
UNIVERSITY OF TARTU

FACULTY OF SCIENCE AND TECHNOLOGY

INSTITUTE OF COMPUTER SCIENCE

SOFTWARE ENGINEERING CURRICULUM

KHACHATUR HAMBARDZUMYAN

IDEAS MATCHMAKING FOR SUPPORTING

INNOVATORS AND ENTREPRENEURS

Master’s Thesis

Supervisors:

Fabrizio Maria Maggi, PhD, University of Tartu

Massimo Mecella, PhD, Sapienza – Università di Roma

Francesco Leotta, PhD, Sapienza – Università di Roma

Tartu 2016

2

Ideas Matchmaking for Supporting Innovators and Entrepreneurs

Abstract

In this paper we show a system able to crawl content from the Web related to entrepreneurship and

technology, to be matched with ideas proposed by users in the InnovVoice platform. We argue

that such a service is a valuable component of an ideabator platform, supporting innovators and

possible entrepreneurs.

Keywords

Ideabator, crawling, text classification, keyword extraction

CERCS: P170

Ideede sidumine toetamaks uuendajaid ja ettevõtjaid

Lühikokkuvõte:

Käesolevas töös esitletakse süsteemi, mis on võimeline roomama veebist ettevõtluse ja

tehnoloogiaga seotud andmeid, mida saab siduda kasutajate poolt InnovVoice platvormil välja

pakutud ideedega. Selline teenus on ideabator platvormi väärtuslik osa, mis toetab ettevõtluse

uuendajaid ja potentsiaalseid ettevõtjaid.

Võtmesõnad:

Ideabator, crawling, teksti liigitus, märksõna kaevandamise

CERCS: P170

3

Contents

1. Introduction………………………………………………………………………………….…6

2. State of The Art………………………………………………………………………………...9

 2.1 DesigNET…………………..…………………………………………………………9

 Architecture……………………………………………………………………….9

 The Spider Component………………………………………………………..…11

 2.2 Google Scholar……………………………………………………………………….11

3. Background……………………………………………………………………………………13

 3.1 Information Retrieval………………………………………………………………...13

 Collecting Documents……………………………………………………………14

 Standardization…………………………………………………………………..14

 Tokenization……………………………………………………………………..14

 Lemmatization…………………………………………………………………...15

 Inflectional Stemming…………………………………………………………...15

 3.2 Automatic Keyword Extraction……………………………………………………..15

 Simple Statistics Methods….…………………………………………………....16

 Linguistics Methods….……………………………………………………….....16

 Machine Learning Methods….…………………………………………………..16

 Mixed Metods…...……………………………………………………………….16

 3.3 Crawlers……………………………………………………………………………...16

 3.4 Main Technologies Used in InnoVoice Platform……………………………………18

 3.4.1 Apache Nutch……………………………………………………………...18

 3.4.2 MAUI………………………………………………………………………19

 KEA……………………………………………………………………...19

 Weka……………………………………………………………………..19

 Jena……………………………………………………………………....19

 3.4.3 MongoDB………………………………………………………………….19

 3.4.4 Apache Lucene…………………………………………………………….20

4

4. InnoVoice System Architecture……………………………………………………………….21

 4.1 Introducing Voice Platform………………………………………………………….21

 4.2 Matchmaking architecture…………………………………………………………...23

 4.3 The Offline Layers…………………………………………………………………...23

 4.4 The Matchmaking Layer……………………………………………………………..24

 Extraction Mechanisms…………………………………………………………..26

 Matchmaking Services…………………………………………………………...27

 4.5 The API Layer………………………………………………………………………..27

5. Implementation of the Matchmaking System…………………………………………………29

 5.1 System Configuration………………………………………………………………..29

 5.2 Apache Nutch………………………………………………………………………..29

 5.3 Indexing……………………………………………………………………………...32

 5.4 Keyword extraction………………………………………………………………….32

 5.5 Other Keyphrase Extraction Mechanisms…………………………………………...33

 JATE……………………………………………………………………………..33

 Apache Open NLP……………………………………………………………….33

 SNLP……………………………………………………………………………..33

 ClearNLP………………………………………………………………………...34

 TreeTager ………………………………………………………………………..34

 RAKE……………………………………………………………………………34

 5.6 Porter Stemmer………………………………………………………………………35

 5.7 Lucene Queries……………………………………………………………………....35

 5.7.1 Terms………………………………………………………………………35

 5.7.2 Query Types Used in the System…………………………………………..36

 OR………………………………………………………………………..36

 Fuzzy Queries…………………………………………………………....36

 Wildcard Searches……………………………………………………….37

 Escaping Special Characters………………………………………….….37

5

6. Validation……………………………………………………………………………………...40

7. Conclusion…………………………………………………………………………………….44

8. References………………………………………………………………………………….….45

6

1. Introduction

Generally speaking, “innovation is the application of better solutions that meet new

requirements, unarticulated needs, or existing market needs” [1]; “this is accomplished through

more-effective products, processes, services, technologies, or business models that are readily

available to markets, governments and society. Therefore, the term “innovation" can be defined as

something original and more effective and, as a consequence, new, that “breaks into" the market

or society” [2]; innovation is generally considered to be the result of a process that brings together

various novel ideas in a way that they have an impact on society. In business and economics, in

particular, innovation can be a catalyst to growth. All organizations can potentially innovate,

including for example hospitals, universities, and local governments. There are several sources of

innovation: it can occur as a result of a focus effort by a range of different agents, by chance, or as

a result of a major system failure. According to [3], “the general sources of innovations are

different changes in industry structure, in market structure, in local and global demographics, in

human perception, mood and meaning, in the amount of already available scientific knowledge,

etc”.

As [4] states, “Another source of innovation, only now becoming widely recognized, is end-user

innovation. This is where an agent (person or company) develops an innovative solution for their

own (personal or in-house) use because existing products do not meet their needs”.

Today innovation is achieved in many ways, with much attention now given to formal research

and development (R&D) for “breakthrough innovations". The more radical and revolutionary

innovations tend to emerge from R&D, while more incremental innovations may emerge from

practice - but there are many exceptions to each of these trends. ICT and changing business

processes and management style can produce a work climate favorable to innovation. Notable

examples are the one of Atlassian, which conducts quarterly “ShipIt Days"2 in which employees

may work on anything related to the company's products, or Google employees that work on their

own projects for 20% of their time (known as Innovation Time Off).

Nowadays, user-innovators may also choose to freely reveal their innovations, using

methods like open source. In all these models, yet quite debated, two specific points emerge: (i)

the importance of the ideation phase, and (ii) the enabling effect that innovation, and ideation in

particular, can have on businesses and economics.

How can users validate their innovative ideas? How can they find people with the same

entrepreneurial spirit?

 In this context the InnovVoice ecosystem funded by EU commission

(http://www.innovvoice.com) aims at empowering the crowd to innovate and prosper, by

facilitating business idea development, enriching concepts, fostering partnerships, synergies and

collaborations, in order to create a vibrant entrepreneurial community.

This can be achieved through the concept of ideabator, i.e., and incubator of ideas. Through the

platform, ideation is supported, by helping users in conceiving, expressing, cooperating, validating

and improving their ideas. This can be achieved by providing, among the many other

functionalities offered by the platform, also a set of technologies allowing users to continuously

check if the idea they are elaborating is somehow already present in the Web. As an example, the

reader can consider the following scenario (see Figure 1): the user logins, starts describing his idea,

sees in real-time relevant information retrieved and elaborated by the system about relevant

webpages, blogs, news related to the proposed idea, which is refined as the writing goes on, and

7

can decide if it is worthy to go on or change her business proposition. The user has his individual

“Google of ideas".

 In the following of this paper, after briefly introducing the InnovVoice platform, we

describe some technical details on how to realize support to innovation and entrepreneurship, and

we advocate that this use of Big Data technologies, namely crawling, Open APIs, NLP and text

mining, combined in our specific setting, are an interesting example of data-driven innovation.

8

(a) Before

(b) After

Figure 1: An InnovVoice user getting feedback on his idea. While he is writing, relevant

content is matched and proposed on the basis of the content he is interested (note the

differences in the provided content between the screenshots, due to the additional text

provided in the second one).

9

2. State Of the Art

Since in this thesis we focus on matchmaking techniques we can review several platforms that

have similar behavior in information crawling and result matching.

2.1 DesigNET

One of the projects is DesigNET (http://www.designet-italy.it/)[5]. It is a research and innovation

project, commissioned by Italian companies in interior design, furniture, architecture and services

that aims at investigating and developing Web-based e-business prototype supporting selling

activities, by identifying, on the basis of the analysis of the Web, design market trends and new

contract opportunities.

The purpose of the DesigNET project is to study and to develop a Web-based e-business

prototype providing a decision support system regarding product development and selling

activities by identifying, on the basis of the analysis of the Web, design market trends and new

contract opportunities.

The information gathered using the platform (design trends, macroeconomics indexes and new

contract opportunities, etc.) has value for the companies involved in the project. It gives

opportunity for companies to discover highly qualified user interests and to predict future market

trends and products evolution in different countries and adapt and offer products according to the

new trends.

The platform focuses to improve prediction systems in order to apply them also in Small and

medium-sized enterprises that cannot afford really expensive and cumbersome systems presently

available on the market.

Architecture: The system has been organized into two main components:

 The spider, responsible for retrieving information available over the Internet accessing a

variety of Web sources to collect information about contract opportunities, economic

outlook, and design trends. This component can be seen as an integration layer that reads

and parses heterogeneous Web sources, and stores the retrieved information in a relational

DBMS.

 The business intelligence (BI), responsible for connecting to the spider database, perform

the ETL process (extract, reorganize and historicize retrieved information) and store data

in a data warehouse optimized to quickly return to users queries through the use of

materialized views and indexes. Furthermore, it provides a Web-based user interface that

displays information and analysis outcomes through a number of charts.

The whole system is based on a client-server interaction, where each component acts as a client

when receiving information from actors in a higher level of the chain, and act as a server when

providing information to clients in a lower level of the chain. Figure 2 shows how components and

external actors interact each other and its data flow.

http://www.designet-italy.it/

10

Fig.2

As shown in Figure, each component is characterized by different software modules,

communicating each other or isolated, which perform the individual subtask that assemble any

single service.

Fig. 3

11

The Spider Component

The Spider component is devoted to searching for new sources, analyzing and retrieving relevant

information. Given the high quantity of data needed to achieve a statistical analysis, it runs at full

speed 24/7 to analyze as many documents as possible. Regarding the macroeconomics indexes,

system collects them with wrappers specific to the monitored sites and stores the information in a

relational database. The wrapper, before updating macroeconomics indexes, checks if the specific

source is actually online. Then, it checks if the downloaded page has changed since last visit, and

just in case, proceeds with the information extraction and to updates the database. To retrieve new

contract opportunities, the Spider accesses to web sites specialized on news regarding worldwide

contract opportunities. Once documents have been retrieved, the system proceeds with documents

analysis and categorization. Documents present information in a semi-structured form

(unstructured text embedded in structured HTML template). In this case, to maximize the chance

to properly classify the document, the parser navigates the HTML tree to extract the plain text

news and then document classification is performed (using a Boolean Model and a thesauri). The

system traverses HTML tree to reach the plain text, and then categorizes the document, according

to a simple Boolean model, as relevant if at least one occurrence of the context thesaurus has been

found. To increase performance, geographic reference categorization is performed only if the

document is relevant. In case the document is relevant, it is saved and occurrence metadata useful

for ranking results I shown in the user interface.

The Business Intelligence component is responsible for connecting to the spider database, perform

the ETL process and store data in a data warehouse for subsequent analysis and visualization.

If we draw parallels with our platform we can see that it has similar crawling part, however the

web spiders are different and configured uniquely to satisfy domain specific needs.

2.2 Google Scholar
Another system that can be of particular interest is well known Google Scholar

(https://scholar.google.com/) which is a search engine for academic resources in all subject fields.

Google Scholar web spider searches content in peer-reviewed journal literature, books,

dissertations, academic society papers and technical reports.

Google Scholar describes its scope and content generally, and, unlike the major science and

technology bibliographic databases (PubMed, Cambridge Scientific Abstracts, etc.), the search

engine does not provide any source lists of publications searched or authority files for author

names, journal titles, or controlled vocabulary for subjects. The search engine retrieves a large

number of documents in a very short time.

Search Features

Simple Search: The Simple Search is a powerful tool in a number of ways. It automatically

supports both Boolean and truncation operators. Instead of truncation symbols, Google Scholar

uses word stemming algorithm, which returns documents with word variations based on specified

keywords. For instance, a search on stemming word will retrieve documents

with stemming or stem and word or words.

https://scholar.google.com/

12

Academic Content From

.edu Web Domains

Summaries of scholarly

articles from publishers

book citations, etc.

Advanced Search: The Google Scholar Advanced Search offers a number of search options for

articles. It supports keyword and author searching and enables the user to restrict results published

within a range of years, by name of publication, and by subject area. Keyword searching is more

sophisticated than the Simple Search. It includes searching by all words, exact phrase, at least

one of the words, without the words, and where the words occur in the document.

Google Scholar offers different search options for free academic resources on the Web. Its fast

search engine and wide output results are compromise that must be considered considering against

accuracy and preciseness in a literature search.

The main difference between the search engines mentioned here and our matchmaking system is

that the number of keywords of query is limited for them, whereas our system allows to search by

entire document of any length. There are plenty of platforms with their own crawling and search

functions. The two above mentioned appeared to us more relevant. In our case we have “Google

of Ideas”.

E-journals / Library Catalogs

$ $

Free Free $

13

3. Background

3.1 Information Retrieval

[6] The general task of information retrieval is to return the documents matching the clues

provided by us as a query.

Those clues represent keywords that help us to retrieve corresponding documents. In a

typical case of information retrieval a few words are provided to a search engine, which are

matched to the stored documents. The best matches are returned by the engine. We can generalize

this process to a document matcher. In this case an entire document can be represented as a set of

keywords. The document given as an input is matched to all stored documents, and the system

retrieves the most relevant documents.

The main idea for information retrieval is assessing similarity between two documents.

Even a query of a few number of words to a search engine is treated as a document that can be

matched to others. The common theme is measuring similarity, and variations of these methods

are fundamental to information retrieval. The data can be represented as a spreadsheet, and this

model can easily be used for these tasks. The new document corresponds to a new row. The new

row is compared to all the other rows, and the most similar rows and documents associated to them

are the answers.

In order to mine a text, it is first necessary to preprocess and bring it to a special structure that can

be used by data-mining tools. As noted before, this generally includes transforming features in a

spreadsheet representation. Traditional data mining works with data that is highly organized.

We consider text mining unstructured due to the fact that it is far away from the spreadsheet

representation that is required to process data for prediction. Yet, the transformation contents of

the document from text to the spreadsheet representation can be highly methodical, and there is a

carefully designed process to complete the spreadsheet cells. The first step is to come up with the

nature of spreadsheet columns (i.e., the features). Some of the features can be easily obtained, such

Document Matcher

Input

Document

Text

Document Collection

Matched

Documents

14

as word occurrence in a text, others are much more difficult to determine, for example, the

grammatical function of a word in a sentence (whether it is a subject or an object, etc.).

Collecting Documents: It’s obvious that in text mining number one task is to gather the data.

In a lot of cases, they may already be given or may be found in the problem description itself. For

instance, if we have a Web page search engine for an intranet, it means that the relevant documents

are the Web pages stored on the intranet. After the documents are determined, they can be fetched,

and the major problem is to clean them in order to make sure that they have high quality. In some

cases, the data may be acquired from document warehouses or databases. In these cases, it implies

that data preprocessing was done before storing and documents are of the high quality.

In certain applications, a data collecting systems may be required. For example, for a Web

application that consists of several autonomous Web sites, a software tool such as a Web spider

can be deployed that acquires all the data. In some other scenarios, a logger application deployed

on an input data stream can perform logging of data. Such an example is an application that

performs email audit. It is able register all incoming and outgoing messages at a mail server and

store in the log.

It happens that the number of documents is immensely large, and depending on the task

data-sampling approaches can be used to select a set of relevant documents that can be handled.

For example, documents may have a time stamp, and those that are more recent may be more

relevant.

Another resource that we can take into account is the World Wide Web itself. Web spiders

can produce collections of pages from a particular website, or on a particular topic. Given the size

of the Web, collections produced this way can be huge. The key issue with this method is that the

data might be ambiguous and need to be cleaned before it can be useful.

Standardization: The documents that are collected can be found in different formats. It depends

on how these documents were generated. For instance, some of them may be created by a word

processor with its own format (.docx, .pdf, etc.), others may be created in a simple text editor and

stored as plain text and finally, there may be documents that are scanned and stored as image files.

Obviously, for processing all those documents, it’s more convenient to convert them to a common

standard format.

Document standardization is very important. The main advantage is that the text mining

applications can process them without considering how the document is generated. For collecting

information from a document, it is not important at all what editor was used to create it or what

format it had originally. Text mining tools should process documents just in a single standard

format, and not in the many different formats they were generated initially.

Tokenization: Let’s assume we have a set of documents stored in some format and we need to

analyze the text to find out useful features. The first task in processing the text is to break it into

words (tokenize). This is important for further analysis. Without tokenization, it will be hard task

to mine higher level information from the text. Every token represents an instance of a type, thus

the amount of tokens is much higher than the amount of types.

15

Tokenize a text is an easy task for someone who is familiar with the language structure. For

the computer program, on the other hand, it is quite challenging and complicated task. The reason

is the difficulty to identify delimiters. They can be different in different contexts. We consider

characters space, tab, and newline to be delimiters and never be tokens. These characters are known

as white space characters. The characters () <>!?” are always considered delimiters but may be

tokens as well. Depending on the context the characters . : , ’ - may or may not be delimiters.

Lemmatization: Once text is divided into a set of tokens, the next feasible stage is to bring all

the tokens to a standard representation. This process is called stemming or lemmatization. This

step usually depends on the application. It can be beneficial for example in document classification

process. One of the positive outcomes of stemming is the reduction of the amount of separate types

in a document and to make the frequency of occurrence of some particular types higher. For

example, if we have several instances of token “plays”, after stemming they will be transformed

to token “play” and will be considered as instances of that type, along with instances of the tokens

“play” and “played.” In document classification where frequency is important, stemming can

sometimes make a difference.

Inflectional Stemming: In many languages words appear in text in more than one form. It’s

obvious that the nouns “pens” and “pen” are two distinct forms of the same word. In many cases

it is beneficial to normalize both words to the single form “pen”. When we normalize the words in

grammatical types such as present/past and singular/plural, it is called “inflectional stemming”. In

linguistics, this process is called morphological analysis. For an English language that has many

irregular word forms and nonintuitive spelling, stemming is a very tough task.

3.2 Automatic Keyword Extraction

Automatic keyword extraction is the procedure to find a group of words (i.e. keyphrases or

keywords) from a document that carry the meaning of the document [7]. And depending on the

model, the extraction should be performed with either minimal or no human intervention. The aim

of automatic keyword extraction is to use the power and speed of computation in challenges of

access and discoverability, improving information organization and retrieval without essential

costs and defects related to human indexers [8].

The manual procedure of keyword extraction is slow, expensive and bristling with mistakes.

Therefore, there is a need in algorithms and systems that help people to perform automatic keyword

extraction. Existing methods can be categorized in 4 groups:

1. simple statistics,

2. linguistics,

3. machine learning,

4. mixed approaches [8, 9].

16

Simple Statistics Methods: These approaches are simple and don’t have many requirements.

Training data is not required either. They do not consider linguistic features of the text and instead

examine frequency of term, position of a keyword in text, etc.. The statistical data of words

collected from the document can be used to identify the keyphrases. The advantage of solely

statistical methods is their simplicity of use and the fact that in most cases they produce good

results.

Linguistics Methods: In these approaches linguistic features of the words, sentences and

document are used. Methods which take into consideration linguistic features of the words (e.g.

part-of-speech, syntactic structure and semantic qualities) are improving results, in some cases

helping to avoid bad keywords. The use of linguistic features indicate the great improvement of

the automatic keyword extraction. Some of these approaches are mixed methods, combining

together some linguistic approaches and common statistical measures such as term frequency and

inverse document frequency.

Machine Learning Methods: The machine learning mechanism works as follows. First a set of

training documents is provided to the system, each of which has a range of human-chosen

keywords as well. Then based on the gained knowledge a model is created which system uses to

find keywords from new documents.[10]

Mixed Methods: Other methods of automatic keyword extraction are mostly combination of the

previously discussed methods or apply some heuristic information in the application of keyword

extraction (e.g. position, length, layout feature of the words, html tags around of the words, etc.

[11].).

At present available tools for automatic keyword extraction require either training data or domain

specific knowledge.

3.3 Crawlers
A classical kind of offline extraction tool is represented by web crawlers (also known as web

spiders). A Web crawler is a program or component of search engine which repeatedly browses

the Internet, in order to store browsed content in the database. Search engines and some online

services use Web spider for updating their web content or indices of others websites' content. They

are able to fetch all the pages they visit for later processing by a search engine which does

indexation of the downloaded data. This enables users to do their search much more efficiently. In

order to start Web crawler, we need to provide a list of URLs that it needs to visit. This list called

the seeds. While the crawler is on specific website that is listed in the seeds file, it finds all the

hyperlinks in the page and adds them to the URL list to visit. The list is called crawl frontier. Web

crawler recursively visits the URLs from the frontier according to a set of defined rules.

17

If the crawler is doing archiving operation of websites, it copies and stores the data as it goes

[12]. Due to the huge size of data only limited number of the Web pages can be fetched within a

certain time frame. This means that downloads should be prioritized.

The way a Web crawler behaves during operation depends on the combination of rules or

policies [13]:

 a selection rule which states the pages to download,

 a re-visit rule which determines the interval of checking for changes to the pages,

 a politeness policy that tells how to avoid overloading of server being crawled,

 a parallelization policy that states how to manage distributed (multiple) web spiders.

Crawlers are capable to fetch data much faster and in greater depth than human searchers are

capable, which means that they can have a serious impact on the performance of a website. And it

is evident, that if a single web crawler is sending a big number of requests in small period of time

or fetching big files, a server would have problems with handling those requests from multiple

crawlers.

Web crawlers are useful for a lot of tasks, but they are very demanding and costly in terms of

resources. The costs of using Web crawlers include [14]:

 network resources, as crawlers need significant bandwidth and run with a high level of

parallelism during a long time period;

 webserver overload, particularly if the frequency of requests to a given website is very

high;

 badly implemented crawlers, which can lead servers or routers to crash, or which fetch

data they cannot process;

This problem can be partially solved by using the robots exclusion protocol, also called robots.txt

protocol that is a standard for crawlers. This file should be stored in the root directory of the web

server (www.example.com/robots.txt). It contains information indicating which pages of the

website should or should not be accessed by crawlers [15; 16]. Recently this standard started to

include a restriction for the interval of visits to the same server, a special parameter called “Crawl-

delay:” in robots.txt, which tells crawlers the time in seconds of delay between consecutive

requests. This is the most effective way to avoid server being overloaded.

A big number of web pages are stored in the deep or invisible web. These pages are usually only

reachable by querying data from the database, and regular spiders are not able to find them if there

are no links that point to those pages.

Deep web crawling increases many times the amount of web links that should be crawled. Some

crawlers only take some of the URLs in <а hrеf="URL"> form. In some cases, such as the

Googlebot, Web crаwling is done on all text contained inside the hypertеxt content, tags, or text.

The obstacles that may not allow web crawler to perform the operation may be divided into

following categories [17]:

 Dynamic content: webpages which server returns as a response to a sent request or pages

that are available only through a form, particularly if open-domain input elements (e.g. text

fields) are used; those kind of fields are hard to process without proper domain

understanding.

18

 Unlinked content: pages which have no links on other pages, which may prevent web

crawlers from accessing the content. They are known as pages that have no bаcklinks. In

addition, search еngines do not always manage to identify all backlinks from processed

pages.

 Private pages: sites that ask for registration and authorization to access the content (i.e.

password-protected web sites).

 Contextual Web: pages that contain data which is not the same for different access

conditions (e.g., ranges of client IP addresses or navigation order).

 Content with limited access: sites that restrict access to their pages in a technical way (e.g.,

using the Robots.txt exclusion protocol or CАPTCHAs, or nostore directive which restricts

search engines to process the pages and save their cached copies).

 Scripted content: pages that can be only accessed through links generated using JavaScript

as well as data dynаmically downloаded from sites using Flash or Ajax technologies.

 Non-text content: textual data encoded in multimedia files, such as images or video, or

other file formats that search engines are unable to maintain.

 Software: some specific data is purposely hidden from the ordinary web. It can be available

using only specific applications (e.g. Tor, FAI, FreeNet, or similar darknet applications).

 Web archives: Web archival services enable users to see archived versions of websites

across time, including sites which are not reachable anymore, and are not indexed by search

engines.

3.4 Main Technologies Used in InnoVoice Platform

3.4.1 Apache Nutch [18]
Apache Nutch is а highly open source web spider software tool. Nutch is pluggable and

consists of different modules. It has an extensible interfaces such as Parse, Index and scoring filters

for custom implementations.

In the scope of VOICE project, it is used for crawling a set of websites that contain valuable

information for users which is later stored in MongoDB. A separate package is responsible for

creating indices from the database (Apache Lucene). Also it should filter content before storing

into the database. The sources usually contain a lot of external and internal links which are not

useful.

The main task was to call the Nutch crawler from the code with our own defined settings instead

of running it separately from the console. It made the system more autonomous. Next, invent some

kind of mechanism to focus only on the interesting contents of these sources. As mentioned before

Nutch is very flexible in terms of configurations and allows usage of different 3rd party plugins.

And another task is to find suitable one to make crawling more effective and fast by omitting

unnecessary information on web sites. Nutch uses also regular expressions for filtering and we can

limit the crawl to a specific domain or a special pattern. However, for using with different sources

it is more difficult, because there not might a common pattern for them.

19

3.4.2 MAUI
As reported in [19], “Maui is able to automatically detect main topics in text documents.

Depending on the task, topics can be tags, keywords, keyphrases, vocabulary terms, descriptors,

index terms or titles of Wikipedia articles”.

Maui has the following features [19]:

 “term assignment with a controlled vocabulary (or thesaurus)

 subject indexing

 topic indexing with terms from Wikipedia

 keyphrase extraction

 terminology extraction

 automatic tagging

 It can also be used for terminology extraction and semi-automatic topic indexing.”

MAUI consists of several other projects. It includes following software in it:

Kea [19, 20]: According to [19] “Maui builds on the keyphrase extraction algorithm (Kea). In that

it utilizes the two-step process of automatic indexing: candidate selection and filtering. Major parts

of Kea became parts of Maui without any further modifications. Other parts, like feature

computation, were extended with new elements.”

Weka: As written in [16] "Maui inherits from Kea the machine learning toolkit Weka for creating

the topic indexing model from documents with topics assigned by people and applying it to new

documents. However, while Kea only contains a cut-down version of Weka (several classes), Maui

includes the complete library. This gives more opportunities to experienced users for tailoring

Maui’s code to specific data sets”.

Jena [16]: According to [16] “In order to make Maui applicable for topic indexing with many

kinds of controlled vocabularies, the Jena library is included. It reads RDF-formatted thesauri and

stores them in memory for a quick access. Any vocabulary in RDF format (specifically SKOS)

can be used.”
Currently MAUI is used in VOICE project. It requires data to be trained before it can be applied

to the actual document. So depending on how well it is trained the output quality may vary a lot.

3.4.3 MongoDB [21]
MongoDB is a cross-platform document-oriented NoSQL database. Unlike the traditional

table-based relational database structure MongoDB is based on JSON-like documents with

dynamic schemas (the format is called BSON). Due to this fact in some types of applications the

data integration can be done faster and simpler. This software is free and comes with open source

code.

Platform uses this database to store crawled content from sources for later indexing it using Apache

Lucene.

20

3.4.4 Apache Lucene [22]
Apache Lucene is used in VOICE system for indexing crawled content that is stored in MongoDB

and later for providing results against our queries. It is a highly productive text search engine

implemented completely in Java. This library is capable to suit nearly any application that uses

full-text seаrch. It is platform independent.

The tool is suitable for any task which requires full text indexing and searching capability. Apache

Lucene is very powerful tool if used in the implementation of Internet search enginеs and local,

single-site searching. The main idea behind the logical architecture of the tool is a document that

contains fields of text, which allows Lucene's API to get rid of the file format constraint. Any type

of document that contains searchable text (PDF, HTML, MS Word, OpenDocument, etc., (not

images)) can be indexed as long as their textual information can be extracted.

Features (as mentioned in [22]):

 “ranked searching - best results returned first

 many powerful query types: phrase queries, wildcard queries, proximity queries, range

queries, etc.

 fielded searching (e.g. title, author, contents)

 sorting by any field

 multiple-index searching with merged results

 allows simultaneous update and searching

 flexible faceting, highlighting, joins and result grouping

 fast, memory-efficient and typo-tolerant suggesters

 pluggable ranking models, including the Vector Space Model and Okapi BM25

 configurable storage engine (codecs)”

21

4 InnoVoice System Architecture

4.1 Introducing Voice Platform
InnovVoice is a unified combination of (i) a social media platform, (ii) an idea management

platform, (iii) a collaboration platform, and (iv) a market place, with in addition (v) a content

management system, and (vi) a Web observatory [9]. In particular, the specific features offered by

the platform are training and mentorship services, crowd-evaluation of ideas and prototypes

(scorecards, structured/free form questionnaires, idea/product summarization), innovation

exposure (through expo rooms and an innovation map). This is supported through a rich toolset,

including a Web observatory, a content library (consisting of both internal content, i.e., generated

internally by the platform through its users, and external one, i.e., retrieved from the Web), and

matchmaking techniques. The platform mainly consists of three subsystems, namely Voice Central

(VCEN), Voice Content (VCON), and Voice Observatory (VOBS). VCEN is in charge of

managing all the data and the application logic of the platform (users/ideas/comments/etc.

management and persistence), and the user interaction; VCON is indeed our sub-system managing

external content (i.e., crawled from the Web) and providing the matchmaking services; details on

the VOBS can be found in [8].

VOICE Content can be broadly defined as pieces and collections of data and information that have

a particular value to the users of the VOICE platform and the community in general. In VOICE,

ideas are considered the most important class of contents. However, contents can be obtained from

users providing their experience and thoughts in the form of suggestions and feedback, thus

exploiting the so called “wisdom of the crowd”. Information coming from users can be further

processed in order to automate the extraction of metrics, which can be considered a form of derived

contents. Another relevant source for content is represented by the internet. In particular content

repositories and external services can be queried to extract information related to entrepreneurship.

Additionally, as the realization of a project implies the involvement of people and companies, the

platform will give to different kinds of professionals and companies the possibility to offer their

services.

4.2 The Matchmaking architecture

Figure 2 shows the components of the InnovVoice platform that are in charge of managing

the matchmaking (VCON). As previously introduced, in the overall platform VCEN is the sub-

system managing the internal content (profiles of users, inserted ideas and related posts, etc.). As

the figure shows, the VCON sub-system operates on both internal and external content through

specific interfaces and components. Moreover, the VCON sub-system provides APIs (as RESTful

services) to the remaining of the platform in order to be invoked for matchmaking (e.g., by the

Web user interface, when presenting to the user relevant content matching to what she is writing,

see the previous discussion). The sub-system is organized in layers:

 The source layer represents the sources; in addition to the VCEN SYNC Service, provided

by the remaining of the platform for allowing the retrieval of the internal content, sources

include different Web sites to be crawled, and services accessed through specific APIs; as

22

examples, currently the system accesses YouTube for relevant videos about

entrepreneurship, and sites such as www.futureenterprise.eu (structured description of

more than 100 courses/curricula delivered at a European as well as global level about

entrepreneurship), steveblank.com/tools-and-blogs-for-entrepreneurs/ (a list of tools and

blogs about entrepreneurship), ecorner.stanford.edu (online material from the e-corner of

Stanford University for entrepreneurship creation), www.techcrunch.com and

www.techradar.com (sites about technology and start-up, useful to compare ideas with

already proposed similar ones by existing startups), etc. Currently 105 sites are crawled

and information made available in our system: over 34.000 different pages/documents are

retrieved from the Web respecting service modalities and intellectual property rights.

 The fetch layer includes the specific components in charge of retrieving information from

the sources: crawlers, based on the Apache Nutch and specific modules invoking the APIs

of the services. The information are then stored in the NoSQL database MongoDB.

 The data mining and indexing layers are where the information are processed in order to

be later used; in particular, Apache Lucene is used for indexing documents, and MAUI[19]

automatically finds and extracts main topics in text documents (tags, keywords,

keyphrases, vocabulary terms, etc.),all of them to be used for matchmaking functionalities.

 The matching layer provides the specific matching components for ideas, users, tasks and

content, addressing the specific needs of having the matchmaking techniques running in

interactive way during content writing by the users.

 Finally, the matchmaking features are offered as RESTful services to the remaining of the

platform through the API layer. As an example, the user interface previously shown interact

with a RESTful service offered by the components in this layer.

The system also provides a set of additional services that aim at improving the quality of

provided results. For example, a quality and reputation score is provided for users and contents.

These scores influence the order matchmaking results are provided, thus promoting content that

has been evaluated positively by users with a high reputation score through the end user interface

of InnovVoice.

23

InnoVoice Architecture

4.3 The Offline Layers

The offline layers are those layers of the architecture that are executed offline, preparing

the knowledge for the online functionalities provided by the upper layers. The source layer

includes all the sources that can be used by the system to obtain content. These sources include

contents available from the Web and contents edited inside the InnovVoice platform. The latter

include ideas under incubation, documents edited inside the platform, user profiles and tasks

connected to the development of a specific idea. On the other hand, contents on the Web can belong

to many different categories including static Web pages, videos, online courses. The extraction of

content is performed by the fetch layer. From this point of view, sources of Web contents can be

mainly divided into two categories, i.e., those that allow crawling and those that instead provide

(paid or not) Web services. Sources that allow crawling are explored through the employment of

a Web spider (Apache Nutch in our case). A spider starts from a set of seed URLs and explores a

Web site by following outgoing links. A spider can be configured to filter out specific URLs or

Web pages according to rules concerning extensions and content patterns. Those sources that

instead can be explored through APIs need a specific component to be developed in order to be

explored. These components take care of authorizations and security and must respect the terms

of service imposed by the specific API. At the current stage the only component developed is the

one in charge of exploring YouTube videos by employing the API to obtain videos from channels

specific to entrepreneurship (e.g., the Stanford channel about business). In this case, the extracted

content is the description of the text, but it is possible, by paying specific fees, to access other

information such as automatic transcription performed by YouTube. A particular component of

the fetch layer is in charge of gathering content edited by the user on the InnovVoice platform by

exploiting the API made available by VCEN. The VCEN API allows to query by last update date

in order to avoid expensive reading operations. The indexing layer, implemented through the

Apache Lucene search engine, is in charge of creating the indexes that will be used at runtime to

24

respond to user needs. It is important to note how the system takes many different indexes

corresponding to the different kinds of content it handles.

The data mining layer is in charge of performing different text analysis tasks. The most important

of these tasks is the automatic classification of documents according to a taxonomy of thematic

subjects useful to entrepreneurship and innovation. This classification task is performed

specifically on the documents that are crawled from the Web. Document classification is

performed using libraries that are trained against a manually labeled dataset obtained through

crowdsourcing. In particular, users of the platform are sporadically asked to classify contents, and

the responses are employed to train the different classification algorithms implemented in Mallet

(http://mallet.cs.umass.edu/), which is the library the system is currently employing for this task.

4.4 The Matching Layer
The matching layer works pretty much as a Web search engine. The indexes obtained from

the different sources that the system integrates are searched against a query. This makes our system

belonging to the class of application specific search engines. Differently from a Web search engine,

the query is neither a sentence nor a sequence of keywords, but a content item. A content item is

generically defined in InnovVoice as a source of information, thus including crawled Web pages,

videos, ideas composed inside the platform and user profiles. In other words, the system is based

on searching by content instead of searching by query. As Lucene, which is the search engine

underneath the system, does not directly support this modality, the first step is to transform a

content item into a query that can be handled by Lucene. In our platform, this step is obtained by

first extracting important keywords from the text and then combining them into a textual query.

Automatic extraction of keywords from a text is an open research field and the employment of

simple statistical methods based on word count fails without an analysis of relevance of each single

keyword. As an example, a single verb can be very frequent in a text (e.g., do, make) without being

important for the semantics of the text. An alternative to the employment of a library for keyword

extraction is the employment of advanced cloud based services for text mining such as

AlchemyAPI5. A different approach to search by content is represented by the employment of

word histograms, i.e., the matching of the word histogram of a content with the histograms of the

contents available in the index. The system allows to optionally employ this modality, anyway, as

it is not directly supported by Lucene, this kind of search is much slower and not suggested for a

real time employment. In our system, we are currently using Maui as a keyword extraction

technique [5]; differently from other approaches, Maui employs, beside statistical analysis, a

learned model. The drawback of this approach is that tuning the system requires a set of manually

labeled documents that strongly influence the behavior of the system at runtime. As an additional

point, being the portion of the Web the system is aware of very limited, it is not possible to make

an analysis of the authority of a content by analyzing links between contents themselves (e.g.,

using algorithms such as PageRank [7]); therefore, in order to compute authority, we focus on the

social component of the platform by exploiting the so called wisdom-of-the-crowd. In particular,

we assign a score to each user and each content item that allows to assess relevance and authority.

A content item is evaluated according to evaluations provided by the users of the platform (tuned

by the score assigned to the user providing the evaluation) and by the level of activity in terms of

number of edits or likes of the content itself (where applicable). The score assigned to a user is

instead obtained by monitoring its level activity in the platform and the scores assigned to the

content they produced. The level of activity of a user is computed by taking into account the

frequency of access, the frequency and number of comments it submitted, the number of teams it

belongs to. As a consequence, the score assigned to content in the context of a search issued by

http://mallet.cs.umass.edu/

25

content is a combination of the relevance to the issued query and the score assigned to content

itself. This approach allows to provide users with relevant (by using keyword extraction) and high-

quality (by employing user evaluations) content that can be useful while developing ideas.

Contents are proposed to users by the platform through a set of services. An important design

aspect is indeed the way by which users, belonging to various stakeholder types and involved with

different things, will be able to discover VOICE contents that will be relevant to what they are

about to do. The high level services that the platform provides are the following:

 Matching profile skills and services with the activities (e.g., idea, projects) currently active

in the platform). This service aims at providing information about professionals that can be

helpful to the development of a given idea or project. It also aims at providing information

about enterprises/companies operating (or wishing to operate) in areas related to a given idea

or project.

 Matching contents with the development stage of an idea or the incubation phase of a project.

This service aims at providing other contents (e.g., articles, videos, events, other ideas) that

can be helpful to the development of a given idea or project. This information can be specific

to the stage the idea is or to the incubation phase of a project. As an example, at a certain

stage of the idea development, content about the creation of business plans will be

provided/suggested.

 Matching similar ideas. This service aims at providing information about other similar ideas.

This is useful if different teams working on similar ideas (potentially from different

countries) that might wish to discover each other and, optionally, join their efforts.

 Profile Evaluation Metrics aim at evaluating the reputation of a user and his/her trends in the

platform by employing the data coming from his/her profile, its Contents, and the comments

of the other users to all of his/her activities.

 Team Evaluation Metrics. This service aims at extracting team metrics and showing them to

VOICE Users. A team metric is intended to represent the quality of a team both from the

point of view of the single members and of the team as a whole. In this sense, it also takes as

input the results obtained by applying the User Evaluation Metrics service.

 Content metrics aim at measuring the value of a Content Item. These metrics are based on

user comments and evaluations as well as on user reputation

The abovementioned services aim at providing knowledge to the users of the VOICE platform and

to the community in general. This knowledge will also have an important role in the growth of the

VOICE platform by satisfying the following needs:

 Need to show engaging content to casual, first time visitors of the VOICE ecosystem.

Unregistered users visiting the ecosystem should not only get info about the VOICE platform

and the site itself (so they are convinced about what VOICE can do for them), but also see

some indicative content that will demonstrate the knowledge produced and provided within

the ecosystem (so they are motivated to register and become active members of VOICE).

 Need to have initial content which will be indexed by commercial search engines.

 Need to inspire users to propose their own ideas by proposing interesting content according

to their preferences.

26

Contents can be two types: internal and external.

The production of internal contents will be available to registered users. We will distinguish

between those contents (i.e., Primary Content) that are produced by a team directly involved in a

project (e.g. ideas, tasks) from those information (i.e., Community Content) that are instead

provided by users not directly involved in projects and want to contribute their experience and

thoughts.

External Content providers include:

 Open content resources (articles, lessons, etc.)

 Open data (governmental, etc.)

 Other social/technical networks (API based, on the fly)

 News aggregators (with license)

 Other sites (re-publications with license and attribution)

Another important thing to take into account in VOICE is the possibility to store external contents

inside the platform; this is generally forbidden by terms of use but some exceptions do exist.

Additionally, in the vast majority of cases indexing is not forbidden.

Extraction Mechanisms

In VOICE there are two main categories of extraction mechanisms. An offline extraction

mechanism fetches resources independently from user runtime requests in order to promptly

satisfy these latter once they are issued. An online extraction mechanism instead extracts a resource

in the moment it is needed. The choice between offline and online extraction mechanism is not

only matter of performance but it is also dependent from the kind of terms of service that the

service provider declares.

Matchmaking Services

Matchmaking services may come in different forms, depending on the kind of concepts involved

in the matchmaking task:

 Internal Content to VOICE User Matchmaking service. This service aims at providing

information about professionals that can be helpful to the development of a given idea or

project. This service also aims at providing information about enterprises operating (or

wishing to operate) in areas related to a given idea or project.

 Internal Content matchmaking. This service aims at providing other contents (e.g., articles,

videos, events, other ideas) that can helpful to the development of a given idea or project

(or more generally of an internal content). This information can be specific to the stage the

idea is or to the incubation phase of a project. Proposed contents can be for example

educational resources.

 Idea-Idea matchmaking. This service aims at providing information about other similar

ideas. This is useful if different teams working on similar ideas (potentially from different

countries) want to discover each other and, optionally, join their efforts.

27

 Matchmaking services will mainly work by employing information coming from tags,

content classes. Besides these metadata, the body of the content can be used itself

matchmake different concepts. In order to do that the employment of natural language

processing technique is needed to extract keywords.

Once to a specific object in the system a set of keywords and tags has been associated it will be

possible to matchmake other objects by using clustering techniques on bags of words.

These services and mechanisms include both state of the art artificial intelligence techniques and

ad-hoc approaches devised during the research. The techniques include data mining and machine

learning algorithms for text analysis and classification. Moreover, a reference architecture is

provided for the system that is be employed in the context of a European project.

 4.5 The API Layer
The API layer is implemented through a set of RESTful services that make it possible to access

the matchmaking services of the platform and other functionalities. Return values are objects

represented through JSON (JavaScript Object Notation). The implementation of the services is

obtained through Jersey over Apache Tomcat. The API layer provides three different API groups,

namely the matching API, the VCON API, and the Quality and Reputation API. The matching

API functionalities are available through the RESTful endpoints /api/match/{content-type}/{id}

where {content-type} denotes the kind of content we want to match against the index and {id} is

the id of the specific content inside the system. Valued values for the URL parameter {content-

type} are (i) document for the content that is internally edited inside the platform, (ii) idea for

innovative ideas that are currently under incubation inside the platform, (iii) user for users

registered in InnovVoice, and (iv) task for tasks that are available to be taken in the context of the

development of an idea. Calling the matching API returns a set of content items divided by

category that match with the content required following the methodology introduced in Section 4.

The returned categories are ideas, internally edited content, external crawled Web pages, tasks and

users. As an example, issuing an HTTP GET method on the URL /api/match/user/12 will return:

 The other users that match with user 12 in terms of skills, interests, past experiences and

curriculum.

 The ideas that can be interesting for the user 12 to follow or join according to its user

profile.

 The internal edited documents that can be interesting to read.

 The Web pages that can be interesting to follow. These Web pages are returned together

with a label representing their thematic subject.

 The tasks that the user can perform according to its skills and past experiences.

In order to match the last available information, the version of the InnovVoice content that is

matched against the back-end is the most updated one by exploiting the API provided by the VCEN

subsystem of the InnovVoice infrastructure. The matching API provides two additional endpoints

that allow to return matching results with respect to a text edited in real-time (not stored inside the

backend) or a specific query. The first one is accessible through the endpoint /api/match/realtime,

whereas the second one through the endpoint /api/match/query. The difference between these two

latter endpoints is that the first one undergoes the keyword extraction process described in Section

4 whereas the second one directly issues the query passed as argument to Lucene. The real-time

endpoint is, for example, the one employed in Figure 1 where the user is editing an idea and the

system provides, while the user is editing, new results according to the changes in the keywords

28

extracted by the automatic keyword extraction algorithm. The VCON API allows to access

different information about crawled content from the Web, such as those ones discovered since a

specific date, or those obtained from a specific source. This API additionally allows to access

statistics about the external source employed for crawling.

Finally, the Quality and Reputation API allows to access the scores assigned to content and users

as described in Section 4 and to post and get evaluations for different categories of content

available in the system. Scores can be queried through the endpoints /api/quality/{content-

type}/{id}/score where the parameters follow the specification already provided for the matching

API. The evaluations can be retrieved (respectively posted) issuing a GET (respectively a POST)

to the endpoint /api/quality/{content-type}/{id}/evaluation. All the described API endpoints are

intended to be employed from the InnovVoice website or by external clients as part of the

commercial exploitation of the platform.

Fig. Innovoice interface

29

5 Implementation of Matchmaking System

In this chapter we will cover in details all the technologies used in the project and the algorithms

they use to achieve the result, as well as other work done to bring the system online.

5.1 System Configuration

The initial step was to make the Voice Search engine configurable by developing a special

configuration file. It is quite common for this cases to use XML language for its simplicity and

usability. The configuration stores information about web clients that should connect to different

services for accessing their content, such as Google, YouTube, LinkedIn, Dailymotion, AngelList

and others.

The sample of this configuration is displayed below:

<youtube>

 <channels>

 <channel>

 <name>youtube_columbia_channel</name>

 <channelid>UCMt5mJXmE02QoIPhc2NtO9w</channelid>

 <indexingClasses>.Entrepreneurship.</indexingClasses>

 </channel>

 </channels>

</youtube>

It contains the id and the name of YouTube channel that we need to crawl. Similarly other resource

information is stored in the xml file. It also contains all the access keys to the services that are

required to authenticate the client on the service.

5.2 Apache Nutch

As mentioned in previous chapter Apache Nutch is open source web crawler. Apache Nutch is

very flexible and it was customized to fulfill the needs of the VOICE project. By default, it is an

autonomous application that can run from the console. But for needs of our project it was integrated

into the system. Nutch provides and API which can be used for crawling the web. It contains

configuration files where we can set all the parameters for crawling. Some of the parameters can

also be changed from the code through the API.

To start crawling the Web, Apache Nutch needs to be provided with the list of URLs called

seeds.txt. It injects the URLs into the database called crawldb. After that it generates a fetch list

from the database.

It creates a fetch list of all of the pages due to be fetched. The fetch list is placed in a newly created

segment directory. The directory is named by the time it’s created.

30

Main components that we use in this system are:

1. Injector

2. Generator

3. Fetcher

4. Parser

5. Updater

//1. Inject

String[] injectParams = {crawldbFolder, seedsFolder};

ToolRunner.run(conf, new Injector(), injectParams);

for (int i = 0; i < numRounds; i++){

 //2. Generate

 String[] generateArg = {crawldbFolder, segmentsFolder, "-TopN", "50000",

"-numFetchers", "2", "-noFilter"};

 ToolRunner.run(conf, new Generator(), generateArg);

 File segmentDirs = new File(segmentsFolder);

 String[] directories = segmentDirs.list(new FilenameFilter() {

 @Override

 public boolean accept(File current, String name) {

 return new File(current, name).isDirectory();

 }

31

 });

 Arrays.sort(directories);

 String segment = directories[directories.length - 1];

 //3. Fetch

 String[] fetchArg = {segmentsFolder + "/" + segment, "-noParsing", "-

threads", "50"};

 ToolRunner.run(conf, new Fetcher(), fetchArg);

 //4. Parse

 String[] skipRecordsOptions = {segmentsFolder + "/" + segment};

 ToolRunner.run (conf, new ParseSegment(), skipRecordsOptions);

 //5. Update

 String[] crawlDbArgs = {crawldbFolder, segmentsFolder + "/" + segment};

 ToolRunner.run(conf, new CrawlDb(), crawlDbArgs);

}

Another important aspect is the crawl depth also known as number of rounds. It is a number that

defines how many levels should the crawler traverse down from the root page. While crawling it

identifies the links on the page and on the next round crawler traverses them. If the number is big

it may take a very long time to finish the task (up to several days). The number should be chosen

carefully. In our case the number is set to 4. The crawler has an option to limit search on the links

that point to pages within the same domain. So for each source from the list we insure that the

crawler doesn’t process external links (for example, skipping advertisement links).

In order to concretize what we need to crawl the system’s configuration allows to use regular

expressions filter which can narrow down the amount of documents which does not contain

textual data or contain unnecessary information (login pages, terms and conditions, etc.). The

crawler will skip all the pages or components that match regex rules. In the case of Voice project

there are several rules set up that help the system to crawl more effectively. These rules helped to

save some time while crawling and avoid unnecessary data to be stored in our database. We also filter

out rss, xml, xls and other application specific extensions.

Regular expressions:

skip folders

-cgi-bin

-images

-css

-login

skip different directory listings

-.*\?C=(N|M|S);O=(A|D)$

skip image and other suffixes

\.(gif|GIF|jpg|JPG|png|PNG|ico|ICO|css|CSS|sit|SIT|eps|EPS|wmf|WMF|zip|ZIP|pp

t|PPT|mpg|MPG|xls|XLS|gz|GZ|rpm|RPM|tgz|TGZ|mov|MOV|exe|EXE|jpeg|JPEG|bmp|BMP

|js|JS)$

32

Once we have all the documents crawled we now need to store them into the database. For this

purpose we use MongoDB. A special class called SegmentOutputParser is responsible for storing

all the content into the database which will be later indexed by Apache Lucene.

5.3 Indexing

Apache Lucene is responsible for indexing all the crawled content. A special class is created that

uses Lucene API to index all the files and store the indexes in the MongoDB.

5.4 Keyword extraction

Keyword extraction is one of the most important features of the system. In the begging of project

several libraries were chosen for this task. And the goal was to find out the one that extract the

best keywords. After testing them on real documents, MAUI indexer was chosen for keyword

extraction, since it was providing the best result. In the end of this section we will briefly cover

other libraries used for extraction and explain why they were not chosen.

 Maui indexer is one of few libraries that do keyword extraction. It provides a wide range

of services. However, for the scope of this project only keyword extraction is applicable. After

extracting keywords the indexer assigns score to each of them which shows how relevant is the

keyword in the document. This information is useful, because in the future it will be used for

querying the documents in Lucene. As mentioned in previous chapter, keyword extraction requires

the indexer to be trained before it can be applied on documents.

Train data consists of two files collections: documents with similar topics, and files with keywords

manually assigned to each document. Based on this data MAUI builds a model which later is used

to extract keywords from documents.

There are several collections available on the web for training the indexer and building the model.

Unlike collections with just one topic set per document, these collections contain topic sets

assigned to each document by different people. So they have several keywords assigned to each

document. This allows to measure the agreement between the people, which provides a direct

comparison to the performance of the algorithm.

1. Keyphrase extraction model created using SemEval-2010 training data

2. FAO-30 data set

3. FAO-780 data set for term assignment

4. CiteULike-180 data set for automatic tagging [23]

CiteULike-180 is the only test set listed here that was created in natural environments. It has

been automatically extracted from the large data set of tags assigned to the bookmarking

platform CiteULike.

The resulting set contains 180 science articles from HighWire and Nature, with tags assigned

by 332 voluntary taggers on CiteULike.

Maui indexer was trained using all the collections mentioned above. Then based on the generated

model Maui was tested for test set of documents. The best results were achieved using keyphrase

http://www.citeulike.org/

33

extraction model created based on SemEval-2010 training data. Maui was able to extract adequate

keyphrases from the sample documents. However, it can be changed if new better model appears

and proves to achieve better results. One of the main aspects of MAUI indexer that it is

recommended to train it with the collections that has similar topics. In our case we have wide range

of topics so SemEval-2010 training data is a compromise.

5.5 Other Keyphrase Extraction Mechanisms

In the initial stage of the project other keyword extraction mechanisms were tested for the system.

However, none of them was fully able to cover all the requirements. They are listed below.

2. JATE

[24] Describes JATE (Java Automatic Term Extraction) as “toolkit a library with implementation

of several state-of-the-art term extraction algorithms. It also provides a generic development and

evaluation framework for implementing new term extraction algorithms”.

JATE is implemented based on the common ground of most ATE/ATR algorithms, which typically

conform the steps described below [24]:

 “Extracting candidate terms from a corpus using linguistic tools

 Extracting statistical features of candidates from the corpus

 Apply ATE/ATR algorithms to score the domain representativeness of candidаte terms

bаsed on their statistical features. The scores give an indication of the likеlihood of a

candidate term being a good dоmain specific term”.

4. Apache Open NLP

The Apache OpenNLP library [25] “is a machine learning based library for processing of natural

language text. It supports the most common natural language processing tasks, including

tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking,

parsing, and coreference resolution. These tasks are usually required to build more advanced text

processing services. OpenNLP also includes maximum entropy and perceptron based machine

learning”.

5. SNLP

The project developed by The Stanford NLP Group [26] provides statistical, deep learning, and

rule-bаsed natural language processing libraries for major computational linguistics tasks, which

can be integrated into applications in the field of human language technology. These libraries are

quite popular in industry, academic activities, and government sectors.

34

6. TreeTager

The TreeTagger [27] “is a library for annotating text with part-of-speech and lemma information.

It was developed by Helmut Schmid in the TC project at the Institute for Computational Linguistics

of the University of Stuttgart. The TreeTagger library is able to perform tagging of German,

English, French, Italian, Dutch, Spanish, Bulgarian, Russian, Portuguese, Galician, Chinese,

Swahili, Slovak, Slovenian, Latin, Estonian, Polish and old French texts and is adaptable to other

languages if a lexicon and a manually tagged training corpus are available”.

7. ClearNLP

The ClearNLP [28] “project provides software and resources for natural language processing. The

project started at the Center for Computational Language and EducAtion Research, and is currently

developed by the Center for Language and Information Research at Emory University. This project

comes under the Apache 2 license”.

8. RAKE

Rapid Automatic Keyword Extraction (RAKE) [29] is an algorithm to automatically extract

keywords from documents. RAKE is a well-known and widely used NLP tool, but its concrete

application depends a lot on factors like the language in which the content is written, the domain

of the content and the purpose of the keywords.

The implementation in this library is mainly aimed at English. With additional resources, it is also

applicable to other language. The library is inspired by a similar implementation in Python. Unlike

MAUI indexer, it does not require any train data and can be applied on document as is. It needs to

be initialized with list of stop words and 3 parameters

//Python implementation
rake_object = rake.Rake("SmartStoplist.txt", characters, max_words, word_appears)

 characters is the minimal number of characters that the word should have,

 max_words is the maximum number of words allowed in keyphrase,

 word_appears is the minimum number that word appears in the text.

Rake library was the only one that could perform relatively good results in comparison with other

libraries tested excluding MAUI and it didn’t require any test data to be trained. It was applying

statistical methods to extract keywords. However, those methods are not enough to achieve a good

quality results. That’s why in the end we stopped on MAUI.

http://nlp.mathcs.emory.edu/
http://emory.edu/
http://www.apache.org/licenses/LICENSE-2.0

35

5.6 Porter Stemmer

Porter's stemmer [30] is the most used in information retrieval, probably because of its balance

between simplicity and accuracy. Porter stemmer defines a five step algorithm applied to every

word in the vocabulary. A word is defined as a succession of vowel-consonant pairs [C](VC)m[V],

where C and V are lists of one or more consonants and vowels respectively and m is the measure

of the word.

Porter Stemmer Overview

 Excellent trade-off between speed, readability, and accuracy

 Stems using a set of rules, or transformations, applied in a succession of steps

 Around 60 rules in 6 steps

 No recursion

Porter Stemmer Steps

1. Get rid of plurals and -ed or -ing suffixes

2. Turn terminal y to i when there is another vowel in the stem

3. Map double suffixes to single ones: -ization, -ational, etc.

4. Process suffixes, -full, -ness etc.

5. Take off -ant, -ence, etc.

6. Remove a final –e

5.7 Lucene Queries

Although Lucene allows us to build our own queries through its API, it also has a custom query

syntax for querying its indexes through the Query Parser, a lexer which creates a Lucene Query

from the string using JavaCC. We use Query Parser to build a complex query.

5.7.1 Terms

Lucene query consist of terms and operators. Two type of terms are used to build a query:

 Single Terms – a single word such as “hello” or “world”.

 Phrases – group of words surrounded by double quotes (e.g. “hello world”).

To build a more complex query using multiple terms we can combine every term together by using

boolean operators.

http://webcitation.org/6MmN5jOCW

36

5.7.2 Query types used in the system

1. OR

In Apache Lucene the OR operator is the default conjunction operator. Which means that if there

is no operator used between terms in the query, by default OR operator is used. The OR operator

links two terms and returns a matching document if any of the terms exist in a document. This is

equivalent to a union using sets. We can use also || symbol instead of the word OR.

To search for documents that contain either "Hello World" or just "World" the following query

should be used:

"Hello World" World

or

"Hello World" OR World

Boosting a Term

Lucene provides the relevance level of matching documents based on the terms found. To boost a

term, we can use the caret "^" symbol in combination with a boost factor at the end of the term we

are searching. A boost factor is a number. The higher we set the boost factor, the more relevant

the term becomes.

Boosting allows you to control the relevance of a document by boosting its term. For example, if

we are searching for “Hello World” and we want the term " Hello " to be more relevant, we can

boost it using the ^ symbol along with the boost factor next to the term. The query will have the

following form:

Hello^5 World

This will make documents with the term Hello appear more relevant. Phrasal terms can also be

boosted. For example:

"Hello World"^5 "What’s up Universe"

If we don’t specify any number after “^” symbol the default number is 1. Although the boost factor

must be positive, it can be less than 1 (e.g. 0.5).

2. Fuzzy Queries

With Lucene we can do fuzzy searches based on Damerau-Levenshtein Distance. The tilde, "~",

symbol corresponds to the fuzzy query, it should be placed at the end of a term. However, this

37

operator can be only used with single terms. For example, if we want to search for a term similar

in spelling to "fold" the following fuzzy query should be used:

fold~

This search will find terms like hold and folds. We can specify the maximum allowed number of

edits by adding an optional numerical parameter after “~” symbol. The number should be between

0 and 2, For example:

fold~1

If no number is specified, 2 edit distances are used by default. In our case we use 1 edit distance

in the query.

3. Wildcard Searches

Wildcard search allows to match strings based on character pattern matching between string

specified in a query and words in documents that contain those character patterns. Asterisk (*) is

used to perform the multiple character wildcard search. Multiple character wildcard searches look

for 0 or more characters. For example, to search for test, tests, or tester, we can use the following

search: test*.

4. Escaping Special Characters

In Lucene there are special characters that are part of query syntax. The following are the special

characters:

+ - && || ! ^ " ~ * ? : \ / () { } []

 Backslash character (“\”) should be used before each special character if we want to escape them.

For example to search for (a+b):c the following query should be used: \(a\+b\)\:c

Lucene has more operators and modifiers, but during the tests the above mentioned were the only

suitable for the correct system operation.

Now that we have all the operators and modifiers defined, we can build a simple query and see

how it looks like.

Each query is built from the keywords extracted from previously crawled document using MAUI

indexer. Keyword can be a single word as well as phrase. We add “OR” operator after each

keyword. Then we boost each keyword by applying boosting coefficient based on the score

assigned by Maui indexer. We normalize the score by applying primitive formula: Lucene Score

= Maui score * 10. Maui score has 16 digits after the dot, and we round the number to decimal

since Lucene doesn’t need that precision. Values assigned by Maui are between 0 and 1. The higher

is score the more relevant is the topic. To boost the term in Lucene the score should be greater than

1 (though smaller number can be also used).

38

If the word is a single term we first stem the word where possible and then apply “^” operator

which looks for similar words that are close to the word. It may help to avoid grammatical mistakes

in some cases.

Let’s suppose we have the following keywords extracted and from the document and scored by

MAUI indexer.

Topic Score assigned by MAUI

Acronis 0.4435958897151936

Software 0.3922795866443547

True 0.30010875206803933

True Image 0.27028440952871347

Acronis True Image 0.1921594095287134

Image 0.17252496633122377

Disk 0.17218577793072223

Committing 0.16862527442624392

Computer 0.1394900883657769

The process looks as described below.

1. Add “OR” operator between each term.

2. Assign numerical coefficient to each term (i.e. boost the term).

3. Stem single terms where possible.

4. Use wildcard search for single terms (*).

5. Add fuzzy operator with numerical argument “2” to single terms.

Since we also have phrase terms in our query they need to be surrounded by double quotes to

separate them from single terms. Otherwise, they will be considered by Lucene as single terms

with OR operator between them. In this case \ symbol is used to escape the special character “

and build a correct query for Lucene.

public String buildQueryTextFromString(String text) throws Exception {

 List<Topic> topics = extractTopicsFromString(text);

 String foundTopics = "";

 for (Topic mt: topics) {

 if (!foundTopics.equals(""))
 foundTopics += " OR ";

 if (foundTopics.contains(" ")) //Phrase term

 foundTopics += ("\"" + mt.getTitle() + "\"" + "^" +

Math.floor(mt.getProbability() * 100) / 10);

 else

 Stemmer stemmer = new Stemmer();

 char[] charArray = mt.getTitle().toCharArray();

 for (int i = 0; i < charArray.length; i++)

 stemmer.add(charArray[i]);

39

 stemmer.stem(); //Stem the term

 String stemmed = stemmer.toString();

 foundTopics += ("\"" + stemmed + "\"" + "*~1^" +

Math.floor(mt.getProbability() * 100) / 10);

 }

 return foundTopics;

}

Final query using Query Parser tool will be the following:

Query query = parser.parse("Acronis*^4.4~2 OR Software*^3.9~2 OR True*^3.0~1

OR \"True Image\"^1.9 OR \"Acronis True Image\"^1.9 OR Image*^1.7~2 OR

Disk*^1.7~2 OR Commit*^1.6~2 OR Computer*^1.3~2 ")

Note that in this example term “Committing” was stemmed to “Commit”.

Now when the query is ready we can submit it to Lucene. Lucene will find matched documents

based on the term relevance and edit distance and return as an output all the ids of the documents

stored in MongoDB. Lucene assigns score to each documents. The higher is the score the more

relevant is document hence its ranking is higher.

40

6 Validation

In order to assess how accurate results system provides several tests were designed. There are

around 100 sources crawled and stored in our database. Most of them are related to business,

innovation, startups, as well as different technical topics. We have randomly chosen from web

around different 50 materials with mentioned topics and insured that these materials are not present

in our database (Documents taken from web articles, Wikipedia pages, etc.). Each document was

submitted to the system and corresponding output was analyzed. The platform is designed in a

way that it provides 15 most relevant documents against our query (top 15 ranked documents by

Lucene). Hence, for each document we calculated how many of them had similar topic with the

input document. For every topic we have submitted multiple documents (at least 2). Tests have

shown that for all documents at least the half of the output was correct. In many cases 15 out of 15

matched documents were correct.

Cloud Computing Article Submitted as an Input

41

Fig. Matched webpages on the topic of “Cloud Computing”: Green – correct, Red – incorrect

We have grouped input documents by similar topics and have following results.

Most of the topics were selected from the field of entrepreneurship, startups, innovation, because

the main focus of the system is to have this kind of materials. However for other topics results

were excellent. All the documents and results are available on the following link.

https://drive.google.com/open?id=0ByJuTcVmSvHAZVRCX1hnYlQ3VFk

42

Total for each topic:

Topics Correct Incorrect

Programming 23 7

Entrepreneurship/Startups 84 20

Marketing 33 12

Innovation/Leadership 55 20

Machine Learning 38 7

Cloud Computing 25 5

UI/UX Design 18 12

HTTP/WEP API/REST 28 17

SEO 18 12

IOT/Big Data 36 9

Mini PCs 18 12

Robotics 28 1

Artificial Intelligence 29 1

Cyber Security 22 8

Total 480 148

We can merge several topics in common fields. In the table below the performance of the system

is listed in percentage for each field.

Another test was done to see how accurate MAUI indexer extracts keywords from the documents

before submitting the query generated from them to Apache Lucene. For this purposes a special

web service was designed that returns the results by submitting a HTTP POST query. The query

is in Json format and has the following structure:

{"text":"Some Text", "userId":”User”}

As an Output it returns in Json format the query and matched documents with score assigned and

ranked according to that score. In all cases Lucene was able to extract keyphrases that could

describe the topic. Of course, some of the extracted keywords were pointless, but the system

accuracy didn’t suffer a lot. The minimal accuracy was 60%. Also system was able to output

correct documents even if query keywords had grammatical errors, which proved Lucene Fuzzy

search to be very effective. Another test was done to see how much the accuracy of the results

depends on the amount of text in the input document. In most of the cases the bigger was text the

better were results, because MAUI was able to identify keywords better since they occurred in text

Category Performance Category Performance

Overall 76% Entrepreneurship/Innovation 77%

Marketing 73% SW Development 74%

Artificial Intelligence 91% Internet of Things 70%

Distributed Computing 81% Internet Development 60%

43

more. But in case of short text if the density of important keyphrases was high, system was again

producing good results.

Fig. Extracted keywords from user idea

Status of web contents extraction (as of 17-05-2016)

• 68262 web contents crawled from:

• 98 websites through crawling

• 8 categories

• IoT (2264), Tech (4637), Health (6110), Development (928),

Entrepreneurship (50595), AI (2542), Pharma (94)

• 6 YouTube channels

• Quality check

• Filters on error pages

• Main content identification

• Clean-up of unreachable pages

• The number of external contents grows day by day covering new sources and fresh

contents

• Crawling started on a daily basis

44

7 Conclusion

 In this paper, we have shown a sub-system of the InnovVoice platform, specifically focusing on

the matchmaking of ideas with relevant content crawled from the Web. We argue that this is a

valuable support for ideas proposers and innovators (and possibly entrepreneurs). Currently our

subsystem collects information from over 100 sources on the Web related to entrepreneurship and

technology (in particular AI - Artificial Intelligence, IoT - Internet-of-Things, and eHealth, etc.),

and this set is continuously enlarged. The overall InnovVoice platform is running since a few

weeks in a beta-testing mode, and therefore we will undergo a deeper validation of our approach

in the following months. Future work includes improvements on all the presented layers by

improving on the number of sources analyzed, and the intelligent techniques employed for

keyword extraction and matching. This process will also take into account the feedback provided

by users during the beta-testing evaluation of the InnovVoice platform.

45

8 References

[1] S. Maryville. Entrepreneurship in the business curriculum. Journal of Education for

Business 68(1), pages 27-31, 1992.

[2] P. Frankelius. Questioning two myths in innovation literature. Journal of High

Technology Management Research 20(1), pp. 40-51, 2009.

[3] P. Drucker. The discipline of innovation. Harvard Business Review, August 2002.

[4] E. Von Hippel. The sources of innovation. Oxford University Press, 1988.

[5] Nunzio Giovinazzi1, Massimo Mecella1, Information Retrieval, Market Trends Analysis

and Forecast for Supporting Made-In-Italy: the DesigNET Prototype,

Sapienza - Universita di Roma

[6] Mining Sholom M. Weiss Nitin Indurkhya Tong Zhang, Fundamentals of Predictive Text

Mining Second Edition 2015

[7] A. Hulth. Improved automatic keyword extraction given more linguistic knowledge.

In Proceedings of the 2003 Conference on Emprical Methods in Natural

Language Processing, Sapporo, Japan, 2003

[8] Michael J. Giarlo. A comparative analysis of keyword extraction techniques. Rutgers,

The State University of New Jersey

[9] Chengzhi Zhang, Huilin Wang, Yao Liu, Dan Wu, Yi Liao, Bo Wang. Automatic

Keyword Extraction from Documents Using Conditional Random Fields. Journal

of Computational Information Systems, 2008

[10] I. Witten, G. Paynte, E. Frank, C. Gutwin, C. Nevill-Manning. KEA: practical

automatic keyphrase extraction. In Proceedings of the 4th ACM Conference on

Digital Library, 1999

[11] J. B. Keith Humphreys. Phraserate: An HTML keyphrase extractor. Technical

Report. 2002

[12] Masanès, Julien (February 15, 2007). Web Archiving. Springer. p. 1. ISBN 978-3-

54046332-0. Retrieved April 24,2014.

[13] Castillo, Carlos (2004). Effective Web Crawling (Ph.D. thesis). University of Chile.

Retrieved 2010-08-03

[14] Koster, M. (1995). Robots in the web: threat or treat? ConneXions, 9(4).

[15] Koster, M. (1996). A standard for robot exclusion.

[16] Koster, M. (1993). Guidelines for robots writers.

[17] https://en.wikipedia.org/wiki/Deep_web_(search).

[18] Apache Nutch - http://nutch.apache.org/

[19] https://code.google.com/archive/p/maui-indexer/

[20] KEA - http://www.nzdl.org/Kea/

[21] https://www.mongodb.org/

[22] Apache Lucene - https://lucene.apache.org/

[23] O. Medelyan, E. Frank, I. H. Witten. 2009. Human-competitive tagging using automatic

keyphrase extraction. To appear in Proc. of the Internat. Conference of Empirical

Methods in Natural Language Processing, EMNLP-2009, Singapore.

[24] JATE - https://code.google.com/p/jatetoolkit/wiki/JATEIntro

http://books.google.com/books?id=PB0uTeSiVowC&lpg=PP1&pg=PA1#v=onepage&q&f=false
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-54046332-0
https://en.wikipedia.org/wiki/Special:BookSources/978-3-54046332-0
http://chato.cl/research/crawling_thesis
http://www.robotstxt.org/wc/exclusion.html
http://www.robotstxt.org/wc/guidelines.html
https://en.wikipedia.org/wiki/Deep_web_(search)
http://nutch.apache.org/
https://code.google.com/archive/p/maui-indexer/
http://www.nzdl.org/Kea/
https://www.mongodb.org/
https://lucene.apache.org/
http://www.cs.waikato.ac.nz/~olena/publications/emnlp2009_maui.pdf
http://www.cs.waikato.ac.nz/~olena/publications/emnlp2009_maui.pdf
http://conferences.inf.ed.ac.uk/emnlp09/
http://conferences.inf.ed.ac.uk/emnlp09/
https://code.google.com/p/jatetoolkit/wiki/JATEIntro

46

[25] Apache OpenNLP - https://opennlp.apache.org/

[26] The Stanford Natural Language Processing Group - http://nlp.stanford.edu/software/

[27] TreeTagger - http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

[28] ClearNLP - https://github.com/clir/clearnlp

[29] https://github.com/aneesha/RAKE

[30] http://tartarus.org/martin/PorterStemmer/

https://opennlp.apache.org/
http://nlp.stanford.edu/software/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
https://github.com/clir/clearnlp
https://github.com/aneesha/RAKE

47

I. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Khachatur Hambardzumyan,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including

for addition to the DSpace digital archives until expiry of the term of validity of the

copyright, and

1.2. make available to the public via the web environment of the University of Tartu, including

via the DSpace digital archives until expiry of the term of validity of the copyright,

of my thesis

Ideas Matchmaking for Supporting Innovators and Entrepreneurs,

(title of thesis)

supervised by Fabrizio Maria Maggi,

(supervisor’s name)

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property rights

or rights arising from the Personal Data Protection Act.

Tartu, 25.05.2016

