRING)
 «e.name»Status «e.name.toFirstLower»Status;

 public «e.name»Status get«e.name»Status() {
 return «e.name.toFirstLower»Status;
 }

 public void set«e.name»Status(«e.name»Status «e.name.toFirstLower»Status) {
 this.«e.name.toFirstLower»Status = «e.name.toFirstLower»Status;
 }

 «FOR i:e.internals»
 @«i.cardinality»
 «i.internal.name.toFirstUpper» «i.internal.name.toFirstLower»;

 public void set«i.internal.name.toFirstUpper»(«i.internal.name.toFirstUpper»

«i.name») {
 this.«i.name» = «i.name»;
 }

 public «i.internal.name.toFirstUpper» get«i.name.toFirstUpper»() {
 return «i.name»;
 }
 «ENDFOR»

63

 «FOR f:e.datatypes»
 «manager.serialize(f.dataType.type)» «f.name»;

 public void set«f.name.toFirstUpper»(«f.dataType.simpleName» «f.name»)

{
 this.«f.name» = «f.name»;
 }

 public «f.dataType.simpleName» get«f.name.toFirstUpper»() {
 return «f.name»;
 }

 «ENDFOR»
}
'''

// Controller part
 def createRestController(Internal e) '''
package «e.fullyQualifiedName.skipLast(1)».rest.controllers;

 «val importManager = new ImportManager(true)»
 «val mainMethod = compileRestController(e, importManager)»
 «IF !importManager.imports.empty»
 «FOR i:importManager.imports»
import «i»;
 «ENDFOR»
«ENDIF»
import «e.fullyQualifiedName.skipLast(1)».models.«e.name»;
import «e.fullyQualifiedName.skipLast(1)».repositories.«e.name»Repository;
import «e.fullyQualifiedName.skipLast(1)».rest.«e.name»Resource;
import «e.fullyQualifiedName.skipLast(1)».rest.utils.«e.name»ResourceAssembler;
«FOR internal:e.internals»
import «internal.internal.fullyQualifiedName.skipLast(1)».models.«internal.inter-

nal.name.toFirstUpper»;
import «internal.internal.fullyQualifiedName.skipLast(1)».rest.«internal.inter-

nal.name.toFirstUpper»Resource;
import «internal.internal.fullyQualifiedName.skipLast(1)».rest.utils.«internal.in-

ternal.name»ResourceAssembler;
«ENDFOR»
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.List;

import static «e.fullyQualifiedName.skipLast(1)».models.«e.name»Status.*;
import static org.springframework.web.bind.annotation.RequestMethod.DELETE;
import static org.springframework.web.bind.annotation.RequestMethod.GET;
import static org.springframework.web.bind.annotation.RequestMethod.POST;
import static org.springframework.web.bind.annotation.RequestMethod.PUT;
import static org.springframework.web.bind.annotation.RequestMethod.PATCH;

«mainMethod»
 '''

64

 def compileRestController(Internal e, ImportManager manager) '''
@RestController
@RequestMapping(value = "«e.name.toLowerCase»")
public class «e.name»RestController {

 @Autowired
 «e.name»Repository «e.name.toFirstLower»Repository;

 «FOR internal: e.internals»
 «internal.internal.name.toFirstUpper»ResourceAssembler
 «internal.internal.name.toFirstLower»ResourceAssembler =
 new «internal.internal.name.toFirstUpper»ResourceAssembler();
 «ENDFOR»
 «e.name»ResourceAssembler «e.name.toFirstLower»ResourceAssembler =
 new «e.name»ResourceAssembler();

 @RequestMapping(method = GET)
 public List<«e.name»Resource> get«e.name»s() {
 List<«e.name»> «e.name.toFirstLower»s = «e.name.toFirstLower»Reposi-

tory.findAll();
 return «e.name.toFirstLower»ResourceAssembler.toResources(«e.name.toFirst-

Lower»s);
 }

 @RequestMapping(method = GET, value = "{id}")
 public «e.name»Resource get«e.name»(@PathVariable Long id) {
 «e.name» «e.name.toFirstLower» = «e.name.toFirstLower»Reposi-

tory.findOne(id);
 return «e.name.toFirstLower»ResourceAssembler.toResource(«e.name.toFirst-

Lower»);
 }

 @RequestMapping(method = POST)
 public «e.name.toFirstUpper»Resource create«e.name.toFirstUpper»() {
 «e.name.toFirstUpper» «e.name.toFirstLower» = new «e.name.toFirstUpper»();

 «e.name.toFirstLower» =
 «e.name.toFirstLower»ResourceAssembler.
 fromResource(«e.name.toFirstLower»,
 «e.name.toFirstLower»Resource);

 «e.name.toFirstLower»Repository.saveAndFlush(«e.name.toFirstLower»);
 return «e.name.toFirstLower»ResourceAssembler.
 toResource(«e.name.toFirstLower»);
 }

 @RequestMapping(method = PUT, value = "{id}")
 public ResponseEntity<«e.name.toFirstUpper»Resource> up-

date«e.name.toFirstUpper»(@PathVariable Long id, @RequestBody
«e.name.toFirstUpper»Resource «e.name.toFirstLower»Resource) {

 «e.name.toFirstUpper» «e.name.toFirstLower» =
 «e.name.toFirstLower»Repository.findOne(id);
 «e.name.toFirstLower» = «e.name.toFirstLower»ResourceAssembler.fromRe-

source(«e.name.toFirstLower», «e.name.toFirstLower»Resource);
 «e.name.toFirstLower»Repository.saveAndFlush(«e.name.toFirstLower»);
 return new ResponseEntity<«e.name.toFirstUpper»Resource>(«e.name.toFirst-

Lower»Resource, HttpStatus.OK);
 }

65

 @RequestMapping(method = DELETE, value = "{id}")
 public ResponseEntity<Void> delete«e.name.toFirstUpper»(Long id) {
 «e.name.toFirstLower»Repository.delete(id);
 return new ResponseEntity<Void>(HttpStatus.OK);
 }

 «FOR transition: e.transtions»
 @RequestMapping(method = «transition.methodType», value = "{id}/«transi-

tion.rel»")
 public «e.name»Resource «transition.controllerMethod.toFirstLower»(Long id) {
 «e.name» «e.name.toFirstLower» = «e.name.toFirstLower»Reposi-

tory.findOne(id);
 «e.name.toFirstLower».set«e.name»Status(«transition.toState.name»);
 «e.name.toFirstLower»Repository.saveAndFlush(«e.name.toFirstLower»);
 return «e.name.toFirstLower»ResourceAssembler.toResource(«e.name.toFirst-

Lower»);
 }
 «ENDFOR»

 «FOR internal: e.internals»
 «IF internal.cardinality.equals(Cardinality.ONETOONE)»
 @RequestMapping(method = PUT, value = "{id}/«internal.internal.name.toLower-

Case»")
 public ResponseEntity<Void> modify«internal.internal.name.toFirstUpper»(
 @PathVariable Long id, @RequestBody «internal.internal.name.toFirstUpper»Re-

source «internal.internal.name.toFirstLower»Resource) {
 «e.name» «e.name.toFirstLower» = «e.name.toFirstLower»Reposi-

tory.findOne(id);
 «internal.internal.name.toFirstUpper» «internal.internal.name.toFirstLower»

= «e.name.toFirstLower».get«internal.internal.name.toFirstUpper»();
 //TODO: write the modification lines.
 «e.name.toFirstLower»Repository.saveAndFlush(«e.name.toFirstLower»);
 return new ResponseEntity<Void>(HttpStatus.OK);
 }

 @RequestMapping(method = GET, value = "{id}/«internal.internal.name.toLower-

Case»")
 public ResponseEntity<«internal.internal.name.toFirstUpper»Resource> get«in-

ternal.internal.name.toFirstUpper»(@PathVariable Long id) {
 «e.name» «e.name.toFirstLower» = «e.name.toFirstLower»Reposi-

tory.findOne(id);
 «internal.internal.name.toFirstUpper» «internal.internal.name.toFirstLower»

= «e.name.toFirstLower».get«internal.internal.name.toFirstUpper»();
 return new ResponseEntity<>(
 «internal.internal.name.toFirstLower»ResourceAssembler.toResource(
 «internal.internal.name.toFirstLower»), HttpStatus.OK);
 }
 «ELSEIF internal.cardinality.equals(Cardinality.ONETOMANY)»

 «ENDIF»
 «ENDFOR»
}
 '''

// Resource part
 def createResource(Internal e) '''
package «e.fullyQualifiedName.skipLast(1)».rest;

 «val importManager = new ImportManager(true)»

66

 «val mainMethod = compileResource(e, importManager)»
«IF !importManager.imports.empty»
 «FOR i:importManager.imports»
import «i»;
 «ENDFOR»
«ENDIF»
«FOR i:e.internals»
import «i.internal.fullyQualifiedName.skipLast(1)».rest.
 «i.internal.name.toFirstUpper»Resource;
«ENDFOR»
import «e.fullyQualifiedName.skipLast(1)».rest.utils.ResourceSupport;

«mainMethod»
 '''

 def createResource(External e) '''
package «e.fullyQualifiedName.skipLast(1)».rest;

 «val importManager = new ImportManager(true)»
 «val mainMethod = compileResource(e, importManager)»
«IF !importManager.imports.empty»
 «FOR i:importManager.imports»
import «i»;
 «ENDFOR»
«ENDIF»
import «e.fullyQualifiedName.skipLast(1)».rest.utils.ResourceSupport;

«mainMethod»
 '''

def compileResource(Internal e, ImportManager manager) '''
@«manager.serialize(XmlRootElement)»(name="«e.name.toLowerCase»")
public class «e.name»Resource extends ResourceSupport{

 «FOR i:e.internals»
 «i.internal.name.toFirstUpper»Resource «i.internal.name.toFirstLower»Re-

source;

 public void set«i.internal.name.toFirstUpper»Resource(«i.inter-

nal.name.toFirstUpper»Resource «i.internal.name.toFirstLower»Resource) {
 this.«i.internal.name.toFirstLower»Resource = «i.inter-

nal.name.toFirstLower»Resource;
 }

 public «i.internal.name.toFirstUpper»Resource get«i.inter-

nal.name.toFirstUpper»Resource() {
 return «i.internal.name.toFirstLower»Resource;
 }
 «ENDFOR»

 «FOR f:e.datatypes»
 «manager.serialize(f.dataType.type)» «f.name»;

 public void set«f.name.toFirstUpper»(«f.dataType.simpleName» «f.name»)

{
 this.«f.name» = «f.name»;
 }

 public «f.dataType.simpleName» get«f.name.toFirstUpper»() {

67

 return «f.name»;
 }

 «ENDFOR»
}
'''

def compileResource(External e, ImportManager manager) '''
@«manager.serialize(XmlRootElement)»(name="«e.name.toLowerCase»")
public class «e.name»Resource extends ResourceSupport{
 «FOR f:e.datatypes»
 «manager.serialize(f.dataType.type)» «f.name»;

 public void set«f.name.toFirstUpper»(«f.dataType.simpleName» «f.name»)

{
 this.«f.name» = «f.name»;
 }

 public «f.dataType.simpleName» get«f.name.toFirstUpper»() {
 return «f.name»;
 }

 «ENDFOR»
}
'''

// Status part
def createStatus(Internal e) '''
package «e.fullyQualifiedName.skipLast(1)».models;

public enum «e.name»Status {
 «FOR state: e.states»
 «state.name»,
 «ENDFOR»
}
'''

// Repository part
 def createRepository(Internal e) '''
package «e.fullyQualifiedName.skipLast(1)».repositories;

 «val importManager = new ImportManager(true)»
 «val mainMethod = compileRepository(e, importManager)»
«IF !importManager.imports.empty»
 «FOR i:importManager.imports»
import «i»;
 «ENDFOR»
«ENDIF»
import «e.fullyQualifiedName.skipLast(1)».models.«e.name»;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;
«mainMethod»
 '''

def compileRepository(Internal e, ImportManager manager) '''

@Repository
public interface «e.name»Repository extends JpaRepository<«e.name», Long> {
}

68

'''

// ResourceAssembler part
 def createResourceAssembler(Internal e) '''
package «e.fullyQualifiedName.skipLast(1)».rest.utils;

 «val importManager = new ImportManager(true)»
 «val mainMethod = compileResourceAssembler(e, importManager)»
«IF !importManager.imports.empty»
 «FOR i:importManager.imports»
import «i»;
 «ENDFOR»
«ENDIF»
import «e.fullyQualifiedName.skipLast(1)».models.«e.name»;
import «e.fullyQualifiedName.skipLast(1)».rest.«e.name»Resource;
import «e.fullyQualifiedName.skipLast(1)».rest.controllers.«e.name»RestController;
import org.springframework.hateoas.mvc.ResourceAssemblerSupport;
import static org.springframework.hateoas.mvc.ControllerLinkBuilder.linkTo;
import static org.springframework.hateoas.mvc.ControllerLinkBuilder.methodOn;

«mainMethod»
 '''

def compileResourceAssembler(Internal e, ImportManager manager) '''
public class «e.name»ResourceAssembler extends ResourceAssemblerSupport<«e.name»,

«e.name»Resource>{

 «FOR i:e.internals»
 «i.internal.name.toFirstUpper»ResourceAssembler
 «i.internal.name.toFirstLower»ResourceAssembler =
 new «i.internal.name.toFirstUpper»ResourceAssembler();
 «ENDFOR»

 public «e.name»ResourceAssembler() {
 super(«e.name»RestController.class, «e.name»Resource.class);
 }

 @«manager.serialize(Override)»
 public «e.name»Resource toResource(«e.name» «e.name.toFirstLower») {
 «e.name»Resource «e.name.toFirstLower»Resource = cre-

ateResourceWithId(«e.name.toFirstLower».getId(), «e.name.toFirstLower»);
 «FOR type:e.datatypes»
 «e.name.toFirstLower»Resource.set«type.name.toFirstUpper»(
 «e.name.toFirstLower».get«type.name.toFirstUpper»());
 «ENDFOR»

 switch («e.name.toFirstLower».get«e.name»Status()) {
 «FOR state: e.states»
 case «state.name»:
 «FOR transition: e.transtions»
 «IF state == transition.fromState»
 «e.name.toFirstLower»Resource.add(
 new ExtendedLink(linkTo(methodOn(«e.name»RestControl-

ler.class)
 .«transition.controllerMethod.toFirst-

Lower»(«e.name.toFirstLower».getId()))
 .toString(), "«transition.rel»", "
 «transition.methodType»"));
 «ENDIF»

69

 «ENDFOR»
 break;
 «ENDFOR»
 default:
 break;
 }

 return «e.name.toFirstLower»Resource;
 }

 public «e.name.toFirstUpper» fromResource(«e.name.toFirstUpper»

«e.name.toFirstLower», «e.name.toFirstUpper»Resource «e.name.toFirstLower»Re-
source) {

 «FOR type:e.datatypes»
 «e.name.toFirstLower».set«type.name.toFirstUpper»(
 «e.name.toFirstLower»Resource.get«type.name.toFirstUpper»());
 «ENDFOR»
 «FOR i:e.internals»
 «e.name.toFirstLower».set«i.internal.name.toFirstUpper»(
 «i.internal.name.toFirstLower»ResourceAssembler.fromResource(
 «e.name.toFirstLower».get«i.internal.name.toFirstUpper»(),
 «e.name.toFirstLower»Resource.get«i.internal.name.toFirstUpper»Re-

source()));
 «ENDFOR»
 return «e.name.toFirstLower»;
 }
}
'''

// ResourceException part
 def createResourceException(Internal e) '''
package «e.fullyQualifiedName.skipLast(1)».rest.exceptions;

public class «e.name»NotFoundException extends Exception {
 private static final long serialVersionUID = 1L;

 public «e.name»NotFoundException(Long id) {
 super(String.format("«e.name» not found! («e.name» id: %d)", id));
 }
}
'''

}

70

V. Equipment rental scenario using RestGen (rentit.rg)

package ee.ut.rentit

dbconf {
 database 'rentit-test2'
 username 'postgres'
 password 'letmein'
 host 'localhost'
 port 5432
}

internal Plant {

 java.lang.String name
 java.lang.Float price

 states {

 }

 transitions {

 }
}

internal PurchaseOrder {

 java.util.Date startDate
 java.util.Date endDate

 OneToOne Plant plant

 states {
 OPEN,
 APPROVED,
 DENIED,
 ACCEPT,
 REJECT,
 CLOSED
 }

 transitions {
 OPEN to APPROVED using 'approvePO' with POST on 'approval'
 OPEN to DENIED using 'denyPO' with DELETE on 'approval'
 APPROVED to ACCEPT using 'acceptPO' with POST on 'acceptance'
 APPROVED to REJECT using 'rejectPO' with DELETE on 'acceptance'
 ACCEPT to CLOSED using 'closePO' with DELETE on 'closure'
 }
}

71

internal Invoice {

 java.lang.Float total

 states {
 OPEN,
 CLOSED,
 PAID
 }

 transitions {
 OPEN to CLOSED using 'close' with POST on 'closure'
 OPEN to PAID using 'pay' with POST on 'payment'
 }
}

72

VI. Generated Code for PurchaseOrderResource.java

package ee.ut.rentit.rest;

import java.util.Date;
import javax.xml.bind.annotation.XmlRootElement;
import ee.ut.rentit.rest.PlantResource;
import ee.ut.rentit.rest.utils.ResourceSupport;

@XmlRootElement(name="purchaseorder")
public class PurchaseOrderResource extends ResourceSupport{

PlantResource plantResource;

 public void setPlantResource(PlantResource plantResource) {
 this.plantResource = plantResource;
 }

 public PlantResource getPlantResource() {
 return plantResource;
 }

 Date startDate;

 public void setStartDate(Date startDate) {
 this.startDate = startDate;
 }

 public Date getStartDate() {
 return startDate;
 }

 Date endDate;

 public void setEndDate(Date endDate) {
 this.endDate = endDate;
 }

 public Date getEndDate() {
 return endDate;
 }

}

73

VII. Generated Code for PurchaseOrderResourceAssembler.java

package ee.ut.rentit.rest.utils;

import ee.ut.rentit.models.PurchaseOrder;
import ee.ut.rentit.rest.PurchaseOrderResource;
import ee.ut.rentit.rest.controllers.PurchaseOrderRestController;
import org.springframework.hateoas.mvc.ResourceAssemblerSupport;
import static org.springframework.hateoas.mvc.ControllerLinkBuilder.linkTo;
import static org.springframework.hateoas.mvc.ControllerLinkBuilder.methodOn;

public class PurchaseOrderResourceAssembler extends ResourceAssemblerSupport<
 PurchaseOrder, PurchaseOrderResource>{

 PlantResourceAssembler plantResourceAssembler = new PlantResourceAssembler();

 public PurchaseOrderResourceAssembler() {
 super(PurchaseOrderRestController.class, PurchaseOrderResource.class);
 }

 @Override
 public PurchaseOrderResource toResource(PurchaseOrder purchaseOrder) {
 PurchaseOrderResource purchaseOrderResource =
 createResourceWithId(purchaseOrder.getId(), purchaseOrder);
 purchaseOrderResource.setStartDate(purchaseOrder.getStartDate());
 purchaseOrderResource.setEndDate(purchaseOrder.getEndDate());

 switch (purchaseOrder.getPurchaseOrderStatus()) {
 case OPEN:
 purchaseOrderResource.add(
 new ExtendedLink(linkTo(methodOn(
 PurchaseOrderRestController.class)
 .approvePO(purchaseOrder.getId()))
 .toString(), "approval", "POST"));
 purchaseOrderResource.add(
 new ExtendedLink(linkTo(methodOn(
 PurchaseOrderRestController.class)
 .denyPO(purchaseOrder.getId()))
 .toString(), "approval", "DELETE"));
 break;
 case APPROVED:
 purchaseOrderResource.add(
 new ExtendedLink(linkTo(methodOn(
 PurchaseOrderRestController.class)
 .acceptPO(purchaseOrder.getId()))
 .toString(), "acceptance", "POST"));
 purchaseOrderResource.add(
 new ExtendedLink(linkTo(methodOn(
 PurchaseOrderRestController.class)
 .rejectPO(purchaseOrder.getId()))
 .toString(), "acceptance", "DELETE"));
 break;
 case DENIED:
 break;
 case ACCEPT:
 purchaseOrderResource.add(
 new ExtendedLink(linkTo(methodOn(
 PurchaseOrderRestController.class)

74

 .closePO(purchaseOrder.getId()))
 .toString(), "closure", "DELETE"));
 break;
 case REJECT:
 break;
 case CLOSED:
 break;
 default:
 break;
 }

 return purchaseOrderResource;
 }

 public PurchaseOrder fromResource(PurchaseOrder purchaseOrder,
 PurchaseOrderResource purchaseOrderResource) {
 purchaseOrder.setStartDate(purchaseOrderResource.getStartDate());
 purchaseOrder.setEndDate(purchaseOrderResource.getEndDate());
 purchaseOrder.setPlant(plantResourceAssembler.
 fromResource(purchaseOrder.getPlant(),
 purchaseOrderResource.getPlantResource()));
 return purchaseOrder;
 }
}

75

VIII. Generated code for PurchaseOrderRestController.java

package ee.ut.rentit.rest.controllers;

import ee.ut.rentit.models.PurchaseOrder;
import ee.ut.rentit.repositories.PurchaseOrderRepository;
import ee.ut.rentit.rest.PurchaseOrderResource;
import ee.ut.rentit.rest.utils.PurchaseOrderResourceAssembler;
import ee.ut.rentit.models.Plant;
import ee.ut.rentit.rest.PlantResource;
import ee.ut.rentit.rest.utils.PlantResourceAssembler;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.List;

import static ee.ut.rentit.models.PurchaseOrderStatus.*;
import static org.springframework.web.bind.annotation.RequestMethod.DELETE;
import static org.springframework.web.bind.annotation.RequestMethod.GET;
import static org.springframework.web.bind.annotation.RequestMethod.POST;
import static org.springframework.web.bind.annotation.RequestMethod.PUT;
import static org.springframework.web.bind.annotation.RequestMethod.PATCH;

@RestController
@RequestMapping(value = "purchaseorder")
public class PurchaseOrderRestController {

 @Autowired
 PurchaseOrderRepository purchaseOrderRepository;

 PlantResourceAssembler plantResourceAssembler =
 new PlantResourceAssembler();
 PurchaseOrderResourceAssembler purchaseOrderResourceAssembler =
 new PurchaseOrderResourceAssembler();

 @RequestMapping(method = GET)
 public List<PurchaseOrderResource> getPurchaseOrders() {
 List<PurchaseOrder> purchaseOrders =
 purchaseOrderRepository.findAll();
 return purchaseOrderResourceAssembler.toResources(purchaseOrders);
 }

 @RequestMapping(method = GET, value = "{id}")
 public PurchaseOrderResource getPurchaseOrder(@PathVariable Long id) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 return purchaseOrderResourceAssembler.toResource(purchaseOrder);
 }

 @RequestMapping(method = POST)
 public PurchaseOrderResource createPurchaseOrder(
 @RequestBody PurchaseOrderResource
 purchaseOrderResource) {
 PurchaseOrder purchaseOrder = new PurchaseOrder();

76

 purchaseOrder = purchaseOrderResourceAssembler.
 fromResource(purchaseOrder, purchaseOrderResource);
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return purchaseOrderResourceAssembler.toResource(purchaseOrder);
 }

 @RequestMapping(method = PUT, value = "{id}")
 public ResponseEntity<PurchaseOrderResource> updatePurchaseOrder(
 @PathVariable Long id,
 @RequestBody PurchaseOrderResource purchaseOrderResource) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 purchaseOrder = purchaseOrderResourceAssembler.
 fromResource(purchaseOrder, purchaseOrderResource);
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return new ResponseEntity<PurchaseOrderResource>(
 purchaseOrderResource, HttpStatus.OK);
 }

 @RequestMapping(method = DELETE, value = "{id}")
 public ResponseEntity<Void> deletePurchaseOrder(Long id) {
 purchaseOrderRepository.delete(id);
 return new ResponseEntity<Void>(HttpStatus.OK);
 }

 @RequestMapping(method = POST, value = "{id}/approval")
 public PurchaseOrderResource approvePO(Long id) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 purchaseOrder.setPurchaseOrderStatus(APPROVED);
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return purchaseOrderResourceAssembler.toResource(purchaseOrder);
 }
 @RequestMapping(method = DELETE, value = "{id}/approval")
 public PurchaseOrderResource denyPO(Long id) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 purchaseOrder.setPurchaseOrderStatus(DENIED);
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return purchaseOrderResourceAssembler.toResource(purchaseOrder);
 }
 @RequestMapping(method = POST, value = "{id}/acceptance")
 public PurchaseOrderResource acceptPO(Long id) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 purchaseOrder.setPurchaseOrderStatus(ACCEPT);
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return purchaseOrderResourceAssembler.toResource(purchaseOrder);
 }
 @RequestMapping(method = DELETE, value = "{id}/acceptance")
 public PurchaseOrderResource rejectPO(Long id) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 purchaseOrder.setPurchaseOrderStatus(REJECT);
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return purchaseOrderResourceAssembler.toResource(purchaseOrder);
 }
 @RequestMapping(method = DELETE, value = "{id}/closure")
 public PurchaseOrderResource closePO(Long id) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 purchaseOrder.setPurchaseOrderStatus(CLOSED);
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return purchaseOrderResourceAssembler.toResource(purchaseOrder);
 }

77

 @RequestMapping(method = PUT, value = "{id}/plant")
 public ResponseEntity<Void> modifyPlant(
 @PathVariable Long id,
 @RequestBody PlantResource plantResource) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 Plant plant = purchaseOrder.getPlant();
 //TODO: write the modification lines.
 purchaseOrderRepository.saveAndFlush(purchaseOrder);
 return new ResponseEntity<Void>(HttpStatus.OK);
 }

 @RequestMapping(method = GET, value = "{id}/plant")
 public ResponseEntity<PlantResource> getPlant(@PathVariable Long id) {
 PurchaseOrder purchaseOrder = purchaseOrderRepository.findOne(id);
 Plant plant = purchaseOrder.getPlant();
 return new ResponseEntity<>(plantResourceAssem-
bler.toResource(plant), HttpStatus.OK);
 }
}

78

IX. Generated code for PurchaseOrder.java

package ee.ut.rentit.models;

import java.util.Date;
import ee.ut.rentit.models.Plant;
import javax.persistence.OneToOne;
import javax.persistence.Entity;
import javax.persistence.Enumerated;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import static javax.persistence.EnumType.STRING;

@Entity
public class PurchaseOrder {

 @Id
 @GeneratedValue
 Long id;

 public Long getId() {
 return id;
 }

 @Enumerated(STRING)
 PurchaseOrderStatus purchaseOrderStatus;

 public PurchaseOrderStatus getPurchaseOrderStatus() {
 return purchaseOrderStatus;
 }

 public void setPurchaseOrderStatus(
 PurchaseOrderStatus purchaseOrderStatus) {
 this.purchaseOrderStatus = purchaseOrderStatus;
 }

 @OneToOne
 Plant plant;

 public void setPlant(Plant plant) {
 this.plant = plant;
 }

 public Plant getPlant() {
 return plant;
 }

 Date startDate;

 public void setStartDate(Date startDate) {
 this.startDate = startDate;
 }

 public Date getStartDate() {
 return startDate;
 }

 Date endDate;

79

 public void setEndDate(Date endDate) {
 this.endDate = endDate;
 }

 public Date getEndDate() {
 return endDate;
 }

}

80

X. Generated code for PurchaseOrderNotFoundException.java

package ee.ut.rentit.rest.exceptions;

public class PurchaseOrderNotFoundException extends Exception {
 private static final long serialVersionUID = 1L;

 public PurchaseOrderNotFoundException(Long id) {
 super(String.format("PurchaseOrder not found! (PurchaseOrder id: %d)",
id));
 }
}

81

XI. Generated code for PurchaseOrderStatus.java

package ee.ut.rentit.models;

public enum PurchaseOrderStatus {
 OPEN,
 APPROVED,
 DENIED,
 ACCEPT,
 REJECT,
 CLOSED,
}

82

XII. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Vishal Desai(date of birth: 01.10.1988), herewith grant the University of Tartu a free

permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until the expiry of the term

of validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until the expiry of the term of validity

of the copyright,

of my thesis

Model-driven engineering of Hypermedia REST applications,

supervised by Luciano García-Bañuelos,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 06.08.2016

