
UNIVERSITY OF TARTU

Institute of Computer Science
Computer Science Curriculum

Sander Siim

A Comprehensive Protocol Suite for
Secure Two-Party Computation

Master’s Thesis (30 ECTS)

Supervisor: Dan Bogdanov, PhD

Supervisor: Pille Pullonen, MSc

Tartu 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Terviklik protokollide kogu kahe osapoolega turvalisteks ar-
vutusteks

Lühikokkuvõte:
Turvaline ühisarvutus võimaldab üksteist mitte usaldavatel osapooltel teha ar-

vutusi tundlikel andmetel nii, et kellegi privaatsed andmed ei leki teistele osa-
pooltele. Sharemind on kaua arenduses olnud turvalise ühisarvutuse platvorm, mis
jagab tundlikke andmeid ühissalastuse abil kolme serveri vahel. Sharemindi kol-
me osapoolega protokolle on kasutatud suuremahuliste rakenduste loomisel. Iga-
päevaelus leidub rakendusi, mille puhul kahe osapoolega juurustusmudel on kolme
osapoolega variandist sobivam majanduslikel või organisatoorsetel põhjustel. Selles
töös kirjeldame ja teostame täieliku protokollistiku kahe osapoolega turvaliste ar-
vutuste jaoks. Loodud protokollistiku eesmärk on pakkuda kolme osapoolega juu-
rutusmudelile võrdväärne alternatiiv, mis on ka jõudluses võrreldaval tasemel. Ka-
he osapoole vahelised turvalise aritmeetika protokollid tuginevad peamiselt Beaveri
kolmikute ette arvutamisele. Selleks, et saavutada vajalikku jõudlust, oleme välja
töötanud tõhusad ette arvutamise meetodid, mis kasutavad uudsel viisil N-sõnumi
pimeedastuse pikendamise protokolle. Meie meetodite eeliseks on alternatiividest
väiksem võrgusuhtluse maht. Töös käsitleme ka insenertehnilisi väljakutseid, mis
selliste meetodite teostamisel ette tulid. Töös esitame kirjeldatud konstruktsioo-
nide turvalisuse ja korrektsuse tõestused. Selleks kasutame vähem eelduseid, kui
tüüpilised teaduskirjanduses leiduvad tõestused. Üheks peamiseks saavutuseks on
juhusliku oraakli mudeli vätimine. Meie kirjeldatud ja teostatud täisarvuaritmeeti-
ka ja andmetüüpide vaheliste teisendusprotokollide jõudlustulemused on võrrelda-
vad kolme osapoole protokollide jõudlusega. Meie töö tulemusena saab Sharemindi
platvormil teostada kahe osapoolega turvalisi ühisarvutusi.

Võtmesõnad: krüptograafia, turvaline ühisarvutus, kahe osapoole turvaline ühis-
arvutus, ühissalastus, Beaveri kolmikud, pimeedastus

CERCS: P170

2

A Comprehensive Protocol Suite for Secure Two-Party Com-
putation

Abstract:
Secure multi-party computation allows a number of distrusting parties to col-

laborate in extracting new knowledge from their joint private data, without any
party learning the other participants’ secrets in the process. The efficient and
mature Sharemind secure computation platform has relied on a three-party suite
of protocols based on secret sharing for supporting large real-world applications.
However, in some scenarios, a two-party model is a better fit when no natural third
party is involved in the application. In this work, we design and implement a full
protocol suite for two-party computations on Sharemind, providing an alternative
and viable solution in such cases. We aim foremost for efficiency that is on par with
the existing three-party protocols. To this end, we introduce more efficient tech-
niques for the precomputation of Beaver triples using oblivious transfer extension,
as the two-party protocols for arithmetic fundamentally rely on efficient triple gen-
eration. We reduce communication costs compared to existing methods by using
1-out-of-N oblivious transfer extension in a novel way, and provide insights into
engineering challenges for efficiently implementing these methods. Furthermore,
we show security of our constructions using strictly weaker assumptions than have
been previously required by avoiding the random oracle model. We describe and
implement a large amount of integer operations and data conversion protocols that
are competitive with the existing three-party protocols, providing an overall solid
foundation for two-party computations on Sharemind.

Keywords: cryptography, secure computation, two-party computation, secret
sharing, Beaver triples, oblivious transfer extension

CERCS: P170

3

Acknowledgments
Foremost, I would like to thank my dear supervisors, from whom I have received
tremendous support in bringing this work to a successful close.

The author along with the supervisors would like to thank Claudio Orlandi
for his supportive ideas and helpful discussion on optimizing the precomputation
phase.

The author of this thesis has received the Skype and Study IT in Estonia Mas-
ter’s Scholarship for the academic year 2015/16, funded by Estonian Information
Technology Foundation and Skype Technologies OÜ.

4

Contents
1 Introduction 7

2 Preliminaries 11
2.1 Notation . 11
2.2 Secure multi-party computation . 12

2.2.1 General problem description 12
2.2.2 Parties’ roles in secure computation 13
2.2.3 Security notions . 14

2.3 Secret sharing . 17
2.4 Sharemind secure computation platform 20
2.5 Security and composition of SMC protocols 21

2.5.1 Modeling protocol execution 22
2.5.2 Privacy and security definitions 23
2.5.3 Ideal functionality for Sharemind protocols 26

2.6 Oblivious transfer . 27

3 Oblivious transfer extension 29
3.1 Correlated OT extension . 30
3.2 Random OT extension . 35
3.3 1-out-of-N OT extension . 37
3.4 Implementing the base OT . 41

4 Beaver triple generation 43
4.1 Beaver triples . 43
4.2 Computing multiplication triples with oblivious transfer 44

4.2.1 Gilboa’s protocol . 44
4.2.2 Secure resharing . 46
4.2.3 Secure Beaver triple generation 47

4.3 Computing bitwise conjunction triples with random-OT 48
4.4 Optimizing communication in Beaver triple generation 50

4.4.1 Baseline . 51
4.4.2 Using 1-out-of-N OT for Beaver triple generation 51
4.4.3 Summary . 54

4.5 Implementation details . 56
4.5.1 PRG . 56
4.5.2 Hash function . 57
4.5.3 Bit-level operations . 58
4.5.4 Batching . 58

4.6 Benchmarks of precomputation techniques 59

5

4.6.1 Hardware used for benchmarking 59
4.6.2 Network conditions . 60
4.6.3 Total triple generation time 60
4.6.4 Breakdown of different operations 62

4.7 Conclusions on the precomputation benchmarks 64

5 A protocol suite for two-party computation 68
5.1 Data representations . 69

5.1.1 Additively shared data types 69
5.1.2 Bitwise shared data types 70

5.2 Classify, declassify and publish . 71
5.2.1 Classify . 72
5.2.2 Declassify . 73
5.2.3 Publish . 73

5.3 Arithmetic protocols . 74
5.3.1 Addition, subtraction and multiplication with constant . . . 74
5.3.2 Multiplication . 75

5.4 Protocols for bitwise operations . 76
5.4.1 Bitwise XOR and conjunction with public constant 76
5.4.2 Bitwise conjunction . 77
5.4.3 Bitwise disjunction . 77

5.5 Comparison protocols . 77
5.5.1 Equality . 78
5.5.2 Most significant non-zero bit 79
5.5.3 Overflow . 79
5.5.4 Bit extraction . 81
5.5.5 Less-than comparison . 81

5.6 Conversion between data types . 83
5.6.1 Conversion between additive and bitwise representation . . . 83
5.6.2 Casting up and down . 86

5.7 Summary of protocols . 88
5.8 Implementing floating point operations and future directions 89
5.9 Implementation and benchmarks 91

5.9.1 Setting up the precomputation 91
5.9.2 Online performance benchmarks 91

6 Conclusion 95

A Codewords that achieve the Plotkin bound 106

6

1 Introduction
Secure multi-party computation (SMC) is a cryptographic method that allows
mutually distrusting parties to perform computations on their joint data, while
maintaining the privacy of their inputs. This seemingly paradoxical task of com-
puting on data without access to it, was shown to be theoretically feasible in the
seminal papers of the 80’s [Yao82, GMW87, BGW88]. Since then, a large por-
tion of cryptographic research has been dedicated to creating more efficient secure
multi-party protocols for arbitrary computations with increasingly stronger secu-
rity guarantees. As a result, many platforms that implement such protocols in
order to build practical secure applications have emerged in the last 10 years using
various secure computation techniques [ABPP15].

In this thesis, we focus on the Sharemind platform [Bog13]. Sharemind is one
of the few SMC platforms that has been deployed in practical applications using
real data [BTW12, BKK+16]. In these applications, Sharemind uses very efficient
protocols for ring arithmetic that are based on additive secret sharing [BNTW12,
LR15]. In the multi-party setting (with at least three computing parties), these
protocols provide information-theoretic security and are one of the most efficient
methods for secure computations in the passive security model. However, they
require at least three parties and assume an honest majority of participants. In
some scenarios, finding three non-colluding organizations to participate in the
computation can be a difficult task on its own.

Sharemind is designed and implemented in a modular way to support poten-
tially many different cryptographic methods of ensuring the confidentiality of pri-
vate data and performing privacy-preserving computations. As the main contri-
bution of this thesis, we design and implement a general-purpose state-of-the-art
protocol suite for efficient secure two-party computation on Sharemind, to comple-
ment the three-party protocol suite.

In the theoretical part of the work, we design a two-party protocol suite that
supports efficient ring arithmetic and Boolean operations on secret-shared inte-
gers, providing a solid foundation for building secure computation applications
in the two-party setting. The protocol suite is divided into two parts. First, we
construct protocols for an offline precomputation phase that involves generating
random secret-shared multiplication triples, also called Beaver triples [Bea91]. In
the two-party setting, Beaver triples provide the best method for performing a
multiplication on secret-shared integers.

Previously, a passively secure two-party computation on Sharemind has been
developed, which uses the Paillier cryptosystem [Pai99] for Beaver triple gener-
ation [PBS12]. The computational cost for for this approach is however quite
demanding. Recently, the implementation of [DSZ15] has shown the practicality
of precomputation methods based on oblivious transfer extension, that achieve

7

much better performance compared to homomorphic encryption techniques. Hav-
ing this knowledge, we also explore oblivious transfer extension methods in our
work.

We present efficient state-of-the-art protocols for oblivious transfer extension,
and prove their security based on a formal framework specialized for secret sharing
based secure computation [BLLP14]. Our approach allows to avoid relying on the
random oracle model, which is required in a general setting for the oblivious trans-
fer extension protocols of [ALSZ13] and [KK13]. Instead we rely on the concrete
correlation robustness assumption for hash functions. We provide the main un-
derpinnings of this proof without the random oracle in our work, illuminating the
plausibility of this approach. Also, as the original paper for the [KK13] 1-out-of-N
oblivious transfer extension protocol lacks formal justification of its security, we
generalize the correlation robustness definition to this case and prove its security
using this assumption. We argue that this definition can be thought of as a natural
generalization to the original assumption.

In terms of our overall security model, we consider passive security in the
strongest sense, achieving universal composability [Can01] due to the results of
[BLLP14], which is a requirement for ensuring the same security guarantees as
provided by Sharemind’s three-party protocol suite. Specifically, universal com-
posability ensures security is preserved in an arbitrary concurrent environment,
for example, when the parties communicate over the public Internet.

Using the described oblivious transfer extension protocols we construct and
implement efficient Beaver triple generation protocols. Especially, we describe a
novel way to use 1-out-of-N oblivious transfer extension to reduce the overall com-
munication compared to current state-of-the-art methods. The best comparison
of our protocol suite can be made with the recent ABY framework for secure two-
party computation, as it is based on a similar passively secure model and uses
Beaver triple generation using oblivious transfer extensions [DSZ15]. We show our
approach to reducing communication promises better overall performance. We
discuss our implementation of the precomputation in detail and give insights to
solving some of the engineering challenges we faced and venues of future optimiza-
tion.

Relying upon Beaver triples and our implemented precomputation phase, we
construct arithmetic computation protocols for the online phase, that allow manip-
ulating secret-shared in a privacy-preserving manner. We give a detailed and com-
prehensive description of our online protocols, building on the line of work of opti-
mizing arithmetic protocols for Sharemind’s three-party protocol suite [BNTW12,
LR15]. We adapt and optimize a number of efficient protocols for integer arith-
metic, Boolean operations and data conversions into the two-party setting.

As the practical contribution of this work, we implement all described methods

8

for both communication-efficient Beaver triple generation and the online arithmetic
protocols on Sharemind, providing the foundation for building secure two-party
computation applications. Our implemented oblivious transfer extension proto-
cols allow us to easily extend the protocol suite with floating-point operations
in the future, by combining it with a Yao’s garbled circuits protocol implementa-
tion [PS15]. Compared to [DSZ15], we improve upon the communication complex-
ity of the offline phase with our novel optimizations for oblivious transfer extension
based Beaver triple generation, and also show a more efficient online phase. We
also receive comparable performance to Sharemind’s three-party protocol suite,
showing that our work can be used for efficient real-world two-party applications
in the future.

Contributions of the author. The author has researched the security and
efficiency of existing best practices in the literature for Beaver triple precomputa-
tion in the passive model, including methods of oblivious transfer extension. The
author has constructed and presented formal proofs of security for the oblivious
transfer extension protocols and ultimately the Beaver triple generation protocol
that uses them.

The author has implemented the described oblivious transfer extension proto-
cols and the precomputation phase in C++ in a separate new protection domain
on Sharemind. Especially, the author implemented novel constructions based on
a 1-out-of-N oblivious transfer extension protocol. For all methods, the author
has made significant efforts for optimizing the implementation of the precompu-
tation by testing implementations of cryptographic primitives from different code
libraries, leveraging special vectorized hardware instructions to build efficient bit
matrix transposition algorithms and efficient pseudorandom number generation
and using thread-parallelization techniques to parallelize hash function computa-
tions. The author has made and analyzed benchmarks of the implementation,
comparing them to existing best results and providing insights into future opti-
mization venues.

For the online phase of the protocol suite, the author has collected and summa-
rized the most efficient protocols for integer arithmetic and conversions between
secret sharing representations, based on best practices of Sharemind’s three-party
protocols. The author has studied both published papers and Sharemind’s source
code containing previously unpublished better optimized online arithmetic proto-
cols. The author has understood how the protocols work, adapted them to the
two-party setting, and provided their detailed formal descriptions. The described
protocols were implemented by the author in C++ in the new two-party protection
domain on Sharemind. The author also made benchmarks of the performance of
these protocols and compared with existing efficient state-of-the-art implementa-

9

tions of two-party and three-party computation.

Thesis outline. We first begin in Section 2 with discussions and definitions
of preliminary notions of secure multi-party computation that are required for
presenting the protocols introduced in the rest of the work. Most notably, we
outline our overall security framework in Section 2.5 that we use to prove the
security of our constructions.

We move on to presenting protocols for oblivious transfer extension in Section 3,
which play an integral role in the precomputation phase of our protocol suite. We
also define the assumptions that allow us to show their correctness and privacy in
our model, without using the random oracle.

In Section 4, we use the oblivious transfer extension protocols to construct
secure protocols for Beaver triple generation. We describe our novel method of
reducing communication, by using a 1-out-of-N oblivious transfer. We also discuss
the implementation of our precomputation phase and present benchmarks for the
described techniques.

Finally, in Section 5, we describe the overall structure of our protection domain
and present formal descriptions of our implemented online arithmetic protocols
in detail. We also present the benchmarks for the online phase and compare the
performance of our implementation with existing state-of-the-art implementations.

10

2 Preliminaries

2.1 Notation

This section is meant as a reference of notation for the whole thesis and we already
describe here notation for topics that are introduced later in the section. We aim
for clarity and consistency with this notation throughout the work.

Sets and sampling Let S be a set. We denote by x← S sampling the element
x uniformly randomly from S. We use the shorthand [n] = {1, . . . , n} for n ∈ N
and use {0, 1}n to denote the set of all bit strings with length n.

Functions We define functions with domain X and range Y as f : X → Y . We
write f(·) to denote that f is a function that takes a single argument or f(·, . . . , ·)
for multiple arguments.

Integers and modular arithmetic When using elements from a ring ZN , we
implicitly assume all arithmetic on those values is done modulo N . That is, we
omit the modulus from expressions such as a = b + c mod N , unless a different
modulus is used.

For an integer x ∈ Z2k , we use x[i] to refer to the ith bit in its bitwise rep-
resentation for i ∈ [k]. Then x[1] refers to the least-significant bit. We also use
x[i..j] to refer to the array of consecutive bits from x[i] up to and including x[j]
for i < j.

Vectors and matrices We denote vectors with bold letters, e.g x ∈ Sk, where
x is a vector of length k with elements from S. We denote the elements of x as
(x1, x2, . . . , xk) and we always start indexing vector elements from 1. Given x ∈ Sk
and an index set I ⊆ [n], we use xI to denote a sub-vector of x containing only
elements xi for i ∈ I. Thus, for |I| = m, we have xI = (xi1 , . . . , xim), where ij ∈ I
and ik < il for all k, l ∈ [n], such that k < l.

Similarly, we use bold capital letters to denote matrices. Let A ∈ Sm×n be
an m × n matrix. We denote the rows of A as vectors a1, . . . , am with subscript
indices and the columns as a1, . . . , an with superscript indices.

Secret-shared values We use [[x]] to specify a value x that is secret-shared
among a group of parties. The number of parties and their identities should always
be clear from context. Let [[x]] be secret-shared among parties P1 and P2. Then,
[[x]]1 and [[x]]2 stand for the individual shares held by P1 and P2 correspondingly,
such that the original value x can be reconstructed from these shares. We naturally

11

refer to vectors of secret-shared elements, as [[x]] = ([[x1]], . . . , [[xn]]) for a vector x
of length n. Note, that [[x]]1 then refers to the shares of elements of x, held by
party P1 and e.g [[xn]]2 refers to P2’s share of the n-th element of x.

In most cases, the secret sharing scheme used for [[x]] should be clear from the
context. For the additive secret sharing scheme, we sometimes refer specifically to
a shared value over ZN with [[x]] mod N . When we write [[x]] ∈ ZN , we mean that
the shares and also the combined value are from ZN . For bitwise sharing, we use
[[x]]⊕2` to denote bitwise sharing over Z`2.

When secret-shared variables are used in arithmetic formulae, they always refer
to the real combined value of the variable. For example, writing [[x]] � [[y]] = [[z]]
means that z = x� y for some arithmetic operator �, and that all three of these
values are secret-shared. When referring to a performed computation, [[x]] � [[y]]
means that a cryptographic protocol is carried out to compute the result, and
this result is always obtained in the same secret-shared form. On the other hand,
when we write [[x]]1, we explicitly refer to the value of the share held by P1 and
not the combined value. Similarly, an expression such as [[x]]1 � [[y]]1 refers to a
computation that can be carried out locally by P1, without communication with
the other parties.

2.2 Secure multi-party computation

2.2.1 General problem description

The theory of secure multi-party computation (SMC) dates back over 30 years, and
was first generalized and formulated by A. Yao in his 1982 seminal paper [Yao82].
The general setting is the following: a number of parties wish to collaboratively
perform some computation on their private data without revealing this data to
the other parties nor to anyone else. However, they still want to learn the result
of the computation.

To be put more concretely, we have n ≥ 2 parties P1, . . . ,Pn, each with an
input xi from some fixed domain, who wish to compute a function f(x1, . . . , xn) =
(y1, . . . , yn). That is, each Pi inputs xi and receives as output yi. The informal
security requirement is that no party should learn anything else except its pre-
scribed output, although that output can depend on other parties’ inputs. What
is commonly referred to as parties in a secure computation can be considered as
separate physical servers connected to a network, or more broadly as individuals
or organizations each with their own computing resources and data.

Since the inception of SMC as one of the most fundamental research areas
in cryptography, this rather broad problem description has been studied from a
large variety of angles, employing various cryptographic techniques in different
security models. The broad range and variety of published SMC research is ex-

12

emplified in a recent paper by Perry et al., who propose a systematization of
SMC methods, where techniques are classified along a total of 22 axes [PGFW14].
Stemming from the descriptions of theoretical protocols, a number of efficient SMC
implementations have also appeared. A good overview and comparison of mature
state-of-the-art SMC techniques and implementations can be found in [ABPP15].
Similarly, the number of real-life applications leveraging the work done in this
vast research area has been steadily growing in the recent years. See for exam-
ple [BCD+09, BTW12, KBLV13, BJoSV15, Vah15, Sec, DDN+15, BKK+16].

2.2.2 Parties’ roles in secure computation

In the literature, the standard treatment of SMC is that the parties involved in
the secure computation themselves provide the private inputs to the computed
function, and a subset of those parties also learn the result. For describing and
showing security of protocols, this is enough, but for actual real-world applications,
a more broader model should be considered. In a number of real-world use cases for
SMC, different parties have different roles in the overall process. A more general
model for SMC is presented in [BDNP08, BKL+14], with three different roles for
parties:

1. Input party IP — a data owner providing their confidential data as input
to the computation.

2. Computing party CP i — one of the parties who is actually involved in car-
rying out the secure computation protocols with input provided by input
parties. Multi-party techniques require at least 2 computing parties.

3. Result party RP — a party to whom the computing parties disclose the
result of the computation.

Note that any party can assume one or more of these roles at once in a given
application. As an example, we can consider the canonical secure computation
application from Yao’s paper [Yao82]. In the millionaire’s problem, two wealthy
individuals would like to determine which one of them is richer, without disclosing
the amount of capital they possess to the other party. In essence, the two parties,
let us denote them P1 and P2, want to securely compute the less-than comparison
function f(x1, x2), which outputs f(x1, x2) = 1 if x1 < x2 and f(x1, x2) = 0
otherwise. Here, xi is an integer representing the wealth of party Pi. In this
scenario, we have both P1 and P2 assuming all of the three roles described above.
They give their input xi compute the function f(x1, x2) among themselves using
a suitable SMC protocol and expect to receive the result.

13

The millionaire’s problem is a good example for introducing the field of secure
computation. However, SMC can also be applied to much more involved real-
world use cases. One such example is a privacy-preserving government tax fraud
detection system [BJoSV15].

In the application scenario presented in [BJoSV15], the government is prede-
termined to collect more detailed data about private companies’ business trans-
actions through their compulsory tax declarations, in order to detect tax fraud
more efficiently. The government’s motivation is to find tax-evading enterprises
and thereby reduce the tax hole. The private sector could also benefit from such
an arrangement, as the fraudulent companies with a dishonest competitive edge
would be caught and eliminated from the market.

However, the honest companies would like to reduce the risk of their sensitive
business secrets leaking to the competition, since a super-database of the country’s
trade and business network would be a prime target for an attacker outside or
within the government. As such, a multi-party computation system would be a
good solution to alleviate risks while benefitting all parties in the process.

The solution proposed in [BJoSV15] involves three computing parties with
expected non-colluding interests, namely, the tax board, a representative organi-
zation of the private sector and a neutral government watch-dog organization. In
this scenario, the input parties are the companies, who provide their data for tax
fraud analysis. The companies themselves are involved in the actual computation
indirectly through their representative organization, who takes the role of one con-
crete computing party. The tax board and neutral third organization also take the
role of computing parties. However, only the tax board is allowed to receive the
results of the fraud analysis, since making these completely public could impose
undeserved reputational damage to some companies.

This scenario is a good example of the kinds of complex models that can be
applied to secure multi-party computation, motivating the more general approach.

2.2.3 Security notions

We now give a high-level overview of the fundamental models of security used for
SMC and how security is defined in these models. First, we limit the problem
scope by noting some implicit restrictions we have already made in our previous
discussion. One such restriction is that we assume the function f is known to all
the computing parties, that is, we do not consider hiding the computed function
itself. Similarly, we assume the length of the input arguments is also known by the
parties. Although methods exist for hiding also the function and length of inputs,
they are typically less efficient and build upon the same basic methods we discuss
in this work [MS13, KS16, LMS16].

The basic properties that we do require from secure protocols are privacy and

14

correctness. Let us fix a protocol π that computes the function f(x1, . . . , xn) =
(y1, . . . , yn) between parties P1, . . . ,Pn, where Pi inputs xi and receives output yi.

Informally, we say π privately computes f , if for any set of inputs {xi}i∈[n], no
party Pi learns anything else except which can be derived from xi and yi during
the execution of π. As such, privacy assures the most intuitive notion of security,
that the confidentiality of the inputs are preserved.

Notice however that a party can indirectly infer information about other par-
ties’ inputs from their own legal output. In this sense, there exist functionalities
that might be privately computed by this definition, but can leak a lot of informa-
tion about other parties inputs. This notion can be referred to as output privacy
and is concerned with bounding the amount of information that the output itself
gives about the inputs1. Output privacy is best viewed in the context of a specific
application and real data owners and is out of the scope of this thesis2.

Having a protocol that ensures privacy is enough to protect the confidentiality
of inputs, but it does not guarantee that the protocol actually provides any mean-
ingful results. As such, we require also correctness from π. Correctness simply
requires for the output of the protocol π to align with the prescribed output of f
on any set of inputs. If f is a randomized function, we require the output distri-
butions to coincide. In the following, we refer to secure protocols as those that are
both private and correct.

Having defined the intuitive properties we require from secure protocols, we
next have to define the type of adversarial behavior against which these properties
should be maintained. When arguing about security of cryptographic protocols, we
consider an abstract entity called the adversary, that tries to break the security
of the protocol. The adversary can corrupt a subset of the computing parties
and force them to behave dishonestly, which models the malicious activity of a
computing party in an actual execution of the protocol. There are two main types
of adversarial corruption.

In the passive model, the corrupted party tries to infer extra information about
the inputs of other parties from its view of the protocol execution, but follows
the protocol description as defined. Such adversaries are called semi-honest or
honest-but-curious.

The active model considers malicious adversaries that can arbitrarily deviate
from the protocol description, for example, change their inputs, alter the contents

1Methods such as differential privacy allow to mathematically quantify the information leak-
age of different functions.

2Ultimately, it is up to the data owners to decide what they allow to do with their data.
If data owners are themselves participating in the computation, they can simply choose not
to engage in the computation, if they feel the chosen function leaks too much information. In
other cases, output privacy might be indirectly enforced for example by appropriate legislation,
ensuring that the process is properly audited.

15

of sent network messages or not send messages at all. As such, additional security
properties have to be considered in the active model and achieving privacy and
correctness is significantly more challenging in the malicious setting.

Additionally, we can consider different corruption strategies for the adversary.
Static corruption assumes that the adversary chooses which parties to corrupt
before the execution of the protocol. Adaptive corruption allows parties to be
corrupted at any time during the protocol execution. In all cases, we should
bound the number of parties that the adversary can corrupt, since no security
mechanism can defend against an omnipotent adversary who corrupts all parties3.

We can also consider some bounds on the computational capability of the
adversary. In the computational model (providing computational security), we
consider adversaries whose running-time is asymptotically bounded, typically by
a polynomial of the security parameter. Computational security fundamentally
rests on the assumed hardness of certain computational tasks. Security can be
proven by a reduction showing, that in order to break the security of the protocol,
the adversary would have to solve a computationally infeasible task. A common
example is that of solving the discrete logarithm in some finite groups, on which
a very large amount of cryptographic primitives rely.

In the information-theoretic model (providing information-theoretic or perfect
security), there is no bound on the adversary’s computational resources. This
gives a stronger guarantee that no possible adversary can compromise security,
regardless of their computational power. However, information-theoretic security
can (in general) only be achieved in case of an honest majority of participants.
Therefore, we rely on computational security for two-party computation.

For both models, the assumption of secure authenticated channels is made4.
This means an adversary cannot read or change messages sent between computing
parties without corrupting a computing party. We also adopt the asynchronous
network model, allowing the adversary to have total control over network schedul-
ing for messages sent between parties.

Lastly, the distinction of stand-alone or concurrent protocol execution can be
made. Security in the stand-alone model gives guarantees only in the case where
the communication links are dedicated for the computing parties and the specific
protocol. The concurrent model makes no assumptions about other protocols that
are being executed in the same network channels concurrently between the parties,
and therefore gives better security guarantees in practice.

To summarize, in this work we consider passive static adversaries in a concur-
3In fact, security is meaningless in this scenario, since there are no honest parties left to

protect.
4For the two-party case, in fact only authenticated channels are required. However, a secure

channel can be easily constructed from an authenticated one by using symmetric cryptography,
so we assume secure authenticated channels throughout the work for simplicity.

16

rent model with computational security.

2.3 Secret sharing

Secret sharing is a well-known cryptographic method for protecting secret data by
distributing it amongst a group of parties. It was first proposed independently
by both A. Shamir [Sha79] and G. Blakley [Bla79]. The original motivation for
constructing secret sharing schemes in these seminal works was to protect the
integrity and confidentiality of cryptographic keys. Later, secret sharing was used
to construct efficient methods of general secure computation in the multi-party
setting [BGW88, CCD88]. These papers form the basis for a line of work of many
efficient SMC protocols that are based on evaluating arithmetic circuits, sometimes
referred to as BGW-style protocols, quoting the Ben-Or, Goldwasser, Wigderson
1988 paper [BGW88].

The idea of secret sharing, is that a secret value x is broken into random-
looking pieces x1, . . . , xn called shares. The shares are then distributed among the
involved parties, each getting a single share. The secret can later be constructed
by combining any sufficiently large subset of the shares, however, smaller subsets
give no information about the original value. We now formalize a secret sharing
scheme in more concrete terms.

Definition 1 ((t,n)-secret sharing scheme). A (t,n)-secret sharing scheme over
M is defined by a randomized operation Share(·) and an efficient deterministic
operation Combine(·, . . . , ·) with t arguments, with the following properties:

• For any value x ∈M, Share(x) outputs n shares x1, . . . , xn ∈M.

• Fix an arbitrary sharing of x, (x1, . . . , xn) ← Share(x). For any I ⊆ [n],
such that |I| = t, we have Combine(xi1 , . . . , xit) = x, where ik ∈ I, ik 6= i`
for k 6= `.

For simplicity, we assume in our definition that shares are chosen from the
same domainM as the values that are secret-shared, as this is the case in many
common schemes such as Shamir’s secret sharing scheme [Sha79], and also the
ones used in this work. The above definition covers one basic property of a secret
sharing scheme, that it must always be possible to reconstruct the secret from the
shares. However, it does not imply that no information can be learned about the
secret from small subsets or even individual shares. We thus define next what it
means for a secret sharing scheme to be perfectly secure.

Definition 2 (Perfect security of a secret sharing scheme). We say a (t,n)-secret
sharing scheme over M is perfectly secure iff for any a, b ∈ M, indices I ⊆ [n],

17

such that |I| < t and vector of shares ŝ ∈M|I|, we have that

Pr[sI = ŝ | s← Share(a)] = Pr[sI = ŝ | s← Share(b)] .

Intuitively, this definition says that any subset of the shares output by Share(·)
with less than t elements is equally likely to obtain any set of possible values,
independently from the original secret. Consequently, without knowing at least
t shares, no information can be learned about the secret. Note that this defini-
tion gives information-theoretic security, and therefore the strongest guarantee of
privacy for secret sharing that we could hope for.

We now give two examples of secret sharing schemes that are perfectly secure
according to our definition and which we use in our two-party protocol suite.

Definition 3. An additive secret sharing scheme is an (n,n)-scheme over a ring
Z2k for k ∈ N defined as follows.

1. For x ∈ Z2k , Share(x) samples each share x1, . . . , xn−1 uniformly randomly
from Z2k , computes xn = x−

∑n−1
i=1 xi and returns (x1, . . . , xn).

2. Combine(x1, . . . , xn) computes x =
∑n

i=1 xi and returns x.

It is easy to see that the additive scheme satisfies Def. 1, since

n∑
i=1

xi =
n−1∑
i=1

xi + xn =
n−1∑
i=1

xi +

(
x−

n−1∑
i=1

xi

)
= x .

We can also show that the additive scheme is perfectly secure, using the fol-
lowing useful property of modular arithmetic.

Lemma 1. For any random variable X ∈ Zn and uniformly random r ← Zn,
independent from X, we have that the random variable X + r is also uniformly
random and independent from X.

Proof. For any x, y ∈ Zn, we have that

Pr[X + r = y | X = x] = Pr[r = y − x | X = x] = 1/n

since y, x are fixed values and r is uniformly random and chosen independently of
x. Therefore, calculating the total probability we get

Pr[X + r = y] =
∑
x∈Zn

Pr[X + r = y | X = x] · Pr[X = x]

= 1/n
∑
x∈Zn

Pr[X = x] = 1/n .

Therefore, X + r is distributed uniformly over Zn, independent of X.

18

Essentially, Lemma 1 says that for a random value r ∈ Zn, x+r perfectly hides
any value x ∈ Zn. In other words, x + r is a one-time pad encryption of x. Note
that the same properties hold for x−r . We now prove the security of the additive
scheme.

Theorem 1 (Perfect security of additive secret sharing scheme). The (n,n)-
additive secret sharing scheme described above is perfectly secure.

Proof. Fix arbitrary x ∈ Z2` and a sharing (x1, . . . , xn) ← Share(x). It is trivial
to see that the condition in Def. 2 holds for subsets I ⊆ [n − 1], since shares
x1, . . . , xn−1 are generated uniformly randomly and independently of x. Now
consider a subset I ⊂ [n], such that n ∈ I. There exists at least one index
j ∈ [n], j 6= n, such that j /∈ I. We have that

xn = x−
∑

i∈[n],i 6=j

(xi) + xj .

Using Lemma 1, we have that xn is a uniformly random value independent from all
xi, i ∈ I, since xj is uniformly random and independent from all xi, i ∈ I and also
x. Therefore all shares in the subset sI are uniformly random and independent
from each other and x, for any I ⊂ [n].

Another very similar scheme is the bitwise secret sharing scheme.

Definition 4. A bitwise secret sharing scheme is an (n,n)-scheme over a ring Zk2
with bitwise XOR and conjunction operations, defined as follows.

1. For x ∈ Zk2, Share(x) samples each share x1, . . . , xn−1 uniformly randomly
from Zk2, computes xn = x⊕

⊕n−1
i=1 xi and returns (x1, . . . , xn).

2. Combine(x1, . . . , xn) computes x =
⊕n

i=1 xi and returns x.

The bitwise sharing scheme shares the same properties as the additive scheme.
It has the property that x⊕r perfectly masks a value x ∈ Zk2 for uniformly random
r ∈ Zk2 in terms of Lemma 1. Therefore, it is perfectly secure following the same
reasoning as in Theorem 1. As the additive scheme works directly on integers from
Z2k , the bitwise scheme can be considered to work on the binary representation
of integers. Both schemes are useful, as the additive scheme is more suitable
for performing arithmetic operations and the bitwise scheme allows more efficient
bit-level operations.

19

2.4 Sharemind secure computation platform

Sharemind is a secure computation platform that allows to build privacy-preserving
applications in a general SMC model [Bog13]. Sharemind is designed in a modular
way so support potentially different types of methods of secure computation, with
varying amount of computing parties. A Sharemind module that provides a com-
plete set of secure computation and private data storage tools is called a protection
domain [BLR13].

The goal of a protection domain for Sharemind is to provide a complete set of
primitives to allow the same kinds of computations that are done on regular data,
but done in a privacy-preserving manner, relying on one or more specific SMC
techniques. Primitives we might require are for example, standard arithmetic on
integers and floating point numbers, different types of aggregation, filtering and
statistical analysis. When we consider how these computations are done on a
regular computer processor (CPU), we see that even the most complex analytical
computations are eventually decomposed into a series of primitive instructions on
the CPU. The instructions are scheduled in a specific order, and later computations
may take as input partial results from previous steps.

Following this exact basic principle, we can build protocol suites for secure
computation that allow practically arbitrary computations on private data from a
rather small set of primitive protocols that perform small well-defined computa-
tional tasks. Using a suitable composition of these primitives, a variety of complex
computations can be carried out. In theory, addition and multiplication is enough
to construct any arithmetic circuit, but using separate fine-tuned protocols for the
most often used primitives has proven to be a more efficient strategy for Share-
mind’s existing protocols [BNTW12].

Sharemind’s most efficient protocols are in the three-party protection domain,
that provides passive security against static adversaries that corrupt at most one of
the parties [BNTW12, LR15]. Although the passive model provides less theoretical
guarantees against more powerful adversaries, there are still many practical use
cases where the passive model is sufficient. In many cases, the parties are honest
in principle, but restricted from sharing their data with the other parties due to
data protection laws, such as in [BKK+16]. Additionally, protocols in the passive
model are much more efficient and make it possible to build applications that
process very large amounts of data in a privacy-preserving manner [BJoSV15].

The advantage of the three-party setting is that no precomputation phase as
such is necessary at all, and the online phase is still very efficient. In this sense,
the two-party case has a fundamental disadvantage, and is more complex to imple-
ment. However, the two-party model might be a better fit in some use cases. For
example, the previously discussed tax fraud detection application of [BJoSV15]
is in fact more naturally implemented as a two-party computation between the

20

tax board and private companies’ representative. This motivates the construction
of an efficient two-party protection domain, even taking into account the added
computational complexity, compared to three-party protocols.

On Sharemind, we can build sophisticated computations easily using a pro-
gramming language SecreC [BLR13], which essentially allows to program a com-
position of primitive protocols in a C-like programming language. The SecreC
language was designed to be domain-polymorphic from its inception. This means
that high-level algorithms programmed in SecreC for the existing three-party pro-
tection domain can be easily switched to use our built two-party protection domain
instead, demonstrating the benefits of this design choice.

2.5 Security and composition of SMC protocols

We now discuss the security framework for Sharemind’s BGW-style protocols,
that is, protocols that process secret-shared data between n ≥ 2 parties. In the
context of this thesis, we only consider the passively secure case with static ad-
versaries. Considering Sharemind’s protection domain architecture, it is clear that
the security framework should allow to prove privacy and correctness for individual
primitive protocols. Additionally, and more importantly, we have to ensure that
this notion of security is preserved when the protocols are executed in arbitrary
composition with each other. Also, other protocols may be running in parallel on
the same communication channels. For example, if the protocol is executed over
the public Internet, we can have arbitrary other protocols running concurrently
with ours.

Protocols that achieve security under general composition in a concurrent envi-
ronment are called universally composable following the definitions of the universal
composability (UC) framework of Canetti [Can01, CCL15]. For Sharemind pro-
tocols, a similar and slightly specialized framework was formalized in [BLLP14],
based on the reactive simulatability (RSIM) framework [PW00]. The RSIM and
UC frameworks are technically different formalizations for arguing about security
of protocols under composition, however in our case, for a fixed amount of parties,
they give similar guarantees [Can00, DKMR05]. The exact details are out of the
scope of this thesis.

When considering only Sharemind’s protocols based on secret sharing, the gen-
eral UC framework is overly restrictive and the framework of [BLLP14] allows for
more efficient protocols, while maintaining the strong security under general com-
position. An important distinction is that we consider privacy as the main goal
for proving security of our protocols, since we can later get full security easily from
a simple composition. For our purposes, we only give a high-level description of
the [BLLP14] framework with enough detail to argue about security for the pro-
tocols presented in this work. For the more rigorous technical details, we refer the

21

reader to [BLLP14].

2.5.1 Modeling protocol execution

In the RSIM model, a computing party is modeled as a state transition machine
M with input and output ports for communicating with other machines, a set
of states, with specific initial and final states and a probabilistic state transition
function, which defines the machine’s behavior. Data transfer between machines is
performed through buffers, which connect an input port of one machine with the
output port of another. When a machine writes a value to a buffer, the receiving
end machine is clocked, which means it is executed and uses the state transition
function to determine its next state. As a result, the machine may write one or
many outputs to some of its output ports.

Each computing party is modeled as a separate machine, with communication
channels between them. The parties receive their inputs from a machine called
the environment H. The environment models all possible external parties and
other protocols that may be running concurrently on the same communication
channels as a single abstract entity. The environment has designated buffers for
communicating with each of the computing parties. In a secure computation, the
environment gives the inputs to the computing parties, thereby invoking their ex-
ecution and reads the outputs they eventually write to their output ports. During
the protocol execution the machines may send a number of messages to each other,
before writing the final output.

Adversarial behavior is modeled by another separate machine called the adver-
sary A. The adversary also has buffers for communication with each computing
party, and can send a special corrupt message to any computing party machine.
Upon receiving a corrupt message, the machine writes its entire protocol view to
the buffer connected to A, consisting of received inputs and written outputs up to
this point. Afterwards, the corrupted party immediately sends each new received
input and written output also to A. Additionally, the adversary and the environ-
ment have a free two-way communication channel, which essentially means that the
adversary potentially shares its entire view also to the environment. Also, when
we are considering an execution of a system of machines, any non-determinism in
the clocking order of the machines is determined by the adversary.

Since we are modeling passive corruption, the outputs written by the com-
puting parties are not influenced by corrupt messages. We also assume secure,
authenticated channels, meaning that the adversary cannot read or change mes-
sages sent by uncorrupted parties. However, we allow the adversary to control the
timing of the entire protocol network scheduling, including receiving inputs and
sending outputs to the environment. Since we use static corruption, we assume

22

the corruption messages are sent before the protocol execution starts5.

2.5.2 Privacy and security definitions

The security definitions of [BLLP14] follow the real vs ideal world paradigm. In
this approach, the security of a protocol is defined in terms of an ideal functionality,
that acts as a trusted third party, and is without flaw in terms of security. We then
contrast this ideal scenario with an actual implementation of the protocol. The
goal for a security proof is to show, that the real world execution of the protocol is
indistinguishable from the ideal execution, from the viewpoint of the adversary. If
this is the case, then we can reason, that the adversary cannot achieve its malicious
goals any better in the real world than it could have in the ideal world, as he cannot
himself distinguish between these scenarios.

The security guarantee from this kind of approach is one of the strongest,
sometimes referred to as fully-simulatable security. Simulatability refers to the
fact that showing equivalence of the real and ideal worlds requires us to construct
a simulator machine, which can simulate the real world view to an adversary that
is placed in the ideal world. If this construction is achievable, then by a rather
intricate deduction, we can say that the adversary could have simulated the real
world for himself, without relying on any information that it sees in the real world.
This in turn proves that the real world view does not leak anything interesting to
the adversary.

For the definition of security, the real execution of an n-party protocol is mod-
eled as previously described, where the computing parties are represented as ma-
chines M̂ = (M1, . . . ,Mn) along with their connecting buffers. Additionally, the
environment H and adversary A have buffers to communicate with each Mi and
also with each other. We call this set-up of a system of machines M̂ , H and A as
a configuration (M̂,H,A).

We define security through the indistinguishability of the environment’s view
compared to an ideal execution of the protocol. We should now specify how we
define ideal functionalities. Note that it is paramount to define the ideal function-
ality correctly, as this is the reference standard to which we compare the security
of our protocols. In most cases, the ideal functionality is modeled a single machine
that performs the required computation as a trusted third party. For an ideal
functionality that securely computes the function f(x1, . . . , xn) = (y1, . . . , yn), the
machine F simply takes all the inputs (x1, . . . , xn), computes f on these inputs
and outputs (y1, . . . , yn).

To model the ideal execution, we replace the parties M̂ by the machine F , that
takes all parties’ inputs from the environment H, performs the required computa-

5Note that the composition results from [BLLP14] also hold for adaptive corruption.

23

tions, and writes the outputs back to the environment. Note that F still responds
to the adversary’s corrupt(i) messages by sending the input and output of the i-th
party to the adversary. However, as F is a single monolithic machine, there are
no intermediary protocol messages to send. As such, the simulator should be able
to simulate these messages to the adversary. The simulation must ensure that
the whole simulated view is then consistent with the real inputs and outputs seen
by the environment, that is, the entire view of H. This must hold also for any
environment and adversary. For a given configuration conf = (M̂,H,A), we de-
fine viewconf(H) as the random variable which consists of the ordered inputs and
outputs as seen by H in the protocol execution concatenated together.

To give the security definition we must first define a notion of computational
indistinguishability for probability distributions. A function µ(·) is negligible if
for every positive polynomial p(·) and all sufficiently large n, it holds that µ(n) <
1/p(n).

Definition 5 (Computational indistinguishability). We say that two probability
distributions DX and DY are computationally indistinguishable, denoted by DX

c
≈

DY , if for every non-uniform polynomial-time algorithm A, there exists a negligible
function µ(·) such that,

|Pr[A(DX) = 1]− Pr[A(DY) = 1]| ≤ µ(n) .

In the above definition, we mean by A(D) that the distinguisher is given access
to an oracle that efficiently samples elements from D. We now give our definition
of security, which we use for the protocols presented in this work.

Definition 6 (Security). Let π be a protocol executed by n parties, modeled by the
collection of machines M̂ = (M1, . . . ,Mn) and let F be an ideal functionality. We
say that π is computationally secure w.r.t F , iff for every configuration conf1 =
(M̂,H,A), there exists a configuration conf2 = (F , H,SA) with the same H such
that the views of the environment H are computationally indistinguishable

viewconf1(H)
c
≈ viewconf2(H) .

Note that the view of H can arbitrarily depend on the view of A and even
contain the entire view, since they share a communication channel. To show
security, we have to construct a simulator SA that can simulate a corrupted party’s
messages sent during the protocol execution based only on the input and output of
that party. We write SA to denote black-box simulation using A. The simulated
view should be indistinguishable from a normal execution of the protocol from
the environment’s perspective (which indirectly includes A), meaning that the
simulated messages also have to lead to the same output distribution that is defined
by the ideal functionality.

24

For input privacy, we use a slightly different configuration of machines. The
difference with full security is that we do not require the simulation outputs to
coincide with the real outputs, but we still show correctness separately based on
the protocol description. As such, we divide the environment H into two machines
Hin and Hout. Hin gives inputs to the parties (or the ideal functionality) and
communicates with A, whereas the outputs are given only to Hout and are not for-
warded to any other machine. Then, we only require that the view of Hin remains
indistinguishable in the simulation, that is, the inputs and intermediary protocol
messages, but excluding the outputs. We call this set-up (M̂,Hin ∪ Hout,A) a
privacy configuration.

Definition 7 (Input privacy). Let π be a protocol executed by n parties, modeled
by a collection of machines M̂ = (M1, . . . ,Mn) and let F be an ideal function-
ality. We say that π is computationally input-private w.r.t F , iff for every pri-
vacy configuration conf1 = (M̂,Hin ∪Hout,A) there exists a privacy configuration
conf2 = (F , Hin ∪ Hout,S) with the same Hin ∪ Hout, such that the views of the
restricted environment Hin are computationally indistinguishable

viewconf1(Hin)
c
≈ viewconf2(Hin) .

For the simulation, we can only rely on the corrupted party’s input for showing
input privacy, since the output is not accessible fromHout. However, we also do not
require the simulated view to lead to the same outputs that the ideal functionality
computes, which makes the simulation easier.

Note that for both definitions, we can also consider the information-theoretic
version, which requires the distributions of the real and simulated views of the
environment to exactly match. We say perfectly secure and perfectly input-private
to refer to the information-theoretic definitions.

The input privacy property as defined is clearly weaker than full security. The
rationale for considering this separately, is that for protocols that take secret-
shared inputs and produce secret-shared outputs, we can use input privacy to
guarantee that nothing is learned about the other party’s input share. However,
the difference with full security is that later, if we publish both result shares to
a party, the values of the individual shares seen together might leak more than
intended, since they are not guaranteed to be independent of the input shares.
However, we can explicitly make sure to re-randomize the shares before publishing
them, to ultimately guarantee security. In general, input-private protocols are
more efficient than secure protocols, which makes this approach advantageous in
terms of performance.

From the composition theorems of [BLLP14], we get two main results:

1. The composition of input-private protocols remains input-private.

25

2. The composition of an input-private and secure protocol results in a secure
protocol, if the input-private protocol correctly implements the ideal func-
tionality.

For our case with protocols based on secret sharing, the first result allows
us to build an arithmetic circuit based on input-private protocols as long as the
final output shares are not directly published. Note that this holds for a strict
composition, where all inputs to the protocol are the direct outputs of other input-
private protocols. To publish the final result, we can use the second composition
theorem and add a secure resharing step to the end of the circuit, to make the
whole composition secure.

Note that there is an additional requirement for composition of input-private
secure protocols to remain secure, namely we require the input-private protocol to
correctly implement its ideal functionality in an honest execution. For randomized
functionalities, this requires the output to be of the correct random distribution
for a distinguisher that only sees the inputs to the protocol. For protocols that
operate on secret-shared values, we require that the combined secret-shared result
is exactly correct with respect to the arithmetic operation. For the proofs of
security for composition, we refer the reader to [BLLP14].

Overall, the results allow us to essentially base our whole protocol suite on
input-private protocols. We discuss these topics more in Section 5 when presenting
our full protocol suite.

Note also, that these composition results hold in a more general concurrent
setting, as we have made no restrictions to what the environment does. Modeling
the environment this way, similarly to the UC framework, captures all other pro-
tocols that may be running in the network, including independent instances of the
same protocol.

2.5.3 Ideal functionality for Sharemind protocols

For all protocols of our implemented two-party protection domain, we assume
an ideal functionality, which is specific to protocols that operate on secret-shared
values. The protocols follow the pattern of taking one or more secret-shared values
as input and outputting a single secret-shared result. If the values for the inputs
are x1, . . . , xn, then the protocol computes some function f(x1, . . . , xn) = y. We
define the corresponding ideal functionality F as follows. F takes both parties’
shares of [[x1]], . . . , [[xn]] as inputs. Then, F combines the shares to learn the real
values and computes y = f(x1, . . . , xn).

A crucial step here is that F should output a fresh uniformly random sharing of
y, that is, explicitly call ([[y]]1, [[y]]2)← Share(y). Otherwise, a valid sharing would
be for example (y, 0), which immediately reveals the result of the computation to

26

the first party. The security property we seek, of course, is that the computing
parties would not actually learn the result of the computation, but only a random
sharing of it. Thus, the output shares of a secure protocol should be uniformly ran-
dom and independent from the input shares. We denote such ideal functionalities
simply by F([[x1]], . . . , [[xn]]) = [[y]].

The correctness of such functionalities is defined by the requirement y =
f(x1, . . . , xn), that is, the combined secret-shared output should give the right
value with respect to the function f . Showing input privacy does not imply cor-
rectness, which is why we must show correctness separately. Clearly, it is easy
to construct input-private protocols that simply produce arbitrary results, how-
ever, such protocols are obviously not very useful. Full security according to our
definition also implies correctness by itself.

2.6 Oblivious transfer

We now turn to one of the most fundamental protocols for secure computation,
called oblivious transfer. Although a conceptually simple primitive, oblivious
transfer (OT) is a basic building block for a number of more interesting and useful
cryptographic tasks. A famous result from J. Kilian [Kil88] shows that the exis-
tence of a secure oblivious transfer protocol is sufficient to securely evaluate any
computable function between two parties. Additionally, commitment schemes and
non-interactive zero-knowledge proofs can be constructed from oblivious transfer.

The notion of oblivious transfer was first proposed by M. Rabin in 1981 [Rab81,
Rab05] (the digital version was published later) and then formalized to the current
standard definition of 1-out-of-2 OT in [EGL85], which we describe now.

OT is a protocol between two parties, a sender S and a receiver R. In its
simplest variant of 1-out-of-2 OT (which we denote

(
2
1

)
-OT), S has two bit strings

m0, m1 and R has a choice bit b ∈ {0, 1}. Given these inputs, the OT protocol
outputs mb to R according to its input choice bit, and the sender learns nothing.
The informal security requirements for OT are that

1. the sender S does not learn which of the messages was chosen, maintaining
privacy of R’s input

2. and that the receiver R learns nothing about the other message m1−b, pre-
serving partial privacy of S’s input.

There also exist many other natural generalizations to this basic definition. In(
n
1

)
-OT, the receiver chooses one message out of n, and in

(
n
k

)
-OT, the receiver

chooses a subset of size k from among n messages. An even more general variant
exists, called reactive

(
n
k

)
-OT, where the receiver chooses a total of k messages,

27

but the index for each next message is chosen after receiving the previous message,
allowing the previous messages to influence the decision of the receiver. In this
thesis, we are concerned only with the standard

(
n
1

)
-OT as a building block for our

protocols.
We have already stated that OT can be used for constructing secure computa-

tion protocols between two parties. A concrete instantiation of this is the GMW
protocol [GMW87]. The seminal paper by Goldreich-Micali-Wigderson proves a
completeness theorem for secure multi-party computation in the case where a ma-
jority of participants is honest. The paper shows that

(
2
1

)
-OT is enough to evaluate

any function securely (even with malicious adversaries).
Oblivious transfer is also used as an irreplaceable subroutine in the well-known

two-party general computation technique called Yao’s garbled circuits protocol
[Yao82, LP09]. As such, OT is a well-studied protocol in the literature, since
having a more efficient OT protocol also makes other protocols relying on it more
practical.

Formally, the
(
2
1

)
-OT` ideal functionality computes F((x0, x1), b) = (⊥, xb),

where xi ∈ {0, 1}` and b ∈ {0, 1}. We denote by ⊥ that the sender gets no
output from the protocol. More generally, the

(
n
1

)
-OT` functionality is defined by

F((x1, . . . , xn), r) = (⊥, xr), where xi ∈ {0, 1}` and r ∈ [n].
Note that for oblivious transfer, our input privacy definition is contradictory,

since the protocol is defined to reveal one of the inputs of the sender to the receiver.
However, as we discuss in the next section, we can consider variants of the standard
oblivious transfer functionality, where the messages are not fixed by the sender
before the protocol execution. In this case, also input privacy is meaningful.

28

3 Oblivious transfer extension
In this section, we describe protocols for efficiently performing oblivious trans-
fer, which is the main building-block for our Beaver triple generation protocol,
presented in Section 4.

Oblivious transfer is used in many secure computation protocols, as we have
discussed in Section 2.6. In these protocols, usually many separate invocations of(
n
1

)
-OT are required on different inputs6. However, oblivious transfer is a rather

costly primitive since all known OT protocols require some form of computation-
intensive public-key operations (for example [NP01, Lin08, CO15]). To be able to
perform a large amount of OT-s efficiently, a technique called OT extension can
be used [IKNP03]. OT extension protocols allow extending a small number of base
OT invocations on random inputs to a much larger number of OT invocations for
the actual inputs. The advantage is that the actual OT-s are much cheaper to
perform, by using only symmetric-key cryptographic operations. Since the base
OT-s are performed on random inputs, they are independent of the inputs used for
the extended OT-s, which makes it possible to perform these as a precomputation.

For Section 4, we require a protocol to compute m invocations of
(
n
1

)
-OT in

parallel, on m separate sets of inputs. We denote this functionality as
(
n
1

)
-OTm

` ,
meaning m parallel invocations of

(
n
1

)
-OT on `-bit messages. In fact, we utilize

variants of the standard OT functionality in our protocols, where the sender’s
inputs are actually not fixed, but rather generated as a result of the protocol.
These protocols allow us to use the input privacy property, which is not applicable
for standard OT.

In this work, we consider the passively secure protocols from [ALSZ13] and
[KK13]7. The ALSZ13 protocol implements

(
2
1

)
-OT and the KK13 protocol imple-

ments a more general
(
n
1

)
-OT. In fact, the ALSZ13 protocol is a special case of the

KK13 protocol for n = 2, but we analyze them separately for a clearer exposition.
We present protocols for correlated and random OT extension, that are later

used in Section 4 for constructing secure Beaver triple generation protocols. Es-
pecially, we use

(
n
1

)
-OT to construct novel precomputation protocols with reduced

communication compared to using
(
2
1

)
-OT for multiplication triples.

In the original papers of [ALSZ13, KK13], the security for these protocols is
shown in the random oracle model [BR93]. A security proof in the random oracle
model only gives a heuristic argument for security, as random oracles (uniformly
randomly chosen functions) cannot exist in the real world [CGH04]. Also, for the
KK13 protocol, a formal security proof has so far not appeared in the literature to
our knowledge, but it’s security is based on similar considerations as that of the

6For example, in Yao’s protocol, a
(
2
1

)
-OT is performed for each input bit.

7There also exist OT extension protocols for the malicious case, for example [ALSZ15, KOS15].

29

ALSZ13 protocol.
In this work, we take a step towards using these protocols in a secure manner

while not relying on the random oracle model. By this we mean, that we can
construct fully secure protocols for Beaver triple generation, while only requiring
correctness and input privacy from the oblivious transfer extension protocols. Our
insight is that we can show input privacy and correctness by only relying on the
correlation robustness property of a hash function [IKNP03]. For the KK13 pro-
tocol, we have to generalize this property to give a formal proof of input privacy.
In all cases we assume a secure protocol exists to implement the base OT. Note
that using only the privacy property is possible in our setting with secret sharing
protocols, but may not applicable in other settings.

The proofs of input privacy that we present should be seen as convincing ar-
guments that the random oracle model is not needed in our case. However, more
rigorous analysis is required to show convincingly that the composition result
of [BLLP14] holds for the input private OT protocols, with regard to compos-
ing them with a secure protocol. We note that the correctness requirement for
the pseudorandom distribution of the outputs (for an external distinguisher) is
important for this.

Arguably, the correlation robustness property is also a fairly strong assumption
to make if we implement the hash with a real-world function, such as SHA-256
in our implementation. Still, this is a concrete advancement in the theoretical
sense and allows also to show security in a concurrent model, which is otherwise
difficult, if not impossible to do rigorously, when programmable random oracles
are required8.

With the exception of security in the concurrent settings, assuming the random
oracle model would immediately imply security of our constructions following the
proofs in [ALSZ13]. However, we specifically try to avoid the random oracle and
take a first best-effort step in that direction in this work.

3.1 Correlated OT extension

In certain applications, a more restricted OT functionality than the standard(
n
1

)
-OT can be used to build more efficient protocols. In correlated OT, instead

of specifying two arbitrary messages m0,m1 ∈ M, the sender fixes a correlation
function f :M→M, whereM is the message space. As the result of the proto-
col, the sender receives a pseudorandom m0 and the transferred messages are m0,
m1, where m1 = f(m0). In this section, we present the correlated OT extension

8To show UC security, we need to assume the random oracle is local to the specific proto-
col execution. However, a random oracle implemented as a real-life hash function is public to
everyone, which contradicts the UC requirements [CJS14].

30

protocol from [ALSZ13], which is the most efficient passively secure protocol of its
kind currently known.

For our purposes, we consider specific correlation functions of the form f(x) =
c + x for M = {0, 1}`, where c ∈ M is some fixed correlation offset and ad-
dition is modulo 2`. We can then define the ideal functionality of

(
2
1

)
-COT as

F(21)-COT(c, b) = (s, s + bc), where s is computationally indistinguishable from a
uniformly random value from M, independent of the inputs. The receiver then
either learns s or s+ c, depending on the choice bit b. We can thus consider input
privacy for correlated OT, since the receiver should not learn the correlation offset
c. Our proofs of correctness and input privacy rely on the correlation robustness
property, which first appeared in [IKNP03] and is also used to show security of
the standard

(
2
1

)
-OT extension protocol of [ALSZ13].

Definition 8 (Correlation robustness). An efficiently computable function H :
{0, 1}κ → {0, 1}` is said to be correlation-robust for m messages, if

(t1, . . . , tm, H(t1 ⊕ s), . . . , H(tm ⊕ s))
c
≈ Um·(κ+`)

for uniformly random and independent choices of t1, . . . , tm, s from {0, 1}κ,
where Um·(κ+`) denotes the uniform distribution over {0, 1}m·(κ+`).

Note that the definition assumes that the distinguisher does not have access
to the value of s directly. Also, note that a uniformly random function (a random
oracle) trivially has this property. Therefore, this is strictly a weaker assumption
than assuming the random oracle model for an m polynomial in κ.

Based on this definition, we prove in Lemma 2 that the output of a correlation-
robust function on uniformly random inputs is uniformly random. We use this
lemma to ascertain that the message chosen in the correlated OT protocol is pseu-
dorandom.

Lemma 2. Let H : {0, 1}κ → {0, 1}` be a correlation-robust function for m mes-
sages. Then, for random and independent choices of t1, . . . , tm ∈ {0, 1}κ we have
that

(H(t1), . . . , H(tm))
c
≈ Um·` .

Proof. We can prove the lemma using a simple reduction against the correla-
tion robustness of H. Assume a distinguisher D with non-negligible advantage
in distinguishing (H(t1), . . . , H(tm)) from the uniform distribution. Then we can
construct a distinguisher DCR against the correlation robustness of H. On input
(t1, . . . , tm, H(t1⊕s), . . . , H(tm⊕s)), DCR obtains b← D(H(t1⊕s), . . . , H(tm⊕s))
and outputs b. Then, DCR has exactly the same advantage in breaking correlation
robustness of H, since (t1 ⊕ s, . . . , tm ⊕ s) are uniformly random and independent

31

values. Therefore, this reduction is tight, with no loss in security parameters as
DCR performs no extra computations.

We also note that if a function H : {0, 1}κ → {0, 1}` is correlation-robust, then
we can easily construct a correlation-robust function H ′ : {0, 1}κ → {0, 1}t, where
t < `, simply using the t first bits of the output of H. The reduction is trivial, since
if a distinguisher DH′ can break the correlation robustness of H ′, it can certainly
do so for H, by only considering the t first bits of the output of H and using the
output of DH′ on these bits.

Additionally, we give a definition of a pseudorandom generator (PRG).

Definition 9 (Pseudorandom generator). We say an efficiently computable func-
tion G : {0, 1}κ → {0, 1}m is a secure pseudorandom generator, if

G(k)
c
≈ Um

for a uniformly random k ← {0, 1}κ, where Um denotes the uniform distribution
over {0, 1}m.

Here also, we assume the distinguisher does not have direct access to the value
of k. Therefore, a pseudorandom generator produces a stream of values that are
computationally indistinguishable from uniform randomness, given a uniformly
random seed k.

We now have all cryptographic tools that we need to present the correlated
version of [ALSZ13] OT extension protocol as Protocol 1.

Theorem 2. The ALSZ13 correlated OT extension protocol in Protocol 1 is cor-
rect, assuming a correlation-robust hash function H, secure PRG G and a compu-
tationally secure protocol for

(
2
1

)
-OTκ

κ..

Proof. For the bit matrix Q constructed by S, we have that the j-th row equals

qj = (rj · s)⊕ tj .

If rj = 0, then qj = tj and at the end of the protocol, the receiver R computes

H(tj) = x0j .

For rj = 1, qj = s⊕ tj and R computes

yj ⊕H(tj) = x1j ⊕H(qj ⊕ s)⊕H(tj)

= x1j ⊕H(tj)⊕H(tj) = x1j = x0j + cj .

Therefore, the receiver R learns the correct message xrjj = x0j + rj · cj for each
j ∈ [m]. We additionally have to show that x0j is pseudorandom. This follows
from Lemma 2, since the values of qj are computationally indistinguishable from
uniform randomness, due to security of

(
2
1

)
-OTκ

κ and the PRG G.

32

Protocol 1 Correlated OT extension from [ALSZ13]
Functionality:

(
2
1

)
-COTm

`

Setup: Security parameter κ, correlation robust hash function H : {0, 1}κ →
{0, 1}`, PRG G : {0, 1}κ → {0, 1}m
Input: S has m correlation offsets c = (c1, . . . , cm), cj ∈ {0, 1}`. R has m choice
bits r = (r1, . . . , rm) ∈ {0, 1}m .
Result: S gets pseudorandom (x01, . . . , x

0
m) andR gets (x01+r1 ·c1, . . . , x0m+rm ·cm)

Bootstrap phase
1: S generates random bit string s = (s1, . . . , sκ)
2: R generates random κ-bit seed pairs (k0i , k1i) ∈ {0, 1}

2κ for i ∈ [κ]
3: Perform

(
2
1

)
-OTκ

κ with choices si and messages k0i , k1i
Online phase

4: R generates a m× κ bit matrix T with columns ti = G(k0i) and rows tj
5: R computes ui = ti ⊕G(k1i)⊕ r and sends ui to S for each i ∈ [κ]
6: S computes qi = (si · ui)⊕G(ksii) . qi = (si · r)⊕ ti

7: S builds a m×κ bit matrix Q with columns qi and rows qj . qj = (rj · s)⊕ tj
8: S computes x0j = H(qj) and x1j = x0j + cj for j ∈ [m]
9: S sends yj = x1j ⊕H(qj ⊕ s) to R for j ∈ [m]
10: R computes xrjj = (rj · yj)⊕H(tj) for j ∈ [m]

11: return (x0j , x
rj
j) for all j ∈ [m]

The correlated OT extension is more efficient then the protocol for standard(
2
1

)
-OT presented in [ALSZ13], since the latter requires sending two messages y0j

and y1j in the online phase, whereas the correlated version sends only one message.
Also, not all m transfers have to be done at the same time, rather, they can
be streamlined, since each transfer only requires calculating the next row in the
matrices T and Q. Since R generates the bit matrix T column-wise, but needs
to access its rows to compute H(tj), a bit matrix transposition is needed in the
implementation. Similarly, also S has to transpose the matrix Q. This can be a
computational bottleneck, as shown originally in [ALSZ13], meaning an efficient
transposition algorithm is important for performance.

Theoretically, the matrix T can also be precomputed entirely by the receiver,
but this does not give much practical performance gains, since generating pseudo-
randomness is not the bottleneck of the protocol, but rather, bit matrix transpo-
sition and hashing are.

We now prove the input privacy of the correlated OT extension protocol.

Theorem 3. The ALSZ13 correlated OT extension protocol in Protocol 1 is com-
putationally input-private, assuming a secure PRG G, a correlation-robust hash
function H and a computationally secure protocol for

(
2
1

)
-OTκ

κ.

33

Proof. We show a simulation for both corrupted sender and receiver in the hybrid
model where the parties have access to an ideal

(
2
1

)
-OTκ

κ functionality.

Corrupted sender. In the hybrid model, the corrupted sender sends s to the
ideal

(
2
1

)
-OTκ

κ functionality. In the simulation, we forward this to
(
2
1

)
-OTκ

κ and also
simulate the receiver’s inputs k0i , k1i for i ∈ [κ] by generating uniformly random
values and give them as inputs to

(
2
1

)
-OTκ

κ. The simulator then receives ksii for i ∈
[κ] from

(
2
1

)
-OTκ

κ and sends it to the corrupted receiver. Overall, this simulation of
the bootstrap phase is perfect, since k0i , k1i are also generated uniformly randomly
in the real protocol by the receiver.

For the online phase, the simulator simply chooses uniformly random ui for each
i ∈ [κ]. Since the sender has no information about k1−sii (due to security of

(
2
1

)
-OT),

we have that the value computed in the real protocol ui = G(k0i) ⊕ G(k1i) ⊕ r is
computationally indistinguishable from the uniform distribution, as it is masked
by G(k1−sii). Therefore, this simulation is perfect.

Corrupted receiver. To simulate the bootstrapping phase for corrupted re-
ceiver, the simulator simply receives k0i , k1i from corrupted receiver. Since the
receiver does not get any output from the bootstrapping phase, this is enough to
simulate it.

In the online phase, we are left with having to simulate the message yj. The
simulator first generates the values of ti and ui as in the protocol description,
based on the received k0i , k1i . We then consider the cases of rj = 0 and rj = 1
separately (the simulator can make the distinction since it knows the receiver’s
input r). In the real protocol, we have that

yj = (x0j + cj)⊕H(qj ⊕ s) = (x0j + cj)⊕H((rj · s⊕ tj)⊕ s) .

For rj = 0, we have that this equals (x0j + cj)⊕H(tj ⊕ s). The receiver knows
the values of tj, but not s. Therefore, due to the correlation robustness prop-
erty, we have that H(tj ⊕ s) is computationally indistinguishable from a uniform
distribution for all j ∈ [m]. Note that computational indistinguishability holds,
since tj is generated by a secure pseudorandom generator. Therefore, any advan-
tage gained by the distinguisher in the correlation robustness definition due to tj
being pseudorandom not uniformly random, can be reduced to an attack against
the pseudorandom generator G9. This also means, that yj is computationally in-
distinguishable from uniform randomness and we can simulate it by generating a
uniformly random value.

9We admit that there is a downgrade from the level of security of the PRG and correlation-
robust hash for the whole protocol due to this reduction, which requires a more formal analysis.

34

For rj = 1, we have that yj = (x0j + cj)⊕H(tj) in the real world. In this case,
we simulate yj first by generating uniformly random x1j and computing the value
x1j ⊕H(tj). If rj = 1, then x0j = H(qj) = H(tj ⊕ s). Using the same argument as
for the case rj = 0, we have that x0j is indistinguishable from uniform randomness,
and therefore, so is x1j = x0j + cj due to Lemma 1 in Section 2.3, which matches
our simulation.

Note that the proof applies actually to all cases where the correlation function
f is a bijection on the message space, since then we have that f(x0j) is uniformly
random for uniformly random x0j . We also stress that the input privacy property
together with the correctness guarantee of the output distributions is enough to
show security of the Beaver triple generation protocol in Section 4 through compo-
sition with a secure protocol. Intuitively, input privacy gives us the guarantee that
the outputs of both parties are independent of the other party’s input. Correctness
ensures that an honest execution produces the correct output distributions in the
sense that the sender’s output x0j is pseudorandom and the receiver gets x0j + cj.

In addition, we point out that from Protocol 1 implementing
(
2
1

)
-COTm

` , we
can trivially construct a protocol for

(
2
1

)
-COTm

t , where t < ` that retains all the
security properties we have shown. We simply replace the correlation-robust hash
H with H ′ that outputs the first t bits of the output of H, which retains correlation
robustness. Naturally, this holds also, if H is modeled as a random oracle.

3.2 Random OT extension

Another useful variant of oblivious transfer that we use in our protocol suite is
random OT. In this case, both of the sender’s messages are arbitrarily generated
in the protocol, without even a correlation. As such, the sender actually has no
input to this protocol. We can then define the ideal functionality

(
2
1

)
-ROT as

F(21)-ROT(⊥, b) = ((s0, s1), sb), where both s0 and s1 are computationally indistin-
guishable from uniform randomness.

The random OT extension protocol from [ALSZ13] reduces communication
even more, by not requiring to send the message yj in the online phase at all.
We present the protocol as Protocol 2. The protocol is nearly identical to the
correlated OT version, except the message x1j is also calculated directly from the
hash output.

However, we need to assume a slightly different notion of correlation robustness
in this case, to show that the values xj0, x

j
1 are pseudorandom.

Definition 10 (Output correlation robustness). An efficiently computable function
H : {0, 1}κ → {0, 1}` is said to be output correlation-robust for m messages, if

35

(H(t1), . . . , H(tm), H(t1 ⊕ s), . . . , H(tm ⊕ s))
c
≈ Um·2`

for uniformly random and independent choices of t1, . . . , tm, s from {0, 1}κ.

As with the original correlation robustness property, we have that a uniformly
random function is output correlation robust, similarly to the original correlation
robustness definition. However, there is no trivial reduction to the original corre-
lation robustness property, and as such, it is not clear whether this is a stronger or
weaker assumption to make. We have currently left this analysis out of the scope
of the thesis.

Protocol 2 Random OT extension from [ALSZ13]
Functionality:

(
2
1

)
-ROTm

`

Setup: Security parameter κ, output correlation robust hash function H :
{0, 1}κ → {0, 1}`, PRG G : {0, 1}κ → {0, 1}m
Input: R has m choice bits r = (r1, . . . , rm) ∈ {0, 1}m
Result: R gets (xr11 , . . . , xrmm), S gets pseudorandom x0j , x1j for j ∈ [m]

Bootstrap phase
1: S generates random bit string s = (s1, . . . , sκ)
2: R generates random κ-bit seed pairs (k0i , k1i) ∈ {0, 1}

2κ for i ∈ [κ]
3: Perform

(
2
1

)
-OTκ

κ with choices si and messages k0i , k1i
Online phase

4: R generates a m× κ bit matrix T with columns ti = G(k0i) and rows tj
5: R computes ui = ti ⊕G(k1i)⊕ r and sends ui to S for each i ∈ [κ]
6: S computes qi = (si · ui)⊕G(ksii) . qi = (si · r)⊕ ti

7: S builds a m×κ bit matrix Q with columns qi and rows qj . qj = (rj · s)⊕ tj
8: S computes x0j = H(qj) and x1j = H(qj ⊕ s) for j ∈ [m]
9: R computes xrjj = H(tj) for j ∈ [m]

10: return ((x0j , x
1
j), x

rj
j) for j ∈ [m]

Theorem 4. The ALSZ13 random OT extension protocol in Protocol 2 is correct,
assuming an output correlation-robust hash function H, secure PRG G and secure(
2
1

)
-OTκ

κ protocol.

Proof. Since qj = tj ⊕ (rj ⊕ s), it is easy to see that H(tj) = x
rj
j . In addition

we have that to show that x0j and x1j are pseudorandom. This follows directly
from the output correlation robustness definition Def. 10, since the values of qj
are computationally indistinguishable from uniform randomness and s is generated
uniformly randomly.

36

Note that in the case random OT, the sender has no input and as such, having
correctness and input privacy alone does not guarantee that the receiver learns
no information about the other message generated by the sender. However, this
follows directly from the output correlation robustness assumption.

Theorem 5. The ALSZ13 random OT extension protocol in Protocol 2 is compu-
tationally input-private, assuming a secure PRG G and a computationally secure
protocol for

(
2
1

)
-OTκ

κ. The messages x1−rjj are computationally indistinguishable
from uniform randomness to the receiver, for receiver’s choice bits rj ∈ {0, 1} for
j ∈ [m] assuming H is a output correlation robust function.

Proof. For a corrupted sender, the simulation is identical to the correlated OT
protocol simulation in Theorem 3. For corrupted receiver, we only have to simulate
messages in the bootstrap phase, which is also identical to the first part of the proof
regarding corrupted receiver in Theorem 3. For the simulation, we do not use the
output correlation robustness.

However, to show that R cannot learn the messages x1−rjj , we directly invoke
the output correlation robustness definition, since then, x1−rjj is pseudorandom
independently of xrjj for all j ∈ [m].

3.3 1-out-of-N OT extension

We now present the the [KK13] protocol for
(
n
1

)
-COT. Again we present the

correlated version directly, as it is more communication-efficient than the corre-
sponding

(
n
1

)
-OT protocol. Interestingly, the KK13 protocol is equivalent to the

ALSZ13 protocol for the case n = 2, although the papers appeared independently.
As the original paper does not present any formal proof of security or required

security assumptions [KK13], we present our own proof, which is naturally derived
from the ALSZ13 security proof. Our first task is to generalize the correlation
robustness property for the

(
n
1

)
-OT case, which we present in Def. 11.

Definition 11. An efficiently computable function H : {0, 1}κ → {0, 1}` is said
to be n-correlation-robust for m messages and c1, . . . , cn ∈ {0, 1}κ where n < κ, if
it holds that

(t1, . . . , tm, H(t1 ⊕ (s� cr1,1)), . . . , H(t1 ⊕ (s� cr1,n)),
. . . ,

H(tm ⊕ (s� crm,1)), . . . , H(tm ⊕ (s� crm,n)))
c
≈ Um·(κ+`(n−1))

37

for uniformly random and independent choices of t1, . . . , tm, s from {0, 1}κ and
fixed values c1, . . . , cn, where ci,j = ci⊕ cj. Each row H(ti⊕ (s� cri,1)), . . . , H(ti⊕
(s� cri,n)) contains all elements except for the element H(ti⊕ (s� cri,ri), therefore
a total of n − 1 elements. The values 1 ≤ ri ≤ n for i ∈ [m] are chosen by the
distinguisher.

Here we denote the point-wise product of two bit strings with �. We now
explain the reasoning behind this definition. First notice that for n = 2, if we
choose c1 = 0κ and c2 = 1κ (all zeroes and all ones), the definition is exactly
equivalent to correlation robustness as defined in Def. 8. We also mention that the
n-correlation robustness as defined seems to be a special case of a more general
correlated input pseudorandomness definition presented in [GOR11], but the exact
relationships between the definitions requires more analysis.

In our case for the
(
n
1

)
-COT protocol, we require that the values ci should

have a pair-wise minimum distance as high as possible. That is, the value d =
mini,j∈[n],i 6=j ci⊕ cj should be high, so that the security parameters are not affected
as much. Since we are interested in the minimum distance of these elements, we
can refer to them as codewords. We now give some informal arguments as to how
the value of n affects the security parameter κ in the definition. Intuitively, it is
clear that as n is larger, the distinguisher sees more hash outputs and can make a
more informed decision and we therefore need to increase the security parameter.

If we consider the 2-correlation robustness definition Def. 8, then we can argue
that, irrespective of the hash function used, the distinguisher has a better chance
of distinguishing the hash outputs from randomness in two cases. First, if there
are collisions in the inputs of the hashes, there are guaranteed repeating values
also in the outputs. Secondly, if the secret value s happens to be zero, then the
distinguisher easily wins, as he knows the inputs to the hashes and can compute
the hash on these and compare it to the challenge.

In Def. 8 specifically, the collision of inputs is actually not a problem, since this
happens exactly with the same probability as when uniformly random values are
given to the distinguisher instead of the hash outputs. The probability of s = 0 is
exactly 2−κ, so overall, we can postulate that the definition gives us κ-bit security,
given that the hash outputs are “sufficiently random”.

In the general n-correlation robustness definition, there are more possibilities
for the value s � cri,j to be 0. Here is precisely where we consider the minimum
distance d of the codewords c1, . . . , cn, since Pr[s � ci,j = 0] ≤ 2−d for fixed i, j.
Since there are

(
n
2

)
elements ci,j with i 6= j, we have that the total probability for

generating s such that any s� ci,j = 0 is bounded by
(
n
2

)
· 2−d.

However, we also have to consider collisions in the hash inputs, that is, the
probability of having ti⊕ (s� cri,v) = tj ⊕ (s� crj ,u). In case of i = j, we certainly
have u 6= j and the collision happens exactly if s� (cri,v ⊕ crj ,u) = s� cu,v = 0, for

38

which we know the probability is 2−d. Given that there are n codewords, the total
probability for these types of collisions is n · 2−d, which is bounded by

(
n
2

)
· 2−d.

In the case of i 6= j, after generating ti and s and fixing cri,v and crj ,u, exactly
one value of tj makes the equality hold. Therefore when generating tj, the prob-
ability for a collision is 2−κ for that specific pair. For fixed rows i and j there
are at most

(
n
2

)
different pairs cri,v, crj ,u. Hence, the probability that a tj makes

one of these pairs collide, given fixed s and ti, is at most
(
n
2

)
· 2−κ. Notice that

the same probability bound for collisions holds when simply generating two rows
of uniformly random values. Therefore, these types of collisions are roughly as
likely in both scenarios and do not provide an advantage to the distinguisher. The
overall probability of generating “bad” values that help the distinguisher is then
still bounded by

(
n
2

)
· 2−d.

From this analysis, we can conclude that to achieve the same level of security
κ2 as in the 2-correlation robustness definition, the security parameter κn for n-
correlation robustness should be chosen such that there exist codewords c1, . . . , cn
with minimum distance d, such that

(
n
2

)
· d ≥ κ2. With a loss in a few bits of

security for small n, we can simply take d ≥ κ2. In other words, the minimum
distance of the codewords defines the equivalent security level to the 2-correlation
robustness definition. Note that we require n codewords with length κn that have
minimum distance d. To minimize κn, we can therefore use the Plotkin bound to
find the smallest achievable value of κn for given d and n [Plo60]. These bounds are
in fact achievable and we present concrete sets of codewords reaching the Plotkin
bound in Appendix A.

Note that this reasoning agrees also with the original paper, where Walsh-
Hadamard codes are used in the protocol [KK13]. The authors postulate that
since Walsh-Hadamard codes have d ≤ κn/2 then the security parameter κn should
be roughly twice from that of the equivalent [IKNP03], the security of which
can be based on 2-correlation robustness. Our insight, that we use to optimize
communication in the Beaver triple generation protocol, is exactly that of using
more efficient codes according to the Plotkin bound, when n is small, say 4 or 8.

We now finally present the protocol itself and give a proof of input privacy
using our definition of n-correlation robustness.

Theorem 6. The KK13 1-out-of-N correlated OT extension protocol in Protocol 3
is correct, assuming an n-correlation robust hash function H, secure PRG G and
secure protocol for

(
2
1

)
-OTκ

κ.

Proof sketch. We have that qj = tj,0 ⊕ (s � crj). For rj = 1, we therefore have
tj,0 = qj ⊕ (s� c1) and the receiver computes the correct message x1j . For rj > 1,
we have that H(qj ⊕ (s� crj) = H(tj,0) and therefore, the receiver computes the
correct message xrjj . We also need to show that x1j is pseudorandom. This follows

39

Protocol 3 Correlated 1-out-of-N OT extension protocol from [KK13]
Functionality:

(
n
1

)
-COTm

`

Setup: Security parameter κ where n ≤ κ, n-correlation robust hash H :
{0, 1}κ → {0, 1}`, codewords (c1, . . . , cn) with minimum distance d ≤ κ and length
κ, PRG G : {0, 1}κ → {0, 1}m
Input: S has correlation offsets cij ∈ {0, 1}

` for j ∈ [m], i ∈ {2, . . . , n}, R has m
choice integers r = (r1, . . . , rm) where ri ∈ [n]
Result: R gets (xr11 , . . . , xrmm), S gets m pseudorandom `-bit values x11, . . . , x1m

Bootstrap phase
1: S generates random bit string s = (s1, . . . , sκ)
2: R generates random κ-bit seed pairs (k0i , k1i) ∈ {0, 1}

2κ for i ∈ [κ]
3: Perform

(
2
1

)
-OTκ

κ with choices si and messages k0i , k1i
Online phase

4: R generates a m× κ bit matrix T0 with columns ti0 = G(k0i) and rows tj,0
5: R computes a m× κ bit matrix T1 with rows tj,1 = tj,0 ⊕ crj and columns ti1
6: R sends ui = ti1 ⊕G(k1i), S computes qi = (si · ui)⊕G(ksii)
7: S builds a m× κ bit matrix Q with columns qi and rows qj . qi = tisi and

qj = tj,0 ⊕ (s� (tj,0 ⊕ tj,1)) = tj,0 ⊕ (s� crj)
8: S computes x1j = H(qj ⊕ (s� c1)), xij = x1j + cij for 2 ≤ i ≤ n, j ∈ [m]
9: S sends yrj = xrj ⊕H(qj ⊕ (s� cr)) to R for 2 ≤ r ≤ n, j ∈ [m]
10: Receiver computes xrjj = y

rj
j ⊕H(tj,0) . y1j = 0 and is not sent

11: return (x1j , x
rj
j) for j ∈ [m]

from a similar argument as in Lemma 2, modified to the generalized correlation
robustness definition.

Theorem 7. The correlated 1-out-of-N OT extension protocol presented in Proto-
col 3 is computationally input-private, assuming a secure PRG G, an n-correlation-
robust hash function H and a computationally secure protocol for

(
2
1

)
-OTκ

κ.

Proof. The proof is very similar in structure to the input privacy proof of ALSZ13
correlated OT protocol in Theorem 3.

Corrupted sender. Simulation for the bootstrapping phase is identical to the
proof of ALSZ13 correlated OT protocol in Theorem 3. We additionally need to
simulate the message ui to the corrupted sender. This can be perfectly simulated
by generating a uniformly random element from {0, 1}m, since

ui = G(k0i)⊕G(k1i)⊕ ci

where ci consists of the bits (cr1 [i], . . . , crm [i]). As ui is masked with G(ksi−1i), it
is computationally indistinguishable from uniform randomness for the adversary.

40

Corrupted receiver. The simulation of the bootstrapping phase follows the
proof of Theorem 3. Now, we need to simulate the messages yrj for 2 ≤ r ≤ n.
First, we consider the case r = rj. Then we have that

y
rj
j = x

rj
j ⊕H(qj ⊕ (s� crj)) = x

rj
j ⊕H(tj,0 ⊕ (s� (crj ⊕ crj)))

= x
rj
j ⊕H(tj,0) = (x1j +H(tj,0 ⊕ (s� (c1 ⊕ crj))))⊕H(tj,0) .

Note, that rj 6= 1. Here, we can therefore use the n-correlation robustness
property of H, to conclude that the values H(tj,0⊕ (s� (c1⊕ crj))) are computa-
tionally indistinguishable from uniform randomness for all j ∈ [m], since tj,0 are
pseudorandom. A simple hybrid argument suffices to replace the pseudorandom
tj,0 with a uniformly random one (due to security of the PRG). Therefore, for
the case rj = r, we can simulate yrj perfectly by generating a uniformly random
element.

Now consider the case r 6= rj. We now have

yrj = xrj ⊕H(qj ⊕ (s� cr)) = x
rj
j ⊕H(tj,0 ⊕ (s� (cr ⊕ crj))) .

Similarly as before, we use the n-correlation robustness assumption to conclude
that yrj can be simulated perfectly by generating a uniformly random value. This
concludes the proof, as we have simulated all messages perfectly for a corrupted
receiver.

3.4 Implementing the base OT

We briefly comment in this section about our assumption of a secure
(
2
1

)
-OTκ

κ proto-
col, that we have made in the OT extension protocols’ security proofs. As we have
made efforts to avoid the random oracle model, a suitable instantiation would be for
example the protocol from [NP01], which relies on the standard decisional Diffie-
Hellman assumption. However, the protocol is not fully simulatable and therefore,
we would lose security guarantees in the concurrent model. Alternatively, the effi-
cient protocol of [CO15] is UC-secure against malicious adversaries, but relies on
a programmable random oracle. It is possible that a passively-secure adaptation
of the protocol could be shown secure under weaker assumptions. The [ALSZ13]
paper also presents a fully simulatable OT protocol, that relies on the pseudoran-
dom output of key derivation functions. Finally, the actively UC-secure protocol
of [Lin08] is fully simulatable and relies only on standard computational assump-
tions, and is therefore the most conservative choice in terms of security, but also
the most costly in terms of performance.

As we actually only require a random OT functionality in the bootstrapping
phase (the values k0i , k1i are generated randomly), then we might be able to use
more efficient protocols by relying on an input privacy argument similarly to how

41

we have approached the OT extension protocols in this section. However, this
requires more careful analysis also in the current proofs. Overall, we leave the best
choice of a base OT protocol regarding both efficiency and the required security
assumptions as future work. The overall efficiency of the precomputation phase is
not much affected by this choice, since the cost of the base OT-s amortizes away
as we can extend them to a much large amount of oblivious transfers.

42

4 Beaver triple generation
This section is dedicated to Beaver triples, which form the basis for all protocols
in our implemented two-party protection domain. We first describe what Beaver
triples are and describe efficient protocols based on oblivious transfer extension for
generating them, which use the protocols we have described in the previous sec-
tion. The rest of the section focuses on efficient practical implementations of these
methods. Especially, we provide some novel communication optimizations based
on the

(
n
1

)
-OT extension protocol of [KK13]. We describe our implementation of

the triple generation protocols and describe the practical challenges we discovered.
Finally, we present benchmark results for our implementation.

4.1 Beaver triples

The famous paper by D. Beaver in 1991 proposed a method to reduce the round-
complexity of BGW-style protocols [Bea91]. The general idea is to precompute the
multiplication gates for an arithmetic circuit using random inputs (and receiving
random results). In the online phase, these precomputed random multiplication
triples can be used to do the actual multiplication more efficiently.

A Beaver triple is a multiplication triple [[a]] · [[b]] = [[c]], where the values of
a, b are random and c = a · b. For our purposes, we consider the additive secret
sharing scheme for the Beaver triple values, although any linear secret sharing
scheme could be used. In the three-party setting with passive security, performing
a multiplication on additively shared integers can be done using a simple one-round
input-private protocol [BNTW12]. In the two-party setting, Beaver triples enable
a similar input-private protocol with only one round, assuming that the parties al-
ready share a random Beaver triple. The multiplication protocol itself is presented
in Section 5, where we describe our full two-party protocol suite (Protocol 14).

The multiplication protocol makes use of a single Beaver triple to perform a
multiplication of two secret-shared inputs. However, the triples can be computed
by the parties in an offline precomputation phase, since they are independent of
the inputs. Therefore, our two-party protocol suite adopts the offline-online model
of computation [DN07]. The actual computations on secret data are performed in
an online phase, which we outline in Section 5. However, all protocols in the online
phase require Beaver triples, and as such, we need to precompute them beforehand
in the offline phase. The offline phase itself is more costly in terms of computation
and communication, which is why the main focus of this work is in optimizing the
generation of Beaver triples.

We define now what security properties we require from the generated Beaver
triples. Intuitively, the triple values should be random and a party should have
no information about the other party’s shares of the triple. We therefore define

43

an ideal functionality for a protocol run between parties CP1, CP2 which takes no
inputs and outputs a triple [[a]] · [[b]] = [[c]] shared between the parties.

Definition 12. An ideal functionality FB for computing Beaver triples is defined
as follows. FB takes no inputs and generates a ← Z2`, b ← Z2` and computes
c = a · b. Then FB computes ([[a]]1, [[a]]2) ← Share(a), ([[b]]1, [[b]]2) ← Share(b) and
([[c]]1, [[c]]2) ← Share(c), where Share(·) belongs to a perfectly secure (2, 2)-secret
sharing scheme according to Def. 2. Finally, FB outputs ([[a]], [[b]], [[c]]) secret-shared
between parties CP1 and CP2.

Definition 13. We say π is a secure Beaver triple generation protocol, if it is
computationally secure w.r.t to the ideal functionality FB defined in Def. 12.

Analogously to additive multiplication, we can perform bitwise conjunction of
bitwise shared integers, using a triple of the form [[a]]∧ [[b]] = [[c]] in bitwise sharing.
The conjunction protocol and required security properties for the triple are iden-
tical to the additive multiplication case. Notice also that the ideal functionality
defined in Def. 12 also holds for conjunction triples, if we consider triples over Z2.
A conjunction triple for Z`2 is then trivial to construct by concatenating the shares
of single bit triples together locally.

Next, we discuss how to implement a secure protocol for Beaver triple genera-
tion using oblivious transfer extension.

4.2 Computing multiplication triples with oblivious transfer

This section leads to presenting a secure protocol for generating Beaver triples
as Protocol 6, which was presented in [DSZ15].

4.2.1 Gilboa’s protocol

We first require a sub-protocol for computing the product of two integers x, y ∈ Z2` ,
where x is known by CP1 and y by CP2. The protocol in Protocol 4 was introduced
by N. Gilboa [Gil99]. In the original paper, the protocol is used as a building block
for two parties to generate a shared RSA key that allows threshold decryption.
The original protocol uses

(
2
1

)
-OT to accomplish this, however it can be naturally

adjusted to use
(
2
1

)
-COT instead as presented in [DSZ15]. We present the more

efficient
(
2
1

)
-COT version as Protocol 4.

44

Protocol 4 Gilboa’s protocol for multiplying `-bit integers held by different parties
using

(
2
1

)
-COT`

Functionality: F(x, y) = [[z]], such that z = xy
Input: CP1 inputs x, CP2 inputs y
Result: Additively shared result [[z]]
1: for i ∈ [`] do . Perform a

(
2
1

)
-COT for each bit

2: CP1 fixes a correlation offset ci = x · 2i−1
3: Perform

(
2
1

)
-COT` with correlation offset ci from CP1 and choice bit y[i]

from CP2. CP1 receives si,0 and CP2 receives ti = si,0 + y[i] · ci.
4: end for
5: CP1 fixes [[z]]1 = −

∑`
i=1 si,0

6: CP2 fixes [[z]]2 =
∑`

i=1 ti =
∑`

i=1 y[i] (x · 2i−1) + si,0
7: return [[z]]

We stress that all computations performed in the protocol are modulo 2`. We
now show correctness and input privacy for Gilboa’s protocol.

Theorem 8. Gilboa’s protocol for multiplying `-bit integers held by different parties
using

(
2
1

)
-COT` in Protocol 4 is correct, assuming a correct protocol for

(
2
1

)
-COT`

`.

Proof. The correctness of the protocol is straightforward as we can consider the
binary representation of y as y =

∑`
i=1 y[i] · 2i−1. Then we have

[[z]]2 + [[z]]1 =
∑̀
i=1

ti −
∑̀
i=1

si,0

=
∑̀
i=1

y[i]
(
x · 2i−1

)
+ si,0 −

∑̀
i=1

si,0

= x
∑̀
i=1

y[i] · 2i−1

= xy .

We also have correctness of the output distribution, since the correctness of(
2
1

)
-COT`

` assures pseudorandom distribution for each si,0.

Theorem 9. Protocol 4 is computationally input-private assuming a correct and
computationally input-private protocol for

(
2
1

)
-COT`

`.

Proof. Since the only communication is performed in the
(
2
1

)
-COT execution, input

privacy follows directly from the input privacy of
(
2
1

)
-COT, since we have an ordered

composition.

45

We note an optimization trick that can be used to reduce communication
in Protocol 4, which was pointed out in [DSZ15]. Notice that when perform-
ing

(
2
1

)
-COT` for calculation of the i-th bit of the result, the correlation offset ci

only retains the ` − i + 1 least significant bits of x, and the rest are zero, since
they are discarded modulo 2`. Therefore, we can reformulate the protocol to use
ci = x mod 2`−i+1 and perform a

(
2
1

)
-COT`−i+1 instead. Later, the ti and si values

need to be adjusted accordingly to produce the correct result. This optimization
does not affect security if we use the ALSZ13

(
2
1

)
-COT protocol (Protocol 1), since

we have shown that performing
(
2
1

)
-COTt for t < ` is straightforward under the

same security assumptions.

4.2.2 Secure resharing

For Beaver triple generation, we require a secure resharing step to ensure that the
outputs of the protocol are uniformly random and that we can perfectly simulate
these shares. The Reshare protocol in Protocol 5 is also an invaluable tool for
transforming input-private protocols into secure ones as we discuss in Section 5.

Protocol 5 Reshare of `-bit additive types
Functionality: F([[x]]) = [[x′]], where x = x′

Input: Shared value [[x]]
Result: Shared value [[x′]]

1: Both CP i generate ri ← Z2` and send ri to CPj
2: Both CP i compute [[x′]]i = [[x]]i − ri + rj
3: return [[x′]]

Theorem 10. The Reshare protocol in Protocol 5 is perfectly secure.

Proof. We can perfectly simulate the message rj for corrupt CP i by generating
ri ← Z2` and computing rj = [[x′]]i − [[x]]i + ri from ideal functionality’s output of
[[x′]]i. Thus, the values ri, rj provide a consistent view to the environment, since

[[x′]]j = [[x]]j − rj + ri = x− [[x]]i − [[x′]]i + [[x]]i − ri + ri = x− [[x′]]i .

Also, since ri is randomly generated, the output share [[x′]]i is uniformly random
and independent from [[x]]i due to Lemma 1 in Section 2.3.

Note that an analogous protocol can be constructed for bitwise shared values,
by computing [[x′]]i = [[x]]i ⊕ ri ⊕ rj as the new share for CP i. The security proof
for the bitwise case also follows the same reasoning.

46

4.2.3 Secure Beaver triple generation

We now turn to our Beaver triple generation protocol. The main idea is simple.
First, the parties can randomize their shares of [[a]] and [[b]] locally, which exactly
matches what is done by the ideal functionality FB in Def. 1210. It remains to
calculate shares for [[c]], such that c = ab. We have that

([[a]]1 + [[a]]2) · ([[b]]1 + [[b]]2) = [[a]]1 · [[b]]1 + [[a]]1 · [[b]]2 + [[a]]2 · [[b]]1 + [[a]]2 · [[b]]2 .

The multiplications [[a]]i · [[b]]i can be computed locally by CP i. For the multi-
plications [[a]]1 · [[b]]2 and [[a]]2 · [[b]]1, we can directly use Gilboa’s protocol presented
before as Protocol 4. Additionally, for full security we have to explicitly reshare
the output shares. We present the Beaver triple generation protocol as Protocol 6.

Protocol 6 Computation of `-bit multiplication triples
Functionality: FB according to Def. 12 for `-bit values
Input: No input
Result: Beaver triple [[a]] · [[b]] = [[c]]

1: CP i generate uniformly random values [[a′]]i ← Z2` , [[b′]]i ← Z2`

2: The parties compute [[u]] = [[a′]]1 · [[b′]]2 using Protocol 4
3: The parties compute [[v]] = [[a′]]2 · [[b′]]1 using Protocol 4
4: CP i fixes [[c′]]i = [[a′]]i · [[b′]]i + [[u]]i + [[v]]i
5: [[a]] ← Reshare([[a′]]), [[b]] ← Reshare([[b′]]) and [[c]] ← Reshare([[c′]])
6: return [[a]], [[b]], [[c]]

Theorem 11. The Beaver multiplication triple generation algorithm in Protocol 6
is correct w.r.t FB as defined in Def. 12.

Proof. For correctness, we require that [[c′]] = [[a′]] · [[b′]], since then also [[c]] =
[[a]] · [[b]]. From the correctness of Protocol 4, we have that [[u]]1+[[u]]2 = [[a′]]1 · [[b′]]2
and [[v]]1 + [[v]]2 = [[a′]]2 · [[b′]]1. Then

[[c′]] = [[c′]]1 + [[c′]]2

= [[a′]]1 · [[b′]]1 + [[u]]1 + [[v]]1 + [[a′]]2 · [[b′]]2 + [[u]]2 + [[v]]2

= [[a′]]1 · [[b′]]1 + [[a′]]1 · [[b′]]2 + [[a′]]2 · [[b′]]1 + [[a′]]2 · [[b′]]2
= ([[a′]]1 + [[a′]]2) · ([[b′]]1 + [[b′]]2)

= [[a′]] · [[b′]] .
10FB first generates a ← Z2` , then does ([[a]]i, [[a]]2) ← Share[[a]]. For additive sharing, this is

equivalent to generating random shares [[a]]1 ← Z2` , [[a]]2 ← Z2` , since then [[a]]1 + [[a]]2 is also a
uniformly random value.

47

Also, we have that the outputs are of the correct distribution, since shares of [[a]]
and [[b]] are generated uniformly randomly. Shares of [[c]] are also computationally
indistinguishable from uniform randomness, due to the correctness of Protocol 4,
which ensures [[u]]i and [[v]]i are pseudorandom, independently of [[a]]i and [[b]]i.

Theorem 12. The Beaver multiplication triple generation algorithm in Protocol 6
is computationally secure w.r.t FB defined in Def. 12.

Proof sketch. The security follows from the composition of an input-private and
secure protocol from [BLLP14]. The correctness of the correlated OT used in
Gilboa’s protocol suffices to show the output predictability of the whole compo-
sition as required in [BLLP14]. In short, since Protocol 4 is input-private, the
shares of [[a′]]i and [[b′]]i are not leaked to the other party. Adding a reshare step
ensures that the output shares are uniformly random and independent as they are
generated also in FB.

Note that both multiplications [[a]]1 · [[b]]2 and [[a]]2 · [[b]]1 can be performed inde-
pendently in parallel, since they have no data dependencies. This does not affect
security, since, in our model, the composition of two input-private protocols with-
out data dependencies is trivially input-private. Also, to even the computational
load of the computing parties, the parties can switch their roles in Protocol 4 for
the second multiplication. This means the sender and receiver roles for oblivious
transfer are reversed, which optimizes computation load, since the sender does
more work in most oblivious transfer protocols, including the oblivious transfer
extension protocols we have discussed.

4.3 Computing bitwise conjunction triples with random-OT

We present the protocol from [DSZ15] for generating conjunction triples using(
2
1

)
-ROT. Note that conjunction triples are actually 1-bit multiplication triples, so

we can also generate these using Protocol 6. However, bit-triples can be generated
using the more efficient random OT instead of correlated OT. First, we present a
sub-routine with no inputs for generating bit values ab = u ⊕ v, where (a, u) are
received by CP1 and (b, v) by CP2. We require from the ideal functionality that
a and b are generated uniformly randomly, and then ab is securely secret-shared,
that is, u and v are individually uniformly random.

48

Protocol 7 Computing (a, u), (b, v), where ab = u⊕ v
Functionality: F(⊥,⊥) = ((a, u), (b, v)) ab = u⊕ v for 1-bit values
Input: No input
Result: CP1 gets (a, u), CP2 gets (b, v)
1: CP1 generates a← {0, 1}
2: Perform

(
2
1

)
-ROT1 with choice bit a from CP1. CP1 gets xa and CP2 gets

pseudorandom x0, x1.
3: return ((a, xa), (x0 ⊕ x1, x0))

Theorem 13. The protocol for generating random bit values ab = u ⊕ v between
two parties in Protocol 7 is correct assuming a correct protocol for

(
2
1

)
-ROT1 that

does not leak the other message to the receiver, as in Theorem 5.

Proof. From the calls to Protocol 7, we have that a1b2 = u1⊕v2 and a2b1 = u2⊕v1.
Correctness follows from:

(a1 ⊕ a2) ∧ (b1 ⊕ b2) = a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ a2b2
= c1 ⊕ u1 ⊕ v1 ⊕ a1b2 ⊕ a2b1 ⊕ c2 ⊕ u2 ⊕ v2
= c1 ⊕ c2 .

For the output distributions, we first have that a is generated uniformly ran-
domly. From the correctness of

(
2
1

)
-ROT1, we have that v = x0 is pseudorandom,

and input privacy of
(
2
1

)
-ROT1 ensures x0 is independent of a. Correctness of(

2
1

)
-ROT1 also ensures that b = x0 ⊕ x1 is pseudorandom and independent of

v = x0, as x0 and x1 are independently pseudorandom. Also, b is independent of
a due to input privacy of

(
2
1

)
-ROT1.

Finally, u = xa is pseudorandom from correctness of
(
2
1

)
-ROT1, it is indepen-

dent of a due to input privacy of
(
2
1

)
-ROT1 and it is independent of b = x0 ⊕ x1

due to the guarantee that x1−a is not leaked to the receiver in
(
2
1

)
-ROT1.

The protocol is also trivially input-private as there are no inputs. Using two
invocations of this sub-routine, we can construct a bit conjunction triple generation
protocol, presented as Protocol 8.

49

Protocol 8 Computation of bit conjunction triples
Functionality: FB according to Def. 12 for 1-bit values
Input: No input
Result: Conjunction triple [[a]] ∧ [[b]] = [[c]]

1: Parties run Protocol 7. CP1 gets (a1, u1) and CP2 gets (b2, v2)
2: Parties run Protocol 7 with reversed roles. CP2 gets (a2, u2) and CP1 gets

(b1, v1)
3: Both CP i fix [[a′]]i = ai, [[b′]]i = bi, [[c′]]i = aibi ⊕ ui ⊕ vi
4: [[a]] ← Reshare([[a′]]), [[b]] ← Reshare([[b′]]) and [[c]] ← Reshare([[c′]])
5: return [[a]], [[b]], [[c]]

Theorem 14. The bit conjunction triple generation algorithm in Protocol 8 is
correct w.r.t FB defined in Def. 12.

Proof. From the calls to Protocol 7, we have that a1b2 = u1⊕v2 and a2b1 = u2⊕v1.
Correctness follows from:

(a1 ⊕ a2) ∧ (b1 ⊕ b2) = a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ a2b2
= c1 ⊕ u1 ⊕ v1 ⊕ a1b2 ⊕ a2b1 ⊕ c2 ⊕ u2 ⊕ v2
= c1 ⊕ c2 .

Concerning the distribution of outputs, we have that shares of [[a′]] and [[b′]]
are pseudorandom due to correctness of Protocol 7. Also, since ui and vi are
pseudorandom and produced by separate invocations of Protocol 7, also ui ⊕ vi
is pseudorandom. Therefore, shares of [[c′]] are also pseudorandom, since ui is
independent of ai, vi is independent of bi and also ai, bi are independent as they
are generated from separate invocations of correct Protocol 7.

Theorem 15. The bit conjunction triple generation algorithm in Protocol 8 is
computationally secure w.r.t FB defined in Def. 12.

Proof sketch. Security follows similarly as in the case of the multiplication triple
protocol Theorem 5.3.2 from composition, due to the input privacy and correctness
of Protocol 7.

4.4 Optimizing communication in Beaver triple generation

We now discuss how to further optimize the communication of the Beaver triple
generation protocol presented as Protocol 6. The rest of this section focuses specif-
ically on multiplication triples, since the protocol for generating conjunction triples
is already more efficient, by using random OT. As such, the optimizations dis-
cussed here are specific to methods based on correlated OT. Our main insight is

50

in fact using the KK13 protocol and
(
n
1

)
-OT for implementing Protocol 6, instead

of
(
2
1

)
-OT11.

We first establish a baseline protocol for triple generation and introduce our op-
timizations with respect to this baseline. Throughout this comparison, we assume
a strong security parameter κ = 128 for long-term security.

4.4.1 Baseline

We consider the baseline protocol to be the triple generation protocol presented
in Protocol 6 using the ALSZ13

(
2
1

)
-COT extension. We assume the two multi-

plications that require Gilboa’s protocol are done with reversed roles to even the
computational load of the parties. That is, one invocation of Protocol 4 has CP1

as the OT sender and CP2 as the receiver, and vice versa for the second invocation.
Notice also that these computations can be be performed independently in par-
allel. We immediately note that our implementation currently performs the two
invocations sequentially, however, the benchmarks clearly show this as a valuable
optimization for the future. We discuss this topic further in the Section 4.6.

We also include the optimization outlined in Section 4.2.1. This approach
theoretically saves a total of `·(`−1)

2
bits of communication in Gilboa’s protocol

(Protocol 4) for `-bit integers if we use ALSZ13
(
2
1

)
-COTt, since the yj value

has length t in Protocol 1. To the best of our knowledge, this is exactly the
protocol used for multiplication triple generation in the ABY framework [DSZ15],
disregarding the concrete instantiations used for the hash function and PRG. As
such, we can also later make a direct comparison with the benchmark results
from [DSZ15].

4.4.2 Using 1-out-of-N OT for Beaver triple generation

1-out-of-2Li Using the KK13 OT extension protocol (Protocol 3), we can per-
form

(
N
1

)
-COT for N > 2. We notice that this allows us to calculate more than

a single bit in the multiplication for Gilboa’s protocol using a single OT. Namely,
we can do an

(
2L

1

)
-OT to calculate L bits of the multiplication to get better com-

munication complexity than in the baseline protocol. In addition, we can vary the
value of L in successive OT-s for more communication cut-offs. We present this
approach as a more generalized version of Gilboa’s protocol in Protocol 9.

11Studying the possibilities for optimizing communication by using the KK13 protocol has been
the joint work of the thesis author, supervisors and Claudio Orlandi from Aarhus University.

51

Protocol 9 Gilboa’s protocol for multiplying `-bit integers held by different parties
using

(
2Li

1

)
-COT

Functionality: F(x, y) = [[z]], such that z = xy
Setup: Values L1, . . . , Lk, such that Li ≥ 1 and

∑k
i=1 Li = `

Input: CP1 inputs x, CP2 inputs y
Result: Additively shared result [[z]]
1: t = 0
2: for i ∈ [k] do . Perform

(
2Li

1

)
-COT for Li-bit chunks

3: CP1 fixes correlation offsets cji = x · 2t+j−2 for j ∈ 2, . . . , Li

4: CP2 fixes choice index ai =
(∑t+Li

j=t+1 2
j−t−1y[j]

)
+ 1

5: Perform
(
2Li

1

)
-COT` with correlation offsets cji from CP1 and choice index

ai from CP2. CP1 receives si,1 and CP2 receives ti
6: t = t+ Li
7: end for
8: CP1 fixes [[z]]1 = −

∑k
i=1 si,1

9: CP2 fixes [[z]]2 =
∑k

i=1 ti
10: return [[z]]

The input privacy and correctness of output distributions follows as in the proof
of original Gilboa’s protocol, but assuming an input-private and correct protocol
for each

(
Li

1

)
-COT i ∈ [k]. We now give intuition that the computed result is in

fact correct by going through a simple example of a two-bit multiplication with
one iteration L1 = 2. The idea is, that the receiver now chooses the correct
multiplication value based on 2 bits of his share. For two bits, we have that the
receiver’s choice is a ∈ [4], the binary representation of which matches the two bits
exactly. Notice, that the required result of the protocol is exactly (a− 1) ·x. Now,
the sender fixes the correlation offsets respectively, so that the receiver would get
the correct result, either 0 ·x, x, 2x or 3x, masked with the pseudorandom si,1. For
a = 1, the receiver gets exactly si, 1 and the shares thus cancel out in the result,
giving 0. For larger bit-length values, we can continue this process iteratively,
with the receiver obliviously choosing values (a− 1) · x · 2t, where a represents the
current bits after position t.

The reduction in communication complexity, when compared to the baseline
protocol, comes from the fact that the sender only sends one message (matrix row)
of length κ1 in the

(
2Li

1

)
-COT protocol for computing Li bits of the result. In the

baseline, we send a κ2-bit message for each bit in the multiplication, however, we
also have that κ2 < κ1. Additionally, the sender has to send a larger amount of
`-bit messages in the

(
n
1

)
-COT protocols, namely n− 1. However, since ` < κ2 for

computing common bit-length multiplication triples, we can find a suitable choice

52

of parameters for actually improving on communication complexity compared to
the baseline.

The same optimization for reducing the lengths of the OT messages applies
in the

(
n
1

)
-OT case also, as we can consider only the least significant bits of x

that are kept in the correlation offset. For using the KK13 protocols, we use
codewords that achieve the Plotkin bound, as we discussed in Section 3.3. We
have constructed the required sets of codewords by hand and they are presented
explicitly in Appendix A. We summarize the code parameters in Table 1.

Table 1: Parameters of codes used in our KK13 implementation.

Minimum distance d Number of codewords n Code length (bits) (κ)

128 2 128

128 4 192

128 8 224

128 16 240

The code lengths correspond to the required security parameter κ of the KK13
protocol and for performing

(
n
1

)
-OT, we need n distinct codewords with pair-wise

minimum distance d = 128. We did not need to use a larger number of messages
than 16 with our chosen parameters, but it is possible to perform up to

(
256
1

)
-OT

using for example Walsh-Hadamard codes with length 256 [KK13].
To get the best communication gain from the 1-out-of-2Li approach, we can

compute optimal values Li in terms of total communication and do the multipli-
cation with

(
2Li

1

)
-COT as in Protocol 9. We have computed optimal Li values

naively, by simply computing the total communication cost for all combinations
and picking the best solution. We present optimal values for different bit-length
triples below in Table 2. We perform our analysis and benchmarks for these com-
mon bit-length values, since we require triples of these bit-lengths for the online
phase protocols in Section 5.

Note that we use the security parameter required by the largest Li value for
all the OT-s and we computed optimal Li values assuming this. Theoretically,
we could use different security parameters for the different invocations, but that
would make the implementation quite a bit more complicated for performing these
OT-s in a single batch, as the matrix rows generated by the PRG-s would have
different lengths and would be inconvenient to transpose.

Also, note that we assume here, that the message length ` in
(
Li

1

)
-COT` is

always a multiple of 8, in other words a full byte, in accordance with our current
implementation. Again, this is an implementation difficulty, in having to pack

53

Table 2: Optimal Li values in terms of total communication when using 1-out-of-
2Li strategy using Protocol 9.

Triple
length `

Li values
Required KK13

security parameter κ
Communication

(bits)

8 (4,4) 240 1440

16 (4,4,4,4) 240 3360

32 (2,3,3,3,3,3,3,3,3,3,3) 224 7948

64 (2, . . . , 2) 192 19200

different bit-length messages together into a byte array, and we currently have not
implemented this. The communication costs also reflect this redundancy. With
bit-level packing, better communication can be achieved in all cases. However, our
computations show that with bit-level packing, the relative reduction in communi-
cation from using the KK13 methods is even slightly larger, although the baseline
protocol’s communication is also reduced.

1-out-of-4Li Another observation is that we can calculate one bit in the sum
[[a]]1 · [[b]]2 + [[a]]2 · [[b]]1 using a single call to

(
4
1

)
-OT, instead of 2 calls to

(
2
1

)
-OT.

Similarly to the previous, we can do 1-out-of-4Li to calculate also Li bits of the
result at once. This means we do yet another modified version of the Gilboa’s
protocol by choosing the choice bits and correlation offsets according to two values
that we are multiplying. However, in this case, we only do the oblivious transfer
in one direction. We do not give the full protocol description as it is not easily
presentable, and involves a lot of index manipulation for the general case with
arbitrary Li values.

We have also implemented this version and show the optimal Li values for this
strategy below.

Note that here, an Li value of 2 means the receiver chooses from a total of
42 = 16 messages, as we compute two bits from both multiplications in one go.

4.4.3 Summary

The total optimized communication in bits for different methods is presented in
the table below.

54

Table 3: Optimal Li values in terms of total communication when using 1-out-of-
4Li strategy in triple generation.

Triple
length `

Li values
Required KK13

security parameter κ
Communication

(bits)

8 (2,2,2,2) 240 1440

16 (2,2,2,2,2,2,2,2) 240 3360

32 (1, . . . , 1) 192 8064

64 (1, . . . , 1) 192 19200

Table 4: Optimized communication in bits for single `-bit triple computation with
different methods.

Triple
length `

baseline ALSZ13 KK13 1-out-of-2Li KK13 1-out-of-4Li

8 2176 1440 1440

16 4480 3360 3360

32 9472 7948 8064

64 20992 19200 19200

It can be seen that the advantage of using KK13 protocol over the baseline is
larger for smaller bit-lengths. We also see that using KK13 with

(
4
1

)
-OT does not

have communication gains compared to using
(
2
1

)
-OT. However, the advantage is

that only one-way oblivious transfer is required and we do not have to bootstrap
OT extension in both directions. However, round-complexity is not reduced in
principle, since in other cases we can perform the OT-s in both directions in
parallel.

It’s also important to compare how much more computation the KK13 pro-
tocols require, in terms of calls to the hash function. The table below presents
number of hash calls that a single computing party makes in total for computing
one `-bit triple.

Note that for the KK13
(
4
1

)
-OT case, we have that one party has the sender

role and the other the receiver. In the
(
2
1

)
-OT strategies, the two multiplications

are done with switched roles, and therefore, both parties perform the same amount
of hash calls. We can see that for smaller bit lengths (8 and 16), our KK13 proto-
cols require a few more hash computations than ALSZ13, but the improvement in

55

Table 5: Total number of hash function calls for a single computing party when
computing one `-bit triple with the communication-optimized protocols.

Triple
length `

baseline ALSZ13 KK13 1-out-of-2Li
KK13 1-out-of-4Li

(sender/receiver)

8 24 32 28 / 4

16 48 64 56 / 8

32 96 84 96 / 32

64 192 128 192 / 64

communication size is also larger for these lengths. For 32-bit and 64-bit triples,
the KK13 protocols require the same amount or less hash calls, but also the com-
munication improvement is less significant.

4.5 Implementation details

We have implemented both of the KK13 based triple generation protocols and also
the ALSZ13 baseline protocol. Our implementation currently lacks a base OT,
but the base OT has very little amortized effect on the overall precomputation
performance. For example, the benchmarks of [DSZ15] report less than a second
for performing the base OT-s. Our entire implementation is written in C++.

4.5.1 PRG

To instantiate the PRG, we use the AES-128 block cipher in CTR mode for the
PRG, which gives us 128-bit security. In the case where the OT extension parame-
ter κ = 128, we seed only the AES key with 128 bits, and take the IV (initialization
vector) as 0. For larger κ values (in KK13 protocols), we use the extra bits to also
seed the IV. This gives a unique PRG for each seed (supporting up to 256 bit
seeds), while still retaining at least 128-bit security for the PRG, according to the
NIST recommendations [BK12].

Using AES allows us to leverage the Intel AES-NI instruction set for much
better performance than a software implementation of AES. Especially, we can
process 8 blocks of output in parallel in CTR mode. We do not need to use
AES-NI intrinsics explicitly in our implementation code, as we use the OpenSSL
implementation of AES, which automatically uses AES-NI instructions by default
if they are supported by the hardware. Also, parallel encryption/decryption is
handled by the OpenSSL implementation in block cipher modes that allow it.

56

Overall, the PRG computations are not a bottleneck in our protocols, even though
we need to generate pseudorandomness from κ different PRG-s at the same time.

4.5.2 Hash function

For the correlation-robust hash function (or random oracle) we used the SHA-256
function in all cases. Currently we consider the security of SHA-256 to be suffi-
ciently well established to make it a suitable candidate for a strong hash function
to use in our OT extension protocols. There is of course a gap between the corre-
lation robustness definitions and an actual real-life hash function used in practical
applications. However, the correlation robustness assumption is definitely weaker
than that of the random oracle, as we know that random oracles do not exist.
In practical applications, however, random oracles are also commonly instantiated
with a single hash function.

Calculating the hash function was the clear bottleneck in the LAN (local area
network) setting of our benchmarks, where the communication links are fast, taking
up to 80% of the total running time. Due to this, we use multiple parallel threads
for calculating the hashes and we performed benchmarks with different numbers
of hashing threads. A SHA-256 implementation, which could leverage hardware
SIMD (single-instruction multiple-data) instructions for calculating many hashes
in parallel on a single thread would be very beneficial for increased performance.
Currently, we use the OpenSSL implementation of SHA-256, as local benchmarks
showed it is more efficient then the CryptoPP library one.

We also briefly considered and tested other instantiations, in particular SHA-
3 and an improved version of one of the SHA-3 finalists, BLAKE2. For SHA-3,
the only C++ implementation we found was from the CryptoPP library. Initial
benchmarks showed that it was ∼2 times slower than SHA-256.

For BLAKE2, we tested the official implementation (https://github.com/
BLAKE2/BLAKE2). Specifically, we used the SIMD-optimized Blake2b variant with
32-byte outputs. Although the BLAKE2 official web-site advertises very high
performance, we only observed relatively little performance gains in our protocols
compared to OpenSSL’s SHA-256. We suspect that the function and perhaps the
implementation also is fine-tuned for computing a single hash from very large input
data, but not for our use case of computing a huge amount of hashes on relatively
small inputs.

For benchmark comparisons with the ABY implementation [DSZ15], we also
implement hashing via fixed-key AES for the ALSZ13 protocol. The ABY paper
presents performance results for generating triples with ALSZ13 protocol using the
hash:

H(x, t) = AESK(x⊕ t)⊕ x⊕ t.

57

https://github.com/BLAKE2/BLAKE2
https://github.com/BLAKE2/BLAKE2

for input x and monotonically increasing nonce t. For the ALSZ13 correlated-
OT protocol, this construction of H needs to be a random oracle for security. The
assumption that fixed-key AES is an ideal random permutation is not enough for
H to be a random oracle. In fact, in the paper by Bellare et al [BHKR13], from
where this construction is borrowed, it is explicitly stated that the construction
is not indifferentiable from a random oracle. The [BHKR13] paper assumes AES
is an ideal random permutation and then gives concrete security bounds when
this construction is used in a larger protocol, specifically in Yao’s garbled circuits
protocol. Therefore, it seems dubious in terms of security to use this construction
of H directly as a random oracle. As stated, we default in our implementation
to SHA-256 as a better candidate for the strong security properties we require.
However, due to AES-NI instructions, the above construction is of course much
more efficient. Using multiple parallel threads for hashing evens out this overhead,
but also requires more powerful hardware.

4.5.3 Bit-level operations

Our bit matrix transposition uses a sequential algorithm, which employs Intel’s
SIMD AVX2 instructions. AVX2 constructions allow to operate directly with 256-
bit registers. In our case, we use these operations for bitwise XOR and bitwise
AND and a few other specific operations. With AVX2 instructions, we can perform
these bitwise operations on 256 bit inputs in roughly the same amount of processor
cycles, when performing a single 64-bit bitwise operation.

Our bit matrix transposition implementation is based on the code from12, mod-
ified to use AVX2 instructions, as the original code uses only SSE2 instructions
with access to 128-bit registers. Bit matrix transposition is required in all OT
extension protocols we have considered and is a rather costly computational task,
as already noted in [ALSZ13].

Local tests show that Eklundh’s algorithm [Ekl72] used in ABY (and originally
proposed in [ALSZ13]) performs slightly better than AVX2-based sequential algo-
rithm. Even more gains might be possible with a implementation of Eklundh’s
algorithm that leverages the SIMD-instructions. We currently have not imple-
mented Eklundh’s algorithm ourselves due to time constraints but this would also
help optimize our implementation.

4.5.4 Batching

Our current implementation generates triples in large batches. After some initial
testing, we chose to generate 100 000 triples in a single batch, so that the time
it takes to complete one batch is not too large. To generate a million triples, we

12https://mischasan.wordpress.com/2011/10/03/the-full-sse2-bit-matrix-transpose-routine/

58

calculate ten of these batches sequentially and so on. Note that for generating
100 000 triples, the corresponding batch size for OT is much higher. E.g for the
baseline ALSZ13 protocol and 64-bit triples, we have to perform 12 800 000 OT-s
in total using the OT extension.

We observed that performing triple generation in smaller batches sequentially
leads to longer total running time. However, doing the computation in one large
batch means that there is a significant overhead introduced by one party having
to wait for the other party to finish its computations and send the correspond-
ing network message. This overhead is not related to bandwidth or latency, but
rather the data dependencies of the network message on local computations. We
tried to reduce this overhead by using parallel threads for hashing, which is the
most intensive computation done in the protocols. However, using the PRG-s and
transposing bit matrices also takes up noticeable time on very large matrices.

Overall, in hindsight we can say a much more efficient batching strategy would
be to run smaller batches independently in parallel. This means local computations
and network communication is naturally more interleaved, although some overhead
is introduced for multiplexing the messages. Our current implementation does not
support this, but is a solid optimization strategy for the future. We also believe
it would give the KK13-based protocols more of an advantage over ALSZ13, even
when using a slower hash function. The current benchmark results presented next
support this hypothesis.

4.6 Benchmarks of precomputation techniques

We benchmarked triple generation based on three different OT extension flavors
and with the optimizations discussed for reducing communication:

1. ALSZ13 —
(
2
1

)
-COT extension from [ALSZ13]. One OT in both directions

for each bit of the triple component.

2. KK13-1-out-of-2 —
(
2Li

1

)
-COT OT extension from [KK13]. One OT in

both directions, each OT computes Li bits of the result.

3. KK13-1-out-of-4 —
(
4Li

1

)
-COT OT extension from [KK13]. A single OT

in one direction, each OT computes Li bits of the result.

4.6.1 Hardware used for benchmarking

The benchmarks were performed on a cluster of two machines, with a dedicated
fast 10 Gbit/s network link, 128 GB of RAM and two Intel Xeon E5-2640 v3 2,6
GHz/8GT/20M processors, meaning a total of 16 cores and 32 parallel threads
with Intel HyperThreading.

59

4.6.2 Network conditions

We performed benchmarks in both a LAN and WAN (wide-area network) setting.
The LAN setting means that network performance of the communication channel
is very high, especially, latency is very low. The WAN setting simulates low
performance network conditions, or when the computing parties are located very
far from each other geographically. We simulate the WAN setting in our local
cluster by using the Linux command line tool tc (traffic control). The WAN
setting parameters were chosen to match the benchmark conditions of [DSZ15] to
be able to compare them directly, since their precomputation implementation is
the most recent and state-of-the-art available in the same security model as ours.

• LAN — ∼ 0.1ms latency and up to 10Gbit/s bandwidth

• WAN — 170 ms latency (round-trip time) and throttled bandwidth at 70
Mbit/s (peak rate at 100 Mbit/s)

4.6.3 Total triple generation time

Times are reported in seconds for computing a total of 100 000 triples in a single
batch. The average time of ten iterations of these batches is shown for each
experiment. We performed tests in both LAN and WAN settings and using either
1, 4 or 16 parallel hashing threads. We did not observe any significant performance
gains when using more than 16 threads for batch size of 100 000 triples, probably
due to thread creation and scheduling related overhead.

We also include the benchmark results from [DSZ15] for 128-bit security in our
tables for comparison. Note that ABY benchmarks uses 2 parallel threads, that
perform OT on smaller batches, but use the network link in parallel. As such,
their batching strategy is more efficient then ours currently.

Also, as their implementation uses a much faster hash construction based on
AES, as we described above, we benchmarked our own baseline ALSZ13 with the
same hash construction for comparison (denoted as ALSZZ13 AES). The results
are presented below in Table 6.

60

Table 6: Total running times in seconds for the triple generation to compute 100
000 triples with different OT extension methods.

Threads Network Triple
length ALSZ13 ALSZ13

AES

KK13-(
2
1

) KK13-(
4
1

) ABY

1 LAN 8 1.94 0.60 3.07 2.87 0.3
1 LAN 6 3.42 1.12 5.65 5.24 0.6
1 LAN 32 6.32 1.97 7.42 5.91 1.1
1 LAN 64 12.01 3.82 11.93 11.74 2.7
1 WAN 8 6.05 3.98 7.29 6.49 4.6
1 WAN 16 11.85 7.75 12.78 12.16 8.2
1 WAN 32 21.94 16.02 21.56 20.41 11.1
1 WAN 64 44.33 35.16 44.81 44.73 22.4
4 LAN 8 0.91 0.53 1.13 1.14 0.3
4 LAN 16 1.62 0.96 2.15 1.90 0.6
4 LAN 32 3.09 1.71 3.05 2.63 1.1
4 LAN 64 5.49 3.25 5.31 5.14 2.7
4 WAN 8 4.39 3.90 3.84 3.65 4.6
4 WAN 16 8.58 7.61 8.39 7.75 8.2
4 WAN 32 18.10 15.45 16.55 16.63 11.1
4 WAN 64 37.93 33.89 38.26 38.27 22.4
16 LAN 8 0.60 0.48 0.57 0.54 0.3
16 LAN 16 1.10 0.86 1.01 0.99 0.6
16 LAN 32 1.93 1.60 1.64 1.71 1.1
16 LAN 64 3.51 3.09 3.24 3.08 2.7
16 WAN 8 3.99 3.92 3.01 2.89 4.6
16 WAN 16 7.75 7.53 6.32 6.20 8.2
16 WAN 32 15.95 15.52 14.11 14.80 11.1
16 WAN 64 34.86 34.07 34.94 35.95 22.4

Main observations

• ALSZ13 with fixed-key AES is fastest in all cases where 1 or 4 hashing threads
are used (exception is 8-bit triples in WAN setting). This is because a single
thread can produce 8 hashes in SIMD-parallel manner using AES-NI which
is much faster than non-SIMD software implementation of SHA-256. We can
also see that the ALSZ13-AES does not gain much performance from using
multiple threads, since the hashing is fast as it is.

• With 16 hashing threads, this difference is evened out, and network becomes
more of a bottleneck for all protocols, giving the KK13 protocols a compet-
itive edge due to reduced communication, even in the LAN setting.

61

• The KK13 protocols perform favorably in most cases for 32 and 64-bit triples,
compared to ALSZ13 using the slower SHA-256 hashing. For 8 and 16-bit
triples, the KK13 are faster when using many hashing threads, since they
require more calls to the hash function than ALSZ13.

• Although the KK13 perform mostly better in WAN setting than ALSZ13, an
interesting exception is 64-bit triples, where the KK13 protocols are faster
in the LAN setting but actually slower in the WAN setting compared to
ALSZ13. This can only be explained by the unoptimal batching strategy
and scheduling of local computations and network communication, since for
64-bit triples, the KK13 protocols need to do less hashing and less commu-
nication in total.

• Our implementation of ALSZ13-AES comes close but does not perform as
well as benchmark results in ABY paper (except 8 and 16-bit triples in WAN
setting). We suspect this is due to the current unoptimal batching strategy,
since ABY performs the two-directional OT-s in parallel in two threads.

• Comparing KK13 1-out-of-2 and 1-out-of-4 methods, we can see that for 8
and 16-bit triples, the 1-out-of-4 strategy is the winner. For 32-bit triples,
the 1-out-of-2 strategy requires slightly less hashing and also has slightly
lower total communication. For 64-bit triples, the 1-out-of-2 strategy needs
to perform 2/3 of the hashing done by 1-out-of-4 protocol. For these reasons,
1-out-of-2 performs slightly better with 32 and 64-bit triples. Arguably, when
the two-directional OT-s were to be performed in parallel, the 1-out-of-2
strategy should win more from this in terms of efficiency.

4.6.4 Breakdown of different operations

Here we show the relative cost of different operations performed in the OT ex-
tension protocols from the total time of triple generation. On a high level, the
total computation of the triple generation protocol of Protocol 6 is divided into
two phases for a single computation party, a sender OT routine and a receiver OT
routine, denoted as “ot_sender” and “ot_receiver”. The exception is when using
the KK13 protocol based on 1-out-of-4 OT, as there, one party only performs the
sender routine, and the other party acts as the receiver.

In the OT routines, we measured the cost of different local operations and
also the time spent on waiting for network messages (send is non-blocking so we
can measure the network overhead only from the receiving end). The different
measured operations are:

1. PRG — time spent on generating pseudo-randomness. In all cases, the OT
sender routine generates twice as much pseudo-randomness.

62

2. transpose — time spent on performing bit matrix transpositions. For
ALSZ13, both parties perform a single transposition. For KK13, the sender
performs two transpositions and the receiver performs one. The order of
operations is also slightly different from ALSZ13.

3. hashing — time spent on hashing and building the masked matrices. Since
we use correlated-OT in all cases, for 1-out-of-N OT, the sender calculates (N-
1) hashes and the receiver calculates one hash for each transferred message.

4. receive — time spent on waiting for network messages.

Main observations

• In LAN settings, with small number of hashing threads, computing the
hashes is the clear bottleneck (specifically, for OT sender), taking up to
93% of the total time for KK13 1-out-of-4 protocol with one thread and
8-bit triples.

• In most cases, the transpose operation took more than twice the amount
of time than computing pseudorandomness with the PRG-s and was up to
20% of the whole computation time. In the ALSZ13 protocol with fixed-key
AES hashing, the transpose operation in fact took more time than hashing
(20% vs 13% for 16 threads in LAN). For the KK13 protocols, the transpose
operation is also more costly compared to ALSZ13 because of the larger
security parameter and length of the matrix rows.

• For ALSZ13 with fixed-key AES hashing, hashing is not a bottleneck, and
already with one thread, the network is the main bottleneck.

• In the WAN setting, the network is the clear bottleneck for all protocols,
which is to be expected, given the relatively low network performance for
the simulated WAN.

• For the KK13 protocols with 16 threads in both network settings, we can see
that the relative proportion of the receive operation is lower than for ALSZ13
protocol in the OT sender routine. The difference is higher for smaller bit-
length triples, which exactly corresponds to the relative difference in total
communication required for these protocols. Therefore, it is clear that the
KK13 protocols get a performance gain on the account of needing to do less
communication.

• In the receiver phase, the proportion of the receive operation in KK13 pro-
tocols is roughly the same or even higher when using 16 threads than the

63

ALSZ13 protocol. This can be explained by the unoptimal batching and net-
work scheduling in the current implementation. Proportionally, the sender
spends more time hashing, and therefore, the receiver proportionally waits
longer for the matrix rows masked with the hash output to arrive.

• These findings suggest that the KK13 protocols especially could gain a lot
in terms of performance when implementing a better batching strategy, e.g
running OT in smaller batches, but in parallel. This would decrease the
network scheduling overhead and would most likely eliminate the anomaly
of KK13 protocols being slower for 64-bit triples in WAN setting.

We depict in Table 7 and Table 8 below only the relative cost of the “receive”
operation, as the difference time spent on computation vs communication says the
most about the performance profiles of protocols. These tables support most of
the observations made above.

4.7 Conclusions on the precomputation benchmarks

Overall, the process of implementing the protocols described in this thesis, together
with the various optimizations, showed that there is a considerable amount of
engineering effort required to get the desired performance results. In particular:

• Hashing is the most critical local operation in terms of total performance,
especially when using a standard hash function that is widely considered
to be suitable for instantiating constructions that require strong security
properties, such as SHA-256. Either SIMD- or thread-parallel (or both)
hashing is required for good performance.

• Optimal scheduling of local computations and network communication be-
tween the parties is also crucial for performance, and the current implemen-
tation is lacking in this aspect. A good solution would be to run oblivious
transfers in relatively small batches but in parallel to minimize the scheduling
overhead as is the general approach in [DSZ15].

• As was already brought out in [ALSZ13], we confirmed that bit matrix trans-
position also takes a significant proportion of local computation time. Using
Eklundh’s algorithm as proposed in [ALSZ13] could improve our implementa-
tion as well, and might additionally be enhanced with hardware-accelerated
SIMD-instructions.

We believe that implementing a better batching strategy and more efficient
bit matrix transposition would lead to an overall performance improvement to all

64

Table 7: Average percentage from OT sender routine total time spent on network
communication (blocking receive).

Threads Network Triple
length ALSZ13 ALSZ13

AES KK13-
(
2
1

)
KK13-

(
4
1

)
1 LAN 8 11.8 42.4 3.1 1.8
1 LAN 16 13.0 42.8 3.3 1.6
1 LAN 32 12.8 42.0 5.8 7.5
1 LAN 64 12.1 40.7 9.3 6.0
1 WAN 8 68.6 91.4 37.9 44.3
1 WAN 16 69.5 91.9 38.1 41.2
1 WAN 32 70.7 92.5 54.0 66.1
1 WAN 64 71.6 92.8 65.1 65.8
4 LAN 8 25.7 49.0 8.3 5.0
4 LAN 16 26.3 48.8 9.0 3.9
4 LAN 32 25.8 50.6 14.9 17.8
4 LAN 64 25.8 47.7 22.5 16.4
4 WAN 8 84.8 93.4 63.7 63.8
4 WAN 16 85.7 94.0 63.9 66.8
4 WAN 32 85.3 94.5 76.8 84.3
4 WAN 64 87.4 94.7 83.6 84.5
16 LAN 8 37.6 53.9 19.1 11.1
16 LAN 16 41.3 54.6 18.9 11.0
16 LAN 32 41.7 53.0 29.3 34.5
16 LAN 64 42.3 52.6 37.7 28.8
16 WAN 8 91.0 94.4 80.1 80.6
16 WAN 16 92.0 94.6 81.4 81.1
16 WAN 32 92.6 95.2 88.5 91.6
16 WAN 64 93.1 95.3 91.3 91.8

65

Table 8: Average percentage from OT receiver routine total time spent on network
communication (blocking receive).

Threads Network Triple
length ALSZ13 ALSZ13

AES KK13-
(
2
1

)
KK13-

(
4
1

)
1 LAN 8 44.9 38.6 83.6 84.4
1 LAN 16 44.3 41.8 85.1 84.6
1 LAN 32 44.7 38.2 77.1 62.8
1 LAN 64 46.4 41.8 65.0 66.8
1 WAN 8 82.1 91.1 93.0 93.3
1 WAN 16 83.8 92.1 93.4 93.3
1 WAN 32 84.3 92.6 91.9 89.5
1 WAN 64 85.7 93.8 90.6 91.5
4 LAN 8 39.9 41.9 71.6 72.9
4 LAN 16 41.7 44.8 73.9 71.3
4 LAN 32 43.2 40.9 66.6 52.3
4 LAN 64 42.1 41.6 55.1 55.8
4 WAN 8 87.6 92.7 91.5 92.1
4 WAN 16 89.2 93.3 93.1 93.0
4 WAN 32 90.6 93.5 93.4 92.6
4 WAN 64 91.6 94.5 93.6 94.2
16 LAN 8 43.9 40.5 56.2 54.4
16 LAN 16 43.2 43.7 57.3 50.9
16 LAN 32 42.8 42.5 52.5 42.3
16 LAN 64 45.3 43.2 47.8 47.2
16 WAN 8 91.1 92.8 91.3 91.9
16 WAN 16 91.9 93.6 92.9 92.6
16 WAN 32 93.0 94.1 93.9 93.5
16 WAN 64 94.0 95.0 94.6 95.4

66

tested versions of the triple generation protocol and also give a more noticeable
performance gain to the KK13-based versions. We can use the existing Sharemind’s
network layer multiplexing capability to perform many batches in parallel to better
utilize the network.

Although our implementation is currently lacking in some aspects that makes
local computations still a partial bottleneck, we can already see concrete perfor-
mance gains from using the KK13-based protocol with reduced total communi-
cation. The optimizations that reduce communication cost can also be further
improved. In particular, the message sizes used in OT can be brought down even
more, by implementing bit-level packing. Currently, we send full bytes always and
as such, do not gain improvement from message sizes that are not byte-aligned.

Additionally, lower security parameter values can be used when doing OT-s
with different number of messages in a batch. Currently we use the maximum
required security parameter for the whole batch. However, it is not entirely, clear,
whether the reduced communication cost would overweigh the added complexity
in computation. Using both of these optimizations would also change the optimal
Li values in the OT message scheduling for KK13-based versions.

67

5 A protocol suite for two-party computation
In this section, we now to turn to the online phase of our implemented two-party
protocol suite. As a result of this work, we have implemented the shared2p
protection domain on Sharemind13. This section gives a full specification of the
operations available in shared2p. We implemented shared2p from the ground up,
although relying on the general code structure already present for other protection
domains and the general Sharemind framework.

We mostly follow the design of Sharemind’s existing three-party protocol suite
as our ultimate goal is to provide an equivalent alternative to the three-party
scenario, both in terms of performance and security, as much as that is possible.
The three-party scenario allows for an efficient information-theoretically secure
approach, the practical security of which can be based entirely on cryptographically
secure random number generation14.

In the two-party case, achieving information-theoretic security is unfortunately
impossible [BGW88]. Therefore, we have to rely on computational hardness as-
sumptions for security. Furthermore, the two-party scenario adds the entire com-
plexity of the precomputation phase, which is entirely unnecessary in the three-
party case. We have already seen that some computational hardness assumptions
were necessary for securing the precomputation phase. In fact, the online phase
does not add any additional requirements in this respect for security the BGW-
style protocols that we present here.

The protocols presented here are adaptations of the existing three-party pro-
tocols into the two-party setting [BNTW12, LR15, KLR16]. In some cases, the
two-party setting allows for some algorithmic optimization compared to the three-
party protocol. The three-party protocols often use a temporary resharing of a
value between two of the three parties, such that the third party’s share is 0.
In the two-party case, we naturally have this sharing and no further resharing is
required.

For completeness, we provide the full descriptions of all protocols. We also show
the input privacy for the multiplication protocol (and the analogous conjunction
protocol), which implies the input privacy of all the rest of the protocols through
composition. In fact, all protocols we present here are a composition of local oper-

13Sharemind’s existing three-party protocol suite is similarly named shared3p, referring to
the secret-shared representation of confidential data, and the requirement of three computing
parties.

14Additionally, the implicit assumption of secure authenticated channels is required. This
assumption is very common in SMC literature, as network channels can be secured in practice
with standard methods of public key cryptography. Especially, the TLS (transport layer security)
protocol is used in practice to ensure that tampering or eavesdropping on the channels is not
possible for the adversary.

68

ations and the Beaver triple multiplication and conjunction protocols. Therefore,
the security of the online phase is based purely on the security of precomputation.

All protocols described in this section are carried out between two computing
parties CP1 and CP2. Whenever we refer to computing parties CP i and CPj, we
implicitly mean different computing parties, that is i 6= j.

5.1 Data representations

We first start by describing the fundamental data types and their secret-shared
representation available for programming with SecreC in the shared2p protection
domain. As in Sharemind’s three-party protection domain, we use both addi-
tively and bitwise shared data types. On additively shared integers, we can build
protocols that rely on precomputed multiplication triples.

For bitwise shared data types, we use conjunction triples to build BGW-style
protocols. We can also add a floating-point arithmetic suite for bitwise shared
IEEE 754 numbers by relying on the Yao’s garbled circuits protocol and methods
presented in [PS15]. Although we have currently not implemented this in the
shared2p protection domain, the protocols can be imported from the three-party
protocol suite in a straightforward manner. We outline the necessary techniques
in Section 5.8.

The paradigm of mixing different methods of secure computation for better
efficiency has been used in previous works as well, including in protocols for Share-
mind’s three-party protection domain that switch between the additive and bitwise
representations [BNTW12]. Most recently, the ABY framework uses both additive
and bitwise shared representation and also includes Yao’s protocol in addition to
BGW-style protocols based on Beaver triples [DSZ15].

5.1.1 Additively shared data types

It is very natural to represent signed and unsigned integers of fixed bit-length using
additive sharing. Unsigned integers with bit-length ` are exactly represented with
elements of the ring Z2` .

For signed integers we use two’s complement notation, which is also the stan-
dard representation in regular computers. In two’s complement, an `-bit signed
integer is represented also as an integer a ∈ Z2` , but it’s value is interpreted as

v = −a[`] · 2`−1 +
`−1∑
i=1

a[i] · 2i−1 .

Essentially, the most-significant bit defines the sign (+/−) of the integer, and the
remaining `−1 bits define its value. The two’s complement is a popular representa-
tion for signed integers, since addition, subtraction and multiplication use exactly

69

the same operations as for unsigned integers. Therefore, we can conveniently use
an additively shared representation over Z2` for signed integers as well.

A summary of additive data types is presented in Table 9.

Table 9: Additively shared data types in the shared2p protection domain.

Data
type Domain of values Secret-shared

representation Description

uint8 Integers in Z28
Additive sharing
over Z28

8-bit unsigned
integer

uint16 Integers in Z216
Additive sharing
over Z216

16-bit unsigned
integer

uint32 Integers in Z232
Additive sharing
over Z232

32-bit unsigned
integer

uint64 Integers in Z264
Additive sharing
over Z264

64-bit unsigned
integer

int8
[−27, 27 − 1], represented as
elements of Z28 in two’s
complement notation

Additive sharing
over Z28

8-bit signed
integer

int16
[−215, 215 − 1], represented as
elements of Z216 in two’s
complement notation

Additive sharing
over Z216

16-bit signed
integer

int32
[−231, 231 − 1], represented as
elements of Z232 in two’s
complement notation

Additive sharing
over Z232

32-bit signed
integer

int64
[−263, 263 − 1], represented as
elements of Z264 in two’s
complement notation

Additive sharing
over Z264

64-bit signed
integer

5.1.2 Bitwise shared data types

The additive representation is not well-suited for efficiently computing operations
that intrinsically require access to the bitwise representation of the integer. A
prime example among the protocols implemented here are comparison protocols,
which rely on temporary bitwise shared representation inside the protocol. We
thus provide also a separate integer data type that is bitwise shared.

We arbitrarily present the boolean data type also as a bitwise one, since

70

Booleans are associated with bitwise operations, although for elements of Z2, the
additive and bitwise secret sharing scheme are equivalent. Also, we use conjunc-
tion triples for multiplying Booleans, since they are more efficient to compute
than arithmetic multiplication triples. A summary of bitwise shared data types is
presented in Table 10.

Table 10: Bitwise shared data types in the shared2p protection domain.

Data type Domain of values Secret-shared
representation Description

bool Boolean values in Z2
Additive/bitwise
sharing over Z2

Boolean value

xor_uint8 Integers in Z28
Bitwise sharing
over Z8

2

8-bit unsigned
integer

xor_uint16 Integers in Z216
Bitwise sharing
over Z16

2

16-bit unsigned
integer

xor_uint32 Integers in Z232
Bitwise sharing
over Z32

2

32-bit unsigned
integer

xor_uint64 Integers in Z264
Bitwise sharing
over Z64

2

64-bit unsigned
integer

5.2 Classify, declassify and publish

We now describe the fundamental protocols that transform public values to private
values and vice versa, which form a basis for manipulating with confidential data
in the protection domain. For example, we need a protocol to securely share
the private input of an input party between the computing parties. We call this
protocol Classify. We separately consider the case when an input party is at the
same time also a computing party.

Similarly, the Declassify protocol publishes a secret-shared value to a party.
With Declassify, we specifically refer to making the value public for all computing
parties. In the case where the computing parties reveal a secret value to an external
result party, we use a Publish protocol.

Additionally, to end a composition of input-private protocols securely, we make
use of the Reshare protocol presented already with our Beaver triple generation
protocol in Section 4. Note that Classify, Declassify and Publish protocols presented
here are identical for both additive and bitwise types. For simplicity, we consider
only the additive case in security proofs.

71

Recall that we use F(·, . . . , ·) = [[y]] to denote an ideal functionality that ex-
plicitly outputs a random sharing of the value y.

5.2.1 Classify

A trivial way to classify a value x known to one of the computing parties, is simply
to do nothing. The other party sets its share to 0, which constitutes a valid sharing
of x, albeit not a secure one. However, the protocol in Protocol 10 is still trivially
correct and input-private and can therefore be composed with Reshare for a secure
protocol, or alternatively be composed with other input-private protocols.

Protocol 10 Classify of `-bit types
Functionality: F(x,⊥) = [[x]]
Input: CP i holds a value x ∈ Z2`

Result: Shared value [[x]] between CP1 and CP2

1: CP i fixes [[x]]i = x
2: CPj fixes [[x]]j = 0
3: return [[x]]

Theorem 16. The Classify protocol in Protocol 10 is perfectly input-private.

Proof. The protocol is input-private, since no communication occurs and there are
no messages to simulate.

When considering Classify for an input party, we want the ideal functionality
to provide a random sharing of the input to the computing parties, so neither of
them learns the secret input. The protocol is thus straightforward to construct
securely by using Share to produce a secure resharing, and then distributing the
shares among the computing parties.

Protocol 11 Classify of `-bit types for an input party
Functionality: F(x,⊥,⊥) = (⊥, [[x]])
Input: IP holds a value x ∈ Z2`

Result: Shared value [[x]] between CP1 and CP2

1: IP computes shares (x1, x2)← Share(x) and sends xi to CP i for i ∈ {1, 2}
2: Both CP i fix [[x]]i = xi
3: return [[x]]

Theorem 17. The Classify protocol in Protocol 11 is perfectly secure.

Proof. For corrupt CP i, we can simulate the message xi perfectly by sending the
ideal functionality’s output [[x]]i to the adversary.

72

5.2.2 Declassify

Protocol 12 Declassify of `-bit types
Functionality: F([[x]]) = (x, x)
Input: Shared value [[x]]
Result: CP1 and CP2 learn x
1: Both CP i send [[x]]i to CPj
2: Both CP i compute x← Combine([[x]]1, [[x]]2)
3: return x

Theorem 18. The declassify protocol in Protocol 12 is perfectly secure.

Proof. The protocol is trivially secure, as the simulator for corrupted CP i receives
the output x from the ideal functionality and can simulate the message [[x]]j by
computing x− [[x]]i. The simulation is perfect, since x = [[x]]1 + [[x]]2 by definition.

Since the declassify protocol is secure, we can use it as a final step to end a
composition of input-private protocols, to make the whole composition secure. In
fact, no resharing step is required as opposed to the three-party setting, where the
similar Declassify protocol is not secure without the Reshare protocol [Bog13].

5.2.3 Publish

When publishing the computation outcome to result parties, we still have to explic-
itly reshare the output before sending the shares to the result party. Otherwise,
the result party could infer more information from the values of the individual
shares then just their combined value. This may happen if the shares are output
by an input-private protocol and not a secure one. Thus, when the final result of
a computation is published to an external result party, we always need to end a
composition of input-private protocols with the secure resharing protocol.

Protocol 13 Publish of `-bit types to a result party
Functionality: F([[x]],⊥) = (⊥,⊥, x)
Input: Shared value [[x]]
Result: Result party RP learns x
1: Compute [[x′]] ← Reshare([[x]])
2: Both CP i send [[x′]]i to RP
3: RP computes x← Combine([[x′]]1, [[x

′]]2)
4: return x

73

Theorem 19. The Publish protocol in Protocol 13 is perfectly secure.

Proof. Security with respect to corrupt CP i is trivial, since the parties have no out-
put, and the only communication is performed during the perfectly secure Reshare
protocol, which we can simulate.

For corrupt RP , we can also perfectly simulate the shares [[x′]]1 and [[x′]]2 by
first generating uniformly random [[x′]]1 ← Z2` and then taking [[x′]]2 = x − [[x′]]1,
where x is the ideal functionality’s output for RP . The simulation is perfect, since
in the real protocol, the shares of [[x′]] are also guaranteed to be uniformly random,
since Reshare is perfectly secure. Note that the values of [[x′]]i and [[x′]]i do not have
to match exactly, since the shares of [[x′]] are not output by the ideal functionality
and the environment cannot directly compare them. Therefore, we only need to
make sure they are of the same distribution, which we have shown, since both are
uniformly random.

5.3 Arithmetic protocols

5.3.1 Addition, subtraction and multiplication with constant

Since additive secret sharing is homomorphic in terms of addition, we can add and
subtract additively shared types using only local operations. Also, multiplication
with a public constant is communication-free due to distributivity. Let us fix
additively shared values [[x]] and [[y]] over Z2` .

Addition (F([[x]], [[y]]) = [[z]], z = x + y). Both CP i locally compute [[z]]i =
[[x]]i + [[y]]i.

Subtraction (F([[x]], [[y]]) = [[z]], z = x − y). Both CP i locally compute [[z]]i =
[[x]]i − [[y]]i.

Negation (F([[x]]) = [[z]], z = −x). Both CP i locally compute [[z]]i = −[[x]]i.

Multiplication with public constant (F([[x]], c) = [[z]], z = cx). Given a pub-
lic constant c ∈ Z2` known by both parties, both CP i locally compute [[z]]i = c·[[x]]i.

Correctness for all three protocols follows directly from the properties of addi-
tive sharing. Also, all protocols are trivially input-private, since no communication
is performed between the computing parties. However, they are not secure w.r.t
our ideal functionality, since they do not provide fresh random output shares.

74

5.3.2 Multiplication

For multiplying additive types, we use the standard Beaver triple multiplication
protocol of [Bea91] presented as Protocol 14.

Protocol 14 Multiplication protocol of `-bit additive types
Functionality: F([[x]], [[y]]) = [[w]] such that w = xy
Setup: Parties CP1, CP2 share a Beaver triple [[a]] · [[b]] = [[c]]
Input: Secret-shared values [[x]], [[y]]
Result: Secret-shared value [[w]] = [[x]] · [[y]]
1: The parties compute [[e]] = [[x]] − [[a]] and [[d]] = [[y]] − [[b]]
2: The parties reveal values e and d with Declassify([[e]]) and Declassify([[d]])
3: Both CP i compute [[w]]i = [[c]]i + e · [[b]]i + d · [[a]]i
4: CP1 computes [[w]]1 = [[w]]1 + e · d
5: return [[w]]

Theorem 20. The Beaver triple multiplication protocol in Protocol 14 is correct.

Proof. Due to distributivity, we have e · [[b]]1+e · [[b]]2 = eb and d · [[a]]1+d · [[a]]2 = da.
The correctness can then be shown with simple algebra:

w = c+ eb+ da+ ed = ab+ (x− a)b+ (y − b)a+ (x− a)(y − b)
= ab− xb− ab+ ya− ab+ xy + xb− ya+ ab = xy .

In the passive two-party setting, this is the most efficient protocol for multipli-
cation at least for the online phase. Due to the two’s complement representation,
the multiplication protocol works as intended also for signed integers. Each multi-
plication consumes a single multiplication triple of bit-length equal or larger than
the arguments. Although we could use 64-bit multiplication triples for all data
types, generating smaller bit-length triples is much more efficient as shown in Sec-
tion 4.6 and therefore, we precompute separate triples for all required bit-lengths.

Based on the definition of security for a triple generation protocol (Def. 13),
we can prove that the multiplication protocol in Protocol 14 is input-private.

Theorem 21. Given that the Beaver triple used in Protocol 14 is output by a secure
Beaver triple generation protocol according to Def. 13, the protocol in Protocol 14
is computationally input-private.

75

Proof. For corrupt CP i, we need to simulate the shares [[e]]j and [[d]]j sent in
the Declassify protocol. Since we use a secure Beaver triple generation proto-
col, the shares [[a]]j and [[b]]j are computationally indistinguishable from indepen-
dently generated uniformly random values. Therefore, also [[e]]j = [[x]]j − [[a]]j and
[[d]]j = [[y]]j− [[b]]j are uniformly random and we can simulate these values by gener-
ating new uniformly random values, which makes the resulting simulated protocol
view computationally indistinguishable from a real execution.

To show security for multiplication, we would have to simulate the values of
e and d such that the output of the simulated view exactly matches that of the
ideal functionality, given access to the ideal functionality’s output. However, this
does not seem to possible for the multiplication protocol. A secure version would
therefore require a Reshare protocol at the end.

5.4 Protocols for bitwise operations

5.4.1 Bitwise XOR and conjunction with public constant

Bitwise operations are naturally more efficient in the bitwise sharing representa-
tion. Similarly to addition in additive sharing, the XOR operation can be com-
puted locally on bitwise shared values. Let us fix bitwise shared values [[x]] and
[[y]] over Z`2.

XOR (F([[x]], [[y]]) = [[z]], z = x⊕y). Both CP i locally compute [[z]]i = [[x]]i⊕[[y]]i.

Bitwise logical negation (F([[x]]) = [[z]], z = ¬x) CP1 locally computes [[z]]1 =
¬[[x]]1 (flipping all bits in the shared value).

Conjunction with public constant (F([[x]], c) = [[z]], z = x ∧ c). Given a
public constant c ∈ Z`2 known by both parties, both CP i locally compute [[z]]i =
c ∧ [[x]]i.

Public bitshift left/right (F([[x]], c) = [[z]], z = x � c or z = x � c).
Given a public constant c ∈ Z2` known by both parties, both CP i locally compute
[[z]]i = [[x]]i � c. Similarly for [[z]] = [[x]] � c.

Correctness for these protocols follows from the properties of bitwise sharing
and the protocols are trivially input-private, but not secure, since they do not
produce fresh random shares.

76

5.4.2 Bitwise conjunction

For bitwise conjunction, we can use exactly the same protocol as for multiplication
(Protocol 14), but relying instead on conjunction triples. Also, local additions and
multiplications are replace with bitwise XOR and conjunction operations respec-
tively. Input privacy follows analogously as in Theorem 5.3.2 if we use the secure
conjunction triple generation protocol of Protocol 8.

Conjunction triples are also more convenient to precompute than multiplication
triples, since we can combine arbitrary bit-length conjunction triples from bit
triples, simply by concatenating the bits in the bitwise representation. This can
be easily seen by considering that each bit taken separately in a bitwise shared
conjunction triple is a 1-bit conjunction triple on its own.

5.4.3 Bitwise disjunction

For disjunction, we can use the simple equivalence with conjunction x ∨ y =
¬ (¬x ∧ ¬y).

Protocol 15 Bitwise disjunction protocol of `-bit bitwise types
Functionality: F([[x]], [[y]]) = [[z]] where z = x ∨ y
Input: Bitwise shared values [[x]], [[y]]
Result: Bitwise shared value [[z]]

1: [[z]] = (¬[[x]]) ∧ (¬[[y]])
2: return [[z]] = ¬[[z]]

The disjunction protocol of Protocol 15 is trivially correct and also input-
private, given that the conjunction protocol is input-private.

5.5 Comparison protocols

We now present protocols for checking equality of and comparing secret-shared in-
tegers. For comparison protocols, we first have to define two specific sub-protocols
for finding the most-significant non-zero bit, and checking whether shares of an
additive integer overflow the modulus. We use these protocols also later for conver-
sions between different data types. The overflow protocol also gives us a subroutine
for extracting a single bit from an additively shared data type.

All protocols presented hereinafter are based either on [BNTW12] or from
previously unpublished better optimized protocols existing in Sharemind’s imple-
mentation of the three-party protection domain, that are written in either C++
or Sharemind’s specialized protocol language [LR15] by the authors of [KLR16].

77

We adapt these protocols to the two-party case and avoid the steps where some
values are temporarily shared between two parties in the three-party protocols.

Also, all following protocols are trivially input-private as a composition of
input-private protocols.

5.5.1 Equality

The equality of two additively shared integers [[x]] and [[y]] is equivalent to the
condition [[x]]−[[y]] = 0. To check if [[d]] = 0 for additively shared d, we need to check
whether [[d]]1 = −[[d]]2, which in turn is equivalent to [[d]]1⊕(−[[d]]2) = 0. Therefore,
we can consider a bitwise shared number where CP1 takes [[d]]1 as his share, and
CP2 takes −[[d]]2 and compute the disjunction of all bits of this number. This is 0
exactly if there are no non-zero bits, which happens exactly if [[d]]1 = −[[d]]2.

Protocol 16 Equality protocol of `-bit additive types
Functionality: F([[x]], [[y]]) = [[b]] mod 2, where b = 1 iff x = y
Input: Shared values [[x]], [[y]] over Z2`

Result: Shared bit [[b]] mod 2

1: Initialize bitwise shared value [[d]]⊕2` . d = [[x]] − [[y]]
2: CP1 computes [[d]]1 = [[x]]1 − [[y]]1
3: CP2 computes [[d]]2 = −([[x]]2 − [[y]]2)

4: Compute [[b]] mod 2 = ¬
(∨`

i=1[[d]][i]
)

5: return [[b]]

Theorem 22. The equality protocol for additive types in Protocol 16 is correct.

Proof. We have that b = 1 exactly if all d[i] are zero. This in turn means that
[[x]]1 − [[y]]1 = −[[x]]2 + [[y]]2, from which it follows that x = y.

Note that we can implement the disjunction of all bits of d more efficiently
than a naive iterative algorithm, which would take `− 1 rounds. Instead, we can
use a divide-and-conquer approach to first take the bitwise disjunction of the first
half and the second half of the bits, which is a disjunction of `/2-bit values. Then
continue the same process recursively until we are left with a single bit. This
process takes exactly log2 ` rounds and we perform a total of `−1 bit disjunctions.

Also, the equality protocol for bitwise types can be implemented analogously,
but instead of considering the difference x−y, we consider the bitwise XOR x⊕y.
Performance and communication costs are the same as in the additive case.

78

5.5.2 Most significant non-zero bit

The most significant non-zero bit (MSNZB) protocol finds the position of the first
non-zero bit of a bitwise shared integer, starting from the most significant one. For
this, we use the protocol from [BNTW12]. The protocol returns a bitwise shared
integer from the same domain, which has at most one non-zero bit at the position
where the most significant non-zero bit in the argument is, or all zero bits if the
argument is zero.

Protocol 17 MSNZB protocol of `-bit bitwise types
Functionality: F([[x]]⊕2`) = [[s]]⊕2` where s[i] = 1 for the largest value i, such
that x[i] = 1 and s[j] = 0 for all j 6= i
Input: Bitwise shared value [[x]]
Result: Bitwise shared value [[s]]

1: Initialize bitwise shared value [[t]] = [[x]]
2: for i ∈ {1, . . . , log2 `} do
3: Compute [[t]] = [[t]] ∨ ([[t]] � 2i−1)
4: end for
5: return [[s]] = [[t]] ⊕ ([[t]] � 1)

Theorem 23. The MSNZB protocol in Protocol 17 is correct.

Proof. Intuitively, in the for-cycle, we compute a so-called prefix-OR operation,
which is defined as t[i] =

∨j=`
j=i t[j]. That is, the i-th bit is the logical disjunction of

itself and all bits in higher positions than i. We use a divide-and-conquer method
to calculate the prefix-OR in log ` rounds. Therefore, in the final result we have all
non-zero bits starting from where x has the most significant non-zero bit. In the
final row, we invert the trailing non-zero bits and keep only the most-significant
non-zero bit in the result.

Similarly to the equality protocol, we have a total of log2 ` rounds but we do
more single bit disjunctions, namely ` · log2 `.

5.5.3 Overflow

The Overflow protocol presented in Protocol 18 checks whether the sum of shares
for additively shared [[x]] ∈ Z2` would overflow the modulus 2`. That is, whether
[[x]]1+[[x]]2 ≥ 2` (without modular arithmetic). We actually present a more general
protocol that allows also to specify the position where overflow should be checked.
The protocol is based on [BNTW12].

79

Protocol 18 Overflow protocol of `-bit additive types
Functionality: F([[x]], t) = [[b]] mod 2 where b = 1 iff [[x]]1[1..t] + [[x]]2[1..t] ≥ 2t

Input: Additively shared integer [[x]], public integer t specifying overflow position
Result: Shared bit [[b]]
1: Initialize bitwise shared value [[d]]⊕2t . d = ([[x]]1 mod 2t)− ([[x]]2 mod 2t)
2: Both CP i fix [[d]]i = [[x]]i mod 2t

3: CP2 fixes [[d]]2 = 0− [[d]]2
4: Compute [[s]] = MSNZB([[d]])
5: CP1 fixes [[u]]1 = 0 and CP2 fixes [[u]]2 = [[d]]2 . u = (0− [[x]]2) mod 2t

6: Compute [[t]] = [[s]] ∧ [[u]]
7: Compute [[b]] = ¬

(⊕t
k=1[[t]][k]

)
. XOR all bits of [[t]]

8: If [[d]]2 = 0, CP2 computes [[b]]2 = [[b]]2 ⊕ 1
9: return [[b]]

Theorem 24. The Overflow protocol in Protocol 18 is correct.

Proof. For the correctness proof we assume t = ` for simplicity. The general case
works the same way, by first converting the shares to Z2t by taking the modulus
with 2t.

The main idea of the protocol is that [[x]]1 + [[x]]2 ≥ 2` is equivalent to [[x]]1 ≥
2` − [[x]]2. In modulo 2`, we have that 2` − [[x]]2 ≡ 0 − [[x]]2 mod 2`, but for the
case [[x]]2 = 0, we then get the wrong result, so this is treated separately. To make
the comparison [[x]]1 ≥ 0 − [[x]]2, we consider the bitwise shared representation
of [[x]]1 ⊕ (0 − [[x]]2), which is computed as [[d]] in the protocol. We then use
[[s]] = MSNZB([[d]]) to determine the highest set bit of d. If there is a set bit, and
[[d]]2 has a set bit at the same location, we have [[x]]1 < 0 − [[x]]2. This is checked
first with the conjunction [[s]] ∧ [[u]], where [[u]] is 0− [[x]]2 shared bitwise, and then
XOR-ing all bits together to find if one of those was 115. Since we negate the value
of [[b]], we have that b = 1 exactly if [[x]]1 ≥ 0− [[x]]2. However, in the case [[x]]2 = 0,
the inequality always holds, but there can be no overflow. We thus correct this by
letting CP2 flip the value of [[b]] if [[x]]2 = 0.

The round-complexity for overflow is that of MSNZB and bitwise conjunction
added, which adds up to log2 `+1. In total, we consume `·log2 `+` bit conjunction
triples.

Note that the three-party protocol presented in [BNTW12] requires that the
input is secret-shared between two parties, and the third party’s share is 0. In
the two-party case, this is naturally so, and we therefore do not have to explicitly
reshare the input.

15Note that we can consider a bitwise shared integer as a vector of shared bits, and thus,
XOR-ing together the bits is trivially done as a local operation.

80

5.5.4 Bit extraction

We now describe how to extract a single bit according to a known public position
index from an additively shared integer [[x]] using the Overflow protocol. Intuitively,
if we XOR together the k-th bits in the additive shares of x, we get the k-th bit in
the actual value, unless the first k − 1 bits overflow. We denote this sub-routine
of extracting the k-th bit as ExtractBit([[x]], k).

Protocol 19 ExtractBit protocol for extracting the k-th bit from `-bit additive
types
Functionality: F([[x]], k) = [[b]] mod 2 where b = x[k]
Input: Shared value [[x]] over Z2`

Result: Shared bit [[b]]
1: Compute [[b]] mod 2 = Overflow([[x]], k − 1)
2: Both CP i compute [[b]]i = [[b]]i ⊕ [[x]]i[k]
3: return [[b]]

Theorem 25. The ExtractBit protocol in Protocol 19 is correct.

Proof. We first compute [[b]] = Overflow([[x]], k − 1) to learn whether the addition
of the shares of x propagates a carry bit into position k. Then, to extract the bit
itself we additionally XOR this with the corresponding bits in the additive shares
[[b]]i = [[b]]i ⊕ [[x]]i[k]. This exactly matches the process of how the value k-th is
determined when adding the shares of [[x]] together.

The round-complexity and communication cost for ExtractBit is the same as
for the Overflow protocol.

5.5.5 Less-than comparison

We have now described all the required sub-protocols for performing the less-
than comparison on all types. Notice, that having a protocol for the less-than
comparison is sufficient for performing also the less-than-or-equal comparison, since
x ≤ y = ¬(y < x). Naturally, we can perform greater-than comparison also by
switching the arguments.

Using the ExtractBit protocol, we can construct a comparison protocol for ad-
ditive types. For unsigned integers, we perform the less-than comparison in Pro-
tocol 20 by comparing the most significant bits of the arguments, which we can
compute with ExtractBit. We can also easily modify the protocol for signed inte-
gers, as we do in Protocol 21. The protocol is not explicitly presented in previous
publications, but follows the main ideas of [BNTW12] and is based on Sharemind’s
current optimized three-party protocol implementation.

81

Protocol 20 Less-than comparison protocol of `-bit unsigned additive types
Functionality: F([[x]], [[y]]) = [[b]] mod 2 where b = 1 iff x < y
Input: Shared values [[x]], [[y]] over Z2`

Result: Shared bit [[b]]
1: Compute [[x′]] mod 2 = ExtractBit([[x]], `)
2: Compute [[y′]] mod 2 = ExtractBit([[y]], `)
3: Compute [[d]] = [[x]] − [[y]]
4: Compute [[d′]] mod 2 = ExtractBit([[d]], `)
5: Compute [[b1]] = ([[x′]] ⊕ [[y′]]) ∧ [[y′]]
6: Compute [[b2]] = ¬ ([[x′]] ⊕ [[y′]]) ∧ [[d′]]
7: return [[b]] = [[b1]] ⊕ [[b2]]

Theorem 26. The unsigned less-than comparison protocol in Protocol 20 is cor-
rect.

Proof. We first extract the most significant bits of the arguments x, y and their
difference x − y. When calculating b1, we consider the case, where the most
significant bits of x and y differ (x′ ⊕ y′ = 1). Then, if y has the non-zero bit, we
have that x < y. Alternatively, if the most significant bits of x and y are equal, we
check the most significant bit of the difference x−y. If x < y then x−y underflows
and the most significant bit must be non-zero. This condition is computed as b2.
Finally we XOR b1 and b2 together to get the result, as only one of these two
conditions can hold at the same time.

Note that the three invocations of ExtractBit can be called in parallel to decrease
round-complexity. The two conjunctions for computing b1 and b2 can be run in
parallel as well. Therefore, the total round-complexity is log2 `+2, as we perform
an Overflow and a bitwise conjunction. In total, we consume 3`(log2 `+1)+2` bit
conjunction triples.

For signed comparison in Protocol 21, we first flip the most significant bit of
the arguments, which represents the sign bit in two’s complement representation,
and then perform an unsigned comparison.

Theorem 27. The signed less-than comparison protocol in Protocol 21 is correct.

Proof. By flipping the sign bits, we effectively add 2`−1 to the value of both argu-
ments, if we interpret them later as unsigned values instead. This means the new
values are guaranteed to be positive, but retain their respective ordering. Thus,
an unsigned comparison provides the desired result.

For bitwise shared integers, we can construct a more efficient protocol directly,
without using the Overflow protocol. The protocol is presented as Protocol 22.

82

Protocol 21 Less-than comparison protocol of `-bit signed additive types
Functionality: F([[x]], [[y]]) = [[b]] mod 2 where b = 1 iff x < y
Input: Shared values [[x]], [[y]] over Z2` (interpreted in two’s complement)
Result: Shared bit [[b]]
1: CP1 computes [[x]]1[`] = [[x]]1[`]⊕ 1
2: CP1 computes [[y]]1[`] = [[y]]1[`]⊕ 1
3: Compute [[b]] = [[x]] < [[y]] using unsigned comparison protocol Protocol 20
4: return [[b]]

Protocol 22 Less-than comparison protocol of `-bit bitwise types
Functionality: F([[x]], [[y]]) = [[b]] mod 2 where b = 1 iff x < y
Input: Shared values [[x]], [[y]] over Z`2
Result: Shared bit [[b]]
1: Compute [[d]] = [[x]] ⊕ [[y]]
2: Compute [[m]] = MSNZB([[d]])
3: Compute [[b′]] = [[m]] ∧ [[y]]
4: Compute [[b]] mod 2 =

⊕`
i=1[[b

′]][i]
5: return [[b]]

Theorem 28. The less-than comparison protocol for bitwise types in Protocol 22
is correct.

Proof. We first extract the most significant bit of x⊕ y as m. Clearly, m contains
a non-zero bit exactly in the first most significant position where x and y differ.
If we then perform a conjunction of m and y, we get the same non-zero bit in the
result exactly if y had a non-zero bit at that location. If this is the case, then y
had a non-zero bit in a higher position than x, which means that x < y.

The bitwise comparison protocol has log2 `+1 rounds and consumes `(log2 `+1)
bit conjunction triples.

5.6 Conversion between data types

5.6.1 Conversion between additive and bitwise representation

For converting from the additive representation to bitwise, a convenient solution
is to use a bitwise adder circuit to add the additive shares together into a bitwise
representation. For the bitwise addition in Protocol 23, we employ a Kogge-Stone
parallel prefix adder [KS73], following the current implementation of Sharemind’s
three-party protection domain. The advantage compared to a naive ripple carry
adder is that we can compute the carry bits in a logarithmic number of rounds.

83

Among different parallel prefix adder constructions, the Kogge-Stone adder has
minimal depth. We do not go into details of binary adders here for brevity, but
refer the reader to a concise overview in [ARI].

Protocol 23 Addition protocol for `-bit bitwise types
Functionality: F([[x]], [[y]]) = [[z]], where z = x+ y
Input: Bitwise shared values [[x]], [[y]] over Z`2
Result: Bitwise shared value [[z]]

1: Compute [[p]] = [[x]] ⊕ [[y]]
2: Compute [[c]] = [[x]] ∧ [[y]]
3: Fix [[p′]] = [[p]]
4: for i ∈ {1, . . . , log2 `} do
5: Compute [[c′]] = [[c]] � 2i−1

6: Compute [[c]] = [[c]] ⊕ ([[c′]] ∧ [[p′]])

7: Compute [[p′]] = [[p′]] ∧
(
([[p′]] � 2i−1) ∨

(
22

i−1 − 1
))

8: end for
9: Compute [[c]] = [[c]] � 1
10: return [[z]] = [[p]] ⊕ [[c]]

Note that disjunction with a public constant is a local operation and that the
two conjunctions performed in the for-cycle can be performed in parallel. Thus
the bitwise addition protocol has log2 `+ 1 rounds and uses a total of `+ 2` log2 `
bit conjunction triples.

Given a bitwise addition protocol, we can simply add shares [[x]]1 and [[x]]2
together, by considering them as separate bitwise shared values, where the other
party has a zero share. The protocol is presented as Protocol 24.

Protocol 24 Protocol for converting `-bit additive type to bitwise representation
Functionality: F([[x]] mod 2`) = [[y]]⊕2`, where x = y
Input: Additively shared value [[x]] over Z2`

Result: Bitwise shared value [[y]] over Z`2
1: Initialize bitwise shared values [[x′]]⊕2` and [[x′′]]⊕2`
2: CP1 fixes [[x′]]1 = [[x]]1 and [[x′′]]1 = 0
3: CP2 fixes [[x′]]2 = 0 and [[x′′]]2 = [[x]]2
4: Compute [[y]] = [[x′]] + [[x′′]] using the bitwise addition protocol Protocol 23
5: return [[y]]

84

Theorem 29. The additive to bitwise conversion protocol in Protocol 24 is correct.

Proof. Correctness follows directly from the bitwise addition protocol, since

y = [[x′]]1 + [[x′′]]1 + [[x′]]2 + [[x′′]]2 = [[x]]1 + [[x]]2

To convert bitwise shared values back to the additive representation, we follow
a simple approach. We first convert each bit in the bitwise representation to an
additive integer shared over Z2` . Then we can use only local operations to add the
individual bits together to get the total value of the integer in additive shares.

We therefore require a protocol to convert values shared over Z2 to values
shared over a larger domain Z2` . We adapt the protocol of [BNTW12] with a
simpler composition, invoking the multiplication protocol directly.

If we naively convert the individual bit shares to a larger domain, we will get the
wrong result in the case where both shares are 1, which gives the value 0 mod 2.
Therefore, we can check for this case separately, by multiplying the individual
shares as separate values. The protocol of [BNTW12] actually performs a similar
operation, by cleverly inlining a reshare between two parties into the protocol.
Our protocol is given in Protocol 25.

Protocol 25 Protocol for converting secret-shared bits to `-bit additive types
Functionality: F([[b]] mod 2) = [[x]] mod 2` , where b = x
Input: Secret-shared bit [[b]] over Z2

Result: Additively shared value [[x]] over Z2`

1: Initialize additively shared values [[x′]] mod 2` and [[x′′]] mod 2`

2: CP1 fixes [[x′]]1 = [[b]]1 and [[x′′]]1 = 0
3: CP2 fixes [[x′]]2 = 0 and [[x′′]]2 = [[b]]2
4: Compute [[x]] = [[x′]] + [[x′′]] − 2 · [[x′]] · [[x′′]]
5: return [[x]]

Theorem 30. The protocol for converting secret-shared bits to additive types
in Protocol 25 is correct.

Proof. Correctness can be shown simply with

x = [[b]]1 + [[b]]2 − 2 · [[b]]1 · [[b]]2 = ([[b]]1 + [[b]]2) mod 2

85

Protocol 26 Protocol for converting `-bit bitwise type to additive representation
Functionality: F([[x]]⊕2`) = [[y]] mod 2` , where x = y
Input: Bitwise shared value [[x]] over Z`2
Result: Additively shared value [[y]] over Z2`

1: for i ∈ {1, . . . , `} do
2: Compute [[b]] mod 2 = [[x]][i]
3: Compute [[ki]] mod 2` = [[b]] using Protocol 25
4: end for
5: Compute [[y]] =

∑`
i=1 2

i−1 · [[ki]]
6: return [[y]]

The boolean to additive conversion requires only a single round and uses one
`-bit multiplication triple.

We now use the boolean to additive conversion to construct the full bitwise to
additive conversion protocol in Protocol 26.

Theorem 31. The bitwise to additive conversion protocol in Protocol 26 is correct.

Proof. Correctness follows trivially from the bitwise representation of integers,
since we have y =

∑`
i=1 2

i−1 · x[i] = x.

We note that the bit conversions can all be done in parallel, which means this
protocol has only a single round. However, it consumes exactly ` multiplication
triples of bit-length `.

5.6.2 Casting up and down

In some applications, we may require to cast values to shorter or wider bit-lengths.
For example, if we know that an integer value belongs to a short range, we can
perform some computations on smaller bit-length values, which is more efficient.

For bitwise types, casting is a trivial local operation. To cast to a higher bit-
length value, we simply add zeroes to both shares as the most significant bits. To
cast down, we instead throw away the most significant bits.

For additive types, casting down works the same way since ([[x]]1 mod 2k) +
([[x]]2 mod 2k) = ([[x]]1 + [[x]]2) mod 2k. However, when casting additive values up,
we need to take care of the possible overflow that the shares may have with the
smaller modulus. We also have to separately consider the unsigned and signed
cases. The two protocols presented here are based on Sharemind’s current imple-
mentation of the respective three-party protocols [KLR16].

86

Protocol 27 Protocol for casting unsigned `-bit additive type to k-bit additive
type, k > `

Functionality: F([[x]] mod 2`) = [[y]] mod 2k , where x = y and k > `
Input: Additively shared value [[x]] over Z2`

Result: Additively shared value [[y]] over Z2k where k > `

1: Compute [[b′]] mod 2 = Overflow([[x]], `)
2: Compute [[b]] mod 2k = [[b′]] using boolean to additive conversion Protocol 25
3: Initialize additively shared value [[y]] mod 2k

4: Both CP i compute [[y]]i =
(
[[x]]i − 2` · [[b]]i

)
mod 2k

5: return [[y]]

Theorem 32. The protocol for casting up unsigned additive types in Protocol 27
is correct.

Proof. The idea of the protocol is simple, we check whether [[x]]1 + [[x]]2 overflows
the modulus 2`. If it does not, then we simply assign [[y]]i = [[x]]i. If it does, we
additionally subtract 2` from the value under the higher modulus, to simulate the
overflow.

The protocol has log2 `+2 rounds as we do an Overflow and one multiplication
for converting the shared bit to an additive type. In total, we consume `·(log2 `+1)
bit conjunction triples and a single k-bit multiplication triple.

For signed integers, we additionally have to take care to shift the sign bit to the
correct position when casting up. Therefore, the main approach is similar to the
unsigned case, but we have to check for existence of the sign bit and also overflow
of the additive representation separately. The protocol is presented as Protocol 28.

Protocol 28 Protocol for casting signed `-bit additive type to k-bit additive type,
k > `
Functionality: F([[x]] mod 2`) = [[y]] mod 2k , where x = y and k > `
Input: Additively shared value [[x]] over Z2` (interpreted in two’s complement)
Result: Additively shared value [[y]] over Z2k where k > `

1: Compute [[s′]] mod 2 = ExtractBit([[x]], `)
2: Compute [[b′]] mod 2 = Overflow([[x]], `)
3: Compute [[s]] mod 2k = [[s′]] using Protocol 25
4: Compute [[b]] mod 2k = [[b′]] using Protocol 25
5: Initialize additively shared value [[y]] mod 2k

6: Both CP i compute [[y]]i =
(
[[x]]i − 2` · [[b]]i + (2k − 2`) · [[s]]i

)
mod 2k

7: return [[y]]

87

Theorem 33. The protocol for casting up signed additive types in Protocol 28 is
correct.

Proof. The protocol first extracts the sign bit as s′. Then, we compute as b′
whether the two additive shares overflow. If both are false, the shares of the
arguments are also valid for the result. However, if the sign bit is set, we should
explicitly unset the sign bit at the current position ` and add it to the position k.
This is exactly achieved by adding (2k − 2`) · [[s]] to the result.

If the additive shares of the argument overflow, we perform the same correction
as in the unsigned case, and subtract 2` from the result, to simulate the overflow.
Due to properties of two’s complement notation, the correct signed value is pre-
served.

The protocol has log2 `+2 rounds and uses 2`·(log2 `+1) bit conjunction triples
and 2 k-bit multiplication triples. However, notice that the overflow computation
for the sign bit can actually be optimized, as we can perform a conjunction on
both shares of the sign bit and the overflow bit for the previous bits.

5.7 Summary of protocols

We present a summary of all protocols described in this section in Table 11. We
exclude operations that can be done using only local operations. We present the
round-complexity and also number of multiplication and bit conjunction triples
used, assuming a single invocation on `-bit data types. All communication per-
formed in the protocols happens only in multiplication and bitwise conjunction.
This means that total communication can be directly calculated from the triple
usage.

Compared to the three-party protection domain, we have not yet implemented
integer protocols for division, division with public constant and bit-shifts left and
right for private shift values. Note that although many of our protocols use only
conjunction triples, the division protocol for example, relies heavily on multipli-
cation [BNTW12]. From more high-level primitives, we are missing an oblivious
shuffle protocol. In the two-party setting, we cannot use the communication-
efficient protocol from [LWZ11], which relies on secret sharing one party’s secret
among the other parties, which requires at least three parties in total. However,
we can base shuffling on matrix multiplication or oblivious sorting [LWZ11].

From Table 11, we can compare the efficiency of performing computations
on additive or bitwise types. We first point out that with the exception of the
bitwise addition, non of the protocols are redundant. For a single operation, it is
always less efficient to switch from one representation to the other, and perform
the operation there, than it is to perform the operation on the original shares.

88

For example, the additive less-than comparison protocol is more efficient than
converting both arguments to bitwise representation and performing the bitwise
comparison16. However, when many operations need to be performed, that are
easier to do in the other representation, this conversion can still pay off in a larger
algorithm. Note that it is also possible to keep both representations of the same
value for performing different operations.

Also, the ExtractBit protocol is useful only if a single certain bit needs to be
extracted from an additive value. If already two bits are required, converting the
whole integer to bitwise representation is more efficient. Interestingly, the only
operation that is equally efficient in both representations is the equality protocol.

5.8 Implementing floating point operations and future di-
rections

We have a number of options for adding floating point operations to shared2p.
First, we can get IEEE 754 compliant floating point arithmetic easily, following
the methods of [PS15], which is based on Yao’s garbled circuits protocol evaluating
Boolean circuits that implement floating point operations. In this approach, we
use 32-bit and 64-bit bitwise shared representations for floating point numbers.

For Yao’s protocol we also need a two-party oblivious transfer protocol. Since
we are using the free-XOR optimization for garbling circuits [KS08] (allowing to
evaluate XOR gates without communication), we can employ the correlated OT
extension protocol as outlined in [ALSZ13]. However, in that case, it is not clear
that we can rely only on input privacy, and proving security for the whole Yao’s
protocol with correlated OT might require the random oracle model. However,
we can always use the protocol of [ALSZ13] for standard

(
2
1

)
-OT extension, which

can be shown secure by using the correlation robustness property. We can also
improve on the implementation by using the recent more efficient garbling scheme
construction from [ZRE15], which is also compatible with free-XOR.

Alternatively, we can approach floating-point operations with the additive ap-
proach of [KW14], which has been improved and optimized in [LR15, KLR16].
The difficulty here is that for some protocols, we require multiplication of large
bit-length integers for efficiency (up to a few-hundred bits). This simply means
we have to precompute multiplication triples for many different bit-lengths.

A more general improvement for future work is to add support of the precom-
putation process into the Sharemind protocol language, which is used to generate
the currently most efficient protocols for Sharemind’s three-party protection do-

16For additive comparison, we use 3` log2 ` + 5` bit triples. Converting both arguments and
performing bitwise comparison uses 5` log2 ` + 3`. Also, round-complexity is higher by log2 `
rounds.

89

Table 11: Summary of online protocols in the shared2p protection domain.

Data type Protocol Rounds Mult.
triples

Bit conj.
triples Ref.

uint/int [[x]] · [[y]] 1 1 `-bit
triple - Prot. 14

uint/int [[x]]
?
< [[y]] log2 `+ 2 - 3` · (log2 `+

1) + 2`
Prot. 20,
Prot. 21

uint/int [[x]]
?
= [[y]] log2 ` - `− 1 Prot. 16

uint/int Extracting
[[x]][k]

log2 `+ 1 - ` · (log2 `+ 1) Prot. 19

uint/int convert [[x]] to
bitwise log2 `+ 1 - `·(2 log2 `+ 1) Prot. 24

uint
cast [[x]] mod 2`

to [[x]] mod 2k ,
k > `

log2 `+ 2
1 k-bit
triple ` · (log2 `+ 1) Prot. 27

int
cast [[x]] mod 2`

to [[x]] mod 2k ,
k > `

log2 `+ 2
2 k-bit
triples 2` · (log2 `+1) Prot. 28

xor_uint [[x]] + [[y]] log2 `+ 1 - ` · (2 log2 `+1) Prot. 23

xor_uint [[x]] ∧ [[y]] 1 - `
Analogous
to Prot. 14

xor_uint [[x]] ∨ [[y]] 1 - ` Prot. 15

xor_uint MSNZB([[x]]) log2 ` - ` · log2 ` Prot. 17

xor_uint [[x]]
?
< [[y]] log2 `+ 1 - ` · (log2 `+ 1) Prot. 22

xor_uint [[x]]
?
= [[y]] log2 ` - `− 1

Analogous
to Prot. 16

bool

convert
[[b]] mod 2 to
additive
[[x]] mod 2`

1 1 `-bit
triple - Prot. 25

xor_uint
convert [[x]] to
additive 1 ` `-bit

triples - Prot. 26

90

main [LR15]. This requires small additions to the language and compiler, to use
precomputed triples in the protocol description. With this approach, we gain
from the automatic optimizations done by the protocol language compiler, and
can improve the efficiency compared to the currently handwritten C++ protocols.

5.9 Implementation and benchmarks

5.9.1 Setting up the precomputation

When building applications on shared2p, an important technical implementation
issue is how to ensure a sufficient amount of precomputation results are always
available for the online protocols. In our current implementation, we run the
precomputation as a separate thread that constantly performs the triple generation
protocol, and saves the results to a buffer of predetermined size. If the buffer is
full, the precomputation thread waits until a sufficient amount of triples are used
from the buffer by the online protocols, that may be running in parallel, and then
starts performing the triple computation protocol again. The current set-up is
rather crude in the sense that even if the buffer size is large, the triples can run
out quite quickly in a longer computation and then the precomputation running
in parallel affects the performance of the online phase.

In our current implementation, when the precomputation is empty, an online
protocol simply blocks and waits until more triples are precomputed. Another
possibility would be to run and independent triple generation protocol in parallel,
so that the online computation could continue. However, the complexity is in syn-
chronizing the state of the PRG-s and concurrent accesses to them. We currently
have mostly ignored these topics, but we stress that for a practical implementation,
to support many parallel running computations, these issues have to be solved in
a reasonable way.

5.9.2 Online performance benchmarks

We performed benchmarks of many of the protocol presented in the previous sec-
tion. Specifically, we benchmark multiplication, comparison and equality proto-
cols, conversions from additive to bitwise and vice versa, and also protocols for
casting up unsigned and signed additive types. The benchmarks were performed
on the same cluster of two machines as described in Section 4.6.1. We present
these benchmarks only in the LAN setting, that is, we do not throttle traffic and
use the 10 Gbit/s bandwidth network. We performed the benchmarks for all dif-
ferent bit-length data types. To measure the online performance, we manually
turned off the precomputation and made the protocols use hardcoded triple val-
ues. We present the performance for the shared2p protocols in Table 12. We also

91

performed benchmarks for the corresponding protocols in shared3p, presented
in Table 13.

In all cases we report the average running times of 5 to 100 iterations, depending
on the input data length. For smaller input sizes, we perform more iterations to
reduce the variance of the result. Comparing the shared2p and shared3p online
running times, we see that the results are in favor of shared3p in most cases. This
is to be expected, since some of the shared3p protocols are written in the special
protocol language, which is able to perform various automatic optimizations to the
protocol. Concretely, additive less-than comparison, additive equality, additive to
bitwise conversion and both up cast protocols are implemented with the protocol
language. However, surprisingly, for additive less-than comparison, the shared2p
protocol even outperforms the three-party one on 32 and 64-bit integers.

In most cases, our two-party protocols outperform shared3p ones on scalars
and vectors of 10 elements. This can probably be explained by the inherent reduced
latency in the two-party setting, where both parties only communicate with a single
party. In the three-party setting, they have to exchange messages with both of the
other parties. Since scalar operations are very fast, this can have a relevant effect
on performance.

Overall, shared2p protocols are at most 2 times slower than the shared3p
protocols, except for the case of signed up cast, for which the shared2p version is
up to 3 times slower. We note that this is not a completely fair comparison, due to
the fact that our protocols are hand-written in C++, and some of the shared3p
protocols are heavily optimized by the protocol language compiler. However, the
two-party multiplication and conjunction protocols, for which all the others rely
on, use exactly twice as much communication between a pair of parties. However,
the three-party protocols perform this amount of communication with both parties.
In the future, it would be very interesting to see how much the two-party protocols
can be optimized by the protocol language compiler.

We make a comparison also with the ABY framework [DSZ15]. The authors
of [DDK+15] report amortized performance for online operations with 32-bit inte-
gers on input size 104. Their test environment however uses a 1Gbit/s connection.
For additive multiplication they report amortized 2 µs single operation time in the
LAN setting. For the same input size, our multiplication has 0.065 ns as amortized
time for a single operation, which is two orders of magnitude faster. For less-than
comparison of bitwise 32-bit types, they report 4 µs amortized time, as opposed to
our 0.47 ns, which is one order of magnitude difference. Arguably, the bandwidth
differences have an effect on these times. However, we believe our much better
multiplication performance is mostly due to the mature and optimized network
layer of Sharemind, which is being constantly optimized and improved. Overall,
we see that our two-party computation online performance is very competitive.

92

Table 12: Online performance of shared2p protocols for different data type bit
lengths ` and input vector sizes. Performance is presented in ops/ms (amortized
number of operations performed in one millisecond).

Protocol ` 100 101 102 103 104 105 106

Additive
[[x]] · [[y]]

8 7.06 72.00 706.26 6145.53 25898.68 38704.93 40419.02
16 6.70 68.15 618.58 5573.83 19303.53 22627.20 23822.34
32 6.08 63.21 622.67 4291.85 15257.86 15096.66 15882.03
64 4.19 42.51 418.43 3738.60 8960.09 8927.23 9668.30

Additive

[[x]]
?
< [[y]]

8 1.05 10.52 88.37 493.58 1203.93 1495.52 1502.61
16 0.85 8.22 64.97 364.36 858.15 939.27 961.20
32 0.74 7.09 51.85 270.99 538.26 573.19 609.67
64 0.64 5.90 39.52 196.48 254.51 304.14 312.72

Bitwise

[[x]]
?
< [[y]]

8 3.93 38.61 342.08 2367.93 7341.12 8544.63 8803.54
16 2.81 25.76 220.03 1501.98 4216.47 4086.69 4201.66
32 2.18 20.65 172.78 973.93 2091.34 1858.27 2150.43
64 1.61 16.27 118.42 611.58 850.02 940.42 1045.34

Additive

[[x]]
?
= [[y]]

8 3.31 32.76 303.32 2206.53 6729.97 8347.48 8974.48
16 3.11 31.10 289.14 1944.13 5468.60 6448.09 7112.64
32 2.32 22.57 206.23 1426.09 4065.16 4635.36 5207.05
64 2.25 21.55 189.57 1227.70 3035.51 3256.93 3657.11

Convert
additive to
bitwise

8 1.83 17.62 156.41 1037.52 3036.40 3619.07 4001.66
16 1.45 13.93 115.14 757.31 1993.35 2110.98 2163.87
32 1.16 11.26 92.05 506.88 1098.07 1127.07 1199.94
64 1.08 8.91 72.15 342.12 519.58 608.81 657.30

Convert
bitwise to
additive

8 4.55 36.62 362.48 1818.81 3103.21 3133.50 3203.11
16 4.03 38.90 299.65 1037.87 1086.82 1107.83 1135.85
32 3.67 41.32 208.30 314.43 331.54 375.22 362.11
64 3.17 23.02 96.04 94.64 108.44 111.03 118.19

Additive
unsigned cast to
uint64

8 1.72 18.09 165.02 959.69 2425.60 2762.31 3059.22
16 2.03 20.65 167.53 885.47 2028.00 2077.15 2144.85
32 1.58 15.68 117.23 705.88 1245.53 1378.01 1478.49

Additive
signed cast to
int64

8 1.26 11.07 103.71 579.83 1183.23 1359.97 1496.21
16 0.95 10.67 80.59 471.24 950.01 1011.55 1078.78
32 0.90 8.03 65.79 340.09 629.83 702.69 733.06

93

Table 13: Online performance of shared3p protocols for different data type bit
lengths ` and input vector sizes. Performance is presented in ops/ms (amortized
number of operations performed in one millisecond).

Protocol ` 100 101 102 103 104 105 106

Additive
[[x]] · [[y]]

8 7.56 79.44 736.43 6869.55 38740.17 69201.28 61820.97
16 6.14 66.12 601.61 5647.17 26848.52 38274.00 34296.48
32 4.51 50.19 432.66 3888.02 17132.09 20340.33 18602.36
64 4.31 35.34 364.79 2831.98 10186.20 11673.96 10176.84

Additive

[[x]]
?
< [[y]]

8 0.80 8.86 76.33 502.52 1365.30 1617.49 1783.62
16 1.05 11.53 87.30 488.03 969.07 1005.56 1126.29
32 0.88 8.64 64.84 317.43 558.50 504.16 551.18
64 0.79 7.63 56.44 203.58 281.52 246.60 264.53

Bitwise

[[x]]
?
< [[y]]

8 2.50 26.44 246.88 1901.50 8835.17 11330.52 11480.99
16 2.04 20.11 187.49 1365.47 4996.25 5856.54 5747.02
32 1.74 17.01 147.87 1042.56 2571.13 2922.94 2897.70
64 1.44 13.25 116.92 746.06 1272.51 1468.58 1422.55

Additive

[[x]]
?
= [[y]]

8 2.26 24.24 219.83 1963.02 8883.83 12295.98 14329.46
16 2.03 20.81 204.81 1594.03 6753.38 8871.63 10385.50
32 1.84 18.24 178.44 1405.80 4806.26 5815.51 6164.15
64 1.73 17.73 157.08 1165.42 3212.39 3365.28 3689.35

Convert
additive to
bitwise

8 1.59 16.41 165.56 1272.35 5768.41 8201.81 9487.87
16 1.21 11.37 116.46 807.80 3342.63 4221.26 5003.84
32 1.53 16.05 130.55 871.84 1795.77 1780.35 2071.21
64 0.87 9.49 82.43 464.17 902.64 736.13 828.06

Convert
bitwise to
additive

8 2.18 28.84 290.95 1828.32 3466.42 4265.43 4424.16
16 2.70 26.52 211.10 1098.96 1458.23 1584.76 1784.77
32 2.61 16.83 208.11 459.38 550.80 575.05 548.51
64 1.08 20.14 117.41 157.14 191.46 189.22 185.93

Additive
unsigned cast to
uint64

8 0.93 10.06 93.00 661.22 2840.29 3767.73 4879.54
16 0.87 8.89 88.20 636.30 2288.17 2922.01 3389.51
32 0.71 5.17 53.35 449.64 1455.71 1704.01 1831.34

Additive
signed cast to
int64

8 0.77 8.70 85.67 548.30 2789.72 3683.72 5084.32
16 0.67 7.36 56.28 622.05 2099.64 2351.79 2694.11
32 0.86 7.85 77.68 507.51 1442.02 1365.62 1657.24

94

6 Conclusion

The difference between theory and
practice often rests on one major
factor: efficiency.

Donald Beaver

During the writing of this thesis, the author found this quote by Donald Beaver
from his seminal paper of 1991, as a source of inspiration and a compact formu-
lation of the principal motivation behind this work. Although the quote is as old
as the author, one can argue that despite numerous advances in both theoretical
and practical methods, this viewpoint is relevant in the field of cryptography to
this day.

Our main goal in this work was to implement an efficient two-party secure com-
putation protocol suite on Sharemind, that is competitive in performance with the
three-party alternative, in order to provide a viable alternative to build applica-
tions that are not suited to the three-party model. We presented the design of
our proposed protocol suite, with both efficient constructions for the offline phase,
based on oblivious transfer extensions and a suite of online arithmetic protocols
for integer and Boolean operations, as well as conversions between different secret
sharing representations.

The main focus of the thesis was on optimizing the precomputation phase, as
it is much more computationally intensive and the online phase highly depends on
it. We have presented our constructions for Beaver triple generation that employ
novel techniques for reducing communication costs, compared to similar methods
used in previous work. We achieve this on a high level by using a smaller number
of 1-out-of-N oblivious transfer instead of performing many 1-out-of-2 oblivious
transfers. We have described and implemented these optimized Beaver triple gen-
eration protocols and benchmarked their performance. Overall, our techniques
show promise in increasing the performance of the precomputation phase. How-
ever, our current implementation can be improved in a number of ways, since the
local computations proved to be a bottleneck. Especially, we could improve on
implementing a parallel batching technique, which allows to naturally interleave
local computations and network communication. By reducing the overhead of lo-
cal computations, our techniques, which have reduced communication, would have
a larger effect on overall performance.

In showing security of our precomputation protocols, an important advance-
ment is that we do not require the random oracle model to show security, but rely
on concrete assumptions on hash functions. We prove the main results that are
needed to show security of the composition of our input private oblivious transfer
extension protocols with the secure reshare protocol. However, a full formal proof

95

of the final composition result is left as future work. For the 1-out-of-N oblivious
transfer extension protocol, we generalized the formalization of correlation robust-
ness that was needed to show security, as the original paper lacked a security
proof.

We also implemented a representative amount of computation protocols for the
online phase and showed that they achieve the goal set out in being competitive
with Sharemind’s three-party protocols. In some cases, the two-party protocols
are even faster. Comparing our work to a similar two-party implementation in
the passive security model, we showed an order of magnitude better performance.
Thus, we can conclude that we have succeeded in an efficient implementation, that
would allow two-party secure computations on Sharemind.

In future work we will add missing protocols for integer division and integer bit
shifts and also add Yao’s garbled circuits based floating-point arithmetic protocols.
Additionally we will finalize the precomputation phase by implementing a suitable
base OT protocol for the extensions.

96

References
[ABPP15] David W. Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullo-

nen. Maturity and performance of programmable secure computation.
IACR Cryptology ePrint Archive, 2015:1039, 2015.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael
Zohner. More efficient oblivious transfer and extensions for faster
secure computation. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013, pages 535–548. ACM, 2013.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael
Zohner. More efficient oblivious transfer extensions with security for
malicious adversaries. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I,
volume 9056 of Lecture Notes in Computer Science, pages 673–701.
Springer, 2015.

[ARI] ARITH research group, Aoki lab., Tohoku University. Hardware algo-
rithms for arithmetic modules. http://www.aoki.ecei.tohoku.ac.
jp/arith/mg/algorithm.html. Accessed on 16.05.2016.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin
Geisler, Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen,
Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I.
Schwartzbach, and Tomas Toft. Secure multiparty computation goes
live. In Roger Dingledine and Philippe Golle, editors, Financial Cryp-
tography and Data Security, 13th International Conference, FC 2009,
Accra Beach, Barbados, February 23-26, 2009. Revised Selected Pa-
pers, volume 5628 of Lecture Notes in Computer Science, pages 325–
343. Springer, 2009.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a
system for secure multi-party computation. In ACM Conference on
Computer and Communications Security, pages 257–266, 2008.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomiza-
tion. In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO
’91, 11th Annual International Cryptology Conference, Santa Barbara,

97

http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

California, USA, August 11-15, 1991, Proceedings, volume 576 of Lec-
ture Notes in Computer Science, pages 420–432. Springer, 1991.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In Proceedings of the 20th Annual ACM Sympo-
sium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA,
pages 1–10, 1988.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Ro-
gaway. Efficient garbling from a fixed-key blockcipher. In 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA,
May 19-22, 2013, pages 478–492. IEEE Computer Society, 2013.

[BJoSV15] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How
the Estonian tax and customs board evaluated a tax fraud detection
system based on secure multi-party computation. In Financial Cryp-
tography and Data Security - 19th International Conference, FC 2015,
San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers,
volume 8975 of LNCS, pages 227–234. Springer, 2015.

[BK12] Elaine B. Barker and John M. Kelsey. Sp 800-90a. recommendation for
random number generation using deterministic random bit generators.
Technical report, Gaithersburg, MD, United States, 2012.

[BKK+16] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville
Sokk, and Riivo Talviste. Students and taxes: a privacy-preserving
study using secure computation. PoPETs, 2016(3):117–135, 2016.

[BKL+14] Dan Bogdanov, Liina Kamm, Sven Laur, Pille Pruulmann-
Vengerfeldt, Riivo Talviste, and Jan Willemson. Privacy-preserving
statistical data analysis on federated databases. In Proceedings of the
Annual Privacy Forum. APF’14, volume 8450 of LNCS, pages 30–55.
Springer, 2014.

[Bla79] George R. Blakley. Safeguarding cryptographic keys. In Proceedings
of the 1979 AFIPS National Computer Conference, pages 313–317,
Monval, NJ, USA, 1979. AFIPS Press.

[BLLP14] Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From in-
put private to universally composable secure multi-party computation
primitives. In IEEE 27th Computer Security Foundations Symposium,
CSF 2014, pages 184–198. IEEE, July 2014.

98

[BLR13] Dan Bogdanov, Peeter Laud, and Jaak Randmets. Domain-
polymorphic programming of privacy-preserving applications. In Pro-
ceedings of the First ACM Workshop on Language Support for Privacy-
enhancing Technologies, PETShop ’13, ACM Digital Library, pages
23–26. ACM, 2013.

[BNTW12] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson.
High-performance secure multi-party computation for data mining ap-
plications. International Journal of Information Security, 11(6):403–
418, 2012.

[Bog13] Dan Bogdanov. Sharemind: programmable secure computations with
practical applications. PhD thesis, University of Tartu, 2013.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, CCS ’93, Proceedings of the 1st ACM Conference on Computer
and Communications Security, Fairfax, Virginia, USA, November 3-5,
1993., pages 62–73. ACM, 1993.

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure
multi-party computation for financial data analysis (short paper). In
Proceedings of the 16th International Conference on Financial Cryp-
tography and Data Security. FC’12, pages 57–64, 2012.

[Can00] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. IACR Cryptology ePrint Archive, 2000:67,
2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd Annual Symposium on Foundations
of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas,
Nevada, USA, pages 136–145. IEEE Computer Society, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty un-
conditionally secure protocols (extended abstract). In Janos Simon,
editor, Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19.
ACM, 1988.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant
of universally composable security for standard multiparty computa-
tion. In Rosario Gennaro and Matthew Robshaw, editors, Advances

99

in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part
II, volume 9216 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2015.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. J. ACM, 51(4):557–594, 2004.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC
security with a global random oracle. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Secu-
rity, Scottsdale, AZ, USA, November 3-7, 2014, pages 597–608, 2014.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious
transfer. In Kristin E. Lauter and Francisco Rodríguez-Henríquez, edi-
tors, Progress in Cryptology - LATINCRYPT 2015 - 4th International
Conference on Cryptology and Information Security in Latin America,
Guadalajara, Mexico, August 23-26, 2015, Proceedings, volume 9230
of Lecture Notes in Computer Science, pages 40–58. Springer, 2015.

[DDK+15] Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza
Sadeghi, Thomas Schneider, and Shaza Zeitouni. Automated syn-
thesis of optimized circuits for secure computation. In Indrajit Ray,
Ninghui Li, and Christopher Kruegel, editors, Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Secu-
rity, Denver, CO, USA, October 12-6, 2015, pages 1504–1517. ACM,
2015.

[DDN+15] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Sebastian Nord-
holt, and Tomas Toft. Confidential benchmarking based on multiparty
computation. IACR Cryptology ePrint Archive, 2015:1006, 2015.

[DKMR05] Anupam Datta, Ralf Küsters, John C. Mitchell, and Ajith Ra-
manathan. On the relationships between notions of simulation-based
security. In Joe Kilian, editor, Theory of Cryptography, Second The-
ory of Cryptography Conference, TCC 2005, Cambridge, MA, USA,
February 10-12, 2005, Proceedings, volume 3378 of Lecture Notes in
Computer Science, pages 476–494. Springer, 2005.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally
secure multiparty computation. In Alfred Menezes, editor, Advances

100

in Cryptology - CRYPTO 2007, 27th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23, 2007, Pro-
ceedings, volume 4622 of Lecture Notes in Computer Science, pages
572–590. Springer, 2007.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A
framework for efficient mixed-protocol secure two-party computation.
In 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11, 2014. The
Internet Society, 2015.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized
protocol for signing contracts. Commun. ACM, 28(6):637–647, 1985.

[Ekl72] J. O. Eklundh. A fast computer method for matrix transposing. IEEE
Transactions on Computers, C-21(7):801–803, July 1972.

[Gil99] Niv Gilboa. Two party RSA key generation. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, Au-
gust 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Com-
puter Science, pages 116–129. Springer, 1999.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In Alfred V. Aho, editor, Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, 1987, New York, New
York, USA, pages 218–229. ACM, 1987.

[GOR11] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input
secure hash functions. In Yuval Ishai, editor, Theory of Cryptography
- 8th Theory of Cryptography Conference, TCC 2011, Providence, RI,
USA, March 28-30, 2011. Proceedings, volume 6597 of Lecture Notes
in Computer Science, pages 182–200. Springer, 2011.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extend-
ing oblivious transfers efficiently. In Dan Boneh, editor, Advances
in Cryptology - CRYPTO 2003, 23rd Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings, volume 2729 of Lecture Notes in Computer Science, pages
145–161. Springer, 2003.

101

[KBLV13] Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A new way to
protect privacy in large-scale genome-wide association studies. Bioin-
formatics, 29(7):886–893, 2013.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 20–31. ACM, 1988.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension
for transferring short secrets. In Ran Canetti and Juan A. Garay, edi-
tors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 18-22, 2013. Pro-
ceedings, Part II, volume 8043 of Lecture Notes in Computer Science,
pages 54–70. Springer, 2013.

[KLR16] Liisi Kerik, Peeter Laud, and Jaak Randmets. Optimizing MPC for
robust and scalable integer and floating-point arithmetic. In to appear
in: Financial Cryptography and Data Security - FC 2016 Workshops,
BITCOIN, VOTING and WAHC, Barbados, February 26, 2016, Re-
vised Selected Papers, 2016.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively se-
cure OT extension with optimal overhead. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes
in Computer Science, pages 724–741. Springer, 2015.

[KS73] Peter M. Kogge and Harold S. Stone. A parallel algorithm for the effi-
cient solution of a general class of recurrence equations. IEEE Trans.
Computers, 22(8):786–793, 1973.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July
7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and
Theory of Programming & Track C: Security and Cryptography Foun-
dations, volume 5126 of Lecture Notes in Computer Science, pages
486–498. Springer, 2008.

102

[KS16] Ágnes Kiss and Thomas Schneider. Valiant’s universal circuit is prac-
tical. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of
Lecture Notes in Computer Science, pages 699–728. Springer, 2016.

[KW14] Liina Kamm and Jan Willemson. Secure Floating-Point Arithmetic
and Private Satellite Collision Analysis. International Journal of In-
formation Security, pages 1–18, 2014.

[Lin08] Yehuda Lindell. Efficient fully-simulatable oblivious transfer. Chicago
J. Theor. Comput. Sci., 2008, 2008.

[LMS16] Helger Lipmaa, Payman Mohassel, and Seyed Saeed Sadeghian.
Valiant’s universal circuit: Improvements, implementation, and ap-
plications. IACR Cryptology ePrint Archive, 2016:17, 2016.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol
for two-party computation. J. Cryptology, 22(2):161–188, 2009.

[LR15] Peeter Laud and Jaak Randmets. A domain-specific language for low-
level secure multiparty computation protocols. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-6, 2015, pages 1492–1503.
ACM, 2015.

[LWZ11] Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-efficient
oblivious database manipulation. In Proceedings of the 14th Inter-
national Conference on Information Security. ISC’11, pages 262–277,
2011.

[MS13] Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits
in MPC an efficient framework for private function evaluation. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryp-
tology - EUROCRYPT 2013, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes
in Computer Science, pages 557–574. Springer, 2013.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual Symposium
on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA.,
pages 448–457. ACM/SIAM, 2001.

103

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Jacques Stern, editor, Advances in Cryptology -
EUROCRYPT ’99, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Prague, Czech Republic, May
2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Sci-
ence, pages 223–238. Springer, 1999.

[PBS12] Pille Pullonen, Dan Bogdanov, and Thomas Schneider. The design and
implementation of a two-party protocol suite for Sharemind 3. Techni-
cal Report T-4-17, Cybernetica, http://research.cyber.ee/., 2012.

[PGFW14] Jason Perry, Debayan Gupta, Joan Feigenbaum, and Rebecca N.
Wright. Systematizing secure computation for research and decision
support. In Michel Abdalla and Roberto De Prisco, editors, Security
and Cryptography for Networks - 9th International Conference, SCN
2014, Amalfi, Italy, September 3-5, 2014. Proceedings, volume 8642 of
Lecture Notes in Computer Science, pages 380–397. Springer, 2014.

[Plo60] Morris Plotkin. Binary codes with specified minimum distance. IRE
Trans. Information Theory, 6(4):445–450, 1960.

[PS15] Pille Pullonen and Sander Siim. Combining secret sharing and gar-
bled circuits for efficient private IEEE 754 floating-point computations.
In Financial Cryptography and Data Security - FC 2015 Workshops,
BITCOIN, WAHC and Wearable 2015, San Juan, Puerto Rico, Jan-
uary 30, 2015, Revised Selected Papers, volume 8976 of LNCS, pages
172–183. Springer, 2015.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity
preservation of secure reactive systems. In Dimitris Gritzalis, Sushil
Jajodia, and Pierangela Samarati, editors, CCS 2000, Proceedings of
the 7th ACM Conference on Computer and Communications Security,
Athens, Greece, November 1-4, 2000., pages 245–254. ACM, 2000.

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer.
Technical Report TR-81, Aiken Computation Lab, Harvard University,
1981.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer.
IACR Cryptology ePrint Archive, 2005:187, 2005.

[Sec] Dyadic Security. Dyadic security white paper. Published on-
line at https://www.dyadicsec.com/wp-content/uploads/2015/
06/dyadicwhitepaper.pdf. Last accesed on 16.05.2016.

104

http://research.cyber.ee/
https://www.dyadicsec.com/wp-content/uploads/2015/06/dyadicwhitepaper.pdf
https://www.dyadicsec.com/wp-content/uploads/2015/06/dyadicwhitepaper.pdf

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

[Vah15] Meril Vaht. The analysis and design of a privacy-preserving survey
system. Master’s thesis, Institute of Computer Science, University of
Tartu, 2015.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proc. of
SFCS’82, pages 160–164, Washington, DC, USA, 1982. IEEE Com-
puter Society.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a
whole - reducing data transfer in garbled circuits using half gates. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes
in Computer Science, pages 220–250. Springer, 2015.

105

A Codewords that achieve the Plotkin bound
Here, we present the codewords that we used in our implementation of the [KK13]
protocol. These codes achieve the Plotkin bound, which gives a minimum length
κ for existence of n codewords whose pairwise minimum distance is d. We mean
by 101 . . . that the same pattern 101 should be continued to fill the length of the
codeword.

Table 14: Codewords used in our [KK13] protocol implementation.

d n κ Codewords

128 2 128 000 . . .
111 . . .

128 4 192

000 . . .
011 . . .
110 . . .
101 . . .

128 8 224

0000000 . . .
0001111 . . .
0110011 . . .
0111100 . . .
1010101 . . .
1011010 . . .
1100110 . . .
1101001 . . .

128 16 240

000000000000000 . . .
000000011111111 . . .
000111100001111 . . .
000111111110000 . . .
011001100110011 . . .
011001111001100 . . .
011110000111100 . . .
011110011000011 . . .
101010101100110 . . .
101010110011001 . . .
101101001101001 . . .
101101010010110 . . .
110011001010101 . . .
110011010101010 . . .
110100101011010 . . .
110100110100101 . . .

106

Non-exclusive licence to reproduce thesis and make thesis public

I, Sander Siim (date of birth: 10th of August 1992),

1. herewith grant the University of Tartu a free permit (non-exclusive license) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

A Comprehensive Protocol Suite for Secure Two-Party Computation

supervised by Dan Bogdanov and Pille Pullonen

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive license does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016

107

	Introduction
	Preliminaries
	Notation
	Secure multi-party computation
	General problem description
	Parties' roles in secure computation
	Security notions

	Secret sharing
	Sharemind secure computation platform
	Security and composition of SMC protocols
	Modeling protocol execution
	Privacy and security definitions
	Ideal functionality for Sharemind protocols

	Oblivious transfer

	Oblivious transfer extension
	Correlated OT extension
	Random OT extension
	1-out-of-N OT extension
	Implementing the base OT

	Beaver triple generation
	Beaver triples
	Computing multiplication triples with oblivious transfer
	Gilboa's protocol
	Secure resharing
	Secure Beaver triple generation

	Computing bitwise conjunction triples with random-OT
	Optimizing communication in Beaver triple generation
	Baseline
	Using 1-out-of-N OT for Beaver triple generation
	Summary

	Implementation details
	PRG
	Hash function
	Bit-level operations
	Batching

	Benchmarks of precomputation techniques
	Hardware used for benchmarking
	Network conditions
	Total triple generation time
	Breakdown of different operations

	Conclusions on the precomputation benchmarks

	A protocol suite for two-party computation
	Data representations
	Additively shared data types
	Bitwise shared data types

	Classify, declassify and publish
	Classify
	Declassify
	Publish

	Arithmetic protocols
	Addition, subtraction and multiplication with constant
	Multiplication

	Protocols for bitwise operations
	Bitwise XOR and conjunction with public constant
	Bitwise conjunction
	Bitwise disjunction

	Comparison protocols
	Equality
	Most significant non-zero bit
	Overflow
	Bit extraction
	Less-than comparison

	Conversion between data types
	Conversion between additive and bitwise representation
	Casting up and down

	Summary of protocols
	Implementing floating point operations and future directions
	Implementation and benchmarks
	Setting up the precomputation
	Online performance benchmarks

	Conclusion
	Codewords that achieve the Plotkin bound

