
UNIVERSITY OF TARTU

Institute of Computer Science
Software Engineering Curriculum

Ubaier Ahmad Bhat

Runtime Monitoring of Data-Aware business
rules with Integer Linear Programming

Master’s Thesis (30 ECTS)

Supervisor: Fabrizio Maggi, PhD

Tartu 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to thank Dr. Fabrizio Maggi for his tremendous support and guidance for

this thesis. I would also like to express my gratitude to all staff member of our faculty

who always helped me and guided me at every step in past two years.

I would also like to thank my friends and colleagues at Mobi Labs ÖU, without their

support and flexibility it would have been very difficult to work and study at the same

time.

I would like to express my gratitude to IT Academy for their scholarships and support.

Finally, I would like to thank by family and friends back in Kashmir for their support

and patience.

ii

Runtime Monitoring of Data-Aware business rules with Integer

Linear Programming

Abstract:

Runtime Compliance Monitoring is vital building block in the Business Process Manage-

ment lifecycle, in timely detection of non-compliance as well as provision of responsive

and proactive countermeasures. In particular, it is linked to operational decision sup-

port, which aims at extending the application of process mining techniques to on-line,

running process instances, so that deviations can be detected and it is possible to rec-

ommend what to do next and predict what will happen in the future instance execution.

In this thesis, we focus on Runtime Compliance Monitoring of data-aware business rules.

In particular, we use Integer Linear Programming (ILP) for early detection of violations

that occur from interplay of two or more constraints. An operational support provider

has been implemented as part of process mining framework ProM and the approach has

been validated using synthetic and real life logs.

Keywords: Process Mining, Runtime Compliance Monitoring, Data-Aware, Integer

Linear Programming

CERCS: P170

iii

Käitusaegse seire andmeteadlikud ärireeglid koos lineaarse pla-

neerimisega

Lühikokkuvõte:

Käitusaegne seire (Runtime Compliance Monitoring) on oluline osa äriprotsesside hal-

duse elutsüklis, mittevastavuse õigeaegses avastamises, samuti vastumeetmete korralda-

mises ja ennetamises. Täpsemalt on see seotud operatiivse otsuse toega, mille eesmär-

giks on laiendada protsessikaeve tehnikat sidusrežiimis, käitada protsessi isendeid nii,

et kõrvalekaldeid on võimalik avastada, ning on võimalik soovitada, mida võiks järg-

miseks teha, ning samuti ennustada, mis hakkab juhtuma tulevaste juhtumite täitmisel.

Antud magistritöö keskendub käitusaegse seire andmeteadlikele ärireeglitele. Töös kasu-

tatakse varajaste rikkumiste tuvastamiseks lineaarset täisarvulist planeerimist (Integer

Linear Programming (ILP)), mida rakendatakse kahe või enama kitsenduse koosmõjul.

Töökorras toepakkujas on rakendatud protsessikaeve raamistikku ProM ja meetod on

valideeritud kasutades sünteetilisi ja reaalseid logisid.

Võtmesõnad: protsessikaeve, käitusaegne seire, andmeteadlikkus, lineaarne täisarvu-

line planeerimine

CERCS: P170

iv

Contents

1 Introduction . 1

1.1 Thesis outline . 2

1.1.1 Related Work & Background . 2

1.1.2 Run time verification of individual data-aware declare constraints 2

1.1.3 Early detection of violations determined by interplay of two or
more constraints . 2

1.1.4 Implementation . 2

1.1.5 Validation and Verification . 3

1.1.6 Conclusion and Future Work . 3

2 Related Work . 4

2.1 Procedural conformance checking without data 5

2.2 Procedural conformance checking with data 5

2.3 Declarative conformance checking without data 5

2.4 Declarative conformance checking with data 6

2.5 Runtime compliance monitoring . 6

3 Background . 8

3.1 Process Mining and Event logs . 8

3.2 Declarative Modelling . 10

3.2.1 Declare templates . 10

3.2.2 Declare with data . 13

3.2.3 Design tools . 15

3.3 Integer Linear Programming . 15

4 Run time verification of individual data-aware Declare rules 18

4.1 Internal working of Declare Analyzer . 18

4.2 How the sequence analysis are invoked in on-line settings 21

4.3 Four valued semantics . 21

4.4 Compliance degree of a single case (healthiness) 25

v

5 Early detection of violations determined by interplay of two or more
constraints . 26

5.1 Early detection of violation in Simple case 26

5.2 How to deal with indirect obligations . 29

6 Implementation . 32

6.0.1 Online Declare Analyzer Plugin 33

6.1 Log Streamer . 33

6.2 Online Declare Analyzer Client . 34

7 Verification & Validation . 36

7.1 Verification of individual data-aware Declare rules 36

7.2 Early detection of violations . 38

7.2.1 Example 1 . 38

7.2.2 Example 2 . 41

7.2.3 Example 3 . 43

7.2.4 Example 4 . 46

7.2.5 Example 5 . 48

7.2.6 Example real world example . 51

7.3 Performance . 54

8 Conclusion and Future Work . 55

Bibliography . 57

Index . 60

vi

List of Figures

2.1 Classification of monitoring approaches [12]. 6

3.1 The UML 2.0 class diagram for the complete meta-model for the XES
standard [10] . 9

3.2 Declare designer . 15

3.3 ILP example . 17

6.1 Architecture of implementation . 32

6.2 Data packet transmitted by Log streamer 33

6.3 Online Declare Analyzer Client . 35

7.1 Graphical representation of single constraint model 36

7.2 Output . 37

7.3 Graphical representation of example 1 38

7.4 Compliance monitoring output for example 1 39

7.5 Compliance monitoring output for example 1 Trace 3 40

7.6 Graphical representation of example 2 41

7.7 Compliance monitoring output for Example 2 42

7.8 Graphical representation of example 2 42

7.9 Graphical representation of example 3 43

7.10 Compliance monitoring output for example 3 44

7.11 Compliance monitoring output for example 3 45

7.12 Graphical representation of example 3 45

7.13 Graphical representation of example 4 46

7.14 Compliance monitoring output for Example 4 47

7.15 Graphical representation of example 4 47

7.16 Graphical representation of example 5 48

7.17 Compliance monitoring output for example 5 49

7.18 Graphical representation of example 5 50

7.19 Declare model for hospital log . 52

7.20 Results from runtime monitoring of hospital log 53

7.21 Processing time for each event in one Trace from Hospital Log 54

vii

List of Tables

3.1 Existence templates . 11

3.2 Relation templates . 12

3.3 Negative templates . 12

3.4 Choice templates . 13

3.5 Example find solution for single variable using linear programming 16

4.1 Algorithms for Response from Declare Analyzer as described in [5] Table 3 20

4.2 Algorithm for invoking analyser in runtime setting 22

4.3 Criterion for semantic values . 23

4.4 Example of conflicting constraints . 25

5.1 Example of conflicting constraints . 27

5.2 Example of non conflicting constraints 27

5.3 Example of non conflicting constraints 28

5.4 Criterion for constraint considered activated for Conflict detection 31

5.5 Example of non conflicting constraints 31

5.6 Example of non conflicting constraints 31

7.1 Rules for model with single constraint . 36

7.2 Example 1 Rules . 38

7.3 Example 2 Rules . 41

7.4 Example 3 Rules . 43

7.5 Example 4 Rules . 46

7.6 Example 5 Rules . 48

7.7 Rules and corresponding Declare Constraints 51

viii

Chapter 1

Introduction

There is an urgent demand for developing Information Systems in order to fully support

business processes of companies, institutions and organizations in general. The rapidly

changing markets impose frequent modification and updates to the business processes,

leading to a constant decrease, in terms of time span, to the life-cycle of a business

process definition [5].

In this context, one very important functionality that any process aware Information

System should be able to support is compliance monitoring. Compliance monitoring

is the ability to verify whether the actual flow of work is compliant with the intended

business process model. Process models can be imperative (such as Petri Nets [20] or

BPMN [21]) or declarative (Declare [1]). Most suitable approach to model fast changing,

unpredictable processes is to use declarative modelling. These allow a modeller to

design several possible execution paths as a compact set of business rules/constraints.

A modeller can only focus on more interesting rules and any process execution that does

not contradict these rules is allowed. [5].

In this thesis we have developed a technique and a tool to analyse complex data-aware

constraints at runtime. In this context, we use sequence analysis for checking individual

constraints and support early detection of violations using Integer Linear Programming

(ILP). In particular, the technique will be able to identify violations of single constraints

in isolation but also violations that derive from the interplay of two or more constraints.

The technique is implemented as a Client-Server application that will take an event log as

a real-time feed from an Information System, process the data for compliance monitoring

1

and instantaneously post the results in a user friendly format. The results have been

verified using analysis of real and synthetic event-logs. The solution is implemented in

the process mining tool ProM making it available for other researchers and industry

experts.

1.1 Thesis outline

1.1.1 Related Work & Background

Chapters 2 and 3 focus on the literature review and a background of tools and techniques

used in this thesis.

1.1.2 Run time verification of individual data-aware declare constraints

In Chapter 4, we will discuss our approach for run time verification of individual data-

aware Declare constraints with sequence analysis.

1.1.3 Early detection of violations determined by interplay of two or

more constraints

In Chapter 5, we will discuss our approach for early detection of violations determined

by interplay of two or more constraints using Integer Linear Programming.

1.1.4 Implementation

In Chapter 6, we present details about the implementation.

2

1.1.5 Validation and Verification

In Chapter 7, we present results for verification and validation of our approach.

1.1.6 Conclusion and Future Work

In Chapter 8, we describe the outcome of this thesis and what can be done in the future.

In this thesis we address the following questions:

• Can sequence analysis be used to monitor the compliance of a business process

with respect to complex business rules on control flow and data?

• Can Integer Linear Programming be used for early detection of violations?

• Is the proposed approach applicable to real-life case studies?

3

Chapter 2

Related Work

Compliance monitoring is a“branch of process mining for verifying whether the observed

behaviour of a process, as recorded in a event log, is conformant with a given set of

business rules which are provided in the form of process model”[26]. Sometimes the

terms conformance checking is used for compliance monitoring. Even thought there is

no clear distinction in these two terms conformance checking is mostly used for post-

mortem analysis where as compliance monitoring is used for runtime analysis [12].

There are many techniques being developed to perform compliance monitoring. Two

key components of compliance monitoring are:

• Process Model: Type of process models which can be imperative/procedural

(such as Petri Nets [20] or BPMN [21]) or declarative (such as Declare [1], MP-

Declare).

• Perspective: This can be either Single Perspective (i.e. looking only at control

flow) or Multi-perspective/Data-aware (i.e. looking at control flow as well as

data such as temporal constraints, resource allocation, work distribution, quality

of service, etc. . .). For example, let us consider a process consisting of activities

a, b, c, and d. A model ”abcd” describes the sequence in which the activities

should take place. A control flow based conformance check will only evaluate

whether the activities occur in this order or not. Any other perspective like “Who

performed the activity?”or “What was the time between two activities?”or any

other data related to these activities will not be evaluated.

4

Data-aware conformance means looking at both control as well as data flow. For

example in a hospital scenario a multi-perspective conformance rule might indicate

that a certain medical test has to be performed before a particular treatment can

be given to a patient. In addition to this, there are also data-flow constraints on

what the results of test should be and what the time limit between the test and

treatment is.

Work done in field of conformance checking can be categorised as follows.

2.1 Procedural conformance checking without data

A bulk of work is available for conformance checking using Procedural models and

looking only at Control flow and ignoring any data. These works are mostly based on

replaying the log on a model and measure conformance by comparing an event stream

generated by the model and an event stream that is derived from the execution [7, 11, 25].

In alignment-based approaches conformance checking is performed by aligning both the

modelled behaviour and the behaviour observed in the log [4].

2.2 Procedural conformance checking with data

Conformance checking can be made much more reliable by taking a data-aware approach.

[8] provides an approach of alignment-based conformance checking for procedural mod-

els.

2.3 Declarative conformance checking without data

As mentioned earlier declarative models are better for modelling processes in unpre-

dictable environments. As with procedural models the initial work done on confor-

mance checking for declarative models has focused mostly on control flow. [6] describes

5

Figure 2.1: Classification of monitoring approaches [12].

an approach of conformance checking for declarative models.

2.4 Declarative conformance checking with data

An evolution of these approaches is to look at declarative models with data. [5] provides

the basis for implementation of multi-perspective conformance using Metric First Order

Temporal Logic(MFOTL).

2.5 Runtime compliance monitoring

The ability to monitor conformance can be crucial for any business or organisation. [17]

provides a starting point looking into use of Linear Temporal Logic (LTL) for runtime

compliance monitoring of Control flow. Mobucon LTL [13, 18, 15] have already been

implemented in ProM and can be used to provide Control Flow based compliance mon-

itoring. Mobocon LTL does perform early detection of violations but without any data

related constraints. Mobocon EC [19] be used for compliance monitoring with respect

to control flow and time related constraints. It does not provide any early detection of

violations. In theory Mobocon EC can also be extended to be data-aware however this is

6

yet to be implemented. Figure 2.1 shows comparison of different compliance monitoring

tools [12].

One of the open challenges in the context of compliance monitoring with declarative

models is capability of supporting data-aware compliance monitoring at runtime. In

this thesis we aim to provide a practical solution for this challenge.

7

Chapter 3

Background

In this chapter, we present the fundamental concepts required to understand the rest of

the thesis.

3.1 Process Mining and Event logs

The main concept behind process mining is to discover, monitor and improve processes

by extracting knowledge from data that is available in Information Systems [26].

Data for process mining comes in form of event logs which have been standardized

into different formats. Until 2010 Mining eXtensible Markup Language(MXML) was

standard format for event logs. Since 2010 eXtendible Event Stream(XES) as become

the successor of MXML. [10, 26].

In XES each event refers to an activity (i.e, a well defined step in some process which

belongs to a particular case or process instance). The events belonging to a trace (or a

case) are ordered with respect to their execution times. There, a trace can be viewed as

a sequence of events. Event logs can also store additional information about events such

as the timestamp of the event, the resource (i.e. device/department/person executing

the activity), or any data elements recorded with the event. In XES, data elements can

be event attributes, i.e. data produced by the activities of a business process and trace

attributes, particularly data which are associated to a whole process instance [5, 10].

8

Figure 3.1: The UML 2.0 class diagram for the complete meta-model for the XES
standard [10]

9

3.2 Declarative Modelling

Declare is a process modelling language which was proposed by van der Aalst and Pesic

in ([24, 23, 1]). In Declare instead of modelling the whole process by specifying flow of

activities we specify relationships between different activities using specific constraints

or templates. This makes Declare models ”open” i.e. anything that is not specified in

the model is considered acceptable. This is different for procedural languages which are

considered to be ”closed” i.e anything that is not specified in the model is considered

forbidden. Declare therefore gives more flexibility to the designers who can focus on the

most important business rules. This makes Declare very suitable for complex execution

environments [5].

3.2.1 Declare templates

Declare templates can be grouped into four categories: existence, relation, negative

relations and choice.

1. Existence

This is a group of unary constraint. By unary we mean that these constraints are

applicable to only a single activity. This group has three main type of constraints

absence, existence and exactly.

10

Template name Symbol Description

init(A)
A must be at start of each
process instance.

absence(A) A should never occur.

absence(2, A)
absence(3, A)

. . .
absence(n,A)

A should occur at most n
times.

existence(n,A)
A should occur at least n
times

exactly(n,A)
A should occur exactly n
times

Table 3.1: Existence templates

Table 3.1 on 11 shows the symbols and description for each constraint. As the names

suggest these templates are used to state whether an activity should take place or not.

2. Relation

Relation constraints describe relationships between two activities. Table 3.2 shows the

list of relation templates.

Relation templates can are either ordered i.e. the activities should occur in a certain

order or un-ordered i.e. activities can occur in any order

3. Negative

Negative constraints forbid the execution of a particular activities. These constrains

like relative templates are either ordered or un-ordered.

Table 3.3 shows the list of negative constraints.

11

Template name Symbol Description

responded existence(A,B)
If A occurs then B must oc-
cur (before or in future).

co− existence(A,B)
If A occurs then B must oc-
cur (before or in future) and
vis-versa

response(A,B)
If A occurs then B must
eventually occur.

precedence(A,B)
If B occurs then A must
have occurred in past.

succession(A,B)

After every A there has to
be at least one B and B has
to be preceded by A. B can
happen only after A had oc-
curred.

alternate response(A,B)
If A occurs then B must
eventually occur without
repetition in between.

alternate precedence(A,B)
If B occurs then A must
have occurred in past with-
out repetition in between.

alternate succession(A,B)

After each A is executed
at least one B is executed.
Another A can be executed
again only after the first B.
And B cannot occur before
A. After it occurs, it can
not happen before the next
A again.

chain response(A,B)
If A occurs then B must oc-
cur immediately after A

chain precedence(A,B)
If B occurs then A must
have occurred immediately
before B

chain succession(A,B)
A and B can occur only next
to each other.

Table 3.2: Relation templates

Template name Symbol Description

not respondedexistence(A,B)
not co− existence(A,B)

Only one of the two tasks A
or B can be executed, but
not both.

not response(A,B)
not precedence(A,B)
not succession(A,B)

Before B there cannot be A
and after A there cannot be
B.

not chain response(A,B)
not chain precedence(A,B)
not chain succession(A,B)

A and B can never be ex-
ecuted next to each other
where A if executed first
and B second.

Table 3.3: Negative templates

12

4. Choice

In Choice templates one of the two activities must occur. Table 3.4 shows the symbols

and descriptions of choice templates.

Template name Symbol Description

choice(A,B)
At least one from A and B
has to be executed.

exclusive choice(A,B)
A or B has to occur but not
both.

Table 3.4: Choice templates

Further details on Declare constraints an be found in [16, 22]

3.2.2 Declare with data

The Declare templates mentioned in the previous section only capture constraints related

to cardinality and control flow. We can also add data related constraint to a Declare

model. There are three types of data conditions that can be added. These are specified

in the following order. [Activation] [Correlation] [Temporal]

Data which relates to the activation activity is specified in A.data format. Similarly

conditions related to a target activity are specified in T.data format.

1. Activation

These conditions are used to specify when a template is considered to be active. For

example without data the condition absence(AbandonShip) that event abandon ship

should never occur. However if we add data condition to it

absence(AbandonShip)

[A.rank == ”captain”]

13

This will imply that an event abandon ship can be executed but not if the rank is equal

to captain.

2. Correlation

Correlation conditions are used to specify data relationships between two activities.

This means that correlation conditions do not apply to Existence templates as they are

all unary and only contain one condition. Let us consider the example:

response(PaymentRecieved,DispachOrder)

[A.pendingBalance == 0][T.id == A.id]

This constraint will only be activated if activity PaymentRecieved occurs with data

pendingBalance == 0. If this happens then we require DispachOrder to eventually

occur with data id which must be equal to id of PaymentRecieved.

3. Temporal

Temporal conditions are used to specify time between two activities.

Format for specifying temporal conditions is: 0,value,unit where unit can be s for

seconds, m for minutes, h for hours and d for days. Let us take the following example.

response(PaymentRecieved,DispachOrder)

[A.pendingBalance == 0][T.id == A.id][0, 5,m]

This rule can be interpreted as: after PaymentRecieved occurs with data pendingBalance =

0, DispachOrder must occur with data id equal to id of PaymentRecieved within

5minutes.

14

3.2.3 Design tools

Declare models can be designed using Declare designer (see figure 3.2) which provides

a GUI for rapidly designing Declare models. We can also use ProM plugins like Simple

Declare designer and Simple Declare editor for designing and modifying Declare models.

Figure 3.2: Declare designer

3.3 Integer Linear Programming

Integer Linear Programming(ILP) or Linear programming is a method to achieve the

optimal solution in a mathematical model in which requirements are represented in the

form of linear relationships.

Let us take the following example. Our aim is to find a real number x when we are giving

certain conditions. Before going ahead we will have to define our default maximum and

minimum possible values. This is important because otherwise we will have infinite

15

Step condition Range Has Solution?

0 init m ≥ x ≥M true
1 x < 10 m < x < 10 true
2 x > 0 0 < x < 10 true
3 x > 5 5 < x < 10 true
4 x < 100 5 < x < 10 true
5 x == 9 x = 9 true
6 x < 8 no solution false

Table 3.5: Example find solution for single variable using linear programming

possibilities. Let us see choose very large negative number m and a very large positive

number M.

At this stage we can say that the solution for x is between m and M i.e m ≥ x ≥M .

Now let us conceder first condition which states that x should be less than ten. So now

our solution for x will be m ≥ x < 10

x should be greater than 0 so our solution for x will now become 0 < x < 10.

x should be greater than 5 so our solution for x will now become 5 < x < 10.

We can keep on adding conditions to x which can reduce the range for x and bring us

closer to its actual value. However not all new conditions will change the range for x.

For example if we say that x should be < 100 our range for x will not change because

in order to satisfy previous conditions x should already be less than 10.

We can also have condition that fix the value of x. Let us say x should be equal to 9.

Now minimum possible solution for x is 9 and maximum possible solution for x is 9.

If we add any more conditions at this point which are different from the previous con-

dition we will no longer have a solution for x. For example if we say that x must be less

than 8. This condition will contradict our previous set of conditions.

Table 3.5 shows steps and conditions in our previous example. Figure 3.3 shows how

the range for x will change with respect to each newly added condition

16

Figure 3.3: ILP example

We can also use ILP to find optimal solutions for linear expressions of form x1 + x2 +

..+ xn.

In this thesis we will use the ability for ILPs to find a solution as well as not finding a

solution for a set of given conditions. This has been explained in up coming chapters.

17

Chapter 4

Run time verification of individual
data-aware Declare rules

4.1 Internal working of Declare Analyzer

We are going to use the analysis engine (templates) from the Declare Analyzer (which is

a plug-in in ProM for offline conformance checking), as a black box to perform sequence

analysis of each event. In this section we will describe some of the internal workings of

Declare Analyzer as explained in [5] so that we can have a better understanding of our

approach and implementation.

Main component of Declare Analyzer is the CheckLogConformance method which is

reported in Algorithm 1. This algorithm requires a Declare Model and an event log.

Algorithm 1: CheckLogConformance from Burattin [5] Algorithm 1

Input: Model: a Declare model
Log: log of events

Output: A set of fulfilling and violating traces/constrants
1 Let fullfill and viol be maps that, given a trace and a constraint, return the set of

fulfilling and violating events
2 foreach trace ∈ Log do
3 foreach constr ∈Model do
4 viol, fullfill← CheckTraceConformance(trace,constr)
5 viol[][]← viol
6 fullfill[][]← fullfill

7 return viol, fulfill

The described algorithms CheckTraceConformance can be seen as a ”framework” used

for conformance checking with respect to different Declare templates.

18

Each template has its own algorithm for the following operations.

• opening: this method is called once per trace, before starting the analysis of the

first event of the trace;

• fulfilments: this method is called for each event of the trace and is supposed to

return the set of fulfilments that have been observed so far.

• violations: this method is called for each event for the trace and is supposed to

return set of violations that have been observed so far.

• activations: this method is called for each event of the trace and is supposed to

update the set of activations that have been observed so far.

• closing: this procedure is called once per trace, after all the events have been

analyzed;

Let us consider the template for response 4.1. The operations described for sequence

analysis are used in the following way:

• opening: not used;

• fulfilments: this procedure checks whether the item event refers to a target. If this

is the case, then all pending activations that can be correlated to this target (in

case the time and the correlation conditions are satisfied) becomes fulfilments.

• violations: not used;

• activations: the activation procedure checks whether the input event refers to an

activation of the constraint and the activation condition σa is satisfied (in this case

the event has to be added to the set of pending activations).

19

• closing: all pending activations that do not have a corresponding target when the

entire trace has been processed become violations.

Response

template.opening()

1 do nothing

template.fulfilment(e, trace, pending, fullfilments, T, σa, σc, σt)

1 if πactivity(e) ∈ T then
2 foreach act ∈ pending do
3 if verify(σc, act, e) and verfify(σt, act, e) then
4 pending ← pending\{act}
5 fulfilments← fulillments ∪ {act}

template.violation(e, trace, pending, violations, T, σc, σt)

1 do nothing

template.activation(e, A, pending, σa)

1 if πactivity(e) ∈ A and verfify(σt, e) then
2 pendng ← pending ∪ {act}

tmplate.closing(pending, fulfillments, violations)

1 foreach act ∈ pending do
2 pending ← pending\{act}
3 violations← violations ∪ {act}

where: e = current event trace = trace A = non empty set of activations
T = nonemptysetoftargets
violations = set of violations

fulfillments = set of fulfillments
pending = set of pending
σa = activation condition
σc = corellation condition

σt = time condition

Table 4.1: Algorithms for Response from Declare Analyzer as described in [5] Table 3

20

4.2 How the sequence analysis are invoked in on-line

settings

In previous section we briefly looked at how Declare templates are analysed in Declare

Analyzer in a off-line setting. In the Declare Analyzer we input the whole event log and

the Declare model at once and then perform the analysis and visualize the results. In an

on-line setting we do not have the whole log and have to process each event separately

as it is being streamed.

For each model we setup all templates in the given model. Once all the events are

completed we make the last event as done. This flag is used to set the permanent state

for the particular constraint.

Table 4.2 shows how the algorithm described in previous section has been adapted for

runtime analysis. state in this algorithm is based on Four valued semantics described

in next section.

getState(viol, fulfill, pending, activations) method uses the criteria described listed in

Table 4.3.

4.3 Four valued semantics

The current state of a trace with respect to a constraint can be described using a four val-

ued semantics. These values are possibly satisfied , possibly violated ,permanently

satisfied or permanently violated . A trace will acquire any one of these states only

once the activation condition related to particular constraint has been fulfilled at least

once. We have discussed how other online monitoring tools are using similar semantics

in the Literature review. These semantic values can be interpreted using as follows:

• Possibly satisfied: This means that the constraint has been activated and is

21

Invoking sequence analysis in online setting
os.accept(session,model)

1 do nothing

os.simple(session, trace)

Input: Session: a Declare model
event: log of events

Output: A set of fulfilling and violating traces/constrants
1 Let fulfill and viol be maps that, given a trace and a constraint, return the set of

fulfilling and violating events foreach constr ∈Model do
2 viol, full← CheckTraceConformance(trace, constr)
3 viol[][]← viol
4 fulfill[][]← fullfill
5 state← getState(viol, fulfill, pending, activations)

6 return state;

Table 4.2: Algorithm for invoking analyser in runtime setting

currently satisfied. However there is a possibility that the constraint might be

violated in the future.

• Possibly violated: The constraint has been activated and is currently violated.

However the trace can still recover in the future i.e. it can be satisfied.

• Permanently satisfied: This means that the constraint has been permanently

satisfied and can no longer be violated in the future.

• Permanently violated: This means that the constraint has been permanently

violated and can no longer recover in the future.

The semantic value for the current state of a trace can depend on the type of constraint.

Table 4.3 on page 23 shows the semantic criterion for each constraint type.

• violations v : number of violations in current template

22

• fulfillments f : total number of fulfillments in current template

• pending activations p : total number of pending activations in current template

• activations a : total number of activations of the current template.

• limit limit : for come cases like absence, existence and exactly.

Template Poss.voil Poss.sat Voil Sat

response p > 0 p == 0 * *

not response
not chain response

precedence
not precedence

absence
absence2
absence3

chain precedence
not chain precedence
alternate precedence

- v == 0 ∗ ∨ v > 0 *

init
strong init

- - ∗ ∨ v > 0 ∗ ∨ f > 0

existence
existence2
existence3

f < limit - * ∗ ∨ f >= limit

exactly1
exactly2

v == 0 ∧ f < limit v == 0 ∧ f == limit ∗ ∨ v > 0 *

responded existence f == a f < a * *

not responded existence
not succession

not chain succession
not co-existence

- v == 0 ∗ ∨ v > 0 *

succession
chain succession

co-existence
alternate succession

v == 0 ∧ f < a v == 0 ∧ f == a ∗ ∨ v > 0 *

chain response
alternate response

v == 0 ∧ p > 0 v == 0 ∧ p == 0 ∗ ∨ v > 0 *

choice - - ∗ ∨ f == 0 ∗ ∨ f > 0

exclusive choice - - ∗ ∨ v > 0 ∗ ∨ v == 0

* Poss.viol at end of trace will become Viol and Poss.sat will become Sat

Table 4.3: Criterion for semantic values

23

• done ∗ : This is the default case to choose between permanently satisfied and

permanently violated after we receive the last event. If the state of the process

after analysis of the last event is Possibly satisfied or Permanently satisfied final

sate will become Permanently satisfied else it will become Permanently violated.

Algorithm 2: Semantics for Response

Input: pendingActivations: From Declare Analyzer analysis
Result: state

1 if pendingActivations > 0 then
2 state = possiblyViolated;
3 else
4 state = possiblySatisfied;

5 if done then
6 if state == possiblySatisfied then
7 state = permanentlySatisfied
8 else
9 state = permanentlyVoilated

10 return state

Algorithm 3: Semantics for Not Response/Not Chain Response

1 if voilations > 0 then
2 state = permanentlyVoilated;
3 else
4 state = possiblySatisfied;

5 if done then
6 if state == possiblySatisfied then
7 state = permanentlySatisfied
8 else
9 state = permanentlyVoilated

24

4.4 Compliance degree of a single case (healthiness)

Each constraint in a given model has a weight which can be used to indicate how

important the particular constraints is compared to other constraints in the model. The

weight along with current state of a case is used to calculate the compliance degree or

healthiness.

We use the semantic value to indicate whether the compliance degree will go up or

down. The compliance degree is normalized to a maximum value of 1.

If the constraint is permanently violated the health is reduced to 0. If the possibly

violated, health is reduced by 50% see Table 4.4

h =

n∑
i=1

wi × si
n∑

i=1

wi

where: h = health

i = index of constraint

w = weight of constraint

s = score of current state

n = total number of constraints

id State score

1 Permanently Violated 0
2 Possibly Violated 0.5
3 Possibly Satisfied 1
4 Permanently Satisfied 1

Table 4.4: Example of conflicting constraints

25

Chapter 5

Early detection of violations
determined by interplay of two or
more constraints

The previous section dealt with individual constraint, however it is not enough as in

a multi-constraint model individual constraints will might contradict each other. For

this we use concept of conflicting sets which introduces a new global semantic value to

indicate relationship between individual constraints.

5.1 Early detection of violation in Simple case

Consider the constraint absence(B) and response(A,B). Let us first consider the case

without any data. In the absence constraint we are saying that activity B should

never occur. But in response we say that if A occurs then B must eventually occur.

As individual constraints these are fine but as soon as A occurs only one of the two

constraints can be fulfilled. If B occurs then absence will be violated and if B does

not occur then response will be violated. Therefore we can call these two constraints as

conflicting constraints.

Table 5.1 shows the same constraints but now with data conditions. Now even though

we have the same constraint; now we have conditions. This means that these constraints

are no longer in conflict. Once activated response(A,B) requires B.x == 4 to occur

while absence(B) requires B.x == 3 should not occur. Both these conditions:

26

(B.x == 4)∧!(B.x == 3)

can be satisfied at the same time. Therefore there is no conflict when A occurs.

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 absence B - B.x == 3 * *
2 response A B A.x == 1 B.x == 4 *

Table 5.1: Example of conflicting constraints

Table 5.2 shows the same constraints but this time the conditions have been changed.

response(A,B) requires B.x == 3 once activated however absence(B) requires B.x ==

3. Both these conditions put together provide the following obligation:

(B.x == 3)∧!(B.x == 3)

As we can see that both these conditions can no longer be satisfied at the same time and

therefore we have detected a conflict as only one of the two constraints can be satisfied

when A occurs.

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 absence B - B.x == 3 * *
2 response A B A.x == 1 B.x == 3 *

Table 5.2: Example of non conflicting constraints

In the previous example the correlation condition of response(A,B) only depends on

value of B however this condition can also be specified in relation with the Activation

activity. Table 5.2 shows updated conditions. Now where the two constraints are in

conflict or not will depend on the value of A.x. Unless A.x = 3 we do not have any

conflict.

27

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 absence B - B.x == 3 * *
2 response A B A.x > 0 B.x == A.x *

Table 5.3: Example of non conflicting constraints

We use linear programming to detect whether these conflicts can take place or not. We

have touched upon how linear programming works in Chapter 3. In case of detecting

conflicts we treat each constraint condition as a part of a set of simultaneous equations

(system of equations) c ∈ P . If we find a solution then we say that there is no conflict

otherwise there is a conflict which means that one of the two constraints will definitely

be violated at the end of the trace.

Algorithm 4 shows steps required to find conflict for each template. Note that only

activated templates can be updated and used for conflict detection. Not all templates

can be used for conflict detection.

Table 5.4 shows the criteria for considering a template activated. In our current im-

plementation we do not consider choice based templates and templates which require

counting like absence2, existence2 and succession.

Existence and Absence are always added to the problem set. Also conditions for all

Existence and Negative templates are permanently added to the problem set once added.

Algorithm 4: Finding conflict

Input: activated
Output: hasSolution

1 if activate then
2 update(P)
3 min,max← solve(P)
4 return min ∈ R ∧ max ∈ R
5 else
6 return true;

28

In the above example we have only shown simple conditions based on single variables.

However we are able to use complex conditions based on multiple variables and logical

operations. e.g (A.x > 5) ∨ ((A.y == 10) ∧ (A.user =′ Jhon′).

5.2 How to deal with indirect obligations

In the previous section we looked at how conflicts can be detected in advance using

linear programming. Previous approach is based on finding direct conflicts which are

related to correlation activity of templates activated by the current event.

1. absence(B)

2. response(A,B)

Once template 2 is activated we are able to check for conflicts reated to B by updating

our problem set which already has the condition for absence.

However, we can improve this approach to detect conflicts which can be triggered by

another activity. Let us look at the following example without data

1. absence(C)

2. response(B,C)

3. response(A,B)

In this example henA occursB must eventually occur because of template 3 response(A,B).

Assuming that this condition will be satisfied in the future i.e B will occur we can say

that template 2 response(B,C) will also eventually be activated. This will also make

obligatory on C to occur eventually. But template 1 absence(C) makes it obligatory

that C should never occur. Therefore we can say that occurrence of A to cause of

conflict in these templates.

Now let us look at the same example with data conditions in table 5.5.

29

In this example it is very difficult to see whether or not a conflict will take place. Let us

assume A occurred with data A.x = 2. This means that template 3 response(A,B) will

be activated and update the problem. Problem set for B only contains one equation now

B.x = 2 which has a solution S1← ({B.xmin = 2 , B.xmax = 2}). Now let us see if we

can activate any other template using these values of B. Template 1 only depends on C

therefore it can’t be activated by B. Template 2 has B as activation activity B. To figure

out whether this template can be activated or not we an use Integer Linear Programming

to find the minimum and maximum values required for fullfilling the activation condition

B.x > 5. In this case the solution S2 ← ({B.xmin = 6 , B.xmax = ∞}). Since the

minimum value from the previous result is lower than that required for activation (

S1 /∈ S2) we can’t say that template 2 will be activated. This will mean that we will

not be able to detect any conflicts at this stage.

Let us take another occurrence of A with data A.x = 6. This time solution of problem

set related to B is S1← ({B.xmin = 6 , B.xmax = 6}). Solution for activation condition

for template 2 is still the same S2 ← ({B.xmin = 6 , B.xmax = ∞}). This time since

minimums in S1 are ≥ then minimums in S2 and maximums in S1 are ≤ maximums in

S2 i.e (S1 ∈ S2). We can say that template 2 will definitely be activated.

This means that we can update our problem set for C which till now only contained

¬(C.x < 10). Updated problem set will become ¬(C.x < 10) ∧ (C.x < B.x) ∧ (B.x >

5) ∧ (B.x == 6) and we have a conflict.

Using the same process we can recursively go deeper to find conflict caused by chained

triggers. For example in Table 5.6 activity A with A.x = 6 can activate all other

templates.

30

S.no Constraint Template Condition

1 response p > 0
2 notresponse p > 0
3 precedence −
4 notprecedence −
5 init −
6 absence −
7 existence f < 1
8 respondedexistence f < a
9 notrespondedexistence f > 0
10 chainresponse p > 0
11 notchainresponse p > 0
12 chainprecedence −
13 notchainprecedence −
14 alternateresponse p > 0
15 alternateprecedence −

Table 5.4: Criterion for constraint considered activated for Conflict detection

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 absence C - C.x < 10 * *
2 response B C B.x > 5 C.x < B.x *
3 response A B A.x > 0 B.x == A.x *

Table 5.5: Example of non conflicting constraints

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 absence D - C.x < 10 * *
2 response C D B.x > 5 C.x < B.x *
3 response B C B.x > 2 C.x == A.x *
4 response A B A.x > 3 B.x == A.x *

Table 5.6: Example of non conflicting constraints

31

Chapter 6

Implementation

ProM (or Process Mining framework) is an open source framework for process

mining algorithms. ProM is based on Java and provides a platform to developers of

the process mining algorithms that is easy to use and easy to extend [3, 14]. ProM

also provides a generic Operational Support (OS) environment that allows the tool to

interact with external Information System at runtime. A workflow management system

can send a stream of events to ProM OS service which is connected to Operational

Support providers. These providers perform different types of analysis at runtime

[9]. In this thesis, we use Prom OS for implementing our approach as a OS provider.

We use a client server architecture as show in figure 6.1.

Figure 6.1: Architecture of implementation

32

As shown in the diagram have three main components: a log streamer, a client/visualizer

and a server running ProM.

6.0.1 Online Declare Analyzer Plugin

Our implementation has been developed inside ProM as Online Declare Analyzer Plugin.

After configuring Operation Support, this plugin connected to it. Operation Support

creates a session for each new trace are received. This keeps each trace separate and

we can process each trace and its conformance model independently. For performing

Integer Linear Programming we use Java based LP solver [2].

6.1 Log Streamer

In absence of a real Information System connected with the client we use a Log streamer

to simulate an Information System. The purpose of a log streamer is first to send out

a model of business rules, followed a stream of by the events. For this implementation

we have used a modified version of Log Replayer used in Mobucon LTL and adapted it

to transmit the event along with data.

Figure 6.2: Data packet transmitted by Log streamer

The Log streamer starts to transmit data as soon as it is connected to Online Declare

33

Analyzer Client (ODAC). Figure 6.1 shows the data packets as they will be transmitted.

The format used for sending a stream of events is XES.

6.2 Online Declare Analyzer Client

The Online Declare Analyzer Client (ODAC) acts as a server for incoming stream of

events and business rules from an Information system/workflow system and as a client

for the Operational Support system. ODAC forwards the model and events to the

Online Declare Analyzer Server and then displays the analysis results in a user friendly

format as they occur.

ODAC is a modified version of the Mobocon LTL Client. The client has been adapted to

transmit events along with their data attributes. The visualizer has also been adapted

to show event data.

Figure 6.2 shows the different components of ODAC.

1. Case selector: This component enables the user to select a particular case. This

component also shows a ”Warning” message for cases which have a low compliance

degree.

2. Event details: This component displays the details of each event as the are received

after analysis. It displays the name of the activity along with any data and

timestamps.

3. Constraint state: This component shows the state of a particular constraint in

the case in a colour coded format which match with different values of fore valued

semantics.

4. Constraints: This component shows the constraint details including name of the

34

Figure 6.3: Online Declare Analyzer Client

constraint, activation and target activities, activation condition, correlation con-

dition and any temporal condition.

5. Compliance degree: This component shows the compliance degree or health of the

system in a graphical format.

35

Chapter 7

Verification & Validation

In order to verify our approach we are going to use different sets of event logs and

business rules. We will start with simpler examples and increase the complexity as we

go ahead.

7.1 Verification of individual data-aware Declare rules

First we tested single constraint using a synthetic log. Figure 7.1 shows the model used

for testing.

Figure 7.1: Graphical representation of single constraint model

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 response A B (A.diagnosis == 5)) T.diagnosis == A.diagnosis 0, 1, h

Table 7.1: Rules for model with single constraint

As we can see the model contains conditions for activation, correlation as well as time.

Figure 7.2 shows the results for three traces. In the first trace, activation conditions

A.diagnosis == 5 is never fulfilled and therefore the constraint is never activated

and remains satisfied till the end. In trace 2 all the conditions (activation, correla-

tion and time) are satisfied as Receive Order occurs with diagnosis = 5 followed by

36

Trace 1 Trace 2 Trace 3

Figure 7.2: Output

Receive Payment with data diagnosis = 5 within an hour as specified in the model. In

trace 3 Receive Order occurs with diagnosis = 5 followed by Receive Payment with

data diagnosis = 5 however it occurs next day therefore violating the time conditions.

We can also see from the results that the health of the system is also indicated correctly.

In trace 1 it remains 100%. In trace 2 it drops to 50% as soon as the state becomes

possibly violated but then recovers back to 100% once the conditions are satisfied. In

trace 3 the health is never resumed as the constraint fails permanently at the end of the

process.

37

7.2 Early detection of violations

7.2.1 Example 1

Our business rules are shown in Table 7.2 consists two constraints (see figure 7.3 for

graphical representation) . In order to make it easier to understand the tables do not

show the conditions in A. and T. format. This example shows approach described in

section 5.1

Figure 7.3: Graphical representation of example 1

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 response A B (A.x == 3) ∨ ((A.x > 6) ∧ (A.x < 10)) B.x == A.x −
2 absence B − B.x == 8 − −

Table 7.2: Example 1 Rules

Our second rule requires absence of B.x == 8 i.e an event with activity B with data

x = 8 should never occur. However if we look at the first rule we can see that if activity

A occurs x = 8 then will require B should also occur with x = 8. We tested this model

with a log of three traces with different data values.

In Trace 1 A occurs with data x = 3 this means that our first constraint rule is activated.

So at this stage we can not say whether any or all of the rules will permanently satisfied

or violated and we will have to wait for B to occur. But as we can see in figure 7.4 both

rules are satisfied at the end of this trace because B occurs with x = 3.

38

Trace 1 Trace 2

Figure 7.4: Compliance monitoring output for example 1

In Trace 2 A occurs with data x = 7 again this means that our first constraint rule is

activated. This makes our problem set equal to (B.x == 7) ∧ !(B.x == 8) So at this

stage again we can not say whether any or all of the rules will permanently satisfied or

violated and we will have to wait for B to occur. But as we can see in figure 7.4 both

rules are satisfied at the end of this trace because B with x = 7 occurs.

39

Conflict detection turned Off Conflict detection On

Figure 7.5: Compliance monitoring output for example 1 Trace 3

40

7.2.2 Example 2

Rules for this example are shown in Table 7.3 (Figure 7.6 shows the graphical represen-

tation).

This example is similar to our previous example in the sense that it will demonstrate

the ability to detect conflict which occur in directly related rules. However it also

demonstrates the ability of our implementation to handle strings and not just numeric

data.

Figure 7.6: Graphical representation of example 2

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 response A B A.x ==′ Philip′ B.x == A.x −
2 not response C B C.x ==′ Philip′ C.x == A.x −

Table 7.3: Example 2 Rules

As we can see in figure 7.7 in trace 1 since neither activity A occurs with data x = Philip

or activity C occurs with data x = Philip both rules are satisfied.

In trace 2 when activity A occurs with x = Philp at this point we do not detect any

possible violation as related to other rules as no other rule is activated. When C occurs

we detect a conflict i.e. now we can definitely say that at least one of the two rules

will be violated. It is interesting to note here that without the indication of a conflict

it would look like that the second rule is most likely to be violated as it has remained

in the state of possible violation till this point. As we see at the end of the trace that

when activity B occurs it is not the second by the first rule that is violated. We were

able to detect this possibility of this happening early on in the process.

41

Trace 1 Trace 2

Figure 7.7: Compliance monitoring output for Example 2

Figure 7.8 shows the conflict in the model in conflict state. We are able to detect possible

violation with respect to B was soon as A and C have occurred.

Figure 7.8: Graphical representation of example 2

42

7.2.3 Example 3

Rules are shown in Table 7.4 (Figure 7.9 shows the graphical representation).

Figure 7.9: Graphical representation of example 3

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 responded existence B C (B.x > 0) C.x == B.x −
2 not response A C (A.x > 0) C.x == A.x −
3 response A B (A.x > 0) B.x == A.x −

Table 7.4: Example 3 Rules

As we can see that this time we have three rules. Two of them are rule 1 and rule

2 are directly related as they share a common target activity C. Rule 2 has negation

associated C i.e C should not occur with the giving data condition where as Rule 1 says

that C should occur if activated and with the given data conditions. At this point it

is quite difficult to see a possibility of conflict between these rules as they do not share

the same activation activity like the previous two examples.

Using this example we will be able to validate our approach which was described in

section 5.2.

43

Trace 1 Trace 2

Figure 7.10: Compliance monitoring output for example 3

Figure 7.10 displays out put of trace 1 and trace 2. As we can seen as soon as A occurs

satisfying the activation condition for rule 3 we are able to predict a future violation

and we can definitely say one of the three rules will be permanently violated at the end

of the process.

If we look at Figure 7.11 trace 3 we are able to see again that when A activates rule 1

and rule 3. We see all three rules in conflict. Interestingly when B occurs and activates

rule three our prediction of violation is narrowed down to rule 1 and rule 2. As we see

at the end rule 2 is violated at the end of the process. In trace 4 we can see that all the

rules can be satisfied at the end of the process.

Figure 7.12 shows the conflict in the model in conflict state. It only takes occurrence of

activity A to deduce that B also occur and the C must also occur resulting in a conflict.

44

Trace 3 Trace 4

Figure 7.11: Compliance monitoring output for example 3

Figure 7.12: Graphical representation of example 3

45

7.2.4 Example 4

Our business rules are shown in Table 7.5 (Figure 7.13 shows the graphical representa-

tion).

Figure 7.13: Graphical representation of example 4

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 not responded existence D C (A.x > 0) C.x == D.x −
2 response A B (A.x > 0) B.x == A.x −
3 response B D (B.x > 0) D.x == B.x −
4 response B C (B.x > 0) C.x == B.x −

Table 7.5: Example 4 Rules

Figure 7.14 demonstrates that we were able to predict a conflicting a conflict in non

related activities.

Figure 7.15 shows the conflict in the model in conflict state.

Constraints not responded existence(C,D) and responce(A,B) are activated when

activities C and A occur. Using ILP we able to predicted that responce(B,C) and

responce(B,D) can also be activated and are able to find the conflict.

46

Figure 7.14: Compliance monitoring output for Example 4

Figure 7.15: Graphical representation of example 4

47

7.2.5 Example 5

Our business rules are shown in Table 7.6 (Figure 7.16 shows the graphical representa-

tion).

Figure 7.16: Graphical representation of example 5

id Constraint
Activation
Activity

Target
Activity

Activation
Condition

Correlation
Condition

Time
Condition

1 not responded existence A B (A.x > 0) B.x == A.x −
2 responded C B (C.x > 0) B.x == C.x −
3 responded D C (D.x > 0) D.x == C.x −
4 exactly1 E − (E.x == 0) − −
5 alternateprecedence F G (F.x > 3) G.x == F.x −
6 chainprecedence A F (A.x > 0) F.x == A.x −
7 alternateresponse D G (D.x > 0) ∧ (D.x < 4) G.x == D.x −

Table 7.6: Example 5 Rules

Finally 7.17 shows most complex case we are able to predict the possible violation on

occurrence of D.

Figure 7.18 shows the conflict in the model in conflict state.

48

Trace 1 Trace 2

Figure 7.17: Compliance monitoring output for example 5

Constraints not responded existence(A,B) and responce(D,C) are activated when ac-

tivities A and D occur. Using ILP we able to predicted that responce(C,B) can also

be activated and are able to find the conflict.

49

Figure 7.18: Graphical representation of example 5

50

7.2.6 Example real world example

A real world examples we have chosen to use the hospital log from BPI challenge 2011

and business rules as described in [23]. These rules had been extracted from the hospital

logs.

We selected ten rules from the paper. The selected rules have been presented in Table

7.7. Rules R1 - R5 do not contain any data constraints. Respective Declare template

for each rule is also shown in the table.

id Description Template A T Activation

R1

If “administratief tarief - eerste pol ”occurs
in a trace, it is always preceded by “vervol-
gconsult poliklinisch ”and between “adminis-
tratief tarief - eerste pol ”and “vervolgconsult
poliklinisch ”you cannot find another“admin-
istratief tarief - eerste pol ”;

alternate precedence vervolgconsult poliklinisch administratief tarief eerste pol

R2
If “administratief tarief - eerste pol ”or “ver-
volgconsult poliklinisch ”occur in a trace,
they always coexist;

responded existence vervolgconsult poliklinisch administratief tarief eerste pol

R3

If “aanname laboratoriumonderzoek ”occurs
in a trace, it is always followed eventually
by “ordertarief ”and vice versa if “ordertarief
”occurs, it is always preceded by “aanname
laboratoriumonderzoek ”;

response aanname laboratoriumonderzoek ordertarief

R4
If “administratief tarief - eerste pol ”or “aan-
name laboratoriumonderzoek ”occur in a
trace, they always coexist;

responded existence administratief tarief eerste pol aanname laboratoriumonderzoek

R5
If “aanname laboratoriumonderzoek ”occurs
in a trace, it is never followed by“vervolgcon-
sult poliklinisch ”;

not response aanname laboratoriumonderzoek vervolgconsult poliklinisch

R12

If “administratief tarief - eerste pol ”oc-
curs in a trace and the condition (over case
and event attributes) “(Age ≤ 70 && Pro-
ducer code == SIOG) || (Diagnosis == Ma-
ligne neoplasma cervix uteri && Diagno-
sis code==106)) ”holds, then “administratief
tarief - eerste pol ”is followed eventually by
“albumine ”;

response administratief tarief eerste pol albumine

((A.Age <= 70) && (A.Producer code
== ’SIOG’)) || ((A.Diagnosis == ’Ma-
ligne neoplasma’ cervix uteri) && (
A.Diagnosis code == 106))

R13

If “telefonisch consult ”occurs in a trace and
the condition (over case and event attributes)
“(Treatment code==101) && (Producer
code==SGAL || Producer code==SGNA)
”holds, then “alkalische fosfatase -kinetisch-
”does not occur in the same trace.

not responded existence telefonisch consult alkalische fosfatase kinetisch
(Treatment code == 101) &&
((A.Producer code == ’SGAL’) || (
A.Producer code == ’SGNA’))

R14

If event attribute “Section ”is equal to “Sec-
tion 4 ”and event attribute “Specialism code
”is equal to “86 ”, the activity is executed
by“org:group==General Lab Clinical Chem-
istry ”;

absence aanname laboratoriumonderzoek -
(A.Section == ’Section 4’) &&
(A.Specialism code == 86) && (A.org:group
!= ’General Lab Clinical Chemistry’)

R15
“bacteriologisch onderzoek met kweek -nie
”is always executed by “org:group==Medical
Microbiology ”;

absence bacteriologisc onderzoek met kweek nie - (A.org:group != ’Medical Microbiology’)

R16
“cytologisch onderzoek - ectocervix - ”and
“histologisch onderzoek - biopten nno ”are al-
ways executed by “org:group==Pathology ”;

absence
absence

histologisch onderzoek biopten nno
cytologisch onderzoek ectocervix

-
(A.org:group != ’Pathology’)
(A.org:group != ’Pathology’)

Table 7.7: Rules and corresponding Declare Constraints

Figure 7.19 shows the final model which was used for analysis. Figure 7.20 shows the

outcome for one of the traces. We did not find any conflict in any of the traces. This is

because the rules have actually been extracted from the logs removing any possibility

of conflicts. This also the reason for most of the rules being satisfied at the end of the

process.

51

Figure 7.19: Declare model for hospital log

52

Figure 7.20: Results from runtime monitoring of hospital log

53

7.3 Performance

The processing time for each event depends on the complexity of the model with respect

to number of business rules, complexity of the rules like And, Or operations, and how

the activities are connected to each other in the rules. Time take to process each event

for the real life hospital log on an average took less than 25 milliseconds. Figure 7.21

shows the time taken per event for one of the traces in hospital log.

Figure 7.21: Processing time for each event in one Trace from Hospital Log

54

Chapter 8

Conclusion and Future Work

In the beginning of this thesis we wanted to address the following questions:

• Can sequence analysis be used to monitor the compliance of a business process

with respect to complex business rules on control flow and data?

• Can Integer Linear Programming be used for early detection of violations?

• Is the proposed approach applicable to real-life case studies?

Through our approach and implementation we have demonstrated that sequence analy-

sis can be used in a runtime setting to monitor business processes with complex business

rules on control flow and data. We have demonstrated that we can use Integer Linear

Programming for early detection of conflicts with business rules in a run-time environ-

ment. We were able to successfully validate our approach with synthetic as well as real

world logs. We have also demonstrated that the implementation is applicable in the

real world with respect to processing time and efficiency.

Future Work

In our implementation we did not consider time constraints for early detection of viola-

tions. However current implantation can easily be extended to include time constraints

for early detection of violations.

Constraints that require counting like absense2, exactly1, succession etc. where out of

scope of the current implementation for early detection violations. This can also be

added in the future.

55

Another improvement that can be done to the current implementation is to design a

better User Interface for visualization of results.

56

Bibliography

[1] Declare. https://www.win.tue.nl/declare/. 1, 4, 10

[2] Lp solver. http://lpsolve.sourceforge.net/5.5/. 33

[3] Prom. http://www.processmining.org/. 32

[4] Adriansyah, A., van Dongen, B. F., and van der Aalst, W. M. Con-
formance checking using cost-based fitness analysis. In Enterprise Distributed Ob-
ject Computing Conference (EDOC), 2011 15th IEEE International (2011), IEEE,
pp. 55–64. 5

[5] Burattin, A., Maggi, F. M., and Sperduti, A. Conformance checking based
on multi-perspective declarative process models. CoRR abs/1503.04957 (2015).
viii, 1, 6, 8, 10, 18, 20

[6] Burattin, A., Maggi, F. M., Van der Aalst, W. M., and Sperduti,
A. Techniques for a posteriori analysis of declarative processes. In Enterprise
Distributed Object Computing Conference (EDOC), 2012 IEEE 16th International
(2012), IEEE, pp. 41–50. 5

[7] Cook, J. E., and Wolf, A. L. Software process validation: quantitatively
measuring the correspondence of a process to a model. ACM Transactions on
Software Engineering and Methodology (TOSEM) 8, 2 (1999), 147–176. 5

[8] de Leoni, M., Munoz-Gama, J., Carmona, J., and Van der Aalst, W. M.
Decomposing alignment-based conformance checking of data-aware process models.
In On the Move to Meaningful Internet Systems: OTM 2014 Conferences (2014),
Springer, pp. 3–20. 5

[9] Federici, M., Rizzi, W., Di Francescomarino, C., Dumas, M., Ghidini,
C., Maggi, F. M., and Teinemaa, I. A prom operational support provider for
predictive monitoring of business processes. 32

[10] Günther, C. Xes-standard. http://www.xes-standard.org. vii, 8, 9

[11] He, C., and Ma, C. Measuring behavioral correspondence to a timed concurrent
model. In Proceedings of the IEEE International Conference on Software Mainte-
nance (ICSM’01) (2001), IEEE Computer Society, p. 332. 5

[12] Ly, L. T., Maggi, F. M., Montali, M., Rinderle-Ma, S., and van der
Aalst, W. M. P. Compliance monitoring in business processes: Functionalities,
application, and tool-support. Inf. Syst. 54 (2015), 209–234. vii, 4, 6, 7

57

[13] Maggi, F. M. Mobuconltl, prom plugin.
https://svn.win.tue.nl/repos/prom/Packages/MoBuConLTL/Trunk. 6

[14] Maggi, F. M. Declarative process mining with the declare component of prom.
In BPM (Demos) (2013). 32

[15] Maggi, F. M., Montali, M., Westergaard, M., and Van Der Aalst,
W. M. Monitoring business constraints with linear temporal logic: An approach
based on colored automata. In Business Process Management. Springer, 2011,
pp. 132–147. 6

[16] Maggi, F. M., Mooij, A. J., and van der Aalst, W. M. P. User-guided
discovery of declarative process models. In Proceedings of the IEEE Symposium
on Computational Intelligence and Data Mining, CIDM 2011, part of the IEEE
Symposium Series on Computational Intelligence 2011, April 11-15, 2011, Paris,
France (2011), pp. 192–199. 13

[17] Maggi, F. M., Westergaard, M., Montali, M., and van der Aalst,
W. M. Runtime verification of ltl-based declarative process models. In Runtime
Verification (2012), Springer, pp. 131–146. 6

[18] Maggi, F. M., Westergaard, M., Montali, M., and van der Aalst, W.
M. P. Runtime verification of ltl-based declarative process models. In Runtime
Verification - Second International Conference, RV 2011, San Francisco, CA, USA,
September 27-30, 2011, Revised Selected Papers (2011), pp. 131–146. 6

[19] Montali, M., Maggi, F. M., Chesani, F., Mello, P., and van der Aalst,
W. M. Monitoring business constraints with the event calculus. ACM Transactions
on Intelligent Systems and Technology (TIST) 5, 1 (2013), 17. 6

[20] Murata, T. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77, 4 (1989), 541–580. 1, 4

[21] OMG, O. Business process model and notation (bpmn) version 2.0. Object Man-
agement Group (2011). 1, 4

[22] Pesic, M. Constraint-based workflow management systems: shifting control to
users. PhD thesis, Technische Universiteit Eindhoven, 2008. 13

[23] Pesic, M., Schonenberg, H., and Van der Aalst, W. M. Declare: Full sup-
port for loosely-structured processes. In Enterprise Distributed Object Computing
Conference, 2007. EDOC 2007. 11th IEEE International (2007), IEEE, pp. 287–
287. 10, 51

[24] Pesic, M., and Van der Aalst, W. M. A declarative approach for flexi-
ble business processes management. In Business Process Management Workshops
(2006), Springer, pp. 169–180. 10

58

[25] Rozinat, A., and van der Aalst, W. M. Conformance checking of processes
based on monitoring real behavior. Information Systems 33, 1 (2008), 64–95. 5

[26] Van Der Aalst, W. Process mining: discovery, conformance and enhancement
of business processes. Springer Science & Business Media, 2011. 4, 8

59

Non-exclusive licence to reproduce thesis and make thesis public

I, Ubaier Ahmad Bhat (date of birth: 17th of February 1985),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Runtime Monitoring of Data-Aware business rules with Integer Linear Pro-
gramming

supervised by Fabrizio Maggi. PhD.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016

60

	Title
	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis outline
	1.1.1 Related Work & Background
	1.1.2 Run time verification of individual data-aware declare constraints
	1.1.3 Early detection of violations determined by interplay of two or more constraints
	1.1.4 Implementation
	1.1.5 Validation and Verification
	1.1.6 Conclusion and Future Work

	2 Related Work
	2.1 Procedural conformance checking without data
	2.2 Procedural conformance checking with data
	2.3 Declarative conformance checking without data
	2.4 Declarative conformance checking with data
	2.5 Runtime compliance monitoring

	3 Background
	3.1 Process Mining and Event logs
	3.2 Declarative Modelling
	3.2.1 Declare templates
	3.2.2 Declare with data
	3.2.3 Design tools

	3.3 Integer Linear Programming

	4 Run time verification of individual data-aware Declare rules
	4.1 Internal working of Declare Analyzer
	4.2 How the sequence analysis are invoked in on-line settings
	4.3 Four valued semantics
	4.4 Compliance degree of a single case (healthiness)

	5 Early detection of violations determined by interplay of two or more constraints
	5.1 Early detection of violation in Simple case
	5.2 How to deal with indirect obligations

	6 Implementation
	6.0.1 Online Declare Analyzer Plugin
	6.1 Log Streamer
	6.2 Online Declare Analyzer Client

	7 Verification & Validation
	7.1 Verification of individual data-aware Declare rules
	7.2 Early detection of violations
	7.2.1 Example 1
	7.2.2 Example 2
	7.2.3 Example 3
	7.2.4 Example 4
	7.2.5 Example 5
	7.2.6 Example real world example

	7.3 Performance

	8 Conclusion and Future Work
	Bibliography
	Index

