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Microdata Deduplication with Spark 

Abstract: 

The web is transforming from traditional web to web of data, where information is presented 

in such a way that it is readable by machines as well as human. As a part of this 

transformation, every day more and more websites implant structured data, e.g. product, 

person, organization, place etc., into the HTML pages. To implant the structured data 

different encoding vocabularies, such as RDFa, microdata, and microformats, are used. 

Microdata is the most recent addition to these structure data embedding standards, but it has 

gained more popularity over other formats in less time. Similarly, progress has been made 

in the extraction of the structured data from web pages, which has resulted in open source 

tools such as Apache Any23 and non-profit Common Crawl project. Any23 allows 

extraction of microdata from the web pages with less effort, whereas Common Crawl 

extracts data from websites and provides it publically for download. In fact, the microdata 

extraction tools only take care of parsing and data transformation steps of data cleansing. 

Although with the help of these state-of-the-art extraction tools microdata can be easily 

extracted, before the extracted data used in potential applications, duplicates should be 

removed and data unified. Since microdata origins from arbitrary web resources, it has 

arbitrary quality as well and should be treated correspondingly.  

The main purpose of this thesis is to develop the effective mechanism for deduplication of 

microdata on the web scale. Although the deduplication algorithms have reached relative 

maturity, however, these algorithm needs to be executed on specific datasets for fine-tuning. 

In particular, the need to identify the most suitable length of sorting key in sorted-based 

deduplication approach. The present work identifies the optimum length of the sorting key 

in the context of extracted product microdata deduplication. Due to large volumes of data 

to be processed continuously, Apache Spark will be used for implementing the necessary 

procedures. 

Keywords: 

Metadata, structured data, microdata, microformats, Apache Any23, deduplication, entity 

resolution 
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Struktureeritud andmetest duplikaatide eemaldamine Apache Spark'iga 

Lühikokkuvõte: 

Üha rohkem on avaldatakse veebis struktureeritud sisu, mis on loetav nii inimeste kui 

masinate poolt. Tänu otsimootorite loojatele, kes on defineerinud standardid 

struktureeritud sisu esitamiseks, teevad järjest rohkemad veebisaidid osa oma andmetest, 

nt toodete, isikute, organisatsioonide ja asukohtade kirjeldused, veebis avalikuks. Selleks 

kasutatakse RDFa, microdata jms vorminguid. Microdata on üks viimastest vormingutest 

ning saanud populaarseks suhteliselt lühikese aja jooksul. Sarnaselt on arenenud 

tehnoloogiad veebist struktureeritud sisu kättesaamiseks. Näiteks on Apache Any23, mis 

võimaldab   veebilehtedest microdata andmeid eraldada ja linkandmetena kättesaadavaks 

teha. Samas pole struktureeritud andmete veebist kättesaamine enam suureim tehniline 

väljakutse. Nimelt on veebist saadud andmeid enne kasutamist vaja puhastada - eemaldada 

on vaja duplikaadid, lahendada ebakooskõlad ning hakkama tuleb saada kaebamääraste 

andmetega. 

Käesoleva magistritöö peamiseks fookuseks on efektiivse lahenduse loomine 

veebisleiduvatest linkandmetest duplikaatide eemaldamine suurte andmekoguste jaoks. 

Kuigi deduplikeerimise algoritmid on saavutanud suhtelise küpsuse, tuleb neid 

konkreetsete andmekomplektide jaoks siiski peenhäälestada. Eelkõige tuleb tuvastada 

sobivaim võtme pikkus kirjete sortimiseks. Käesolevas töös tuvastatakse optimaalne 

võtme pikkus veebisleiduvate tooteandmete deduplikeerimise kontekstis. Suurte 

andmemahtude tõttu kasutatakse Apache Spark'i deduplikeerimise hajusalgoritmide 

realiseerimiseks. 

Võtmesõnad: 

Struktureeritud sisu, linkandmed, duplikaatide eemaldamine, microdata, microformats, 

Apache Any23 

CERCS: P170 
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1 Introduction 

Microdata is the most recent format of embedding metadata, also called structured data, into 

web pages, which is developed in the context of HTML5 [1]. Microdata is a Web Hypertext 

Application Technology Working Group Standard (WHATWG) specification, which is 

used to embed metadata into HTML contents [2].  For example, using the HTML tag’s 

properties, such as itemtype, itemscope and itemprop provided in microdata specification,  

common schema.org entities like a person, movie and location could be inserted into the 

HTML contents efficiently. To broad the concept of microdata provided by WHATWG, 

famous search engines, i.e. Google, Yahoo, Yandex, and Microsoft, initiated Schema.org 

[1]. Schema.org is an extension to microdata vocabulary and provides more strength to 

embed a broad number of data entities into the web contents. Schema.org also provides the 

vocabulary to depict the relationships among different entities and make the whole picture 

understandable as Creative Work [3]. Figure 1 shows the concept of describing Creative 

work using Schema.org microdata format. 

 

Figure 1: Relationships to depict Creative Work by Schema.org [3] 

1.1 Motivation 

The data that is embedded into web pages is of great importance in the research fields. For 

example, the microdata is been used to study how computers have changed the wage 

structure [3], longitudinal microdata is been used for understanding of productivity [4], 

microdata is also of great importance in price analytics [5] [6]. In addition, microdata is 

been used for research studies in the field of healthcare, business, understanding of 

customers’ behaviour and demand etc. Every day the amount of useful data embedded into 

the web pages increases, which facilitates studies in all field of life.  

One of the most common motivation for websites owners and writers to use Microdata in 

their pages is that it improve the awareness of the pages to potential users by providing 

structured data to major search engines. The popular search engines extract the embedded 

data to present richer results with more accuracy and specific details in response to a user 

search query [7].  
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Figure 2 shows how google.com use metadata to give very specific and precise information 

about University of Tartu when a query University of Tartu is searched1. Obviously, the 

user will find this information more useful and easy to understand than a traditional texture 

description provided under a link by such search engines. Besides it gives a precise short 

description of the entity (university in this case), its physical and online locations, it is also 

visually more attractive. 

 

Figure 2: Using of microdata by google in response to query search of “Uninversity of 

Tartu”1 

As mentioned in above lines, microdata is not only used by the search engines, it is also 

used in different research studies, specifically in the field of economics related to price 

analysis and consumer behaviour. M. Utku Özmen and Orhun Sevinç [5] has used microdata 

to study the duration of a typical price spell and examine the frequency, size, and distribution 

of price changes in Turkey. Bernardo Guimaraes, André Mazini, and Diogo de Prince 

Mendonça [6] has used microdata from different firms to distinguish between time 

                                                 
1 Google, “University of Tartu,” [Online].  
https://www.google.ee/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-

8#q=University+of+Tartu. 
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dependent and state-dependent pricing. They have used Brazilian data to distinguish 

between the two types on the basis whether the time for price changes is affected by realized 

or expected inflation. There are other numerous papers which study prices and inflation in 

different countries based on evidence from microdata. Although, most of the papers have 

used other databases as the sources of data for their studies, yet web is one source of 

collecting the required microdata, and some have collected data from websites. We describe 

the different types of data sources for such studies in chapter 2 when we discuss the related 

work. 

For many years, search engines were the only source knowing and giving insight into the 

published metadata on the web [8]. But as more and more websites started embedding 

metadata into web pages and the concept got popular, advancements are made in the 

extraction of the metadata from web pages. Open source tools are been developed, such as 

Common Crawl [10], Apache Any23 [11] etc. These tools mainly aim to extract the 

metadata in microformats, RDFa, and microdata from the web, and provide it for further 

studies. Common Crawl, one of the famous data extraction community, is a non-profit 

organization that extract metadata and publishes the extracted metadata publicly. Currently, 

Web Crawl has petabytes of data in the form of raw web page data, metadata extracts and 

text extracts collected and published over previous years [9] [10]. Any23 provides an API 

for developers to use it in software applications for extraction of microdata. Similarly, it 

provides the facility to be used as web service and or command line tool to extract metadata 

in different microformats embedded in web pages [8] [11]. 

1.2 Scope 

The standards for embedding metadata in web pages is been developed with specifications 

defined and well-established vocabulary published by different communities. Specifically 

with the initiative of Schema.org microdata, which is backed by the giant search engines, 

the vocabulary for embedding metadata is made more precise and accurate. These 

specifications make it possible and very easy to embed data into HTML pages. In many 

different domains, the huge number of websites are adopting these standards to embed 

microdata into their pages. Similarly, extraction tools are been developed for common users 

in the form of command line and web interfaces, and for programmers as open source APIs 

that can be used in software applications to extract the embedded metadata. In this paradigm, 

the only question which is not completely answered yet is the study of duplicates detections 

in the extracted data. Data that is extracted and is supposed to be used for further process 

needs to be cleaned from duplicates. 

In this research thesis, we will focus on this gap that is not currently filled by open source 

community. We will develop a linear mechanism to deduplicate in the extracted data. To 

cope with the issue of performance Apache Spark will be used for implementation of the 

mechanism. 

1.3 Research Problem 

As mentioned and described in above two sections, the main aim of this research is to 

provide a mechanism for deduplication of extracted microdata from the web.  

In this research thesis, we answer mainly the following research questions; 

• Generic research question: Which deduplication method to use for cleaning 

microdata at Web scale? 

• Specific research question: How to use Apache Spark for deduplication and 

cleaning of microdata at Web scale? 
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1.4 Contribution 

Our work mainly focuses on deduplication of microdata. Specifically, this thesis project 

contributes to the domain with the following objectives; 

1) Develop a method and a Spark workflow for effective microdata deduplication. 

2) Validate the method and the overall solution on a case of descriptive product pricing 

analytics with data from .ee domain. 

1.5 Structure Description 

In Chapter 2, we cover the related work done in the field of data deduplication. We also look 

into existing state of the art tools that is currently available for extraction and process of 

microdata. In chapter 3, we will have a look at the background and the already available 

work in deduplication of data. Chapter 4 explains the mechanism that we propose for 

filtering microdata from duplications. Also we will present the details of the implementation 

of mechanism developed for deduplication in extracted data. In chapter 5 we are looking 

into the experiment that is done to validate our developed mechanism and tool. In 

subsections of chapter 5 we are discussing the data, settings for experiment, evaluation and 

threats.  Chapter 6 gives a conclusion to the paper and we discuss future potential directions 

for research in this domain. 
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2 Related Work 

2.1 Data Deduplication 

Data deduplication has mainly two themes, one is storage based data deduplication also 

called data compression or single-instance storage and second is record linkage also known 

as entity resolution or object matching.  

Storage-based data deduplication is a specialized method of eliminating the repeating, i.e. 

duplicates, copies of the data [9]. This could be achieved by comparing and eliminating the 

identical copies of data files or the repeating data block (chunks) within the same data file 

[10] [11]. This technique is useful for improvement of data storage management. With 

storing only unique data, the deduplication decreases the required storage capacity. Hence, 

it decreases the size of data center [11]. A lot of research is been done in this field and many 

different methods are been proposed for storage-based deduplication. One of the common 

approach for deduplication in storage servers is that a cryptographic hash of the data, that is 

aimed to be stored, is created. Hash represents an arbitrary length of text in fixed length. 

Because the length of hash is considerably smaller to the size of the text it is representing, 

hash decreases the complexity of data chunk comparison. So for each stored or incoming 

data chunk first a hash signature is calculated, and this hash signature is searched in the 

already maintained hash index. If an entry for this signature is found then the data related to 

the hash is not stored, but a reference to it is created, which points to the location of the 

identical data block on the storage device. But if no entry in the hash index for this hash 

signature is found then the data chunk is stored on the storage device and an entry of its hash 

signature in the hash index is created [12] [11].  

The second theme of data deduplication is known by many different names, such as record 

linkage, entity resolution (ER), or record/object matching. It is a deduplication technique, 

which deals with the identification of entities that refers to the same real-world entity [16] 

[17] [18] [19]. It is a problem of critical importance for integration of data from various data 

sources for data quality. The problem of duplicate entities can be found in a single database, 

Figure 3: Logical Structure of data deduplication [14] 
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i.e. customers in an enterprise database, but mostly the duplication of data occurs when data 

from different external data sources are integrated into a single dataset for analysis or 

research study. As these data sources are independent, they may overlap information and 

follow different independent and practically incompatible standards [19]. The preciseness 

of the results based on the analysis of such integrated data set is critical, because important 

conclusions, sometimes critical business decisions, are based on these results [20]. For 

example, finding a duplicate customer, location or employee records in an enterprise 

database, or just like in the case of this research paper collecting data from 100s of different 

e-commerce applications and matching products for the available offers and price analysis. 

Generally, entity resolution techniques use multiple similarity measures to compare entities 

pair for making an effective match decision [13]. Because of the comparison step, where 

each entity is possibly a candidate pair for comparison with every other entity, the ER 

process may take hours or in the case of big dataset(s) days [21]. To make the process 

efficient, a common approach is the reducing of the search space with help of blocking [17] 

or indexing [18] technique. Through indexing or blocking technique generation of candidate 

records that are most likely true matches, refer to same real world entity are efficiently 

generated by use of data structures. For example, the standard blocking technique uses a 

blocking key value (BKV), generated from one or several entity attribute(s), to input the 

entities into many partitions, known as blocks, based on the similarity of BKV. Hence, the 

matching of subsequent entities are restricted to the same block [18]. Still ER remains a 

costly process and there is much work done to make it more efficient.  

This paper mainly focuses on the entity resolution theme of data deduplication. 

2.2 Deduplication with Hadoop 

Apache Hadoop is an open source distributed computing framework. It provides simple 

programming model to process large data set across clusters of computers. Hadoop provides 

a specialized implementation of map reduce, called Apache Hadoop MapReduce. 

MapReduce is a parallel programming model, which has the map() and reduce() functions 

to process large sets of data. The map function processes key/value pair and generates an 

intermediate key/value pair. The reduce function combines all intermediate values which 

are associated to the same intermediate key. 

Deduplication with Hadoop (Dedoop) [17] is a framework based on Apache Hadoop and  

MapReduce (MR) framework. It facilitates a parallel pair-wise similarity computation of 

records. Dedoop provides a web-based interface, where the user can specify the MR 

workflows and algorithms for blocking and classification of records pair from the data set. 

Then using cloud infrastructure Dedoop provides the results in a visualized form. Dedoop 

expects clean and structured input from users, other steps for deduplication of integrated 

data set is same as discussed in section 2.2. Dedoop performs three steps with three MR 

jobs. Dedoop in the first step applies blocking technique to insert more likely matched 

records into same block or partition. It generates the candidate record pairs for comparison 

using the blocking technique and calculates the similarity of the records pairs. In the final 

step, it classifies the records pairs into matched and non-matched pairs. For classification of 

record pairs it uses machine learning and includes the step of training Dedoop with label 

data. Figure 4 shows the depicts how Dedoop works. 
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Figure 4: An overview of Dedoop Framework. 

2.3 Current State-of-the-art Standards and Tools 

Microdata and Schema.org 

Out of the three most common used data embedding vocabularies on the web, the most 

recent is Microdata, the other two are RDF and microformats. First-time microdata shown 

up in 2009, it started getting popularity with the introduction of schema.org in 2011.  

Microdata is a specification that is used to embed machine-readable data in web/HTML 

pages [13]. Microdata consists of name-value pairs, which describes a resources on the web. 

The resources in microdata terms are known as items. Each item is defined according to the 

microdata vocabulary. The microdata vocabulary is provided by WHATWG, whereas 

extended vocabulary, to broaden the scope of microdata, is provided by Schema.org [13] 

[14]. 

The vocabulary defined by microdata, includes itemscope describes an item and itemprop 

attribute defines the property or attribute of an item [14]. To specify a specific item or entity, 

itemtype attribute is used. Itemtype is the key for describing the type of the item, the different 

type of items could be a product, book, article, research work, person etc. Micordata does 

not provide vocabularies to specifically described all these different types items. Rather it 

gives a general idea of the item, which has a type, scope and some properties.  

To cope with the limitations of defining anything in terms of a specific object or an entity 

with specific attributes, Schema.org is initiated by popular web search engines, i.e. Google, 

Yahoo, Microsoft Bing and Yandex [3]. It was launched in 2011 to help search engines 

understand and interpret the embedded structured data in web pages. The search engines 

needed a wide variety of vocabulary to enrich their search results, for example identifying 

of a book or an article, its name, author, a link to the publisher, etc.  

Schema.org vocabulary provides the URL http://schema.org/Person to identify an entity of 

real-world person. To embed a person data into the HTML contents one must combine the 

Schema.org vocabulary with microdata or other structured data vocabularies, i.e. RDFs and 

microformats. In the case of a person, the parent element in HTML should have itesmscope 

and itemtype vocabularies from microdata, whereas the itmetype will have value 

http://schema.org/Person from Schema.org to embed a person entity into the HTML pages. 
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The child elements must have all the properties related to the person. The following example 

shows this concept [13]. In the first snippet the person is described in traditional web and in 

second snippet the same person is described in semantic web using microdata and 

Schema.org vocabularies; 

 

Please note that the second part shows person entity with http://schema.org/Person, it also 

deals with address as a separate entity and uses http://schema.org/PostalAddress, to identify 

it. 

The Schema.org standards provide a hierarchical set of types and their properties. On the 

top, the most generic type is Thing, which could be viewed as Object and Entity in 

programming and databases domains respectively. Subtypes of Thing include 

CreativeWork, Event, Place, Person, Organization and Product. Schema.org also provide 

few subtypes which are specific to an individual domain. For an educational domain, it 

provides ScholaryArticle, Book, Review and WebPage to describe the published research 

paper or work. To elaborate educational organization, it has EducationEvent and 

EducationalOrganization subtypes. In the hierarchy, each type has a set of properties plus 

the properties that are inherited from its parent type.  

 

<!-- Traditional Web --> 

<section>  

Hello, my name is Khalil, I am MSc Student at the University of Tartu. I live in 

Tartu, Estonia. 

</section> [13] 

 

<!-- Semantic Web --> 

<section itemscope itemtype="http://schema.org/Person">  

 Hello, my name is  

 <span itemprop="name">Khalil</span>,  

 I am   

 <span itemprop="jobTitle">MSc Student</span>  

 at the  

 <span itemprop="affiliation">University of Tartu</span>.  

 <section itemprop="address" itemscope      

itemtype="http://schema.org/PostalAddress"> 

 I live at 

<span itemprop="addressLocality">Tartu</span>, 

 <span itemprop="addressRegion">Estonia</span>. 

</section> [13] 

</section> [13] 

http://schema.org/Person
http://schema.org/PostalAddress
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The properties, i.e. attributes, of Thing, which is inherited to each of its subtypes in the 

hierarchy; [14] 

• description (Text): item’s short description 

• image (URL): URL of the item’s image 

• name (Text): item’s name 

• url (URL): URL of the item 

These properties are quite useful, specifically in differentiating between different things and 

objects. In one way these properties make it much easier to extract the entities from 

structured data, combine all into a dataset and match them for duplicate detection. 

Schema.org vocabulary is continuously evolving, from its introduction in 2011 till 2015, it 

has gone through more than 25 revisions. These revisions range from the typo in schema 

elements to introduction of a fully new vocabulary set for a specific domain, e.g. the Music 

Ontology to vocabulary for the convention of GoodRelations. Besides an addition of new 

vocabulary, the usage of existing elements are changed for better use. Similarly, the 

elements that shouldn’t be used anymore are specified and marked as deprecated. Although 

the participating stakeholders in discussions are considerably small to its users, schema 

definitions are maintained in a community-driven process. The prospective changes made 

to the Schema is announced and discussed through public mailing lists.   

Data-Vocabulary.org 

Data-Vocabulary.org is the predecessor of Schema.org. Its vocabulary is very similar to that 

Schema.org. It is been deprecated since the introduction of Schema.org in 2011. It’s 

mentioning was important since some web pages still have metadata structured using the 

vocabulary of Data-Vocabulary.org.a 

Apache Any23 

Any23 is the abbreviation for “Anything to Triples”. It is a command line tool, an API and 

a web service [15]. It extracts web data from a variety of micro formats. At the movement, 

it supports the following formats; 

• Microdata and Schema.org 

• RDF/XML, Notation 3, Turtle 

• RDFa 

• CSV with comma separated values 

• Micro-formats with many different standards, like Adr, Geo, hCalendar, XFN etc. 

Any23 is written in Java, and it is used in the major web of data applications, i.e. sindice.com 

and sig.ma. Services of Any23 can be utilized in many different ways; 

• In java applications as a library to consume metadata from the web. 

• It can be used as command line tool for extracting and converting the data to different 

supported formats. 

• It is also available as online service API at any23.org. 

Common Crawl 

Common Crawl is a non-profit organization, which extract metadata using its crawler 

software and publish this data for further processing on the internet. The published data can 
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be used by any person or entity to carry out their own research or processing. The common 

crawl has published, till now, petabytes of data2 [8].  

Apache Spark 

Apache Spark is a fast and general cluster computing framework for the processing of Big 

Data [16]. It was initially developed in AMP Lab at University of California, Berkeley. 

Currently, it is maintained by Apache Software Foundation. Spark provides in-memory data 

processing, in contrast to Hadoop disk-based processing. The in-memory processing makes 

Spark much faster for Big Data tasks with some limitations, i.e. data should not increase 

from available memory.  

As we will be working on large web-scale data, to avoid performance bottleneck we use 

Apache Spark for deduplication of microdata.  

2.4 Price Analytics using microdata 

To study price rigidity in Turkey, M. Utku Özmen and Orhun Sevinç uses microdata [5]. 

They have investigated micro price data of around 6000 items over four years. The analysis 

focuses on the duration of price spell and the frequency, size, distribution and 

synchronization of price changes.  

Generally, three types of sources are used for data in the studies of micro-level price spells. 

The data for item-level prices from the compiled Consumer Price Index (CPI). This type of 

data, which is available mostly once a month, is generally official and compiled by the 

statistical agencies. CPI data also deals with representative goods by construction, i.e. not 

all the price for the specific brands of product, e.g. milk, available in a store is collected. 

Except the prices for brands which are more common brands through a specific area, e.g. 

municipality, city or country, is collected. For efficiency of analysis, the second type of data 

source is the scanner data that is used in such studies. Scanner data is the scanner readings 

or the registry records of a supermarket. This data is normally available on the weekly basis 

and it includes both quantity and price data. The third type of data source that is used in 

micro-level price spell studies is the scrapped data. This type of data is been collected from 

the online sources by crawling the websites. Normally identifying a unique product and 

recording price and other characteristics of the product. The major benefit of such data is 

that it is available in real time, but it covers a relatively low portion of the CPI. 

The data M. Utku Özmen and Orhun Sevinç has used for their study is mostly consist of 

scraped data, the data that is been collected from online resources. The scraped data, in other 

words, is the microdata that is available on the internet. The data included in this study [5] 

is been collected from retailers’ e-commerce application, i.e. automobile distributors, airline 

companies etc. They have also used CPI data which was collected manually by visiting 

different stores in the stores. 

Two approaches are used to calculate the price spell. A direct approach, which states that 

each observed complete and censored spell is recorded as a single duration for an item [5]. 

An indirect approach which observes the number of price changes for an item over a specific 

period and the number of time intervals in this specific period in which the prices for the 

item might have changed. Both of the approaches are interrelated, the lower frequency of 

price changes means the longer price spell duration, so more rigid prices. 

The study [5] conclude that there is a great degree of heterogeneity among the sub-groups 

of consumer prices. It also suggests that there is a mixed time and state dependent pricing 

                                                 
2 Common Crawl - https://commoncrawl.org/ 
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[5] strategy in Turkey. The mixed strategy of state and time dependent pricing is mostly 

common in the developed economies but the study shows that it is true for emerging 

economies too. The study states that the prices in Turkey is more flexible but the 

synchronization is being low as compared to peer countries of Turkey [5].  

2.5 Summary 

In this chapter, we discussed different standards, tools, and methods, each has a direct or 

indirect use in our research project. The data deduplication discussed gives us an 

understanding of deduplication. Although we will use the entity resolution theme of data 

deduplication in our project, but discussion on encryption theme of deduplication was 

important to understand the difference between the two and when each of them is used. 

Obviously from Schema.org vocabulary we understood that each real world object is 

structured into web contents as a thing that is an object or an entity. The standards, i.e. 

microdata and Schema.org, discussed gives us an understanding on how structured data is 

implanted into web pages. Hence, it helps in developing a valid mechanism to extract the 

embedded data and transform it to a valid format efficient for data comparison and 

deduplication. Our focus in this paper is on microdata. Currently, on average 35% of 

websites use microdata to implant structured data into their pages. Because schema is 

backed on popular search engines, its popularity increase and it is becoming more prominent 

over other metadata vocabularies. The tools that are mentioned gives us an understanding 

of how data is extracted from the web pages. Our focus is on deduplication of microdata, so 

we will reuse the current extraction tools and methodologies these tools use for extraction 

of microdata from websites. A suitable option for such extraction is the API provided by 

Apache Any23 to extract data from web pages programmatically. The discussion on Dedoop 

is specifically important to understand that the currently existed solutions for deduplication 

are using the MapReduce approach for deduplication. For our approach, we will use Apache 

Spark which is much faster than Hadoop. The last section, talks about the possible use of 

microdata. Although the papers presented in the last section do not completely depends on 

microdata collected from web, but they do use data collected from websites. Similarly, as 

this data is freely available on the web, it could be of great use in such studies in coming 

years. It need a process which could be used from collection microdata over web to its 

cleaning and comparison for different research study. And this is the purpose we will work 

in this paper to achieve. 
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3 Background 

In this chapter, we will give a general idea of data matching and deduplication technique. 

We will discuss some of the important concepts and methods that are widely used for 

deduplication of data. 

3.1 Deduplication process 

Duplicate detection is an essential task for data integration and data cleaning. Because of its 

importance and time-consuming process, a large amount of research is been conducted on 

this topic covering different aspects of the subject, and a number of solution have been 

proposed [17]. These proposed solutions cover both sequential and parallel approaches. In 

this subsection, we will discuss the general deduplication process. 

Peter Christen [18], has discussed in details the deduplication and data matching process. 

He proposes mainly 5 steps for deduplication of data, which are;  

1. Preprocessing 

2. Indexing 

3. Record pair comparison 

4. Record pair classification 

5. Results evaluation 

Peter Christin’s [18] duplicate detection states data preprocessing as the first step. The 

standardization of attributes to the same structure and its value into a standard format is dealt 

with in the preprocessing step. When data is cleaned and standardize, it is ready for duplicate 

detection through record pair comparisons. To find duplicates each record in the dataset 

should be compared to each other record for calculating the similarity of the records pair. 

This makes the similarity calculation is quadratic to the size of the dataset(s). Most of these 

comparisons are among the records which are not similar because all records are not similar 

to each other. Indexing, also known as blocking, technique is used to reduce the record pairs 

which need to be compared. For detail comparison, indexing technique generates record 

pairs that are most likely similar to each other. After indexing of the records, the record pairs 

need to be compared to calculate the similarity and classify them as duplicate or 

nonduplicate pairs. The final step is evaluating the quality of classification, where the 

classified pairs are evaluated to identify how many of them correspond to real-world entities. 

Similarly, matching completeness is checked by looking at how many real-world entities 

that appeared in the dataset are correctly matched. A common accuracy measure for this 

step is precision and recall. 

Although, Peter Christin [18] explains these steps systematically and in details, this 

approach seems to be common among other work done in the entity resolution domain with 

some variations. The papers [19] [20] uses nearly the same kind of approach. A very famous 

paper [21], which is a survey about deduplication techniques, dicusseses the main process 

in 3 main steps and indexing technique as an additional step. It refer to the preprocessing 

step as data preparing, that is cleaning the data from unwanted characters, its transformation, 

and standardization to a uniform format. The second step then includes matching of the 

entities based on its attribute values, and based on the similarity of the attribute values, the 

decision of  the entity pair as duplicate or non-duplicate. Finally, the paper discusses the 

blocking techniques for making the process faster and efficient. It skips the evaluation of 

the process. 
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3.2 Pre-processing 

Pre-processing also known as the data preparation [21] is a crucial step for successful data 

deduplication [18]. It is the initial step taken in the deduplication process. Data commonly 

have attributes, such as name, description, price, provider etc. in the case of a product. It is 

important to make sure that the data, which comes from different data sources, is properly 

standardized. It is also important to confirm that the attributes which are used for comparison 

of the data records are in one standard format. Data entry errors and the structure in which 

data is presented in the dataset(s) are the two main factors, among other, which affects data 

quality [18].  

The main steps that are involved in data pre-processing are the removal of unwanted 

characters and words, expanding of the abbreviations, correcting misspellings and dividing 

attribute values into well-defined text segments [18]. Normally the data has unwanted 

characters or words, such as meta-information which explains the formatting of the text to 

a web browser, information that explains the language used for the specific attribute, or 

some unwanted spaces, special characters etc. These unwanted words and characters need 

to be removed and the actual value of each attribute needs to be cleared. The attribute values 

should also be checked for misspelled text.  

3.3 Indexing 

The most expensive step in data deduplication is the comparison of records. Comparison of 

each record to every other record in the dataset(s) is resource consuming. In such case, most 

of the comparisons correspond to not true matches, that means not each record is similar to 

every other record in most cases. To compare two data sets of m and n size for duplicate 

detection, the total record pairs for comparison will be m x n pairs. To reduce the number 

of record pairs for comparison, records indexing is an important step in data deduplication. 

The aim of indexing is to remove pairs that are unlikely true matches. Whereas the pairs that 

are possibly true matches (two records which refer to the same entity) need to be kept for 

detail comparison. Therefore, indexing is a filtering step, which is based on a type of index 

data that is a base for bringing ‘similar’ valued records from the different data sets or within 

the same data set together. In this step, all the records of each dataset are processed and then 

each record is inserted into one or several blocks for comparison. The index data should be 

formalized in a way that the possible similar records are inserted in the same block. For 

example, one case is sorting of the records to move the possible similar records close to each 

other. The index data that is used for indexing is called blocking key, also known as sorting 

key in case of using sorting approach for indexing. The blocking key, in general, is generated 

from a single or multiple attributes in the record. For example, a name, and price attributes 

could be a good option for developing a blocking key for indexing products in order to bring 

the most similar products into the same index list. In the same way, if the records are been 

sorted based on this blocking, here better to say sorting, key in sorting-based indexing 

technique, it will lead to records with same name and price next to each other. Defining the 

indexing key is a critical part of each indexing technique.  

Following are some techniques used for indexing or blocking; 

1. Standard Blocking/Indexing: It is a traditional approach for data matching and 

deduplication process for many years. One blocking key value (BKV) is generated 

for each record in the dataset(s). Based on the BKV the record is inserted into a 

block, with the same BKV into the same block. To match two data sets all possible 

pairs of candidate records for comparison are formed from all the records which have 

same BKV across both data sets. In case there is a BKV only for records of one data 
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set then no pairs are made, as the other data set do not have any similar BKV, and 

no comparison is done for such BKV. 

2. Sorted Neighbor Approach: It is an alternative to the standard blocking. Instead of 

generating blocks based on BKV, it uses ‘sorting key’. The sorting key is generated 

in the same way as BKV, to sort the records in the dataset. After sorting the records, 

a fixed length of sliding window (w>1) is then moved over the sorted records, all 

possible records pairs in the window at any given step are candidate pairs for 

comparison. Following pictures, from a lecture on sorted neighbor techniques from 

Felix Nauman [22], shows an example of sorted neighbor approach. The rectangle 

in red color depicts the sliding window concept. 

 
Figure 5: The concept of sorting key generation and data sorting [22]. 

 

 

Figure 6: The concept of sliding window over the records, two steps are shown here [22]. 

The window size and how the windows should slide has many variations based on the data 

and number of pairs that needed to be compared. The bigger the window size, the larger the 

number of candidate pairs for comparison and more computational resources is needed. 

Bigger window size also makes the comparison more accurate, as more records are 

compared to each other and there are limited chances to miss any candidate pair which may 

 

   Window size = 4  
   Pairs, Step 1: (r1, r2), (r1, r3), (r1, r4)    Setp 2: (r2, r3), (r2, r4), (r2, r5) 
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be a true matching pair. The maximum widow-size could be n (the number of records in the 

dataset(s), in such case, each record will be compared to each other record, which is not at 

all aim of indexing technique. The minimum window size can be 2, that is each record is 

compared to the record next to it only. 

Other well-known algorithms for indexing are Canopy Clustering, Suffix-Array Based 

Indexing, Q-Gram Based Indexing, and Mapping Based Indexing, to name some. 

The results provided by Peter Christen [18] states that the slowest technique is mapping 

based indexing, followed by q-gram indexing, and canopy clustering. The large number of 

candidate record pairs are produced in mapping based indexing. Sorted neighborhood and 

suffix-array indexing are faster and require less memory. These two approaches are 

simpler too. 

3.4 Resource Description Framework: 

RDF, Resource Description Framework, is a World Wide Web Consortium (W3C) 

framework which enables encoding of metadata in the form efficient for exchange and reuse. 

RDF imposes XML structured constraints on its document creation to provide an 

unambiguous method of semantics expression. The constraints also ensure encoding and 

exchange of standardized metadata. RDF provides human and machine-readable 

vocabularies to facilitate and encourage the reuse and extension of metadata semantic 

among the information communities [23].  

RDF framework provides a model for describing resources which is identifiable by 

Universal Resource Identifier (URI).  A resource has attributes and characteristics [23]. The 

properties, i.e. the attribute associated with a resource are marked with property-type, each 

property-type has a value. The collection of the properties corresponding to a resource is 

called description of the resource.  

N-Triples is a specific plain text syntax for RDF. It is an easy to parsed line-based syntax 

[24]. N-Triples consist of a sequence of RDF terms, representing subject, predicate and 

object of RDF simple triples. The triples may be separated by spaces or tabs. Each sequence 

is presented in one line terminated by ‘.’ (dot) and new line character [24]. Following is an 

example of N-Triples; 

_:subject1 <http://an.example/predicate1> "object1" . [24] 

_:subject2 <http://an.example/predicate2> "object2" . [24] 

When a label of topic is added to N-Triples it becomes N-Quads. Following is an example 

of N-Quads; 

_:subject1 <http://an.example/predicate1> "object1" <http://example.org/graph1> . [25] 

_:subject2 <http://an.example/predicate2> "object2" <http://example.org/graph5> . [25] 

RDF is an important concept in Linked Data. As discussed above, RDF facilitate encoding 

of structured data about an entity or object, i.e. resource. Each resource is identified by an 

identifier. Normally, in the real world each resource has relationship to any other resource. 

RDF also facilitate this recording of this relationship. N-Triples and N-Quads are very 

important simple syntax to record these RDF concepts or linked data in plain text. For 

example two famous fiction characters are Spiderman and Green-Goblin, to present the 

linked data of these two characters following N-Triple statement could be used; 
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<http://example.org/#spiderman> 

<http://www.perceive.net/schemas/relationship/enemyOf> <http://example.org/#green-

goblin> . [24] 

Please note that there is no line break between the three triples. In very similar case to above 

example any resource could be presented in terms of N-Triples. To the above example if we 

add a label or topic say <http://example.org/graphs/spiderman> [25] which may shows the 

source of the is information the triples will become quads, hence from N-Triples to N-Quad.  

We are using N-Triples and N-Quads to store the extracted microdata. These formats are 

quite efficient for processing, storing and transferring of the data.  
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4 Design and Implementation of Deduplication and Anomaly 
Removal Methods 

In this section, we will give an overview of the complete microdata deduplication process. 

It starts at extraction of data from HTML contents and ends with obtaining a unique result 

set of the records. In the following chapter, we evaluate this method with real world data to 

present the evidence of its efficiency and accuracy.  

4.1 Deduplication Technique 

The method that we have used for microdata deduplication is very similar in many steps to 

the methods used in related research papers [21] [19] [18]. Following are the step we see 

necessary for microdata deduplication; 

1. Data preparation 

2. Indexing or blocking 

3. Record comparison and duplicate elimination 

4. Results evaluation 

Data Preparation 

The Data preparation step is also commonly known as data pre-processing, see section 3.2 

for details. We agree with the authors of Duplicate Record Detection [21] on saying this 

step as data preparation, because in the case of microdata this step is more like an initial 

process followed by the deduplication process. Deduplication, as mentioned in the 

introduction, is the process of finding all those entities which refer to the same real-world 

entity. Before the start of the deduplication process, the data goes through some 

standardizing steps during which the data is converted into a uniform format, reducing the 

structural heterogeneity [21]. The sub-steps data preparation requires are data 

transformation and data standardization steps. 

By microdata, we mean, specific to this paper, the structured data embedded into web pages. 

In such case, it is less obvious that the data under study comes in a format suitable for 

starting the process for deduplication. Mostly the data is in the form of web pages or HTML 

contents. Following are steps required for transformation and standardization of microdata 

into a form suitable for input into duplicate detection process. 

1. Extraction of Microdata: For microdata, the first required step is extraction of 

microdata from HTML contents to a format supported by the extraction tools, such 

as Apache Any23. Most common formats are N-Triples, N-Quads, Turtle, and JSON 

etc. This step could only be skipped if the data is already extracted and available. In 

my case, we extracted the data into RDF N-Quads format.  

2. Conversion of the data to entities: The second step that we preferred in data 

preparation is conversion of data from N-Quads or other formats supported by the 

extraction tools to tuples. In tuples each record is presented in a single row and the 

attributes of each record is separated by a comma. One good reason for converting 

the extracted data to tuples is that microdata and schema.org embed the structured 

data into web pages in a very similar way to an object or entity data. That is each 

resource on the web has a type and characteristics, i.e. attributes. So it is quite easy 

to identify the microdata resource as an object, e.g. a person or a product and its 

attributes. Once the data is in tuples, each tuple could be used as a separate entity. In 

my case, we present each record in a single line, where each property of the record 

is within the brackets (e.g. <property>) and the properties are separated by 

semicolon. Semicolon separation is good when it comes to the properties that have  
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commas in the text. All attributes of the attributes of each record is presented in one 

standard format, i.e. String/Text. 

3. Removing unwanted characters: The data comes from different web pages, hence 

with much different quality and mistakes. Many pages have formatting data mixed 

with the attribute values’ text. The most common unwanted characters we had with 

the data was space formatting characters, e.g. \n, \t etc., and metadata, e.g. @en for 

presenting language of the text etc. The only way to get rid of such character was to 

remove it from the text.  

4. Encoding correction: As the data comes in the different language, specifically the 

data that we worked on was from .ee domain. It had many characters in the form of 

Unicode, e.g \\u00E4 for Estonian ä character etc. Such type of character needs to 

be corrected and converted to the standard character or alphabet. We used the java 

library to convert such the Unicode back to UTF-8 characters.  

The removal and correction of text should be performed after cleaning and 

transforming the data into a standard form, in my case we performed this step after 

formatting the data into tuples. We performed all the cleaning steps sometime over 

the whole record as a single string and in other cases for each individual attribute in 

the record. 

Indexing  

After the step of data preparation and preprocessing the data is transformed to a form 

appropriate for comparison of the records pairs in order to identify duplicate records. But, 

as discussed in section 3.3, the comparison of records is quadratic to the size of the dataset(s) 

in nature, when each record is compared to each other record in the dataset(s). To avoid the 

waste of resources and make the process efficient, the records are divided into blocks in a 

way that the records which are more likely duplicates are inserted into similar blocks. Hence, 

the comparison of records which resides in the same block is carried out. 

One famous approach for indexing is Sorted Neighbourhood technique, we have chosen this 

technique for deduplication of microdata. We put efficiency, simplicity and compatibility to 

Apache Spark for selecting an indexing technique. An evidence for Sorted neighbourhood 

technique could be found in Peter Christen work [18]. He states that among the indexing 

techniques, the Sorting Neighbourhood and Suffix Array indexing techniques are the faster 

techniques and require less memory. Sorted neighbourhood technique is much simpler too. 

It needs the generation of sorting key and based on the sorting key all records are sorted to 

bring the most similar records near to each other. A sliding window is used to compare the 

records resides next to each other. This technique is more compatible to Apache Spark in 

the sense that it uses less memory, Apache Spark also relies on memory for data processing. 

Hence, it is much safer to use Sorted Neighbourhood technique on Apache Spark for the 

large dataset containing millions of records. One other reason, that is much specific to 

choosing Sorted Neighbourhood over Suffix array indexing, is that Apache Spark’s MLlib 

library implements the sliding window concept. It makes selecting the records pair for 

comparison much simpler. 

The sorting or indexing key is a crucial part of any indexing technique. It is not important 

which indexing technique is used for indexing of data, but important is the definition of the 

indexing key [26]. Because this is the indexing key which brings similar valued records to 

the same block. The sorting key could be developed of a single attribute or multiple attribute 

value. When defining a sorting key, it is important to take care of the data that needs to be 

de-duplicated and the indexing technique that is in use.  

file://///u00E4
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Keeping in view the guidelines mentioned above we prefer name, price, and provider as the 

necessary attributes which could be used for defining the sorting key. Name is always an 

important aspect of a record. Whether it is a person, place or product etc., name plays the 

important role in identifying an entity. Similarly, if we are talking about the product the 

price and provider of the product are much important too. Because these two attributes play 

the important role in differentiating the product entities from one another. For example, if 

we say Galaxy SI, it is enough for identifying a product, but not for differentiating with 

other products that may have the same name. If we add provider or manufacturer to the 

product name, e.g. Samsung, then the product is clearer. And with adding price information, 

we come closest to identify and differentiate it with other products. The more attributes 

added the more will the sorting will be perfect. But not in all cases, because while choosing 

the attributes for a sorting key definition, we should also keep in mind that the attributes 

should have the maximum or complete frequency and good quality. By frequency, we mean 

the attribute should have values for all or maximum records. Microdata is not collected from 

a single website, rather it comes from multiple websites. Each website provides only a 

limited set of data about any product record. While studying the data we came to know that 

these three attributes are mostly complete attributes as for as the data that we have collected 

from .ee domain. We also understand that add all attributes to defining the sorting key will 

not benefit, while in some cases it may affect the indexing in the negative way. As we select 

limited attributes, similarly we do take part of the attribute text, e.g. 10 or 20 characters. The 

selection of characters to add to sorting key also depends on the length of attribute value 

through all the records. So my way of defining sorting key is combining first 30 characters 

of the name with the price of the product and the domain name of the product provider. 

Choosing of only 30 characters from the name of the product is based on experiments, detail 

of which is given in chapter 5. 

String key= EMPTY_STRING; 

if(name.length()<30)   

key+=name; 

else 

 key+=name.substring(0,30); 

Record comparison and duplicate elimination 

After sorting the records based on the sorting key, same valued records are moved closer to 

each other and are put in the same partition. Arranging of the records in partitions is handled 

by Apache Spark. Now when the records are arranged, they are ready for comparison. A 

sliding window will slide over the records and will pick the nearest neighbours for 

comparison. We keep the sliding window size 3, that means at each iteration three records 

next to each other are picked, making two pairs of records for detail comparison. Working 

of sliding window is shown in Figure 6 for a window size of 4, with details in section 3.3. 

After picking the records for comparison, the first record is paired with second and with 

third separately, making two pairs of record in case of sliding window size 3. We compare 

the two pairs and calculate the similarity between the pair. The result of the similarity 

calculation is either duplicate (1) for or no duplicate (0) records. We add all unique records 

to the resultant set and for all sets of duplicate records, we add only one representing records 

to the resultant record list. For example, if we have P1, P2, P3, P4, P5 and P6, a sliding 

window of size 3 will have 5 iterations and 10 record pairs for comparison as follow; 
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Data Set 

(Products) P1 P2 P3 P4 P5 P6 

Window Size 3      

Table 1: A data set of 6 products and the window size 3 

Iterations Pairs Comparison 
Comparison 

result 

Resultant Data 

Set 

Iteration 1 
P1, P2 Yes Not Duplicates P1 

P1, P3 Yes     

Iteration 2 
P2, P3 Yes Duplicates P2 

P2, P4 Yes Duplicates   

Iteration 3 
P3, P4 No     

P3, P5 Yes No Duplicates   

Iteration 4 
P4, P5 Yes No Duplicates   

P4, P6 Yes No Duplicates   

Iteration 5 
P5, P6 Yes No Duplicates P5, P6 

        

Table 2: Pairs and Iteration of dataset with 6 products and window size 3 

The table shows a window size of 3 will have 5 iterations, by principle it should have only 

4 iterations but the last one is extra for comparing the ‘window size’ -1 remaining products. 

Similarly, the actual number of comparison are shown in the table which were the only 8, 

details for the process are given bellow. The last column shows the resultant data set which 

contains a representing product for the duplicates and the unique product which has no 

duplicates. 

Record Pairs List 

P1     

P2 P3 P4 

P5     

P6     

Table 3: List of duplicate record pairs 

This table represents a list which is updated on each iteration, recording the duplicate pairs. 

In case of products having no duplicates, the list will have only unique product. 

Shown in the above three tables is the process of comparison of record pairs. We see 

necessary clarifying of few points. The last table (Table 3), this table shows a list of a list 

which keeps records of a product or set of products. In case a product has no duplicates, e.g. 

P1, P5, and P6, it comes alone in the first column of this list. In case there are multiple 

records which correspond to a similar product entity, e.g. P2, P3 and P4 all represent one 

product and are duplicates, then the list contains all these products in one row. This list is 

updated on completion of each iteration, whether a duplicate product is added to the already 
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recorded product set or a unique product is added to the last row of the list. The product in 

the first column does not come with a specific formula, rather it is the product that comes 

first from top to bottom on the original sorted data set. This same product, i.e. P2, represents 

the other two similar/duplicate products, i.e. P3 and P4, in the resultant data set. 

One other benefit of the list of list shown in Table 3 is that on each iteration we first look at 

the last row of the list and take all the records on the row, e.g. at iteration 3 of the sliding 

window the list already has P2, P3, and P4 from the previous iteration, we retrieve this list. 

We then compare the entity at the second last position/index of the row, i.e. P3, with the 

first entity of the record pair picked by sliding window, i.e. also P3, and the entity at the last 

index, i.e. P4, with the second entity of the first pair picked by the sliding window, i.e. P4 

too. In this case we the pair picked by sliding windows is completely similar to the pair that 

exists on the last row of the list, so no need for detail comparison. Because we already know 

from the previous iteration of the sliding window, with the help of this list, that P3 and P4 

are pairs. By this way, detail comparison of the entities that are already known duplicates 

are been avoided. In the case of big data sets, which has a high number of duplicate entities 

avoiding such comparisons may effects the overall time of the deduplication. This is also 

the reason for No in the first row of the third iteration at the second column of Table 2, titled 

as Comparison, which means no detailed comparison is been done for the pair (P3, P4).  

We follow document based approach, the data set for deduplication is read from files on 

disk, and after the deduplication process, the resultant set is been write back to files. During 

the process, the data sets and intermediate results are managed by Apache Spark. 

Results evaluation 

Evaluation of the method is explained in chapter 5. 

4.2 Implementation of the deduplication technique 

The implementation of the method is been done in three main steps.  

1. Extraction of Microdata: In the first step, we process HTML files and extract data 

to N-Triples format. The N-Triples are further formatted to N-Quads. The N-Quads 

contains a key, subject, predicate and object. The key contains a time stamp on which 

the data is been collected, the domain name from which the data is collected and the 

HTML page address which contains the collected data. The key is been combined 

with the standard subject, predicate, and object that have been extracted from the 

HTML contents using the Any23 API. The N-Quads are stored into files. 

extractMicroData(String htmlContents) throws Exception{

   

  Any23 runner = new Any23("html-microdata");   

  File file=createTempFile(htmlContents);    

DocumentSource source= new 

FileDocumentSource(file); 

ByteArrayOutputStream out = new 

ByteArrayOutputStream(); 

  TripleHandler handler = new NTriplesWriter(out); 

  String result = runner.extract(source, handler); 

  result = out.toString("UTF-8"); 

  

  handler.close();     

 } 
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The above code snippet received HTML contents, it then writes the contents to a 

temp file and the extract microdata from HTML contents with the help of Apache 

Any23 library. The extracted data is further processed to N-Quads and stored in files. 
 

setNQuadStatements(String key, String result) { 

 String[] 

statements=result.split("(\\s\\.)(\\r?\\n)"); 

 StringBuilder stat=null; 

 for(String statement: statements){ 

stat=new StringBuilder(""); 

    System.out.println(statement); 

String[] statParts = statement.split (  

"\\s(<|\"|_)"); 

   

String subject = statParts[0] 

.replaceAll("(<|>|\")", ""); 

String predicate = statParts[1] 

.replaceAll("(<|>|\")", ""); 

String object = statParts[2] 

.replaceAll("(<|>|\")", ""); 

    

    stat=new StringBuilder("").append("<"+key+">,") 

.append("<"+subject+">, ") 

   .append("<"+predicate+">, ") 

.append("<"+object+">"); 

    statementsList.add(stat.toString()); 

 } 

 writeToFile(statementsList); 

} 

As could be seen in above code that we split the N-Triples with String.split() method 

and extract the RDF triples. There are some libraries, specifically a method by 

Any23 which does the separation. The problem with using the available libraries are 

that the N-Triples statement order is not preserved in the way it is extracted from 

HTML contents. The order of statements is quite important for extracting entities 

from N-Quads.  

2. Transformation of N-Quads to Tuples: After processing the HTML pages and 

formation of N-Quads, in the next step we extract product entities from the N-Quads.  
 

SparkConf sparkConf =  

new SparkConf().setAppName("NTriples To Entity"); 

JavaSparkContext ctx = new JavaSparkContext(sparkConf); 

      

 Configuration conf= 

new Configuration(ctx.hadoopConfiguration()); 

conf.set("textinputformat.record.delimiter",  

"22-rdf-syntax-ns#type>, ");  

JavaPairRDD<LongWritable, Text> lines= 

ctx.newAPIHadoopFile 

    ( 

readFilePath,  
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     TextInputFormat.class,  

     LongWritable.class,  

     Text.class,  

     conf 

   ); 

JavaRDD<String> bLines=lines.map( 

new Function<Tuple2<LongWritable, Text>, 

String>(){ 

  @Override 

public String call( 

   Tuple2<LongWritable, Text> line) throws 

Exception { 

   return line._2.toString(); 

  }       

}).filter( new Function<String, Boolean>(){ 

      public Boolean call(String bLines){  

return ( 

bLines.contains("org/Product")|| 

bLines.contains("org/Offer")); 

      } 

}); 

The above code snippet initializes an Apache Spark process which reads N-Quads 

from files. The files are split into chunks, a group of lines, based on the predicate 

which contains 22-rdf-syntax-ns#type. The predicate <http://www.w3.org/1999/ 

02/22-rdf-syntax-ns#type > has always a schema.org class as subject, e.g. 

<http://schema.org/Product>, <http://schema.org/Offer> or <http://schema.org 

/Organization>. Then filtering all those groups of statements which neither represent 

product nor and offer, again the product and offer always come after one another. So 

the filter uses quite efficiently remove the microdata which presents other than 

product and its offer.  

After the splitting and filtering of the data, we read the remaining N-Quad statements 

line by line and look for the product attributes, i.e. name, SKU, description, product 

URL, image URL etc. A product object is been initialized and data for each attribute 

is assigned to the corresponding variable of the product. The list of products received 

from each file is converted to String and saved in files called Entities. Each entity is 

a tuple of name, SKU, description, product URL, image URL, price, currency, 

availability, provider and time stamp. 

3. The de-duplication process: Having product entities in from of tuples makes it easy 

to read these entities and process them for duplicate detection and removal. First, an 

Apache Spark process is initialized and the data is read. While reading the data the 

entities are checked of completion. An entity is not a complete entity if it has no 

name or its SKU, description, product and image URL, and currency all together are 

empty. Following code represents the initial process of reading an cleaning of 

entities; 

SparkConf sparkConf =  

new SparkConf().setAppName("Product Unification"); 

JavaSparkContext ctx =   

new JavaSparkContext(sparkConf); 
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JavaRDD<String> lines = ctx.textFile(args[0], 16) 

  .filter(new Function<String, Boolean>(){ 

   @Override 

   public Boolean call( 

String line) throws Exception { 

  

    if(!line.isEmpty()){ 

     return isRecordValid(line); 

   

    } 

    return false; 

   } 

}); 

The method isRecordValid() looks for the completion of the product entity with the 

criteria mentioned in above lines. 

After creating the RDD which has all cleaned and valid entities, the next step is 

creating of the Sorting Key for each entity and appending it to the corresponding 

entity.  

JavaPairRDD<String, String> keyEntity =  

       lines.mapToPair( 

new PairFunction<String, String, 

String>() { 

  public Tuple2<String, String> call( 

String entityTuple){ 

   String key=generateKey(entityTuple); 

return new Tuple2<String, String>(key, 

entityTuple); 

 } 

}); 

Whereas method generateKey() has the following logic; 

String key= EMPTY_STRING; 

if(name.length()<30)   

key+=name; 

else 

 key+=name.substring(0,30); 

key+=price; 

if(!(provider.isEmpty())){      

   key+=provider.split("\\.")[1]; 

} 
 

Using sortByKey() method of Apache Spark we can easily sort the entities. While 

sorting the entities, Apache Spark will also handle partitioning the entities based on 

the sorted order. With sorting the entities more similar entities will move near to 

each other. After sorting the entities with the sorting key, we no more need the key, 

so we will get the product record only.  

JavaRDD<String> sortedEntity = 

keyEntity.sortByKey().values();  
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Entities are sorted and placed into partitions, i.e. blocks. So now we will fix a 

window size and will start picking product record pairs for comparison.   

 final int windowSize=WINDOW_SIZE; 

 RDD<Object> slidingRDD =  

RDDFunctions.fromRDD(sortedEntity.rdd(),  

sortedEntity.classTag()).sliding(windowS

ize); 

 JavaRDD<Object> recordPairsRDD =  

new JavaRDD<>( slidingRDD, r.elementClassTag()); 
 

In above code snippet, we selected a window size and then create an RDD which 

will handle the sliding window over the complete data set. The sliding RDD is 

implemented by Apache Spark’s MLlib library. 

Now detail comparison of the records pair will be done, as follow; 

final long size= recordPairsRDD.count(); 

JavaRDD<String> result =  

recordPairsRDD.map(new Function<Object,String>() { 

   @Override 

   public String call(Object recordsPairs)  

throws Exception { 

    iteration++; 

    String record=""; 

    if(iteration==size){  

 record=handleLastPairs( 

recordsPairs); 

    } 

    else 

     record= Util.matchPairs( 

(Object[]) recordsPairs); 

     

return record; 

   } 

   Private String handleLastPairs(recordsPairs){ 

Object[] lastPairs= 

(Object[])recordsPairs; 

for(int i=0; i<lastPairs.length; i++){ 

Object[] newArray= 

new Object[lastPairs.length-

i]; 

 newArray= Arrays.copyOfRange( 

   lastPairs,  

   i, 

   lastPairs.length); 

 record+=Util.matchPairs(newArray); 

} 

   } 

  }).filter(new Function<String, Boolean>(){ 

   @Override 

   public Boolean call(String arg0) throws 

Exception { 
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    return !arg0.isEmpty(); 

   } 

 });  
 

The size variable gets the number of sliding window iteration. Then we start 

counting the iterations up to the last iteration. At the last iteration, we take all the 

remaining records and give the record pairs for comparison through a loop, which 

decreases the records one by one and sends the records pair for comparison. This 

way we handle matching the records at index and bellow window size minus 1. As 

the sliding window is not able to pick these boundary records. 

Detail comparison is handled by the Util.matchPairs(Object[]) method in the a 

custom Util class. The method looks like; 

public static String matchPairs(Object[] recordsPairs) 

{ 

  String recordToReturn=""; 

  ArrayList<Long> prePairsIDsList= 

new ArrayList<Long>(); 

  if(recordsPairs!=null){  

   List<Product> productList= 

new ArrayList<Product>(); 

   for(Object recordObject:recordsPairs){ 

String[] record= recordObject.toString() 

.replaceAll("<|>", "").split(";"); 

    Product product=setProduct(record); 

    productList.add(product); 

   } 

   Product product=new Product();  

   int lastRecordIndex= 

recordsComparisonList.size()-1; 

 

   if(!recordsComparisonList.isEmpty()) 

    prePairsIDsList= 

recordsComparisonList.get( 

lastRecordIndex);    

   if(prePairsIDsList.size()<2){ 

    product=productList.get(0); 

    recordToReturn=product.toString(); 

prePairsIDsList.add(product.getId()); 

   }else{ 

    product=productList.get(0); 

       

 if(!(prePairsIDsList.contains(product.id))){ 

     prePairsIDsList=new ArrayList<>(); 

     prePairsIDsList.add(product.id); 

     recordToReturn=product.toString(); 

    } 

    else{ 

     recordsComparisonList 

.remove(lastRecordIndex); 

    } 
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   } 

   for(int i=1; i<productList.size(); i++){ 

    Product productOther=productList.get(i); 

    

 if(!prePairsIDsList.contains(productOther.id)){ 

     if(product.equals(productOther)) 

      prePairsIDsList 

.add(productOther.getId()

); 

else if(product.compare 

(productOther)) 

      prePairsIDsList 

.add(productOther.getId()

); 

    } 

   } 

   recordsComparisonList.add(prePairsIDsList); 

 }  
return recordToReturn; 

} 
 

The recordsComparisonList is the list of list which keeps track of the records with 

its duplicate copies. The details about this list is given in section 4.1 and Table 3 

corresponds to this list. 
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5 Validation Experiment 

In this chapter, we will discuss the data set for our experiment. The experiment setting and 

evaluated results will also be included in this chapter, besides the challenges to the validity 

of the data. 

5.1 Data 

As mentioned earlier the data for this research work is collected from the .ee domain. The 

data was already collected by a crawler application and it was stored in sequence files. It 

was collected from the pages that are publically available as e-commerce stores over the 

web. Hence for our data set, we use thousands of pages which had embedded structured 

data. The data set that we use embed all the data directly in the HTML contents using the 

schema.org and microdata vocabulary. In order to make this data usable for our experiment, 

we first read the HTML contents from the sequence files and by the use of Any23 API 

extract metadata embedded in the HTML contents. The extracted data is stored as RDF N-

Quads which combines the key for the page with standard RDF triples, i.e. the subject, 

predicate, and object. The key for the page is made up of the domain name, specific page 

URL from which the data is collected and the time and date on which the data is stored (into 

the sequence files).  

We were interested in all microformats which are used to embed metadata into HTML 

pages. But all the websites that were been crawled was using a very similar type of 

vocabulary for embedding the data into their web pages. The extracted microdata shows the 

use of mainly two microdata vocabularies, i.e. Schema.org and Data-Vocabulary.org. Both 

of the two vocabulary sets has very similar vocabulary used together with microdata and 

other microformats to embed structured data into HTML contents. Figure given bellow 

shows the top ten vocabulary classes;  

A class represents an individual entity in the microdata domain. As can be seen in above 

graph the data we have processed contains microdata for the organization, place, product, 

offer, event etc. The classes are placed as the object in the RDF triples. The predicate for 

such object is mostly <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>.  
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 <http://schema.org/Organization>

 <http://schema.org/JobPosting>

 <http://schema.org/NewsArticle>

 <http://schema.org/Offer>
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 <http://data-vocabulary.org/Product>

 <http://data-vocabulary.org/Offer>

 <http://schema.org/Event>

Occurance of Classes

Figure 7: The most used entity classes in the data set 
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For this project, we are only interested in product and offer classes. Therefore, we filtered 

out all vocabulary and its data that is not related to product or offer. After this, we will refer 

to product related vocabulary only. 

A corresponding entity to the class, e.g. schema.org/Product, is described by its 

corresponding vocabulary called properties, i.e. attributes, which are been the predicates in 

RDF triples. Whereas the value of the properties are placed in objects of the triples. The 

following graph shows the most used predicates or vocabulary for describing a product and 

its corresponding offer.  

 

Figure 8: The properties of microdata Product and Offer entities from data. 

To unify the data we identified properties that are similar in meaning and present same 

attribute of product or offer. The following table gives the mapping for the vocabulary that 

is similar in meaning. 

Schema.org Data-vocabulary.org 

http://schema.org/Product  http://data-vocabulary.org/Product  

http://schema.org/Offer  http://data-vocabulary.org/Offer  

http://schema.org/Product/name  http://data-vocabulary.org/Product/name 

http://schema.org/Product/description http://www.w3.org/1999/xhtml/vocab#description 

http://schema.org/Offer/price 
http://data-vocabulary.org/Product/price / 

http://data-vocabulary.org/Offer/price 
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 <http://schema.org/AggregateOffer/lowPrice>

 <http://schema.org/Offer/availability>

 <http://schema.org/Product/description>

 <http://schema.org/Product/sku>
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Occurance of properties/predicates
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http://data-vocabulary.org/Product
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http://data-vocabulary.org/Offer
http://schema.org/Product/name
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http://schema.org/Offer/priceCurrency http://data-vocabulary.org/Product/currency 

http://schema.org/Product/productID / 

http://schema.org/Offer/productID 
-- 

http://schema.org/Product/sku / 

http://schema.org/Offer/sku 
-- 

http://schema.org/Product/url http://data-vocabulary.org/Product/url 

http://schema.org/Product/image http://data-vocabulary.org/Product/image 

Table 4: Mapping of vocabularies 

Table 4 shows mapping for the vocabularies that are used for embedding structured data 

into HTML formats. Mapping is done between the vocabularies which express similar 

meaning. 

For the unification, we have selected Schema.org as the main vocabulary, as it is recent and 

more popular currently. After mapping the data vocabulary following graph shows the 

statistics for unified vocabulary.  

 

Figure 9: Statistics for the vocabulary, after unification that is used in the collected data. 

The number of sequence files, that are processed, are 26500, totally acquiring a size of 1.2 

TB on HDFS. The data, when converted to N-Quads, has a size of 51.7 GB with the number 

of files similar to the sequence files, i.e. 26000. The data is further processed and converted 

to product entities in tuples. Each tuple was consist of 11 product attributes, i.e. id, name, 

SKU, description, image  URL, product URL, price, currency, availability, provider, and 

the time stamp. The id to each product was assigned sequentially during the creation of the 
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product entities from N-Quads. Overall 1.8 millions of product entities were been extracted 

from the collected microdata.  

Before going to the next step of the evaluation process, we see necessary to explain what 

we call duplicates in the context of the product, specifically in the context of this paper. 

Duplicate entities (records) are all those entities which refer to the same real-world entity, 

in our case it is a product. So all those entities which refer to the same real-world product 

are detected and eliminated. While working on real world data from .ee domain, we noticed 

that there at two types of duplicates, one the exact duplicate entities and second are those 

entities which may differ in some attributes but overall they all refer to the same entity. 

Following are the two types with examples; 

1. Exact Duplicates: We categorize these entities if they all have exactly similar, 

100% equal, name, price, and provider. By provider here we mean the domain, 

website or online store, which offers the product.  

2. Duplicate Entities (not exactly same attributes): These are the entities which may 

differ in attributes but are duplicates. The evidence could be seen from different 

attributes, e.g. the image address which plays a vital role to identify any duplicate. 

Obviously, not only image should be same, it may be a mistake. But if the name of 

the product is very near to each other in similarity and both are presented by one 

image. 

5.2 Experiment Settings 

The experiment to evaluate the deduplication process is been done with yarn-cluster. The 

hardware information on the machines available in the cluster is given as follow; 

Quantity RAM CPU Disk Network 

4 29 GB 3 VCPU 

Intel Xeon E5-1650 v3 

1800 GB 1 Gbit/s 

Table 5: The hardware specification of machines in yarn-cluster 

5.3 Evaluation 

Golden Data Set: 

The first step in evaluation process was the preparation of Golden data set. Following are 

the step we performed for the generation of golden data set; 

1. We selected 1000 out of 26000 sequence files randomly.  

2. The sequence files were processed to URLs, from the URLs we extracted HTML 

contents.  

3. The HTML contents were then processed for extraction of microdata. Microdata was 

converted to N-Quads format. 

4. N-Quads were processed for the formation of entities. A total number of 41163 

product entities were been formed from microdata. 

5. To eliminate the exact duplicates of entities, see chapter 4 for the definition of exact 

duplicates, an Apache Spark process were initialized. The Process discarded all 

exact duplicates from the entity set. A total number of 14000 product entities were 

eliminated in this step.  
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6. In the next step, we eliminate all those entities which have no name, or all together 

has no information of description, product URL, image URL, price, and currency 

was discarded. A total number of 5000 entities are lift at the end of this step, all other 

were discarded. 

7. In the final step, we checked all remaining 5000 entities and discarded all those 

entities which were referring to same real world product. My main focus during this 

step was the name of the entity, its description, image, and product URL. All these 

were giving quite enough evidence to mark a pair product as duplicate or non-

duplicate. The resultant data set contains 3600 unique records. 

The resultant data set with 3600 out of 41000 records are named as Golden Data Set.  

Evaluation Method  

We used document based approach to find the precision, recall and f-score for evaluating 

the results of the deduplication process explained in chapter 4. Golden data is used as 

expected or relevant data set and the result of the process is as derived data set. Then by the 

following formulas, we can calculate precision, recall, and f-score. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}  ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|
 

 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}  ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|
 

 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Experiments for Evaluation of the Method 

Mainly two things affect the result of deduplication process, specifically in the context of 

sorted neighbourhood approach. First is the sorting key, obviously selection of attributes are 

very important but the length and how many characters should be taken from each attribute 

has the same importance and effect over the results. For example, if we want to define 

sorting key by combining name, price, and provider in case of a product entity. Because 

these attributes are more important in recognizing and differentiating a product. Then how 

many characters or portion of the values of name, price and providers should be combined, 

all or a part to the attribute value. Second is the selection of sliding windows size, the sliding 

window size represents how many products next to each other should be compared at any 

given iteration. The sliding window selects the number of products based on its size and 

slides over the records by 1 increment in its starting index.  

To clarify what size of windows and how many characters should be suitable for the most 

efficient process of our proposed deduplication process. Following experiments are carried 

out. During these experiments, we kept the size of other attribute values, i.e. price and 
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provider, constant, whereas the size of name attribute varies, i.e. 10, 20, 30 or full characters. 

Similarly, the window size is been varied through the experiments too, i.e. 3, 5, 7 and 9. 

Following graph shows the experiments for 10, 20, 30 and Full characters selected from 

value of name attribute to form sorting key. The sliding window size for each selected 

characters varies 4 times at each experiment, e.g. for character 10 4 experiments at window 

size 3, 5, 7, and 9 are done and results are shown.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 10 shows the CPU time for the different lengths of sorting key characters with respect 

to different windows sizes. As can be seen from the picture the difference in time with 

respect to characters is very less. The average in all four cases is 146-147. Whereas in the 

case of window sizes the difference is more visible, but still less. 
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Figure 10: Time variation for different windows size and name characters 
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In Figure 11 the precision has a very visible difference with respect to sorting key’s length 

of characters. For 10 characters it is 0.658 which increases to 0.90 in the case of 30 and full 

characters. Whereas windows size effects the precision only when the sorting key has 20 

characters from attribute name’s value. 
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Figure 11: Precision of the resultant data set at different windows sizes and 

name characters. 
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When the sorting key length is small the resultant set has more records, obviously more 

duplicates too. In such case, the precision is low, because of the duplicates, but recall is high 

as some of the products that were expected is not dropped. So the resultant set has more of 

the expected results but also more unexpected too. This could be seen from Figure 12 for 

recall and Figure 11 for precision. 
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Figure 12: Recall of the resultant data set at different windows sizes and 

name characters. 
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This figure shows one of the most important aspect, i.e. f-score, of the evaluation process. 

And it is clear from the figure that at 30 and full characters the f-score is quite fine, i.e. 91%. 

In the case of 10 it is 77% only and in the case of 20 it is 87%. From this, we can conclude 

that the optimum f-score is in 30 characters. So if a sorting key has 30 characters from the 

name attribute of the product and it has some limited characters from price and provider 

attributes, one will have the best resultant unified dataset. Hence, increased from 30 

characters do not benefit and decrease from 30 will have less precision and less f-score.   
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Figure 13: F-score of the resultant data set at different windows sizes and 

name characters. 
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The higher the ratio f-score to time is, the higher f-score the resultant set will have, and i.e. 

the resultant dataset is more optimal. The figure shows that as the sorting key increases in 

length the ratio increases too. But after 30 characters the ratio is constant. Again 30 

characters are the best length with respect to time and f-score. 

5.4 Threats to Validity 

The data was not collected from well-established e-commerce websites, rather it was 

collected from random websites over the .ee domain. Beside product, it has data about 

organizations, jobs, event, news articles etc. Similarly, the data was not specific to one 

language. Because of the very general nature of the collected data, there are some threats to 

the validity of the process. In the following paragraph, we will discuss these treats one by 

one. 

One of the issues with the data was multiple languages, the data was mainly in Estonian and 

Russians, and sometimes in English too. So in some cases a single product was been 

described in two languages, mostly Estonian and Russians. On close, investigation we found 

that the number of data that has this problem is not in huge amount. During developing the 

Golden dataset we found nearly 100 such cases, where one product data was provided twice 

in two different languages. 

Because of data in different languages, there was the issue of character encoding. In data 

preparation process, we tried to solve this issue with decoding back to a UTF-8 character. 
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Figure 14: Ratio of the f-score to the time of the resultant data set at 

different windows sizes and name characters. 
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But in some cases when there was a spelling mistake or missing character in the Unicode, 

then it was not possible to decode it back to a valid character. 

Developing and organizing the Golden dataset manually may have affected the validation 

process. Developed with the human perspective, the set is subjective and at some places, it 

was difficult to decide whether a pair of records are duplicate or non-duplicates. During the 

development of the set, we mainly consider the similarity of name, description, provider, 

product and image URLs. Some of the issues during eliminating of duplicates manually for 

Golden dataset are; 

 In cases when the pair of products has names, but no descriptions. Image URL plays 

an important role in identifying the pair as duplicate or non-duplicate. Sometimes 

both the products have reference to the same image while the URLs of both products’ 

images has a very little difference, i.e. same image is duplicated but there is a minor 

difference in the URL text. Such cases could easily be identified by humans but it is 

difficult to be detected by machines.   

 Products with very general names, e.g. clothes or bikes, and very general description. 

On the resale online web stores, mostly common people put their 2nd hand 

belongings for sales. In such cases, the owner of the product writes a very general 

description in her/his own words and give the product a very general name. On 

investigation, this could be found by the human eye, but again it is difficult for the 

machine to identify such cases. 

 Description and other attributes, e.g. colour and price, included in the name of the 

product. It was also an issue while developing the Golden dataset. Some products 

have attributes given within the name of the product. In some case these products 

are same but in other cases the products are different with different offers. 

One more treat that may affect the validity of the process is size of Golder dataset. The set 

is been formed of 1000 randomly selected files out of 26000, these files may not completely 

represent the whole dataset. 

The treats that are explained above may have an effect on the efficiency of overall 

deduplication process. But these treats do not have a big impact on the process. The data 

that is affected with such treats is a percent or less than that. In the data preparation process, 

we have handled incomplete and inconsistent data and has discarded all the records which 

may have the greater affect, negative, over the validation of the process.  
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6 Conclusions 

Data deduplication is an important process, and it has application in many aspects of life. 

Similarly, microdata has great importance in many research domains. In this paper, we have 

combined the two approaches and presented a linear approach for the extraction of the 

microdata data from different sources over the web to its unification. Unification of data is 

vital for achieving better quality and making the data usable in any research work. Our 

proposed process has the ability to be used in the context of whole microdata and 

Schema.org domain, whether that is products, persons, organizations, data related to the 

health sector, or news articles.  

One of the important aspects of data deduplication process is the definition of sorting, i.e. 

blocking, key for indexing of records. In this paper, with practical experiments, we have 

found the optimal length of sorting key with respect to f-score. There is much written about 

the quality of attributes and choosing the value of attributes for defining of sorting key, but 

how much the characters of key effects deduplication is not considered.  

Spark is a distributed framework developed on top of MapReduce. By using Apache Spark 

the deduplication process is made faster and quite efficient. But still there is a space for the 

improvement. The results of our proposed deduplication process could be made more 

accurate and the process faster by putting more concurrency into the method. With 

increasing the number of executors in Apache Spark the method could be made much faster. 

To achieve this, there is need of a well-established and less weighted communication 

mechanism between the executors. 

We believe that with creating of big Golden dataset for validation of the process may make 

the process more efficient and fine-tuned. The development of big dataset requires more 

time and language understanding of the .ee domain. 

The deduplication process could also be improved with putting more effort into the data 

preparation phase of the process. Methods like phonetic encoding and splitting the values 

of attributes to well-defined and meaningful words. By doing these techniques the data 

comparison could be improved. 

Our project is pure research oriented, so the implementation of the process could be 

improved and made more usable by providing a user-friendly interface. By using the 

interface the user of the application should be able to locate HTML pages or web addresses 

and the application should provide the resultant unified data set. 



48 

 

7 References 

 

[1]  J. Ronallo, “HTML5 Microdata and Schema. org.”, Code4Lib Journal 16, 2012.  

[2]  WHATWG, “Microdata - HTML Draft Standard”, WHATWG, [Online]. Available: 

https://html.spec.whatwg.org/multipage/microdata.html. [Accessed 2016]. 

[3]  Krueger and Alan B, “How computers have changed the wage structure: Evidence 

from microdata, 1984-1989”, National Bureau of Economic Research, 1991.  

[4]  Bartelsman, Eric J. and Mark Doms., “Understanding productivity: Lessons from 

longitudinal microdata”, Journal of Economic literature, 2000.  

[5]  M. U. Özmen and O. Sevinc, “Price rigidity in Turkey: Evidence from micro data”, 

Emerging Markets Finance and Trade, 2015.  

[6]  Guimaraes, Bernardo, André Mazini, and Diogo de Prince Mendonça., “Time-

dependent or state-dependent pricing? Evidence from firms’ response to inflation 

shocks. ”,2015.  

[7]  R. Meusel, C. Bizer and H. Paulheim, “A web-scale study of the adoption and 

evolution of the schema. org vocabulary over time.”, Proceedings of the 5th 

International Conference on Web Intelligence, Mining and Semantics. ACM, 2015.  

[8]  Mühleisen, Hannes and Christian Bizer, “Web Data Commons-Extracting Structured 

Data from Two Large Web Corpora”, LDOW 937, 2012.  

[9]  J. Singh, “Understanding Data Deduplication”, 01 09 2009. [Online]. Available: 

http://www.druva.com/blog/understanding-data-deduplication/. 

[10]  T. T. a. N. L. T. Thwel, “An efficient indexing mechanism for data deduplication.”, 

Current Trends in Information Technology (CTIT), International Conference on the. 

IEEE, 2009 .  

[11]  Q. Z. L. a. X. Z. He, “Data deduplication techniques.”, Future Information 

Technology and Management Engineering (FITME), International Conference on. 

Vol. 1. IEEE, 2010.  

[12]  F. M. G. A. a. M. S. Shieh, “De-duplication Approaches in Cloud Computing 

Environment: A Survey.”, International Journal of Computer Applications 120.13, 

2015.  

[13]  G. Developers, “Microdata”, [Online]. Available: 

https://developers.google.com/gmail/markup/reference/formats/microdata?hl=en. 

[14]  Barker, Phil and Lorna M, “What is schema. org?”, Centre for Educational 

Technology, Interoperability and Standards, 2014.  

[15]  Any 23, “Introduction to Apache Any23”, 03 11 2013. [Online]. Available: 

https://any23.apache.org. 

[16]  Spark, “Spark Overview”, Apache, [Online]. Available: 

https://spark.apache.org/docs/latest/index.html. 

[17]  H. A. T. a. E. R. Köpcke, “Evaluation of entity resolution approaches on real-world 

match problems.”, Proceedings of the VLDB Endowment 3.1-2, 2010.  

[18]  P. Christen, Data Matching, Springer, 2012.  

[19]  L. A. T. a. E. R. Kolb, “Dedoop: efficient deduplication with Hadoop.”, Proceedings 

of the VLDB Endowment 5.12, 2012.  

[20]  K. a. Dr.R.Rangarajan, “An Approach to Duplicate Record Detection Using 

Similarity Metrics and Anfis”, Journal of Computational Information Systems, 2012.  



49 

 

[21]  A. K. P. G. I. a. V. S. V. Elmagarmid, “Duplicate record detection: A survey.”, 

Knowledge and Data Engineering, IEEE Transactions on 19.1, 2007.  

[22]  F. Naumann, Sorted Neighborhood Methods, Hasso Plattner Institute, 2.7.2013.  

[23]  E. Miller, “An Introduction to the Resource Description Framework”, D-Lib 

Magazine, [Online]. Available: 

http://www.dlib.org/dlib/may98/miller/05miller.html. 

[24]  D. Beckett, “RDF 1.1 N-Triples: A line-based syntax for an RDF graph”, World 

Wide Web Consortium, 25 02 2014. [Online]. Available: https://www.w3.org/TR/n-

triples/.  

[25]  G. Carothers, “RDF 1.1 N-Quads,” W3C Recommendation, 25 02 2014. [Online]. 

Available: https://www.w3.org/TR/n-quads/.  

[26]  P. Christen, “A survey of indexing techniques for scalable record linkage and 

deduplication.” Knowledge and Data Engineering, IEEE Transactions on 24.9 , 

2012.  

[27]  Culotta, Aron and Andrew McCallum, “Joint deduplication of multiple record types 

in relational data”, Proceedings of the 14th ACM international conference on 

Information and knowledge management, 2005.  

[28]  Chandola, Varun, Arindam Banerjee and Vipin Kumar, “Anomaly detection: A 

survey”, ACM computing surveys (CSUR) 41.3, 2009.  

[29]  R. a. H. P. Meusel, “Creating Large-scale Training and Test Corpora for Extracting 

Structured Data from the Web”.  

[30]  C. Crawl, “Common Crawl,” Common Crawl Project, [Online]. Available: 

http://commoncrawl.org. 

[31]  S. Chaudhuri, “Robust and efficient fuzzy match for online data cleaning.”, 

Proceedings of the 2003 ACM SIGMOD international conference on Management of 

data. ACM, 2003.  

 

 

 



50 

 

Appendix 

I.  Implementation Code 

The java applications for the complete deduplication process could be found at the following 

git hub repository; 

https://github.com/KhalilRehman/microdeduplication.git 

 

 

https://github.com/KhalilRehman/microdeduplication.git
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