
UNIVERSITY OF TARTU��
FACULTY OF SCIENCE AND TECHNOLOGY

Institute of Computer Science��
Software Engineering Curriculum

Sunday Ayandokun

Application-agnostic Personal Storage for
Linked Data

Master’s Thesis (30 ECTS)

 Supervisor: Peep Küngas, PhD

Tartu 2016

 ii

 Application-agnostic Personal Storage for Linked Data

Abstract:

Recent advances in cloud-based applications and services have led to the continuous

replacement of traditional desktop applications with corresponding SaaS solutions. These

cloud applications are provided by different service providers, and typically manage identity

and personal data, such as user’s contact details, of its users by its own means.

As a result, the identities and personal data of users have been spread over different

applications and servers, each capturing a partial snapshot of user data at certain time

moment. This, however, has made maintenance of personal data for service providers

difficult and resource-consuming. Furthermore, such kind of data segregation has the overall

negative effect on the user experience of end-users who need to repeatedly re-enter and

maintain in parallel the same data to gain the maximum benefit out of their applications.

Finally, from an integration point of view – sealing of user data has led to the adoption of

point-to-point integration models between service providers, which limits the evolution of

application ecosystems compared to the models with content aggregators and brokers.

In this thesis, we will develop an application-agnostic personal storage, which allows sharing

user data among applications. This will be achieved by extending AppScale app store

identity infrastructure with a personal data storage, which can be easily accessed by any

application in the cloud and it will be under the control of a user. Usability of data is

leveraged via adoption of linked data principles.

Keywords: Appscale, personal data storage, linked data.

CERCS: P170

 iii

Personaalne andmeruum lingitud andmetele

Lühikokkuvõte

Personaalsete andmete ristkasutuse puudumine veebirakenduste vahel on viinud olukorrani

kus kasutajate identiteet ja andmed on hajutatud eri teenusepakkujate vahel. Sellest

tulenevalt on suuremad teenusepakkujad, kel on rohkem teenuseid ja kasutajaid,

väiksematega võrreldes eelisseisus kasutajate andmete pealt lisandväärtuse, sh analüütika,

pakkumise seisukohast. Lisaks on sellisel andmete eraldamisel negatiivne mõju

lõppkasutajatele, kellel on vaja sarnaseid andmeid korduvalt esitada või uuendada eri

teenusepakkujate juures vaid selleks, et kasutada teenust maksimaalselt.

Käesolevas töös kirjeldatakse personaalse andmeruumi disaini ja realisatsiooni, mis

lihtsustab andmete jagamist rakenduste vahel. Lahenduses kasutatakse AppScale

rakendusemootori identiteedi infrastruktuuri, millele lisatakse personaalse andmeruumi

teenus, millele ligipääsu saab hallata kasutaja ise. Andmeruumi kasutatavus eri

kasutuslugude jaoks tagatakse läbi linkandmete põhimõtete rakendamise.

Võtmesõnad: Appscale, personaalne andmeruum, linkandmed.

CERCS: P170

 iv

Table of Contents
 List of Figures ... v
 List of Tables .. v

1. Introduction ... 1
1.1 Problem Statement ... 2
1.2 Goals Of The Thesis ... 4
1.3 Organization Of Thesis .. 4

2. Related Work ... 5
2.1 Personal.com .. 6
2.2 ID Hole ... 7
2.3 Ownyourinfo.com .. 8
2.4 The Locker Project ... 8
2.5 OpenPDS .. 9
2.6 OPENi Personal Cloudlet ... 10
2.7 MyDex Personal Data Store ... 13
2.8 Comparative Summary ... 14
2.9 Privacy Issues And The PDS ... 15

3. Background .. 16
3.1 Linked Data .. 16
3.2 Resource Description Framework (RDF) .. 18
3.3 Vocabularies/Ontologies .. 18

3.3.1 Friend-Of-A-Friend (FOAF) � .. 19
3.3.2 Semantically-Interlinked Online Communities (SIOC) � 20
3.3.3 Good Relations � ... 20

3.4 Virtuoso .. 21
3.5 Appscale ... 22
3.6 Django Web Framework .. 25
3.7 OAuth 2.0 ... 26
3.8 Tyk ... 28

4. System Design & Architecture .. 29
4.1 Personal Storage And Related Mechanisms ... 30

4.1.1 PDS Management System ... 30
4.1.2 PDS Graph API Service .. 31
4.1.3 Virtuoso Datastore ... 32

4.2 PDS User Access Control .. 35
4.2.1 Tyk OAuth 2.0 And Django OAuth Toolkit Access Control 35
4.2.2 PDS OAuth 2.0 Authorization Flow ... 37

4.3 Graph API Documentation ... 40
5. Proof Of Concept Implementation With Inforegister.ee ... 41
6. Performance Evaluation .. 43

6.1 Tyk’s Average Request Response Time As Tokens and Requests Increase 43
6.2 AppScale Server CPU Usage with Response Time During User Data Import 45

7. Conclusion & Future work .. 47
8. References ... 48
Appendices .. 51

I. API Documentations .. 51
II. License .. 51

 v

List of Figures 	
Figure 1: Personal user data categories ... 6
Figure 2: Ownyourdata user’s information category .. 8
Figure 3: High-Level personal data ecosystem. .. 9
Figure 4: OPENi platform’s high-level architecture [21] ... 11
Figure 5: Overview of the AppScale design ... 24
Figure 8: Sample SPARQL query result on the user emails graph ... 33
Figure 9: Sample SPARQL query result on the user addresses graph 33
Figure 10: Sample SPARQL query result on the user telephones graph 34
Figure 12: Sample SPARQL query result on the user accounts graph 34
Figure 13: Sequence diagram for the PDS OAuth 2.0 authorization flow 37
Figure 16: ER-diagram showing mapping of AppScale users with their data on

inforegister.ee schema .. 42
Figure 18: Chart showing Tyk average response time as number of request increases 44
Figure 19: Chart showing CPU usage with response time during user data import 45

List of Tables

Table 1: Data security issues and solutions .. 12
Table 2::Comparison summary table for the reviewed related works. 14
Table 3: API supported within AppScale and how they are supported 23
Table 4: Tyk OAuth 2.0 related endpoints .. 36
Table 5: Tyk Performance measure test data .. 43
Table 6: AppScale User import response time with CPU usage results 45

 vi

Acknowledgements	

I would like to thank almighty God for given me the grace to start and finish this study.

Secondly, I appreciate my parents, my entire family and my friends for their full support and

prayers during this journey. I also want to thank all my wonderful Professors, Associate

Professors and Technical Assistants who instilled in me the right knowledge and attitude. I

am so grateful to my supervisor, Peep Küngas, Ph.D. – a great researcher, for his immense

intellectual contributions to the completion of this thesis.

In addition, I want to thank my colleagues in the office at Zero Technologies for sharing their

thoughts when called upon. A big thank you to the Estonian government, University of Tartu,

Tallinn Technical University and IT Academy for providing an enabling environment for

learning. Last but not the least, to my fiancée – Temitope Adenuga, thank you for your

prayers and encouragements all through.

 1

1. Introduction	
In today’s emerging IT technologies, cloud computing [1] has played a vital role in

unlocking great IT innovations, as organizations have seen its adoption have brought

unprecedented growth in the way they go about their business operations. This is obvious, as

it offers a promising paradigm that could enable businesses to face market volatility in an

agile and cost-efficient manner. [1] Its adoption has helped in reducing costs, offering

tremendous flexibility, reliability and enabling processing of massive amount of data on

commodity hardware. It has also helped organizations to open their services to a large

number of customers with little or no geographical limitations. Hence, the cloud presents an

undeniable potential to benefit all users and businesses.

Cloud computing, shortly referred to as cloud, is an on-demand computing model which

enables access to computing resources such as services, applications, networks, servers, and

storage. The cloud enables rapid provisioning and release of these resources with reduced

effort and less service provider interaction. [2] The main principle behind this model is

referred to as offering computing, storage, and software “as a service”. It delivers computing

as a utility, a business model where users of computing resources pay providers based on

usage (“what-you-used-is-what-you-pay-for”). As promising as the cloud is, it comes with its

challenges. User identity and personal data management are difficult due to the significant

dependencies between several services connected in the cloud [3]. Users’ data portability

across domains and different cloud applications is also a problem that needs a solution in

order to unlock cloud full adoption.

In today’s social networking, we have seen a rise of social networking sites such as

Facebook, Google, and LinkedIn becoming identity providers and personal profile data

managers. Moreover, from the application development point of view app stores such as

Google Play and Samsung Apps have become environments, which take care of identity

management such that application developers can focus on improving their apps. In addition,

the app stores take care of common tasks such as application distribution, billing and user

management. In this thesis, as a proof of concept, we will make use of an existing open

source app store similar to those mentioned above called AppScale. It is an open source

implementation of Google App Engine (GAE). It is API-compatible with GAE and thus

executes GAE applications without modification. More details will be provided in chapter 4.

 2

1.1 Problem	Statement	

Cloud-Scale Identity Fabric like those mentioned above should enable the transfer of user

data across application domains, that is if application X is where I primarily store my

personal data, then I should be able to delegate application Y to fetch my data from X

securely. Such Fabric should also be able to provide features such as:

§ Access control and authorization,

§ Federation Authentication and Single sign-on (SSO),

§ User account management and Provisioning

§ Auditing and Compliance

§ Cloud-based scalability, Regulations,

The above listed must evolve, in order to realize a cloud-scale identity fabric [3].

As mentioned earlier, user identities and personal data of the same user are distributed

between different applications and servers since cloud users have to fill in their personal data

every time they are about subscribing to use a particular cloud-based application. Hence, this

does not give individuals control over their data since there is no single point of personal

data storage for easy management and control.

With such constraint, user data portability across different cloud applications and domains

has not been fully implemented, since every application does user data management

differently and internal to the application; user management interfaces are neither consistent

nor standardized [4].

Also, from data privacy point of view, as there has been serious awareness on user data

privacy in recent time, more and more people are becoming unwilling to release their data

during signing up to new cloud applications, as people are having a new understanding of

personal data which is an economic asset generated by the identities and behaviors of

individuals while engaging with IT services.

We believe that user’s unwillingness to release data pose a great challenge to emerging IT

services that could benefit businesses, individuals and the world at large. The privacy

problems worth mentioning are; users are not aware of the usage of their data when released

to service providers [5]. In [6], they suggested service providers should develop a scenario in

which the user actually understands what will happen to their data, getting to a point where

providers of cloud apps will explain clearly, concisely, and very simply to the user what is

 3

happening with their personal data. In addition, having a good understanding of what

‘personal data’ means is also essential to both users and service providers. According to EU

Data Protection Directive, ‘Personal Data’ is any information relating to an identifiable

natural person; “an identifiable person is one who can be identified, directly or indirectly, in

particular by reference to an identification number or to one or more factors specific to his

physical, physiological, mental, economic, cultural or social identity” [7].

Interestingly, the concept of personal data ecosystem (PDE) has been proposed [8]. It is an

emerging intellectual activity of companies and organizations that believe individuals should

be in control of their personal information and directly benefit from its use, making available

a growing number of tools and technologies to enable such control [8]. The PDE is expected

to address the privacy challenges in personal data lifecycle – Data Harvesting, Data Mining

and Application [8] [9]. More specifically, a new EU act will be introduced, which will

enforce companies to provide on-demand access to personal data, if the person asks for it [9].

Towards this end, we have highlighted key research questions that this thesis aims to

address:

1. How can we fully represent personal user data which is self-contained as personal

data storage, one that is standard and not application-specific?

2. How will multiple cloud applications link to a single user identity and personal data,

one that is not constrained to the data model of any application?

3. But with so many applications coming from different providers, how will end users'

personal data be accessed securely with user’s authorization, to a specific section of

their personal data requested by the third-party application?

 4

1.2 Goals	Of	The	Thesis	

Based on the identified challenges of personal data been constrained to a specific application

data model, in addition to the fact that users don’t have control over their data, we have

identified a possible solution. From data model perspective, the linked data concept and

Resource Description Framework (RDF) seems a suitable candidate for a representation,

which is not application specific.

This thesis aims to design and implement a model for an existing app store for application-

agnostic personal storage by means of linked data. This will be achieved by extending

AppScale [10] - an open source implementation of Google App Engine. We will validate the

personal data storage implementation by using it as a user management platform for the

personal data storage for inforegister.ee.

1.3 Organization	Of	Thesis	

Chapter 2 discusses related works. In Chapter 3, we cover the background of selected

candidate solutions for the implementation i.e. Linked Data and Resource Description

Framework. In Chapter 4, we describe the details of the design, architecture and major

components of the proposed solution. Chapter 5 provides detailed proof of concept

implementation with inforegister.ee data and functionality. Chapter 6 presents the validation

of the solution for inforegister.ee with a realistic scenario; performance measurements under

different constraints/scenarios. Chapter 7 concludes the thesis and discusses potential

directions for future work.

 5

2. Related	Work		

In this chapter, we present related works of implementation of personal data storage in the

cloud. We will review the implementation, techniques, and architecture of the existing

similar solution. The rise in the accumulation of user data in the cloud by service providers

has seen a critical demand for solutions that can help users manage and have control over

their data that is being collected. There are existing implementations generally referred to as

Personal Data Service (PDS), which can offer users the desired control on their data.

PDS, as defined in Wikipedia, is a personal digital identity management service which is

controlled by an individual. It gives users a single point of control for their personal

information [11]. Such pieces of information are stored in external distributed repositories

which can be accessed via an application programming interface (API). The user can permit

and revoke access to their data from third party requester. Generally, PDS empowers the user

to be in control of their data, with the ability to manage personal information; have a

dashboard view of their online behaviors and activities; provides identity and claims

verification [12]; also to be able to share a section of their data with the organization of one’s

choice based on the specific data section that the organization require instead of an absolute

access to all user data.

As opposed to how user’s data are collected and managed by different applications and

service providers, [12] considered the current model as inefficient and broken due to the

following reasons:

• Users have limited control over the usage and management of their data;

• Disparity in privacy and terms of usage by each service;

• Users shared too much detailed personal information than required, which increases

chances of exposure;

• The various services have a partial view of each user which leads to error.

 6

In view of the above, we can see the danger posed by the status quo on every single cloud

users as regards the privacy and usage of their personal data as they interact with various

cloud services.

The following are the various cloud-based PDSes reviewed, with the potential to address the

major issues highlighted above.

2.1 Personal.com	

Personal provides the Web and mobile service to give users a data vault and tools to control,

share and gain value from their personal information, including through personal networks

[12]. Personal as a commercial Personal Data Storage with a centralized attribute data store

which house user data, allows individuals to add or import their data and share it through

bundles of structured and unstructured fields of data and files called Gems. It also provides

an API to enable bi-directional attribute updates from third-party web services. Personal as a

user data management service allows people to work securely with others to organize and

use the information that powers their life [13].

The service works such that, users register on the platform and start filling their personal

information into different identified categories.

Figure 1: Personal user data categories1

1 https://www.personal.com/apps/home/ - /cat/personalapps (visible to only registered users)

 7

The user can grant access to their information and also revoke the access when no longer

require. The personal has a free version and premium version

(https://www.personal.com/tour/pricing/).

Being a commercial solution, there isn’t much description of the underlying architecture. But

as described in [12] as a case study, Personal Platform, has a Privacy by Design architecture

and offers a full suite of APIs to support for various types of functionality around data

management.

2.2 ID	Hole	
This is another commercial consumer PDS, it allows users store personal data and also

provides mean of sharing such data with other parties.

ID Hole2 provides all types of users, such as businesses, organizations, professionals,

students, and all others who frequently utilize the internet with the opportunity to save

personal and/or business information.

Similar to personal.com users fill in their information they would like to store on ID hole.

But unlike Personal.com, ID Hole users create their various data categories by themselves.

ID Hole.com provides users with both a password and the encryption key to access it. This

encryption key is the master access key to the user data and only the user has access to it if

users forget this, access to the user account is lost forever. [14].

ID hole is just storing the user data on their server for the user access only and there are no

means for users to delegate access to such information via any means. This approach of

storing user data is quite different from our own approach as we intend storing the user data

independent of application data structure using Resource description framework (RDF)

which can also be shared.

2 https://www.idhole.com/

 8

2.3 	Ownyourinfo.com		
Similar to personal.com, Ownyourinfo.com also provides users with a personal data store,

where users enter their data and organized in different categories. The stored data can be

shared with someone else. This solution also lacks dynamic access and sharing of data with

cloud services, as it presents a person-to-person data sharing model. Users have 5 free

sharing per month with a premium version providing unlimited sharing.

Figure 2: Ownyourdata user’s information category3

2.4 The	Locker	Project		

A Locker is a container for personal data, it gives data owner the ability to control how their

data is protected and shared. It works by retrieving and consolidating data from different

sources, to create a single collection of the things users see and do online like the places

users visit, the links they share, contact details for the people they communicate with etc. It is

an open source, JavaScript-based, PDS with a centralized underlying attribute store that

exists on a person's personal computer as well as an API to support local applications [15]. It

also provides APIs for developers to build applications with access to users’ information.

The project is not in active development according to the project’s Github page4, but its

developer changed the focus of development to Hallway5, a multi-tenant version of the

3 https://app.ownyourinfo.com/-!/profiles/667/categories/all(required registered user access)

 9

Locker empowering Personal Data Application. Hallway project helps developers build

applications which aggregate data easily from different service providers via one API [16].

2.5 OpenPDS	

OpenPDS is an open-source Personal Data Store, enabling users to aggregate, keep, and

grant access to their data while protecting their privacy. The system ensures that most

processing of sensitive personal data takes place within the user’s Personal Data Store [17].

This is achieved via an innovative framework for installing third-party applications. In the

researchers’ view, with the amount of data sources that a user interacts with daily, data

exchange among different services is not enough. Rather, there is a need for users to have

their own protected space, a Personal Data Store (PDS) acting as a single point where his/her

data is stored. With the PDS, users can control who can access their data and manage

authorizations for accessing the data. [18]

Figure 3: High-Level personal data ecosystem.6

Figure 3 shows the high-level personal data ecosystem of OpenPDS.

4 https://github.com/LockerProject/Locker
5 https://github.com/Singly/hallway
6github.com/HumanDynamics/openPDS/blob/master/doc/openPDS%20Developer%20Documentation.pdf

 10

The Registry creates a profile for the user at the point of user registration and a personal data

store is initialized for the user. The authorization server provides secure user authentication

and authorization of access to personal data stores. The OAuth 2.0 protocol [19], the

component is tightly coupled with registry providing account management services.

The distributed Personal data stores design shows a user-centric design, in which a single

OpenPDS server supports each end user having separate backend database, user-specified

encryption keys for all personal data in the data store.

In order to support such arbitrary schema, the researchers have chosen MongoDB7 as the

primary backend storage system. The OpenPDS implementation seems a close approach to

our proposed implementation of personal data storage. In this view, our implementation is

going to be built upon some of the relevant concepts of OpenPDS.

2.6 OPENi	Personal	Cloudlet	
Personal Cloudlet is part of the OPENi EU FP78 funded project, with the aim of providing a

platform that offers users, flexible control over their personal data.

This research project focuses on promoting innovation in the European mobile applications

industry and they aim to achieve this by developing an open-source platform for consumer-

centric mobile cloud applications [20]. The central concept is to minimize the scattered and

duplicated users’ data across various cloud services.

OPENi provides application users with a single point of data storage and control. This will

enable consumers to manage what section of their data is available to each application and

for what purpose. They believe this can serve as a single authoritative source for the

consumers’ personal data and content [20].

The aim of this project as highlighted in the project objectives9 aligns well with our work in

this thesis. We present below a brief description of OPENi architecture and some other

concepts as it relates to our work.

7 https://www.mongodb.org/
8 https://ec.europa.eu/research/fp7/index_en.cfm
9 http://www.openi-ict.eu/objectives/

 11

2.6.1 OPENi’s	Architecture		

	

Figure 4: OPENi platform’s high-level architecture [21]

The mobile SDK abstracts and simplifies access to OPENi services across multiple mobile

platforms with a design that promotes rapid application development for easy developer

onboarding. [21] The security framework implements the access control functionality which

allows users to really have total control of their data. The API framework is the OPENi

Graph framework which is an open-source framework capable of interoperating with a

variety of cloud-based services and the detailed description of it can be found here [22]. The

last core component is the Personal cloudlet framework [20] which provides application

consumers with a single location to store and control their personal data, the feature which is

achieved by a collaboration with the security framework.

 12

2.6.2 OPENi	User-Centric	And	Privacy-Preserving	Features	

OPENi uses the various technologies to achieve the core feature of privacy preserving and

user-centric: It implements the OAuth 2.0 compliant flow for User Authorization which

presents the user with a login view for authentication and a permission dialog for granting

access to third-party apps. In order to maintain the framework statelessness, OPENi

enhanced JSON Web Tokens (JWT10) which are digitally signed base64 encoded JSON

objects that enable stateless REST based frameworks manage sessions and claims. [21]

2.6.3 Other	Cloudlet	Concepts		

Cloudlet platform uses Couchbase which is a NoSQL Datastore as its backend data storage.

This was driven by a requirement for a platform that is scalable. Cloudlet implemented

RESTful object-based access to enable users share and control access to their information.

As a promise to focus on users’ privacy and control, Personal Cloudlet Framework’s has

some key features to achieve this which include: The Privacy Preserving Data Aggregator,

the fine-grained access control and User Dashboard [20].

The OPENi project also carried out a detailed security analysis of Cloud-based services and

OPENi Cloudlets in [23]. They highlighted some threats and solutions around data security

as presented below:

Threat area Solution

Data-in-transit Use of secure protocols

Data-at-rest Encryption, data tagging

Process / multi-tenancy Data tagging

Data remnants Clearing, sanitization, high-level SLA

Table 1: Data security issues and solutions11

10 https://jwt.io/
11 http://www.openi-ict.eu/wp-content/uploads/2013/11/OPENi_D2.3.pdf

 13

2.7 MyDex	Personal	Data	Store	
MyDex is another Software as a Service Persona Data Store similar to Persona.com. It

promises to allow users exchange their data with confidence.

In their white paper [24], they highlight what a personal data store initiative means to all the

stakeholders. For individuals, it offers benefits such as convenience, Insight, emotional

benefit of empowerment etc., also, as oppose to organization-centric approach PDS brings

notable benefits to organizations, such as data accuracy and quality, Data completeness and

richness. These and much more tend to guide MyDex to deliver values to the PDS users.

MyDex users can use the service free of charge, and MyDex only makes money when a user

share data with a paying third-party. It is built using various open source components such as

Vagrant12 for the development environment, Git13 for version control, GPG14, OpenSSL15 for

Encryption, Percona Server16 as the database, Symfony17 as the platform framework etc.;

further details can be found here [25]. During sign-up a user creates a private key for data

encryption, which the user will need to provide after every login to decrypt user’s PDS; this

gives only the user access to the data, not even MyDex can access user data. It also allows

users to connect to any organization of their choice in which they can share their data with

and also receive data update from such organization.

MyDex also provides a mydex-browser-extension with features such as bookmarks

management, browsing history, credentials management with auto-fill support. Users can add

it as a connection to their data with a set of selected permissions.

In order to enable users to have more control over their data, MyDex provides a standard

data sharing agreement which third-party service providers must agree to. [26]

12 https://www.vagrantup.com/
13 http://git-scm.com/
14 https://www.gnupg.org/
15 https://www.openssl.org/
16 http://www.percona.com/software/percona-server
17 http://symfony.com/

 14

2.8 Comparative	Summary	
This section presents a summary of the reviewed related works; we have presented below a
comparison table of the various PDS solutions with selected comparison parameters:

Features\PDSes Personal ID Hole Ownyourinfo Locker

Project
OpenPDS Personal

Cloudlet
MyDex

Open source No No No Yes Yes Yes No
Hybrid
(Open/Commercial)

No - - - - Yes No

Data sharing model P2P,
P2B

- P2P P2P,
P2B

P2B P2B,
P2P

P2B,
P2P

User access control Yes - Yes Yes Yes Yes Yes
Predefined
vocabularies/data
categories

Yes Yes Yes Yes Yes Yes Yes

Internal Storage - RDBMS RDBMS - NoSQL NoSQL RDBMS
Data multi-tenancy
model

Yes - - Yes No -

Right to be
forgotten

Yes Yes Yes - - - -

Data Portability Yes No - - Yes Yes
Active
Development

Yes No Yes No Yes Yes Yes

Table 2: Comparison summary table for the reviewed related works

Note: ‘-’: Information Not available, P2P: Peer-to-Peer, P2B: Person-to-Business

§ Open Source - this tells if the project is open-source

§ Hybrid – available both in open-source and commercial

§ Data sharing model – if it allows Peer-to-Peer, Person-to-Business (sharing the data

with third-party service providers)

§ User Access control – if it provides user access control on personal data, e.g. on a

granular level

§ Predefined vocabularies – whether there are set of defined data categorize or the

user can create.

§ Internal Storage – the choice of Datastore for the backend

§ Data multi-tenancy model18 – whether users’ data are stored in a shared database

18 https://msdn.microsoft.com/en-us/library/aa479086.aspx

 15

§ Right to be forgotten – it tells if user can delete their account and data completely

on the platform

§ Data portability – can user move their data to other PDS platform

§ Active Development – if the project is still on-going

We are also aware of other attempts at implementing a personal data store, but which have

seen little or no adoption. Projects such as AllAdvantage19, Lumeria, infomediary,

Bynamite20, most of which are no longer in existence.

2.9 Privacy	Issues	And	The	PDS	
We have seen how the ideas behind various PDS solutions tends to the protection of privacy,

nevertheless, cautions must be taken to ensure that users’ personal information is truly safe.

In [12] the author raises some concern such as interoperability, interactions and information-

sharing mechanisms between PDS stakeholders; that may affect privacy. It has been

established that individuals are in control of their data. But what happens when such data is

shared with the wrong party – supposed trust party. According to [12], taking a proactive

approach will be crucial to the success of any PDS initiatives; which can be achieved via

Privacy by Design., transparency and clarity will be essential.

In addition, PDS service providers must develop easy-to-use features, ensure granular data

sharing, privacy-protective protocols, facilitate interoperability between data sets and also

sensitize users of the privacy inference of his or her data sharing decisions.[12]

19 http://www.alladvantage.com/
20 https://www.crunchbase.com/organization/bynamite

 16

3. Background	

This chapter focuses on an introduction to the various technologies that will be used in our

proposed solution. Such as the semantic web powered by concepts like Linked Data21,

Resource Description Framework(RDF22), Virtuoso23, Appscale24 – the scalable Application

Platform as a Service, Django – Python web framework, OAuth 2.025, Tyk26. Also to be

discussed are the reasons for chosen these technologies.

3.1 Linked	Data	
As discussed previously and in most of the reviewed works, the huge growth in user data

generated daily as users interact with cloud services has raised concerns among various

stakeholders ranging from the industry and academics. One can imagine this huge amount of

data and wonder how applications can utilize this in a constructive and valuable way. To be

easy for innovative application usage of such data, the data must be machine-readable and

also enable linkages among related data.

Linked Data concept is about harnessing the Web to bring together unlinked related data.

Concisely, Linked Data defined in [27], “refers to a set of best practices for publishing and

connecting structured data on the Web.” Such data are machine-readable, self-descriptive,

linked to data from external sources and vice-versa. Linked Data depends on documents

consisting data in RDF format, which allows making typed statements that connect arbitrary

things in the world and results to what is referred to as the Web of Data. [27]

The huge amount of data generated daily on the web would make more sense and ease

sharing difficulty across several applications if linked data concepts are properly applied.

Just as we can see in W3C27 definition, Semantic Web often referred to as the web of

data “provides a common framework which permits data to be shared and reused across

application, enterprise, and community boundaries. It is based on the Resource Description

Framework (RDF28)”. [28]

21 http://linkeddata.org/
22 https://www.w3.org/RDF/
23 http://virtuoso.openlinksw.com/
24 https://www.appscale.com/
25 https://tools.ietf.org/html/draft-ietf-oauth-v2-17
26 https://tyk.io/
27 https://www.w3.org/
28 https://www.w3.org/RDF/

 17

It’s inevitable to think that trying to link data from different sources, both structured and

unstructured could turn out to be messy. In other to avoid that, one must follow the proposed

set of rules29 by Sir Tim Berners-Lee - the father of the current World Wide Web. The rules

commonly known as the ‘Linked Data principles’ include:

1. URIs should be used as identifiers for things,

2. HTTP URIs should be used so that people can find out more about those

things

3. Give useful information, using the standards (RDF, SPARQL) when someone

accessed a URI,

4. Add links to other URIs, to discover more things

These rules guide publishing data on the web in a way that the linked data from different

sources becomes part of a single global data space. [27]

Our choice of Linked Data approach as the data model for personal data storage is informed

by the opportunities in Linked data. In [29], we have seen a lot of benefits of Linked Data

which contributes to our choice. Some of which includes:

§ It is applicable to structured, semi-structured, and unstructured data

§ Elimination of internal data locked down in 'silos',

§ Ability to integrate both internal and external data,

§ Inter-linkage of enterprise, industry-standard, open public data,

§ Robust data modeling is provided for any legacy schema,

§ Adaptable and painless updates to existing schema

We believe Linked Data has a lot to offer application developers for a better interoperability

due to its essential characteristics. With Linked Data, resources are self-descriptive, good

separation of concern between formatting and presentation. “The use of HTTP standardized

access mechanism and RDF as a standardized data model simplifies data access compared

to Web APIs, which rely on the heterogeneous data model and access interfaces.” [27]

More so, the linked data approach answers one of our research questions - “How can we

fully represent personal user data which is self-contained as personal data storage, one

that is standard and not application specific?”

29 https://www.w3.org/DesignIssues/LinkedData.html

 18

3.2 Resource	Description	Framework	(RDF)		
RDF is a standard directed graph-based data model for data exchange on the web [30]. RDF

creates one of the essential units for forming a web of semantic data. It consists of a subject,

predicate and object called triples. The predicate provides the linkage between the subject

and object. RDF has features that enable combining several data even if the underlying

schemas are different, hence, the model allows both structured and semi-structured data to

interoperate, and can be easily shared across different applications.

The RDF model encodes data as subject, predicate, object triples. The subject and object of a

triple identify a resource, or a URI and a string literal respectively. The predicate tells how

the subject and object are related, and it is also represented by a URI. [27] For example, a

triple can be used to relate this thesis and the author. Thesis and author are the subject and

object respectively. And are related as Thesis ‘written by’ Author.

The example can be encoded in RDF triples link as:
<http://resources/thesis/1> <http://examplevocabulary/writtenBy> <http://persons/authors/author_identifier> .

Subject: http://resources/thesis/1

Predicate: http://examplevocabulary/writtenBy

Object: http://persons/authors/author_identifier

In view of the above, this data model gives linked data an edge having the advantage of

being interoperable with other data set and being machine-readable due to the semantic graph

structure. Further description of RDF could be found here [31].

3.3 Vocabularies/Ontologies	
In order to have information described in a commonly understood way and unambiguously

interpreted, there must be a set of standard vocabularies to describe things in different

domains. “These vocabularies can be reused by various data producers when describing

data about a given subject, making such data semantically interoperable.” [32] In this thesis

we used the FOAF30, SIOC31, Vcard32, Public Procurement33. The choice of these ontologies

is informed by the domain of the test data we will be working with.

30 http://xmlns.com/foaf/spec/
31 http://www.sioc-project.org/
32 https://www.w3.org/TR/vcard-rdf/
33 http://purl.org/procurement/public-contracts - Contract

 19

It is important to be aware of existing vocabularies when describing things in a particular

application domain. There exist some semantic search engines to find out the most

appropriate vocabulary for a domain. Some of which include: Swoogle34, Linked Open

Vocabularies35, DCMI Metadata Terms36. In the next section, we will describe briefly some

of the popular ontologies.

3.3.1 Friend-Of-A-Friend	(FOAF) �
FOAF37 is mainly used to describe social networks of human collaboration, friendship and

association and includes core classes such as Agent, Person, name, title, familyName,

givenName, knows, member etc.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/">
 <foaf:Person rdf:about="http://about.me#sunday"
xmlns:foaf="http://xmlns.com/foaf/0.1/">
 <foaf:name>Sunday Ayandokun</foaf:name>
 <foaf:homepage rdf:resource="http://sunday.org/"/>
 <foaf:openid rdf:resource="http://sunday.org/"/>
 <foaf:img rdf:resource="http://gravatar.com/images/me.jpg"/>
 </foaf:Person>
</rdf:RDF>

The above XML snippet shows a basic FOAF vocabulary describing a person.

The triples below show the converted RDF N-Triples using EasyRDF converter38.

<http://about.me#sunday> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person> .

<http://about.me#sunday> <http://xmlns.com/foaf/0.1/name> "Sunday Ayandoku
n" .

<http://about.me#sunday> <http://xmlns.com/foaf/0.1/homepage> <http://sund
ay.org/> .

<http://about.me#sunday> <http://xmlns.com/foaf/0.1/openid> <http://sunday
.org/> .

<http://about.me#sunday> <http://xmlns.com/foaf/0.1/img> <http://gravatar.
com/images/me.jpg> .

34 http://swoogle.umbc.edu/
35 http://lov.okfn.org/
36 http://www.dublincore.org/documents/dcmi-terms/
37 http://xmlns.com/foaf/spec/
38 http://www.easyrdf.org/converter

 20

3.3.2 Semantically-Interlinked	Online	Communities	(SIOC)	�	
SIOC39 focuses on the description of online community information, e.g. blogs, forums,

mailing lists etc. Its main classes describe things like group, event, user, post, comment.

SIOC has seen a noteworthy adoption via its usage in diverse software applications both

commercial and open-source. [33] There are different SIOC exporters (e.g. WordPress SIOC

Exporter, Drupal SIOC Exporter etc.) already implemented for a couple of popular weblogs,

forums, and communities. Details about these exporters and other SIOC applications can be

found here [34].

3.3.3 Good	Relations	�	
Good relations40 is the web vocabulary for e-commerce. It describes e-commerce concepts

ranging from products and business descriptions to pricing and method of delivery. It has a

great impact in real-life applications. [32] It can be easily embedded into both static and

dynamic web pages which are machine readable.

Other vocabularies include: Dublin Core41, Simple Knowledge Organization System
(SKOS42), Vocabulary of Interlinked Datasets (VoID43), VCard44

39 http://www.sioc-project.org/
40 http://www.heppnetz.de/projects/goodrelations/
41 http://www.dublincore.org/documents/dcmi-terms/
42 https://www.w3.org/TR/skos-reference/
43 https://www.w3.org/TR/void/
44 https://www.w3.org/TR/vcard-rdf/

 21

3.4 Virtuoso	
Virtuoso is a scalable cross-platform server that consolidates Relational45, Graph46,47, and

Document Data Management with Web Application Server48 and Web Services49 Platform

functionality, [35] providing data access, integration, and relational database management.

[36] Due to its Linked Data deployment capabilities to provide a secure, high-performance,

and cost-effective solution for exploiting the Linked Data Server capabilities; we have

chosen it as our data store for storing user data in Graphs.

	
Virtuosos which is our linked data storage of choice implements the OAuth core 1.0

specification to grant access to specific user graph. Each user can generate a consumer key

and secret on the Virtuoso's GUI for a specific virtuoso application to which the user is a

member of e.g. the SPARQL50 application. The token generated will be linked to the user

account and the application instance. The following steps are the typical approach to

establishing an authorized session to user graph using the consumer key and secret as

described in details on Virtuosos OAuth implementation documentation51.

1. Client request for access token via request_token to get a client id/secret pair to

establish a session.

2. Client requests OAuth server for authorization using client id from step 1.

3. The client id from step 1 is used by the client to requests for an authentication token.

4. The authentication token from step 3 can be used to access data mapped with the

client id from step 1.

In our own use case, the above implementation presents the following limitations.

• Each PDS user will need to access the virtuosos’ GUI to generate consumer key and

secret. This is an extra burden to a PDS user since we only want to present an easy to

use PDS application to the user without burdening them with the underlying backend

system.

• On the GUI, the user can only generate token for 2 applications. This is a big issue

since users would like to grant access to many cloud applications that they interact

with daily.

45 https://en.wikipedia.org/wiki/Relational_model
46 http://neo4j.com/developer/guide-data-modeling/
47 https://en.wikipedia.org/wiki/Graph_database
48 https://en.wikipedia.org/wiki/Application_server
49 https://en.wikipedia.org/wiki/Web_service
50 https://www.w3.org/TR/rdf-sparql-protocol/
51 http://docs.openlinksw.com/virtuoso/voauth.html

 22

Nevertheless, we are aware that virtuoso also has a full support implementation for our use

case in the form of a fine-grained access control. But this feature is only available in the

commercial52 version of virtuoso since our proposed solution is an open-source project, we

cannot go with this option.

3.5 Appscale	
“AppScale is an open source distributed software system that implements a cloud platform as

a service (PaaS), enabling portable, scalable web application deployment.” [4] It allows

application developers run their apps that are built using the Google App Engine APIs on

both public (such as Amazon EC2 and Google Cloud Engine) and private (such as

OpenStack and Eucalyptus) cloud infrastructures.

What this means to application owners is that they can enjoy the same benefit they get when

they use Google App Engine to power their application, even on Appscale. This is so

because, Appscale is a complete clone of the GAE, that is an open source version of GAE.

AppScale users (developers) can take advantage of Google App Engine's quick improvement

model while likewise guaranteeing that their applications remain portable. Furthermore, in

terms of architecture design, AppScale could be described as a three-tier web Architecture

with the following core components:

§ Application Servers

§ Load Balancer

§ Datastore

These components are saddled with the responsibilities such as Deployment automation,

Management, Scaling, and fault tolerance of the system and GAE applications.

52 http://virtuoso.openlinksw.com/whats-new/

 23

Alongside the above core components, AppScale supports [37] a list of APIs presented in the

table below.

APIs Technology Used

Datastore AppDB53

Memcache Memcached54

URL Fetch urllib255

Blobstore API custom server built on Tornado56

XMPP57 ejabberd58

Channel API ejabberd and strophejs59

Mail sendmail

Images Python Imaging Library (PIL)60

Task Queue RabbitMQ61

Cron Vixie Cron62

Search SOLR63

CloudSQL MySQL64

Users AppScale Dashboard65

Routing, SSL66 Nginx67

Load balancing68 HAProxy69

Table 3: API supported within AppScale and how they are supported

53 https://github.com/AppScale/appscale/wiki/AppDB
54 http://memcached.org/
55 http://docs.python.org/library/urllib2.html
56 http://www.tornadoweb.org/
57 https://en.wikipedia.org/wiki/XMPP
58 https://www.ejabberd.im/
59 http://strophe.im/strophejs/
60 http://www.pythonware.com/products/pil/
61 http://www.rabbitmq.com/
62 https://wiki.gentoo.org/wiki/Cron
63 http://lucene.apache.org/solr/
64 https://www.mysql.com/
65 https://github.com/AppScale/appscale/tree/master/AppDashboard
66 http://info.ssl.com/article.aspx?id=10241
67 https://www.nginx.com/
68 https://f5.com/glossary/load-balancer
69 http://www.haproxy.org/

 24

Appscale automatically configures and deploy each of the required services. These services

can be grouped into set of related services exposed via API
§ Security & Authentication

§ Monitoring & Logging

§ Web Hosting

§ User credentialing

§ Messaging & Communication

§ Data Storage & Processing	

	

There are other components in AppScale, an overview which is presented in the figure

below:

	

	

	

	

	

	

Figure 5: Overview of the AppScale design70

§ The AppScale tool - a command line interface for interacting with the AppScale

platform remotely. Such interactions include:

o Deploy AppScale instance, Interaction with and administer AppScale

instances and deployed GAE applications.

§ AppServers (AS) – these are engines that aids the interactions between GAE

applications and Database Master (DBM) for data storage and access. The

interactions are achieved via HTTPS. Application users also interact with the AS.

§ Database Management System – the system that facilitates distributed scalable, and

fault tolerance data management.

70 https://www.cs.ucsb.edu/~ckrintz/papers/cloudcomp09.pdf

 25

§ AppController (AC) – The component that enables inter-component

communication. It is also responsible for setup, bootstrapping, and shutting down of

AppScale instances. Other responsibilities include:

o Deployment and Authentication of deployed applications

§ AppLoadBalancer (ALB) – functions as the deployment head node and establishes a

connection to GAE applications running in AppServers.

For every AppScale deployment, there is only one ALB which is considered the head node,

at least one AppServers, one DBM and one or more DBSs. A single node can implement any

of the individual components or a combination of components. To ensure a secure interaction

among systems, communications are encrypted via the secure socket layer (SSL). [38]

We have chosen AppScale as our application PaaS for the PDS application because it offers

a scalable cloud platform that integrates, extends existing web service, and empowers users

to deploy cloud technologies easily on premise or on their preferred public cloud. [38]

3.6 Django	Web	Framework	
Django72 is a high-level Python Web framework, developed to make repeated Web-

development tasks swift and with less difficulty. We have chosen Django as our framework

for this project because it offers a quick development and clean, realistic design approach.

Also, our proposed solution requires a conscious security concern, Django on its own takes

security as a priority. Another area of consideration is scalability and Django’s ability to

rapidly and resiliently scale is a big plus for us to consider it. More so, AppScale as our

platform of choice has the majority of its codebase written in python. Hence, we believe

working with Django will help us understand better the underlying design of the AppScale

platform.

72 https://www.djangoproject.com/

 26

3.7 OAuth	2.0		
OAuth 2.0 is an authorization framework which is an HTTPS-based protocol that empowers

application end-users (Resource owner) to grant third-party application (Client/Consumer)

limited access to secured resources on the server. There are four major roles in OAuth which

includes:

§ Resource Owner

§ Client

§ Resource Server

§ Authorization Server

Figure 6: OAuth 2.0 authorization flow

Figure 6 shows the interaction among these roles.

Figure 6: OAuth 2.0 authorization flow

In Figure 6 we can see the general idea of OAuth authorization flow. Some of these details

would be described in chapter 4 of the actual implementation for our use case.

1. The client asks an authorization request from the end user. If granted, the client

gets an authorization code.

2. The authorization grant is used to request for an access token from the

Authorization server.

3. The Authorization server authenticates the client and checks the grant validity

before issuing the access token.

4. The clients then use the access token to request for the protected resource.

 27

5. The required resource is sent back by the resource server if the access token is

valid. A detailed description of OAuth 2.0 can be found here [39].

 28

3.8 Tyk	
Tyk is an open source API Gateway, that allows API owners control who accesses their API,

when and how they access it. Tyk features include an API gateway, analytics, developer

portal and dashboard. [40]

In [41], we have seen detailed key features of Tyk. These features present to us with what we

need to implement a secure, easy to use and flexible control on user personal data. These

features include:

§ RESTFul API – This feature makes it very interesting that, everything that can be

done on the Tyk GUI can be achieved programmatically from our own system. And

since most of our interaction with Tyk will be done from our system, the available set

of APIs make things easier.

§ Multiple access protocols – Tyk supports multiple authentication protocols which

include OAuth 2.0, Standard access tokens73, HMAC74 Signatures, Basic

Authentication75, JWT76 and Keyless access77 methods.

§ Quotas – Tyk allows API owners to enforce usage quotas on a per-key basis.

§ Granular Access Control – Tyk can grant access to an API in a granular form. i.e. A

key can access for example only contact details of a particular user.

§ Key Expiry – when creating keys, you can explicitly tell when the key will expire.

§ API Versioning – It offers flexible API Versioning.

§ Blacklist/Whitelist/Ignored endpoint access

§ Analytics logging – It can log detailed usage data on who is accessing the API's.

§ Webhooks – It can Trigger webhooks against events e.g. access token generation.

§ IP Whitelisting

§ Zero downtime restarts – the service can restart after applying changes in the

configuration without affecting any active request.

73 https://tyk.io/docs/tyk-api-gateway-v-2-0/access-control/standard-access-tokens/
74 https://tools.ietf.org/html/rfc2104
75 https://en.wikipedia.org/wiki/Basic_access_authentication
76 https://jwt.io/
77 https://tyk.io/docs/tyk-api-gateway-v-2-0/access-control/keyless-access/

 29

4. System	Design	&	Architecture	

The proposed solution is a personal data storage hereby referred to as PDS. It provides a self

-contained, application agnostic personal data repository for individual users, which is in

total control of the user. The data are stored in standard linked data format encoded RDF

triples. It adopts a decentralized architecture which opposes the most widely used centralized

architecture by various web applications. In the centralized approach, the service providers

as the custodian of enormous user data, have unprecedented amounts of data about the

behavior and personalities of individual [42] . As user privacy concern grows, we believe a

solution like this would offer cloud users more trust as they interact with cloud applications.

As PDS user interacts with other cloud applications that require their data, the user can

delegate the external application to fetch data on their behalf, by granting access and

authorization until such access is revoked.

The authorization and access revoke will be implemented using OAuth 2.0 protocol a similar

approach discussed earlier in the case of OpenPDS78.

78 github.com/HumanDynamics/openPDS/blob/master/doc/openPDS%20Developer%20Documentation.pdf

 30

4.1 Personal	Storage	And	Related	Mechanisms		

In this section, we describe the architecture of the proposed solution and other

related mechanisms of the implementation.

Figure 7: PDS system architecture

Figure 7 is an overview of the PDS design showing how different components interact with

each and the protocol for such interactions.

4.1.1 PDS	Management	System	
This is the PDS application running on the AppScale platform. It was developed using the

Django Web framework. The user interacts with their data store using this app. Its front-end

is built with Angularjs79 which interact with the back-end via a REST API.

It has a user dashboard - to manage personal data (create, update, etc.), manage connected

apps, grant and revoke third-party app access.

It enables users to see various graphs that represent a different section of their data e.g.

personal graph, emails, addresses, telephones, online accounts etc. Whenever a user update

or add of personal information, the PDS Application encodes the data in RDF triples and

send it to the PDS service via HTTP RESTful API for further processing.

Sample encoded RDF triples for the email graph

79 https://angularjs.org/

 31

Each quoted set of URIs is a triple containing <subject><predicate><object>:
“<https://graph.ir.ee/users/1/persons> <http://www.w3.org/2006/vcard/ns-hasEmail>

<https://graph.ir.ee/users/1/emails/sunday-ayandokun-ut-ee> .”

“<https://graph.ir.ee/users/1/emails/sunday-ayandokun-ut-ee> <http://www.w3.org/2006/vcard/ns-hasValue>

<mailto:sunday.ayandokun@ut.ee> .”

“<https://graph.ir.ee/users/1/emails/sunday-ayandokun-ut-ee> <http://www.w3.org/1999/02/22-rdf-syntax-ns -

type> <http://www.w3.org/2006/vcard/ns-Work> .”

The above triples use the VCard80 ontologies.

4.1.2 PDS	Graph	API	Service	
This is the main User Data Graph API service that responds to every request to store and

retrieve user data. Whenever the service receives data insertion or update requests, it

communicates with Virtuoso server via a HTTP SPARQL endpoint to store the triples in

their respective graphs. If the request is to get user data, it must pass through the Tyk API

gateway for user authorization. As a proof of concept implementation, the PDS service

currently, only add and update user data via PDS application. In the future, data update from

external services will be implemented.

80 https://www.w3.org/TR/vcard-rdf/

 32

4.1.3 Virtuoso	Datastore	
This is the datastore that house individual user graph. When a user setup their PDS, a user

account is created on the Virtuoso server for the user. This account is used to create the user

graphs with predefined permissions on those graphs. These permissions are granted to only

that user on those graphs.

The steps to set these permissions are given below, for a sample user:

1. Make sure no user on the system has permission on any graph
 DB.DBA.RDF_DEFAULT_USER_PERMS_SET ('nobody', 0);

2. Create user - DB.DBA.USER_CREATE ('username', ‘password’);

3. Grant Sparql update to the user - GRANT SPARQL_UPDATE TO "username";

4. Set permission to none - DB.DBA.RDF_DEFAULT_USER_PERMS_SET (‘username’,

0);

5. Create user graph - CREATE GRAPH <https://graph.ir.ee/users/1/emails>

6. Set read access for the user on the created graph
 DB.DBA.RDF_GRAPH_USER_PERMS_SET(‘https://graph.ir.ee/users/username/emails’,

‘username’,1);

7. Set write access for the user
DB.DBA.RDF_GRAPH_USER_PERMS_SET(‘https://graph.ir.ee/users/username/emails’,‘username’

, 3);

The following are the set of graphs identified, as related to inforegister.ee users’ data, which

is our users base for validating this concept.

§ https://graph.ir.ee/users/<user_id>/persons

§ https://graph.ir.ee/users/<user_id>/accounts

§ https://graph.ir.ee/users/<user_id>/telephones

§ https://graph.ir.ee/users/<user_id>/emails

§ https://graph.ir.ee/users/<user_id>/addresses

§ https://graph.ir.ee/users/<user_id>/facebook

§ https://graph.ir.ee/users/<user_id>/twitter

§ https://graph.ir.ee/users/<user_id>/linkedln

§ https://graph.ir.ee/users/<user_id>/public-contracts

§ https://graph.ir.ee/users/<user_id>/preferences

§ https://graph.ir.ee/users/<user_id>/monitoring-organizations

 33

Sample SPARQL query and result
SPARQL SELECT * WHERE {GRAPH <https://graph.ir.ee/users/1/emails> {?s ?p ?o }};

Figure 8: Sample SPARQL query result on the user emails graph

Figure 9: Sample SPARQL query result on the user addresses graph

 34

Figure 10: Sample SPARQL query result on the user telephones graph

Figure 11: Sample SPARQL query result on the user public-contracts graph

Figure 12: Sample SPARQL query result on the user accounts graph

 35

4.2 PDS	User	Access	Control		
In this section, we describe in details the user access control mechanism for granting third-

party access to private data. In our attempt to implement a user-centric authentication

mechanism, one that is easy to use and allows users to share their data securely; we have

thought of various options. The idea is to follow the popular oauth2 three-legged

authorization flow described in the previous section. When a PDS user is using a third-party

application – a consumer in the oauth2 context, that requires the user data, the user is

redirected to their PDS application to grant access if the user is not logged-in to PDS, they

are required to logged-in with their Appscale account credentials. Once logged-in, the user is

prompted to grant access to the requesting application. If granted the user has just authorized

the external application to access their private data until the access is revoked. We discuss

next the various implementation options.

4.2.1 Tyk	OAuth	2.0	And	Django	OAuth	Toolkit	Access	Control	
In our search for another alternative to virtuoso OAuth for controlling access to user data, we

considered first the Django OAuth Toolkit81 – a Django pluggable app that can serve as an

OAuth provider. It makes use of the popular python OAuthLib82 to ensure a RFC-

compliant83 and provides an end-to-end OAuth2 authorization flow. As good as this seems to

serve our use case, it lacks other key features that we would like to provide e.g. API

management dashboard, Developer portal, Usage metrics etc. And this is where Tyk comes

in.

As we described earlier, Tyk is an open-source API management platform capable of

providing OAuth2 authorization, with a well-defined set of APIs to interact with the Tyk API

gateway.

Table 4 describes the related endpoints.

81 https://django-oauth-toolkit.readthedocs.org/en/latest/index.html
82 http://oauthlib.readthedocs.org/en/latest/installation.html

83 http://tools.ietf.org/html/rfc6749

 36

Endpoints Descriptions

1 /clients/create It handles client (consumer) creation

2 /oauth/authorize/ It handles clients authorization request, which prompts

resource owner authorization

3 /tyk/oauth/authorize-client/

Handles Tyk clients authorization and respond with an

authorization code

4 /oauth/token Handles client request for access token using the

authorization code granted earlier.

Table 4: Tyk OAuth 2.0 related endpoints

In order to have a full integration between Tyk and the PDS application, we need a

mechanism for binding client-token pair generated by Tyk to our users’ identity. With this in

place, we know which user has granted access to which external application, so that each

user can view the activities of those applications on their dashboard and can as well revoke

the access when the need arises.

 37

4.2.2 PDS	OAuth	2.0	Authorization	Flow	

Figure 13: Sequence diagram for the PDS OAuth 2.0 authorization flow

 sequence diagram shows a detailed flow of the authorization process in our implementation,

which is not any different from how others have implemented OAuth 2.0 authorization in

their services.

In ‘Get Authorization’ step, the key_rules parameter gives us the ability to achieve a fine-

grained access control with Tyk.

 38

Figure 14: Sample access_rights in the key_rules

Figure 14 shows access_rights in key_rules containing allowed_urls parameter which tells

Tyk gateway that the token generated with this key_rules should be allowed to access only

the given endpoints when a GET request is made. Otherwise, access is denied with error

message:
{
 "error": "Access to this resource has been disallowed"
}

It ensures that users have a granular access control to their data. This is the mechanism we

used to achieve one of the 7 privacy by design principles ‘Privacy as the Default Setting’

[43]. This ensures that user data are automatically protected since only data needed by a

specific application is granted access to, which is a kind of endpoints filtering based on

requesting application privileges. A similar approach in [44], where the researchers

embedded privacy into the use of a personal data vault on mobile devices and provides a set

of filters controls that minimizes the movement of data from the vault to third party

applications. According to [12] “This fulfils Privacy requirement of data minimization at

every stage of the information lifecycle, and if personal information is not needed, it should

never be collected in the first place”.

 39

Figure 15: Token revoke sequence diagram

 shows a flow of how a user can revoke access from a client that was granted access to

earlier.

 40

4.3 Graph	API	Documentation	

“A Graph API is a RESTful, user-centric, hypermedia API that organizes web resources

under a unified meta-model of Objects, Aggregations of objects and connections towards

them which are created by users. It is based on a common dictionary and it includes a

minimum set of properties in order to reduce time and cost of connection and integration

with other APIs.” [22]

This definition is the most comprehensive definition of the Graph API that we have come

across. The PDS Graph API documentation with detailed sample requests and responses can

be found in the Appendix I.

 41

5. Proof	Of	Concept	Implementation	With	Inforegister.ee	

In order to validate this implementation, we have migrated inforegister.ee user data to the

personal data storage. The aim of this task was to make personal user data at inforegister.ee,

which has been collected and is actively maintained via various sources, such as Facebook,

LinkedIn, Twitter etc, available to other applications such that they only need to implement a

single interface for consumption of personal data. The task represents a case study, which

demonstrates the challenges faced while migrating the users from the legacy application to

the AppScale platform which has an identity management component.

Migration to AppScale platform presents the following scenarios:

Scenario 1: No previous users to be migrated - This is a situation whereby there is no

previous users to be migrated to AppScale platform, users will create fresh accounts.

Scenario 2: There are users to be migrated – In this case, there are existing users on the

previous platform which needs to be migrated to AppScale platform.

Inforegister.ee falls into the second scenario. Hence, there is a need to create an account for

each user on AppScale from the previous user base, on behalf of the users. The migration

task includes the following plans:

§ Import users from CSV file containing users email using the batch user import

command in AppScale-tool84.

§ The tool creates account for each user and generates random password

§ Users will receive email to reset password on AppScale

Although, AppScale has a datastore which can be used to store all user data and application

data from the previous inforegister.ee platform. But, the implication of this is, redesigning

the entire Inforegister schema to fit into AppScale Datastore. We see that this is not a cost

effective approach for a proof of concept implementation, with inforegister.ee schema

having over 300 tables.

With that in mind, there is a need to create a reference table to map each newly created

AppScale user to their previous data.

84 https://github.com/AppScale/appscale-tools

 42

Figure 16: ER-diagram showing mapping of AppScale users with their data on
inforegister.ee schema

In ER-diagram, the table appscale_user shows the AppScale user entity. Table

inforeg_db.jos_users is the user entity for the current user platform with another table

showing the relationship. There are much more tables in the current Inforegister schema that

has relationship with the inforeg_db.jos_users table. This is the reason for the table in the

middle (iupds_db.iupdsmanager_profile) which links the appscale_user to the rest of their

data. The relationship table is application specific, that is any application that wants to

migrate to AppScale platform must find a way to manage this relationship.

NOTE: The batch user import command is not currently available in AppScale-tools. This

is a functionality we have extended in AppScale and we intend to propose this to the

AppScale team as part of our contribution to the AppScale Open-Source.

 43

6. Performance	Evaluation	

We carried out a couple of tests to see how the system will perform under different

workloads and the results are shown below.

6.1 Tyk’s	Average	Request	Response	Time	As	Tokens	and	Requests	
Increase	

First, we measured how Tyk API gateway performs under load with respect to a number of

keys in the system. In these use case with full OAuth 2.0 flow, the gateway performs the

following during each request:

§ It validates the client making the request

§ It validates the access token in the incoming request against access control

§ It checks if the token has not exceeded the quota

§ It checks if the request is within limit rate (e.g. 1000 request/sec)

§ It records analytics

§ If the above validations are fine, it then proxy the request to the API and returns the

response to the client

The Tyk Server running on a local virtual machine has the following specifications:

§ 2 CPUs
§ 2 GB RAM
§ Ubuntu 64 bit

The table below shows different scenarios as the number of keys increases, as hit rates rise

and the average response time for each case.

Number of Tokens Total Request(10 sec) Average Response Time
100000 500 0.05477332
200000 1000 0.265296508
300000 1500 0.265692879
400000 2000 1.012392513
500000 2500 0.513143449
600000 3000 1.351999548
700000 3500 1.384723209

1000000 4000 1.369384492

Table 5: Tyk performance measure test data

 44

Figure 17: Chart showing Tyk average request response time as number of token increases

Figure 18: Chart showing Tyk average response time as number of request increases

We wanted to see how request response time is impacted when the number of tokens in the

system increases and also, when the number of requests within a 10 seconds frame increases.

As we can see above, the average response time increases as the number of tokens increases

and also, when the number of request increases. Interestingly, from about 3000 requests and

above the response time becomes steady. Since our main focus is not to test the overall Tyk

performance, a detailed performance test by Tyk’s team can be found here [45].

 45

6.2 AppScale	Server	CPU	Usage	with	Response	Time	During	User	Data	
Import	

Here we want to compare how data import response time is impacted by system CPU usage,

during import of existing user data into AppScale platform. This measure is important in

order to understand resource utilization during data import and be readily prepare when

doing such.

Number of Requests Average Response Time CPU Usage %

1000 0.046546682 43
2000 0.046997616 73.25
3000 0.051837256 83.95
4000 0.058330669 104
5000 0.05808148 112.7
6000 0.063637054 112.7
7000 0.063122225 80.6
8000 0.066253425 80.6

Table 6: AppScale user import response time with CPU usage results

Figure 19: Chart showing CPU usage with response time during user data import

In the chart above, we see an increase in response time as user import rate increases, with

CPU usage also going up. It is also worth mentioning that during the import, AppScale

dashboard application takes a longer time to load. Hence, data import can impact user

accessibility to the system. And such operation is better done during the off-peak period.

 46

In addition, this test was carried out with AppScale’s default deployment configuration, i.e.

all components running on a single node. Better performance can be achieved by using a

more advanced deployment configuration to benefit from AppScale’s auto-scale capability.

 47

7. Conclusion	&	Future	work	

The thesis describes design and implementation of an application-agnostic personal storage.

The storage was implemented as a Graph API to allow sharing user data among applications

and is using the linked data principles to ensure data usability throughout various use cases.

In addition, as part of a proof of concept implementation we have enhanced AppScale

platform with a Personal Data System (PDS) component, with data management and

dashboard functionalities. The PDS component allows users to manage their data and control

access at the granularity level of data classes. This fine-grained access control was achieved

by integrating the PDS and its Graph API with the Tyk API Gateway in order to have a full

OAuth 2.0 authorization support. The current implementation allows users to store different

classes of their personal data at the PDS. Users can also grant access to their data to third-

party applications and revoke such access at any time.

In the future, we would like to extend PDS functionalities to allow data update from external

services. For example, if a user wants to allow an application to store its bank transactions,

social media data or health related data on the PDS, this will be possible via an APIs as well.

Finally, as part of our effort to incorporate privacy by design in our implementation, we will

look more deeply into privacy issues surrounding personal data storage services.

The implementation source code is available on Github at the following addresses:

PDS Management System - https://github.com/Sunnepah/iupds-appscale

PDS Graph API - https://github.com/Sunnepah/pdsservice

PDS Client - https://github.com/Sunnepah/pds-client-app

 48

8. References	

[1] Q. Hassan, "Demystifying Cloud Computing," The Journal of Defense Software

Engineering, p. 16–21., Jan/Feb 2011.
[2] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," 2011.
[3] E. Olden, "Architecting a Cloud-Scale Identity Fabric," Computer, vol. 44, no. No.03,

pp. 52-59, 2011.
[4] (. Chandra Krintz, "The AppScale Cloud Platform - Enabling Portable, Scalable Web

Application Deployment.," 2013. [Online]. Available:
http://www.cs.ucsb.edu/~ckrintz/papers/IC2013.pdf . [Accessed 2015].

[5] D. N. T. W. C. L. M. W. C. (. dos Santos, "Privacy-preserving Identity Federations in
the Cloud - A Proof of Concept," Int. J. Security and Networks, vol. 9, no. 1, 2014.

[6] G. (. Goth, "Privacy gets a new round of prominence," IEEE Internet Computing, vol.
15, pp. 13 - 15, 2011.

[7] C. M. a. I. W. W. Kuan Hon, "The problem of ‘personal data’ in cloud computing: what
information is regulated? - The cloud of unknowing," International Data Privacy Law,
vol. 1, no. 4, pp. 211-228, 1 4 2011.

[8] D. R. (. 2. Ann Cavoukian, "Big Privacy: Bridging Big Data and the Personal Data
Ecosystem through Privacy by Design," December 2013. [Online]. Available:
https://www.ipc.on.ca/site_documents/PbDBook-From-Rhetoric-to-Reality-ch3.pdf.
[Accessed 21 12 2015].

[9] B. A Digital Single Market for Europe: Commission sets out 16 initiatives to make it
happen, "European Commission," 16 May 2015. [Online]. Available:
http://europa.eu/rapid/press-release_IP-15-4919_en.htm.

[10] A. Systems, "Appscale," [Online]. Available: https://github.com/AppScale/appscale.
[Accessed 12 10 2015].

[11] "Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Personal_Data_Service.
[Accessed 24 11 2015].

[12] P. Ann Cavoukian, Privacy by Design and the Emerging Personal Data Ecosystem,
Ontario, 2012.

[13] Personal.com, "Personal Docs," [Online]. Available:
http://docs.personal.com/index.html. [Accessed 27 12 2015].

[14] IDHOLE, "IDHOLE," [Online]. Available: https://www.idhole.com/. [Accessed 11 12
2015].

[15] LockerProject, [Online]. Available: http://lockerproject.org/. [Accessed 15 12 2015].
[16] Singly, "Singly," [Online]. Available: https://github.com/Singly/hallway. [Accessed 03

05 2016].
[17] S. S. W. A. (. P. Yves-Alexandre de Montjoye, "On the Trusted Use of Large-Scale

Personal".
[18] Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United

States of America , "OpenPDS Personal Data with Privacy," [Online]. Available:
http://openpds.media.mit.edu. [Accessed 23 12 2015].

[19] IETF OAuth WG, "OAuth 2.0 protocol," [Online]. Available: http://oauth.net/.
[Accessed 17 03 2016].

[20] W. I. o. T. W. I. P. M. Dónal McCarthy Telecommun. Software & Sytems Group, J.

 49

Hange, K. Doyle, E. Robson, D. Conway, S. Ivanov, L. Radziwonowicz, R. Kleinfeld,
T. Michalareas, T. Kastrinogiannis, N. Stasinos and F. Lampathaki, " Personal
Cloudlets: Implementing a User-centric Datastore with Privacy Aware Access Control
for Cloud-Based Data Platforms," Technical and Legal aspects of data Privacy and
Security, 2015 IEEE/ACM 1st International Workshop on, pp. 38-43, 18 05 2015.

[21] P. M. J. H. K. D. E. R. D. C. S. I. Ł. R. R. K. T. M. T. K. N. S. F. L. Dónal McCarthy,
"Privacy Aware Access Control for Cloud-Based Data Platforms," in Cyber Security
and Privacy, vol. 530, Brussels, Springer International Publishing, 2015, pp. pp 26-37.

[22] G. M. P. Iosif Alvertis Decision Support Systems Laboratory National Technical
University of Athens, F. Lampathaki, D. Askounis and T. Kastrinogiannis, "A
community-based, Graph API framework to integrate and orchestrate cloud-based
services," IEEE/ACS 11th International Conference on Computer Systems and
Applications (AICCSA), pp. 485 - 492, 10-13 11 2014.

[23] S. O. (. M. P. Rodrigo Illera (LOG), "Security and Privacy Considerations for Cloud-
based Services and Cloudlets," 31 01 2013. [Online]. Available: http://www.openi-
ict.eu/wp-content/uploads/2013/11/OPENi_D2.3.pdf. [Accessed 21 04 2016].

[24] MyDex, "The Case for Personal Information Empowerment: The rise of the personal
data store," [Online]. Available: https://mydex.org/wp-content/uploads/2010/09/The-
Case-for-Personal-Information-Empowerment-The-rise-of-the-personal-data-store-A-
Mydex-White-paper-September-2010-Final-web.pdf. [Accessed 03 04 2016].

[25] MyDex, "Mydex Developer Documentation," [Online]. Available:
https://dev.mydex.org/fyi/open-source.html. [Accessed 12 04 2016].

[26] MyDex, "Members Account," [Online]. Available: https://pds.mydex.org/user/register.
[Accessed 04 05 2016].

[27] C. Bizer, T. Heath and T. Berners-Lee, "Linked Data - The Story So Far," International
Journal on Semantic Web and Information Systems (IJSWIS).

[28] W3C, "W3C Semantic Web Activity," [Online]. Available:
https://www.w3.org/2001/sw/. [Accessed 04 05 2016].

[29] "Linked Data FAQ," [Online]. Available:
http://structureddynamics.com/linked_data.html#question_14. [Accessed 04 05 2016].

[30] W3C, "Resource Description Framework (RDF)," [Online]. Available:
https://www.w3.org/RDF/. [Accessed 04 05 2016].

[31] W. H. T. B.-L. N. Shadbolt, "The Semantic Web Revisited.," [Online]. Available:
http://eprints.soton.ac.uk/262614/1/Semantic_Web_Revisted.pdf. [Accessed 04 05
2016].

[32] K. Nikolaos and S. Dimitrios-Emmanuel, Materializing the Web of Linked Data,
Athens: Springer International Publishing, 2015.

[33] SIOC-Project, [Online]. Available: http://www.sioc-project.org/. [Accessed 20 04
2016].

[34] F. Sergio, G. Frédérick and I. Kingsley, "SIOC Ontology: Applications and
Implementation Status," 15 05 2009. [Online]. Available:
http://rdfs.org/sioc/applications/. [Accessed 18 05 2016].

[35] Openlink, "virtuoso-opensource," [Online]. Available:
https://github.com/openlink/virtuoso-opensource. [Accessed 16 12 2015].

[36] Virtuoso Open Link, "Virtuoso Universal Server," [Online]. Available:
http://virtuoso.openlinksw.com/. [Accessed 23 12 2015].

[37] AppScale Systems, "How AppScale implements the Google App Engine APIs,"

 50

[Online]. Available: https://github.com/AppScale/appscale/wiki/How-AppScale-
implements-the-Google-App-Engine-APIs. [Accessed 05 05 2016].

[38] C. B. S. P. C. K. N. M. S. S. R. W. Navraj Chohan, "AppScale: Scalable and Open
AppEngine Application Development and Deployment".

[39] Internet Engineering Task Force (IETF), "The OAuth 2.0 Authorization Framework,"
[Online]. Available: https://tools.ietf.org/html/rfc6749. [Accessed 05 05 2016].

[40] TykTechnologies, [Online]. Available: https://tyk.io/. [Accessed 02 03 2016].
[41] TykTechnologies, "Tyk API Gateway," [Online]. Available:

https://github.com/TykTechnologies/tyk. [Accessed 12 03 2016].
[42] A. Narayanan, S. Barocas, V. Toubiana, H. Nissenbaum and D. Boneh, "A Critical

Look at Decentralized Personal Data Architectures," February 2012. [Online].
Available: http://randomwalker.info/publications/critical-look-at-decentralization-
v1.pdf. [Accessed 18 04 2016].

[43] P. Ann Cavoukian, "Privacy by Design - The 7 Foundational Principles," [Online].
Available: https://www.ipc.on.ca/images/resources/7foundationalprinciples.pdf.
[Accessed 27 04 2016].

[44] K. J. B. D. E. R. G. M. H. J. K. a. M. M. Shilton, "Designing the Personal Data Stream:
Enabling Participatory Privacy in Mobile Personal Sensing.," 2009. [Online]. Available:
http://ssrn.com/abstract=1999839. [Accessed 28 04 2016].

[45] Tyk Technologies, "Tyk API Gateway Benchmarks," [Online]. Available:
https://tyk.io/tyk-api-gateway-benchmarks/. [Accessed 06 05 2016].

[46] K. M. D. Doyle, "OPENi White Paper: An End Users Perspective: Digital Identity
Putting the Genie Back in the Bottle," 09 2014. [Online]. Available: http://www.openi-
ict.eu/wp-content/uploads/2014/07/openi_whitepaper.pdf. [Accessed 28 04 2016].

[47] E. R. (. G. M. (. D. C. (. J. H. (. Dónal McCarthy (WIT), "OPENi Cloudlet Framework
Design Document," 23 09 2014. [Online]. Available: http://www.openi-ict.eu/wp-
content/uploads/2014/10/OPENi_D3.5.pdf. [Accessed 21 04 2016].

[48] C. Krintz, "The AppScale Cloud Platform Enabling Portable, Scalable Web Application
Deployment," 03 05 2013.

 51

Appendices	

I. API	Documentation	

The	documentation	was	prepared	using	Apiary	and	can	be	found	here	
http://docs.iupds.apiary.io/#.	The	file	can	also	be	found	in	the	attached	
archive	file.	

II. License	
Non-exclusive license to reproduce thesis

I, Sunday Ayanbode Ayandokun

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until the expiry of the term of
validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until the expiry of the term of validity of
the copyright,

Application-agnostic Personal Storage for Linked Data,

 supervised by Peep Küngas, PhD,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016.

