
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Andres Viikmaa

Web Data Extraction For Content

Aggregation From E-Commerce Websites

Master's Thesis (30 ECTS)

Supervisor: Timo Petmanson, MSc

Tartu 2016

Veebiandmete eraldamine tooteinfo agregeerimiseks e-poodidest

Lühikokkuvõte: Internetist on saanud piiramatu andmeallikas. Läbi otsingumootorite
on see andmehulk tehtud kättesaadavaks igapäevasele interneti kasutajale. Sellele vaata-
mata on seal ikka informatsiooni, mis pole lihtsasti kättesaadav olemasolevateotsingumoo-
toritega. See tekitab jätkuvalt vajadust ehitada aina uusi otsingumootoreid, mis esitavad
informatsiooni uuel kujul, paremini kui seda on varem tehtud. Selleks, et esitada andmeid
sellisel kujul, et neist tekiks lisaväärtus tuleb nad kõigepealt kokku koguda ning seejärel
töödelda ja analüüsida. Antud magistritöö uurib andmete kogumise faasi selles protsessis.
Esitletakse modernset andmete eraldamise süsteemi ZedBot, mis võimaldab veebilehte-
del esinevad pooleldi struktureeritud andmed teisendada kõrge täpsusega struktureeritud
kujule. Loodud süsteem täidab enamikku nõudeid, mida peab tänapäevane andmeeraldus
süsteem täitma, milleks on: platvormist sõltumatus, võimas reeglite kirjelduse süsteem,
automaatne reeglite genereerimise süsteem ja lihtsasti kasutatav kasutajaliides andme-
te annoteerimiseks. Eriliselt disainitud otsi-robot võimaldab andmete eraldamist kogu
veebilehelt ilma inimese sekkumiseta. Töös näidatakse, et esitletud programm on sobilik
andmete eraldamiseks väga suure täpsusega suurelt hulgalt veebilehtedelt ning tööriista
poolt loodud andmestiku saab kasutada tooteinfo agregeerimiseks ning uue lisandväärtuse
loomiseks.

Võtmesõnad: andmekaeve, veebiandmete eraldamine, veebipoed, tootekataloogid

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhti-
misteooria)

Web Data Extraction For Content Aggregation From E-Commerce
Websites

Abstract: World Wide Web has become an unlimited source of data. Search engines
have made this information available to every day Internet user. There is still information
available that is not easily accessible through existing search engines, so there remains
the need to create new search engines that would present information better than before.
In order to present data in a way that gives extra value, it must be collected, analysed
and transformed. This master thesis focuses on data collection part. Modern information
extraction system ZedBot is presented, that allows extraction of highly structured data
form semi structured web pages. It complies with majority of requirements set for mod-
ern data extraction system: it is platform independent, it has powerful semi automatic
wrapper generation system and has easy to use user interface for annotating structured
data. Specially designed web crawler allows to extraction to be performed on whole web
site level without human interaction. We show that presented tool is suitable for extrac-
tion highly accurate data from large number of websites and can be used as a data source
for product aggregation system to create new added value.

Keywords: Data mining, Web Scraping, Web Data Extraction, Focused Crawler, Wrap-

2

per generation, E-Commerce, Product Catalogs

CERCS: P170 Computer science, numerical analysis, systems, control

3

Contents

1 Introduction 5

2 Overview of web data extraction methods 6
2.1 Semantic Web . 6
2.2 Web data extraction . 7

2.2.1 Wrappers . 8
2.2.2 Expressing extraction rules . 8
2.2.3 Semi-automatic tools . 9
2.2.4 Wrapper induction . 10
2.2.5 Automatic Wrapper Generation 11

2.3 Web crawling . 12
2.3.1 Focused crawlers . 12

3 ZedBot information extraction system 14
3.1 System architecture . 14
3.2 Information extraction tool . 16

3.2.1 Schema de�nition . 17
3.2.2 Semantic Web and microdata . 17

3.3 Rule generation . 18
3.3.1 Simple rules . 18
3.3.2 Data re�nement rules . 18
3.3.3 Structure transformation rules . 20
3.3.4 Executing rules . 20

3.4 Crawler . 20
3.4.1 Link extraction . 22

4 Results and discussion 23
4.0.1 Crawler Performance . 25
4.0.2 Extracted dataset . 25
4.0.3 Integration with product search engine 28

5 Conclusions and future work 29

4

1 Introduction

In today's modern world people are used to �nd information on-line. Search engines have
become axiomatic tools for every computer user, they are the entrance to the Internet.
Most eveyday internet searches are done using search engines such as Google, Bing,
Baiduu and others. These universal search engines were designed to index entire Web as
textual data. Over the years universal search engines have become better on delivering
accurate search results to users, but the results are not presented in easy manner and are
not organized in comparable form. Therefore usually the method from old days - opening
search results in new browser tab/window or bookmarking search results - is needed for
further review of search results.

This has lead to creation of vertical search engines that focus only on speci�c topic
(consumer goods, books, �ight tickets, real estate ads, scienti�c articles, etc.). Most well
know are SkyScanner1 that allows you search plane tickets and Google Scholar2. But also
product price aggregation sites like PriceGrabber3 or Google Shopping4are getting more
popular. Consumer product search engines (aggregators) are designed to present search
results in e-shop like manner, providing product name with image and usually lowest
price. Each search result links to detail product page with its full speci�cation, reviews
and list of point of sales (POS). POS can be either an on-line shop or physical store. For
each POS the price and stock information is displayed and "Buy" button that directs
user to web shop. Majority of these aggregators focus on price comparison ordering shops
based on price. This allows users to �nd cheapest locations where to buy the item very
easily.

In order to build such system, detail product information must be gathered and sys-
tematized. One way to get this information is to ask manufactures or wholesale com-
panies. Contacting and asking each company for data is time consuming and updating
these datasets is hard to maintain, if it is not done by the companies themselves. But
usually no one want additional workload and expense from their side. The second option
is to buy this data from commercial service provider such as IceCat5. The problem with
this approach is a) it's expensive for startup companies, b) dataset is usually limited to
speci�c category (ex. Consumer Electronics) c) only covers few languages. Because of
these limitations the easiest way to get data for start-up company or individual is to use
web scraping technologies to gather publicly aviable data from Word Wide Web. Coping
data form other sites might not be seen as absolutely legal but copyright does not pro-
tect factual content and product description can be considered as factual data. In detail
analysis of legal aspects can be found in [Vel13], [TVE14] and [O'R06].

This master thesis presents modern platform for medium scale structured data ex-
traction from semi structured web pages called ZedBot. First part gives overview about
existing work in the area of Web data mining and is divided into two separate topics:
web data extraction and web crawling. Next chapter describes the implementation of
built system. This is followed with evaluation of the system together with discussion and
�nally on last chapter with conclusions and future work ideas are presented.

1http://www.skyscanner.net
2http://scholar.google.com
3http://www.pricegrabber.com/
4http://www.google.com/shopping
5http://www.icecat.biz

5

2 Overview of web data extraction methods

Web search engines have been present more that two decades and have evolved from sim-
ple full text search engines into complex systems that analyse web page content together
with links that point into them. But still even most modern web search engine has three
main components[YG14]:

• Web crawling and data acquisition � Downloads pages for o�ine use and
extracting link and text data,

• Data storage and o�ine processing � Data cleanup and aggregation and reverse
search index creation,

• Query processing � Querying search index and ranking results based of search
terms.

As mentioned in introduction, this work will focus on web content extraction, there-
fore only web crawling and data acquisition is covered in this section. Other parts (data
aggregation, product classi�cation task, duplicate matching) required to build fully func-
tional product search engine are not discussed as these are implenented as separate system
and not described in this thesis. In next subsections we look content extraction and web
crawling in more detail.

2.1 Semantic Web

Semantic web was designed to make web conent machine readable and by that allowing
information shared beyond originated website. Semantic web allows to de�ne not only
relations inside single web page but also link di�erent websites together in a meaningful
way and by that creating internet of knowlege. Embedding semantic information to web
pages can be done in di�erent ways. Most popular is microdata which is shown in Figure
1. Other ways to include semantic meaning are RDFa (Resource Description Framework
in Attributes) and JSON-LD (JSON Linked Data) embeddings.

<p>Rose Tyler was sponsored by Sarah Jane
Smith in the membership proce s s .</p>

<p itemscope itemprop="Person" itemtype="http :// schema . org /Person">
Rose Tyler was sponsored by

Sarah Jane Smith
 in the membership proce s s .

</p>

Figure 1: HTML markup without microdata (top) and with microdata (bottom).

Although Schema.org is becoming de facto standard to de�ne schemas for semantic
web it is not necessary to use their schema. But consolidating and uni�ng schemas makes
their usage easier and allows spreading. For commercial products GoodRealations6

schema was created by Martin Hepp and is now partially merged into Schema.org. When

6http://www.heppnetz.de/ontologies/goodrelations/v1

6

de�ning your own schema it is advisable to use https://purl.org as vocabulary identi-
�er as it will stay persistent over time.

Together with linked data, semantic elements were introduced in HTML5 standard.
These are elements like <article>, <figure>, <header>, <nav> and others. These
were designed to give meaning to website structure and replace HTML syntax like <div
class="header">.

As semantic web is getting more widespread (18% of domains crawled by Common
Crawl used semantic notation) and with growth of di�erent API-s it is becoming question-
able, to we need data extraction from fuzzy semi structured webpages and instead focus
on structured data extraction and its meaningful analysis [WPC+15]. But unfortunately,
at current time (2016) we still can't live without extracting data from non semantic web
pages. Even when semantic markup is used, it is often used partially and describes only
part of data made available. Also syntactical mistakes are common.

2.2 Web data extraction

Web pages contain messy data. Modern web page does not only contain main textual
and image content, it has also additional content added as header, footer, side area block.
These blocks contain navigation links and some times advertisements. Also web page is
decorated with markup which only purpose is to improve visual appearance. Vast major-
ity of web content is generated automatically from relational databases. These include
Content Management Systems like Wordpress, web forums, online shops. This means
that content in its original form is structured. This structured information is embedded
into HTML template and decorated with visual information. Figure 2 shows underlying
database schema (left) of popular open source e-commerce solution and timefy.com on-
line store. In order to retrieve original data, the template must be removed or data must

Figure 2: Prestashop database schema and sample online store.

be extracted from it. This is done by wrapper procedure.

7

2.2.1 Wrappers

A wrapper is a procedure that implements a family of algorithms, that �nds the infor-
mation that user needs, extracts this from an unstructured source and transform them
into structured data.

Over the last decade large amount of research and tools have been created that help
with web mining task. Multiple studies have been performed to compare existing solu-
tions, these include [KB00], [LRNdST02], [KT02], [CKGS06], [PPPD08] and more recent
[SC13], [FDMFB14], [WPC+15]. Also book from Bing Liu gives in detail overview about
web mining including web data extraction[Liu11]. Together with web content mining
some of these surveys give overview also about other parts of web mining, such as web
structure mining and web usage mining.

Data extraction methods can be divided into three segments depending on the level
of automation[Liu11]:

• Manual approach: Human observers web page and its source code and writes
down rules or program code extract data. Also tools that make the process simpler
for programmers, such as pattern speci�cation languages and user interfaces are
placed to this segment.

• Wrapper induction: In this approach supervised learning where extraction rules
are learned from a manually labeled data records.

• Automatic extraction: This uses unsupervised learning to �nd repetitive pat-
terns on single or multiple pages. As this is fully automatic, then it can be applied
in web scale.

Although it is generally accepted, that manual approach is not scalable to large number
of sites, it can be viewed as labeling or annotation task for Wrapper induction or to
generate test dataset for automatic extraction validation as it is sill gives most accurate
results. And with visual assistance tools this process can be signi�cantly speed up when
compared to manually creating extraction rules. This approach also works well, if we
have highly structured data, meaning that we can construct wrapper by only observing
single web page per site.

2.2.2 Expressing extraction rules

Web pages can be treated as just as stream of characters, structured data where �elds
are separated using tokens (HTML tags) or as Document Object Model (DOM) that
represents HTML page in tree structure. When using HTML page as text document we
can use regular expressions (regex) or other standard text extraction methods to extract
data we need. For example extracting article headline we can use following rules (Figure
3). When we look web page as DOM tree, then we can use XPath to represent the
extraction rules (see Figure 3). Using XPath makes rules simple but we also loose ability
to extract partial content inside HTML element.

When creating extraction rules we must ensure that they are general enough to extract
data from all pages and speci�c to only extract data that this rule is designed for. For
example when HTML markup for single page contains multiple H1 tags then we must
make the rule less general to pinpoint the �eld with higher precision.

Several programming languages or language extensions has made to make manual
approach faster for programmer. These include Elog [BFG01b] (used in Lixto[BFG01a]),

8

Regex : match ('/<H1>(.+)</H1>/ ')
XPath : eva lu t e ('H1 ')
S e l e c t o r : que rySe l e c to r ('H1 ')
Token based : f i nd ("<h1>") . copy_unti l ("</h1>")
Microdata API : getItems ("http :// schema . org /Product") [0] . p r op e r t i e s ["

name"] . getValues ()

Figure 3: Rules for extracting news article headline.

Regex : /<div c l a s s=" a r t i c l e T i t l e ">\ s ∗<H1 itemprop=" head l ine ">(.+)</H1>/
XPath : div [@class=" a r t i c l e T i t l e "] > H1 [itemprop=" head l ine "]

Figure 4: More precise rules for extracting news article headline.

OXPath[SFG+11b], Ducky [KT14], Nexir[SWL+13]. Elog uses formal logic and predicates
to express extraction rules (5).

Figure 5: Elog Extraction Program for linked eBay pages [BFG01b].

OXPath extends XPath with visual features (For example, //span.price[style::color='red']
), allows the execution of user actions such as click, navigation through data paginated
pages and identi�cation of data for extraction. Figure 6. shows sample script written in
OXPath language.

Although OXPath is very powerful it is not very declarative. Same functionality is
provided by more declarative language Ducky with addition to post process extracted
data with additional rules (see Figure 7).

Nexir rule language is similar to Ducky but is written down in XML instead of JSON
and XPath rules are used instead of DOM selectors.

2.2.3 Semi-automatic tools

Semi-automatic tools, such as XWRAP[LPH00], Lixto and others try to make wrapper
generation easier by providing user interface to construct re�ne rules. Early tools were
standalone applications with embedded browser window shown side-by-side with web
page source code view and separate panel for rule de�nition (8.a and 8.b).

As Web browsers have become more powerful such tools have been replaced with
browser add ons. This allows user to browse website as it would do normally in familiar

9

doc ("http ://www. kayak . com/ f l i g h t s ") // f i e l d () [5] / { $ o r i g i n }
/ f o l l ow i n g : : f i e l d () [@type=' text '] [1] / { $de s t i n a t i on }
/ f o l l ow i n g : : f i e l d () [l a s t ()] /{ c l i c k /}
// tbody [@class~=' f l i g h t r e s u l t '] [1] :<f l i g h t>/ t r [2]
[td [2] / a :<p r i c e=s t r i n g (.)>] [td [4] :<a i r l i n e=s t r i n g (.)>]

Figure 6: OXPath for �nding the cheapest �ights[SFG+11a].

" sc rap ing " : [{
" u r l " : " http ://www. f cba r c e l ona . com?/ f o o t b a l l / f i r s t team/ s t a f f " ,
" s e l e c t o r " : " u l . widget jugador player l i s t l i > a" ,
"data" : [{

" f i e l d " : "player_name"
} , {

" f i e l d " : " personal_page_url "
" a t t r " : " . . . " ,
" f i nd " : " . . . " ,
"remove" : [" . . . " , " . . . " , . . .] ,
" r ep l a c e " : [[" . . . " , " . . . "] , . . .]

}] ,
" next " : { . . . }

}]

Figure 7: An example of data extraction from a single page with Ducky[KFT14].

environment and at same time create wrapper for it (8.c). Both these (standalone appli-
cations and browser addons) reguire users to download and install something. To avoid
this some tools also provide bookmarklet7. This allows wrapper generation programm
to be embeded into webpage itself allowing to run it in webpage context (8.d)8. This
approach makes wrapper generation process extremely fast.

Over the time these tools are envolved form simple tools that allow programmer to
write rules more easily into semi-automated tools that generate wrappers while labeling
data.

2.2.4 Wrapper induction

Wrapper induction (or wrapper generation) solution was proposed by Kushmerick [Kus97]
in 1997 to overcome the problem that creating wrappers manually in that era was more
time consuming and error prone. Kushmeric de�nes wrapper induction as a system able
to learn data extraction rules from a set of labeled training examples. Labeling is in
most cases done manually by simply marking the data items in the training pages and
examples. The learned rules are then applied to extract target data from other pages with
the same mark-up encoding or the same template. Two key steps of Wrapper induction
step is rule generation and rule re�nement. In �rst step is to generate candidate rules for
each extracted �eld. In second step candidate rules are combined together and re�ned
such way that reusability is maximized and maitanence cost is minimized. This means
that �nal rules are just as precise as needed but no more. We can make analogy from

7A bookmarklet is a bookmark stored in a web browser that contains JavaScript commands that add
new features to the browser

8http://www.kimonolabs.com/

10

Figure 8: Evolution of Wrapper generation tools (a) Lixto, (b) XWRAP, (c) Webanno-
tator Firefox add-on and (d) Kimono Labs Web UI.

street navigation. Rule that consists only navigation steps like "go forward", "turn left",
"turn right" can guide user to destination very accurately but when new road is build or
closed then the whole rule becomes useless. But replacing some detail steps with more
general ones like "drive to train station" makes this rule more resistant to future changes.
So �nal rule might be "drive to train station", "turn left".

Wrapper Induction starts the life cycle of Wrapper program. During its liftime it
might need maitenance as underlying webpage might change its layout and stucture
and therefore break existing Wrappper. Kushmerick [Kus00] introduced the concept
of wrapper maintenance as the process of verifying the correct functioning of the data
extraction procedures [Kus00]. Wrapper maintenance has not been as well studied as
induction. but there are some results by Ferrara et al. to automatically repair wrappers
with re-induction[FB11].

When it comes to web scale data extraction then manually labeling examples and
therefore wrapper induction approaches become to time consuming and fully automatic
solutions are preferred.

2.2.5 Automatic Wrapper Generation

Much of current research e�ort is going into developing fully-automatic structured web
data extraction techniques. These can be divided into three categories: pattern search
based, visual signals aided, ontology based[GRI14].

11

• Pattern mining approaches try to generate extraction rules automatically by
mining patterns from one or more web pages. In recent years, many studies focused
on such approaches because such approaches can reduce human labor in the largest
extent. This is the oldest and most studied approach.

• Visual signal aided approaches view webpage as regions. Similar and repetitive
regions are clustered together and is then classi�ed as data record. [SC13]

• Ontology based systems extract data using domain (such as cars, books, real
estate, �ights and etc.) knowledge. If we are looking for cars we know it mus have
brand, model, color, type(hatchback or sedan), etc. Classi�cation task is performed
to identify these �elds in web page. This approach seems most promising but its
weakness are lack of domain knowledge and they are usually designed for single
language. One of the best examples is the DIADEM system [FGG+12]

In general, drawbacks of fully automated approaches are limited expressive power
and the large number of required example pages. In case of systems that do not rely on
labelled examples the main drawback is the low percentage of correctness of the extracted
data. [BEG+05]

2.3 Web crawling

World Wide Web (WWW) is huge collection of documents that are linked together using
hyperlinks. According to Internet Live Stats website9 there was over 900 million websites
online as of 2014.

Web crawling is usually done by taking set of pages (manually gathered) as starting
point, called seed pages. Seed pages are processed one at a time and new web pages are
discovered by extracting links on them. Web page addresses (URL-s) are stored in queue.
There are two types of crawlers depending of the data structure used behind the queue
[Liu11]. Breath-�rst crawlers use FIFO and Preferential (also called Focused) Crawlers
use priority queue. Breath-�rst crawlers tend to be biased because more popular web
pages are more links into them and these are crawled �rst. For vertical search engine we
do not want crawl the entire Web only the pages that follow our topic of interest. When
main focus is content extraction using wrappers (Described in section 2.2) then crawling
is usually limited to single site, but still same concerns apply. Minimizing the amount of
data downloaded and indexed is always a good idea.

2.3.1 Focused crawlers

When data extrction rules are create manually using some declarative language then
navigation rules are also written to guide crawler to target pages without spending much
time on irrelevant pages. For example navigation rules can be speci�ed with Ducky and
Nexir. With wrapper induction and fully automated approaches navigation information
is not available prior crawling and therefore heuristics that guide the crawler must be
gathered during crawl time.

Di�erent approaches to this problem have been studied and experimented. Common
idea behind them is to classify pages into two groups

9http://www.internetlivestats.com/total-number-of-websites/

12

1. Content pages - these are pages that are targeted for data extraction and must
be crawled.

2. Navigation pages - pages that might get crawled in order to reach target page.

Pages can classi�ed based on their content or structure, but also by analyzing how they
are linked together. Many authors [GLSRN00, DH99] have noticed that links on web
pages that are close to each (share same parent node) other link to topically similar
content. The same assumption holds for webpage stucture as is shown by Crescenzi
et al. [CMM05]. They propose an algorithm that builds site model by crawling Web
site. The structural similarity can be also determined by comparing the placements
of link collections. They observe and validate that links sharing the same layout and
presentation properties usually point to pages that are structurally similar. Same idea
is also employed by Lin et al. to hierarchically cluster Web pages[LYHL10]. Grigalis et
al. further extend these ideas. They have used XPaths of links as base for clustering and
show that classi�cation accuracy more than 90% is achievable[GC14].

Other approach use sampling and construct site map to determine optimal traversal
paths to content of interest. This is basics for iRobot crawler[CYL+08]. Probabilistic
models such as Hidden Markov Models(HMMs) and Conditional Random Fields(CRFs)
are also used and as demonstrated by Liu et al. in [LMJ04] to show good results in the
decrease of number of pages crawled.

13

3 ZedBot information extraction system

Following section gives detail overview of information data extraction system ZedBot that
enables extraction of structured data from semi stuctured webpages.

Baumgartner and Weninger have described key properties that modern data ex-
traction systems should have. We hereby quote the list of important points given in
works[BEG+05, WPC+15]:

• High expressive power. The system should enable the de�nition of complex,
structurally organized patterns from Web pages and translate the data (the so-
called pattern instances) into a corresponding hierarchically structured document.

• Robustness. Generated wrapper should remain functional to minor structural
changes in target web page (such as introduction of a new banner).

• Runtime E�ciency. The method should provide e�cient algorithms and the
system should implement these algorithms e�ciently such that the system becomes
usable in practice and is highly scalable.

• n-Dimensional Data Structures. In many cases it is not su�cient to generate
XML data comprising two levels, i.e. representing a relational table. In general,
wrapper output shall support arbitrarily nested XML output data.

• Semantic Web Interface. A good wrapper generation system shall be able to
populate ontologies with instance data and even extend an ontology based on con-
cepts extracted from the Web.

• Platform Independence. For integration into a mediation framework supported
platforms might be a decision criteria.

• User friendliness. It should allow a human wrapper designer to design, program,
or specify wrappers in a very short time.

• Good learnability. The learning e�ort for being able to understand the method or
use the system should be as small as possible. The method or system should be ac-
cessible to and usable by a non-technical content manager who is not a programmer
or a computer scientist.

• Good visual support. It should o�er the wrapper designer a GUI for specifying
wrappers. Ideally, the visual user interface allows a wrapper designer to work
directly on displayed sample source documents (e.g. on HTML Web pages) and
supports a purely visual way of de�ning extraction patterns.

• Ease of accessibility and installation. The system should be widely accessible
and should not require particular installation e�orts. Ideally, the system provides
an interface so that it uses a standard Web browser.

3.1 System architecture

ZedBot data extraction system was designed based on requirements presented above. The
system consists of two standalone components.

14

• Information extraction tool called ZedBot Scraper. It is the core component of
the system, it has following functionality:

� Page annotation - Allows user to click any text or image on web page and
de�ne meaning to it using prede�ned schema.

� Wrapper generation - Given selected text or image, extraction rule for it
is generated.

� Wrapper execution - Executes all extraction rules for given page and re-
turns structured JSON document that is consistent with schema used for an-
notation.

• Web Crawler called ZedBot Crawler, a component to automate extraction from
multiple web pages from single site. Its main functionality is do download pages
from target website, load each web page in embedded browser and attach scraper
into it so that data extraction is performed. It also extracts links from loaded web
page and saves them into queue for later downloading.

Title
http://lucidchart.com

Headless browser
(jsDom)

Website

Internet

Crawlers

zedBot
Data Extraction System

Wrapper
storage

Crawl
database

Document
database

Wrapper
execution

extracted links

extracted data

ZedBot Bookmark Human
expert

Wrapper
generation
execution

Annotation UI

navigate

download
 webpage

click bookmark

generate and

execure rules

load UI

load and
save

wrapper

load
wrapper

load url and inject wrapper

Build Time
or

Manual extraction

Crawl time

annotate web page

extracted data

extract links

Figure 9: System components and data �ow.

System components and interaction between them is shown in Figure 9. It shows two
operating modes:

• Manual mode, where human expert creates wrapper and tests it. Or can be also
used for manual execution of the wrapper.

15

• Crawl mode, this is automatic mode where wrapper is executed simultaneously
while crawling.

3.2 Information extraction tool

This tool is built as Bookmarklet10. This allows to start the tool inside browser while
browsing in target website.

Installation of the software is done by bookmarking on a link form ZedBot homepage.
User will then navigate to target web page from where he wishes to extract data and
click on saved bookmark.

Main user interface is displayed in Figure 10. Upon executing bookmarklet the tool
is injected into partner website and UI components are loaded. First step is to create

Bookmark

Dataset name
Endpoint URL

Selected text

Generated
selector

Selected text
with selection

Predefined chema

Correct annotation
for selected text

Already annotated
texts

Control
Panel

Figure 10: Annotation and wrapper generator UI.

new dataset. This allows the data that is extracted from di�erent websites to be placed
in same table. Together with dataset user speci�es the endpoint of database URL where
extracted data is saved. Any database that supports restful API can be used. When
dataset and endpoint is speci�ed, tool is initialized. Existing prede�ned schemas are
loaded in background.

Second step is to annotate data on target web page. User has option to select any
text and images on target web page and by right clicking he or she can select correct
annotation for it, again based on selected schema. After annotating a �eld the extraction

10A bookmarklet is a bookmark that contains JavaScript commands which add new features to the
browser.

16

rule (selector) is generated and added to wrapper. Generated rule is also displayed to
user (shown inside same annotation pop-up together with the text user selected). This
step is repeated until all data is annotated.

At any point user can click on <test selectors> button in Control Panel to view
extracted data (see Figure 11.a). If extracted result is not correct or optimal then user
can edit the generated wrapper manually by clicking <edit scipt> button (see Figure
11.b). When user is satis�ed with extracted results then he or she can save the generated
wrapper.

Figure 11: (a) Generated Wrapper and (b) Extrated data.

3.2.1 Schema de�nition

Annotation and rule generation is guided by schema de�ned by user. This assures that
data extracted from variety of web pages follows exactly the same structure and user can't
make spelling mistakes while labelling data. Schema must be created prior annotation.
Figure 12. shows subset of product schema. Schemas can be nested together to form very
complex data structures. In the example schema "o�er" and "reivew" properties have
de�ned separately. This feature is lacking in many annotation and data extraction tools
and was one of limiting factors for using existing tools even for annotation. Multiple
options can be speci�ed for �eld in schema, these are described in "Rule generation"
section.

3.2.2 Semantic Web and microdata

As seen from Figure12. schema.org microdata can be embedded into de�ned schema.
This allows easily extract structured data. Microdata elements can be added as extensions
to user de�ned �leds. This approach was chosen to allow microdata �elds to be mapped
to user �leds. This is mostly useful if target schema is �xed and does not perfectly align
with mircodata schema.

17

{
" itemtype " : "//schema . org /Product" ,
" ch i l d r en " : {

" u r l " : { " itemprop" : " u r l " } ,
"name" : { " itemprop" : "name" } ,
" o f f e r " : {

" itemprop" : " o f f e r s " ,
" type" : " o f f e r "

} ,
"manufacturer " : { " itemprop" : "brand" } ,
"manufacturer_logo" : { " itemprop" : " logo " } ,
"main_image" : { " itemprop" : " image" } ,
" p r i c e " : {} ,
" review " : {

" itemprop" : " review " ,
" type" : " review " ,
" opt ions " : {

"mul t ip l e " : t rue
}

}
}

}

Figure 12: Subset of product schema.

3.3 Rule generation

3.3.1 Simple rules

As mentioned in the overview there are number of ways how to specify rules for extracting.
When rules are generated from DOM tree then there are two basic options, either by using
selectors or XPaths. As selectors are more expressive (see Figure 13.) then this approach
was choosen.

S e l e c t o r :
#aspnetForm > div . oi s e c t i on wrap > header > div . oi s e c t i on main

nav igat i on > nav > ul > l i . o i item . oi item 3 . has submenu > span >
span

XPath :
//∗ [@id="aspnetForm"] / div [3] / header / div [4] / nav/ u l / l i [3] / span/span

Figure 13: Comparison between selector and XPath.

Rule generation (Algorithm 1) works recursively bottom up form selected node until
parent node is reached. First candidate rules are generated. Candidate rules are generated
starting from most robust one such as tag name (A, DIV, P, HEADER) and ending with
more precise selectors such as DIV.row:nth-child(3). Next candidate list is traversed and
�rst selector that matches node uniquely is selected. When selector for current node is
selected then algorithm moves level up and generates new selector from parent node.

3.3.2 Data re�nement rules

• regex. Athough DOM selectors are powerful tool for representing rules, they some-
times are not su�cient. This is mostly in case when we want to extract few words

18

Algorithm 1: Algorithm for creating DOM selector for selected node.

1 Function generateSelector (node, childSelector, scopeParen
Output: selecor

2 if node == parent then
3 return childSelector;
4 end
5 selector ← ”” ;
6 candidateSelectors← getCandidateSelectors(node, childSelector, parent);;
7 foreach candidateSelector in candidateSelectors do
8 if testUniqueness(node, candidateSelector, node.parentNode) then
9 selector ← candidateSelector ;

10 break;

11 end

12 end
13 return generateSelector(node.parentNode, selector, scopeParent);

from sentence. For example product code node might contain some extra tex-
tual content (Figure 14.1). In this case user when selects only partial text like
”Tootekood(SKU) : 451180 ” then regular expression is generated from DOM se-
lection object11 from where we can read selection start and end positions. For this
example following regular expression is generated /Tootekood\(SKU\) : (.+)/.

• replace. Replace rule allows replace text in extracted data. This is useful when
creating simple regular expression is not possible. For example this can be used to
convert URL on thumbnail image into URL of full size image.

• map. This rule allows map extracted value into prede�ned new value. It can
be used to convert microdata values such as "InStock" and "OutofStock"12 into
numeric values "1" and "0" (see Figure 14.2).

• use_content. For link nodes href attribute is extracted by default. This rule
allows textual content to be extracte instead (see Figure 14.3).

• use_attribute. Similar to previous rule this allows to extract data from speci�ed
attribute instead of the element content.

1) <div c l a s s="sku">Tootekood (SKU) : 451180</div>
2) <l i n k itemprop=" a v a i l a b i l i t y " h r e f="http :// schema . org / InStock " />
3) <a hr e f="#popup">Te l i a Ta l l inna es indus (Lasnam\\"{a}ae Centrum)

Figure 14: Example data that must be extracted with complex rules.

11https://developer.mozilla.org/en-US/docs/Web/API/Selection
12https://schema.org/ItemAvailability

19

3.3.3 Structure transformation rules

• textify Dom selectors allow only select element nodes. But HTML standard allows
element and text node to be interleaved (Figure 15 top). This means there is not
possible to generate selector for text nodes. To overcome this problem all text nodes
are automatically wrapped with span element.

• un�atten This is complex and powerful rule. It allows to restore hierarchical
structure from �at one like is shown in Figure 16. First nodes are read sequentially
and when group separator (speci�ed in rule, H3 in the example) is observed then
siblings following it are grouped together until next group separator. Groups are
placed inside DIV element.

<p>
Photopoint , Lounakeskus :
Ringtee 75 , Tartu

</p>

<p>
Photopoint , Lounakeskus :
Ringtee 75 , Tartu)
</p>

Figure 15: Text node is wrapped with span element.

3.3.4 Executing rules

Rules are executed in top down manner while traversing the wrapper rule �le. DOM
tree and rules (Figure 11.a) are traversed together side-by-side. Wrapper starts with
list of rules, root node of HTML document and empty object. These are passed to
extractFieldBySelector function (see Algortithm 2) which recursively traverses both rule
list and HTML nodes and �lls initially empty object with extracted data (Figure 11.b).

When rules are applied, the total number of matched rules are counted. Together
with number of total rules speci�ed this gives us score how precise data extraction was.

score = #matches
#rules

This can be used by crawler to decide not to save documents which have score less than
0.5. Also it makes possible to detect when web page has changed and and wrapper does
not work anymore. When same page is re crawled over some period of time we can
compare old score with new one and if change is big enough then mark this wrapper as
invalid.

3.4 Crawler

For crawling purposes a custom crawler was built. This option was chosen because
creating lightweight crawler for is easier than to install and con�gure fully scalable crawler,
such as Apache Nutch13. Also the requirement was that rule execution code will be

13http://nutch.apache.org/

20

<div>
<h3>Kr i s t i i n e Euronics</h3>
<p>Kr i s t i i n e kaubanduskeskus ; Tal l inn , Endla 45</p>
<p>Avatud E P 10 21</p>
<h3>Lasnamae Euronics</h3>
<p>Lasnamae Centrum
Tal l inn , Mustakivi t e e 13</p>
<p>Avatud E P 10 21</p>
<h3>Rocca a l Mare Euronics</h3>
<p>Rocca Al Mare kaubanduskeskus

. . .

</div>

<div>
<div>

<h3>Kr i s t i i n e Euronics</h3>
<p>Kr i s t i i n e kaubanduskeskus ; Tal l inn , Endla 45</p>
<p>Avatud E P 10 21</p>

</div>
<div>

<h3>Lasnamae Euronics</h3>
<p>Lasnamae Centrum
Tal l inn , Mustakivi t e e 13</p>
<p>Avatud E P 10 21</p>

</div>
. . .

</div>

Figure 16: Non-hierarchic data structure (top) is converted into hierarchic data structure
(bottom).

shared between crawler and wrapper generator tool. This allows any improvements made
in wrapper tool to be instantly available for crawler to use. Crawler is built also in
JavaScript programming language and runs in NodeJS14 framework. Instead on fully
featured browser crawler uses headless browser jsdom15 that implements most modern
DOM and HTML standards in javacripts.

Separate crawler is launched for each site. Although each single crawler is single
threaded program, but executing multiple crawlers simultaneously allows e�ective use of
computing resources.

Each crawler has its own queue from where unvisited urls are retrieved. Urls can be
processed in random order or sorted by score function (See Link extracrion subsection).
Limited number of urls are proccessed at a time then process exits and is restarted by
manager process if there is more work to do.

Overall process is shown in Algorithm 3. Url is loaded into browser like environment
and the same bookmarklet is attached to target page. Wrapper is therefore executed in
target webpage context and extracts data exactly the same way as was done when testing
wrapper in its creation process. Extracted data is returned to crawler and if extraction
score is over threshold then data is saved into user speci�ed dataset. Next step is to
extract additional links from webpage so that crawling would not stop at �rst page.

14https://nodejs.org/
15https://github.com/tmpvar/jsdom

21

Algorithm 2: Crawler algorithm for crawling single site.

1 Function extractFieldBySelector (wrapper, parent, out object)
Input: wrapper - user de�nes schema with extraction rules
Input: parent - DOM node from where selectors are applied
Output: object - reference to parent object �eld where extracted data is saved

2 ;
3 foreach �eld in wrapper do
4 node← null;
5 if �eld has selector then
6 node← querySelector(field.selector, parent);
7 else
8 if �eld has microdata property then
9 node← getMicrodataNode(field.microdata, parent);

10 end

11 end
12 if node is not null then
13 if �eld has children then
14 object[field.name]← {}; extractFieldBySelector(�eld, node,

object[�eld.name]);

15 else
16 object[field.name]← getNodeV alue(node);
17 end

18 end

19 end

3.4.1 Link extraction

Link extraction is straight forward for universal crawler that picks urls at random. But
this is not very e�ective when pages with extractable information is subset from all
pages (Figure 17. left) or even extremely ine�ective when links to non content pages are
generated dynamically (Figure 17. right). For example link to add product into shopping
cart or wish list. In majority of sites these kind of actions are done by form submission
or handling click event in JavaScript. This will hide these actions from crawler. This is
bene�ciary to site owner as well as less load is generated to server by crawlers.

To solve this issue we use similar approach that was proposed by Grigalis et al.
[GC14]. We exploit the fact that links that are in same location in di�erent pages all
point to similar content. We indentify links that lead to content pages. When such link
is identi�ed we save its location in referring page together with score (got from extracting
current page) into hash table. When new page is processed and links are extracted we
look hash table to see is score is associated with link XPath. If it is then we add all links
that are nearby (they have same XPath) into crawl queue with matching score. If XPath
was not found or score is below threshold we only add one link. See Algorithms 4., 5.
and 6.

22

Algorithm 3: Data extraction function.

Input: siteName, datasetName
1 links← getUnvisitedLinks(siteName)
2 foreach link in links do
3 load url in jsdom environment;
4 attach bookmarklet to loaded document;
5 extractedData← wrapper.extract() ;
6 if extractedData.score > extractionThreshold then
7 saveToDataBase('pages', datasetName, extractedData) ;
8 end
9 extractLinks(link, document) ;

10 link.processed = true ;
11 saveToDataBase('links', link) ;

12 end

0

100

200

300

n
u

m
b

e
r

o
f

p
ag

es

time

b
Pages crawled
Pages extracted

0

50

100

150
n

u
m

b
e

r
o

f
p

ag
es

time

a
Pages crawled
Pages extracted

Figure 17: Data extraction with random crawler. a) Normal site, b) site with dynamic
links.

4 Results and discussion

Described web data extraction tool was successfully used to gather high precision (see
Figure 18.) product data from Estonian e-commerce websites. Together with detail
product information, item availability in local stores were extracted. And also store
locations were extracted.

Most requirements presented at the beginning of methodology section were achieved.
It allows to de�ne of complex, structurally organized rules to transform Web pages into
hierarchically structured document with prede�ned schema. Semantic Web embeddings
are automatically detected and extracted and. Created system is platform independent,
only requirement is Web browser that implements modern Web standards. Wrapper
generation user interface is easy to use and usable to non-technical user for extracting data
with simple structure. Extraction of complex structure still requires expert user. Tool has
good visual support, wrapper is designed directly on top of displayed source documents
and supports visual way of de�ning extraction rules. System is widelyaccessible and does
not require installation e�orts, it uses a standard Web browser.

23

Figure 18: Data in original webpage (top) and in extracted form (bottom).

24

Algorithm 4: Improved data extraction function.

Input: siteName, datasetName
1 links← getUnvisitedLinks(siteName)
2 foreach link in links do
3 load url in jsdom environment;
4 attach bookmarklet to loaded document;
5 extractedData← wrapper.extract() ;
6 if extractedData.score > extractionThreshold then
7 saveToDataBase('pages', datasetName, extractedData) ;
8 hastable[link.referer.xpath]← extractedData.score;

9 else
10 hastable[link.referer.xpath]∗ = 0.8;
11 end
12 extractLinks(link, document, extractionThreshold) ;
13 link.processed = true ;
14 saveToDataBase('links', link) ;

15 end

4.0.1 Crawler Performance

Extraction was greatly speed up after implementing focused crawling algorithm. Figure
19. shows di�erence between random and focused crawler. It is clearly visible that with
focused crawler more relevant pages are downloaded and less time is spent following other
pages.

0

20

40

60

80

n
u

m
b

er
 o

f
p

ag
es

time

a
Pages crawled
Pages extracted

0

20

40

60

80

n
u

m
b

er
 o

f
p

ag
es

time

b
Pages crawled
Peges extracted

Figure 19: Data extraction with random crawler (a) and with focused crawler (b).

4.0.2 Extracted dataset

More than 50000 product data records from 34 Estonian e-commmerce web sites were
extracted and same amount of wrappers were generated. Wrapper creation time depended
on the amount of di�erent data presented in web page and usage of semantic data. Fair
amount of web pages required to use additional transformation rules and therefore made
the wrapper creation process more time consuming. For some web pages it was decided
to extract only limited set of data as extraction rules were to di�cult to maintain for

25

Algorithm 5: Link extraction from crawled web page.

1 Function extractLinks (referer, document, extractionThreshold)
Global: hastable, threshold

2 clusters← clusterLinks(document);
3 foreach xpath, links in clusters do
4 foreach link in links do
5 link.referer ← referer;
6 link.xpath← xpath;
7 link.discovered← now();
8 link.score = hastable[xpath].score;
9 saveToDataBase('links', link) ;

10 if hastable[xpath] < extractionThreshold then
11 break;
12 end

13 end

14 end

Algorithm 6: In page link clustering.

1 Function clusterLinks (url, document)
2 nodes← document.querySelectorAll(”a”) clusters← {} templateId← ””

foreach nodeinnodes do
3 xpath = getXPath(node);;
4 clusters[path].push(node.href);

5 end
6 return clusters;

all pages. This was usually the case when very little HTML formatting was used to
decorate structured data and rather natural language processing tools should have used.
Table 1. gives summary of limited set of crawled websites and brings out following key
features that a�ected the creation of wrapper to extract product information. From this
small subset we see that one third of websites have adopted semantic web features. But
semantic meaning has given only to subset of product data and therefore fully automatic
extraction was not possible on any of these sites.

• Embedded microdata indicates if semantic web attributes were present allowed
automatic extraction of structured data.

� yes - microdata was used

� no - microdata was not used

• Full product speci�cation indicates if detailed product parameters were present.

� yes - full speci�cation was presented

� limited - only basic product features were presented (color, dimensions)

� no - only product name, minimal description and image were presented

26

Table 1: Features available on crawled web pages.

site microdata
product
spec

product
identi�cation

store
stock

wrapper-
complexity

euronics.ee yes yes yes* limited low
kodumasinad.ee no yes yes* limited medium
miterassa.ee no yes yes* limited medium
rigonda.ee no no yes* yes high
prismamarket.ee yes limited yes no low
bauhof.ee no limited no yes medium
charlot.ee no yes yes yes medium
vunder.ee yes limited yes yes high
elion.ee yes yes limited limited low
ono�.ee no limited limited yes medium
kodumasin.ee no yes limited no medium
elektrikaup.ee no no no no medium
cdmarket.ee yes yes yes no low
photopoint.ee yes yes no yes low
koduekstra.ee no no no yes high
itshop.ee no yes limited yes medium

• Product identi�cation indicates if product could be uniquely identi�ed, either
by GTIN/EAN code or brand name and model code.

� yes - GTIN/EAN code was displayed

� yes* - both product model and brand name was displayed

� limited - only product model or brand name was displayed but not both

� no - only product name was displayed

• Item availability listing indicates if physical store listing was presented with item
availabilty.

� yes - exact amount of items aviable was shown

� limited - in stock and out of stock information was displayed

� no - no item aviablity was displayed

• Wrapper complexity indicates how much manual work was needed to create
wrapper.

� none - extraction was fully automatic

� low - automatic extraction of microdata was performed and rest of rules were
speci�ed manually

� medium - all rules were created by manual annotation

� high - all rules were created by manual annotation also also addition re�nement
rules had to be used

27

4.0.3 Integration with product search engine

ZedBot system was designed to be integrated with local product aggregation and search
system Napstock16 to provide highly accurate product information for it. Two systems
were integrated using RESTful API (see Figure 9). During development ZedBot was
also adapted as a source for gathering product sales information, both from online stores
and from physical stores when such information was available. And also for gathering
details of physical stores (location, openin hours, steetview image, contact information).
Extracted data is imported to product search engine using its import API. Using single
schema for extraction and by making it compatible with this import API, allowed data
from crawler to be directly loaded into Napstock system which aggregates information
from di�erent web pages together.

Product
database

XML, CSV files

JSON
Documents

Manual data
refinement

Import API

Title
http://search.com

3rd party datasources

ZedBot Data Extraction System

Product Data aggregation
Product search engine

Document
database

(links)

Crawlers

Exporter

crawl batch completed
event

load batch data

Product aggregation system

Figure 20: Integration of ZedBot and Product search engine Napstock.

16http://napstock.com

28

5 Conclusions and future work

In this thesis we studied web data extraction problem. There are huge amount of research
done in this area from tools that allow human expert to e�ectively write data extraction
program called Wrapper up to fully automatic systems that do not need human supervi-
sion. We presented semi automatic information extraction system ZedBot which consist
of web annotation combined with rule generation tool and custom web crawler. It com-
plies with majority of requirements set for modern data extraction system. It is platform
independent, it has powerful and semi automatic wrapper generation system. Easy to
use user interface for annotating structured data. Specially designed web crawler allows
to extraction to be performed on whole web site level without human interaction. We
showed that presented tool is suitable for extraction highly accurate data from large num-
ber of websites and can be used as a data source for product aggregation system with
search engine.

Annotating large amount websites and crawling huge amount of pages created valuable
dataset, that can be used to develop supervised learning algorithms that make annotation
more automatic by classifying elements on web pages. Or it can be used as validation
dataset for unsupervised data extraction algorithms.

Although presented system ful�ls its task very well, there are many improvements,
that can be made to improve its performance. This includes better user interface for
annotation and manual wrapper editing. By adding heuristics to rule generation we could
avoid manual re�nement of complex rules and therefore speeding up wrapper creation
process.

Until Semantic Web standards are not widely taken into use by web developers and
software designers, need for such information extraction systems remains actual.

Presented software is made publicly available on GitHub17 under GNU A�ero General
Public License.

17https://github.com/zedbot

29

References

[BEG+05] Robert Baumgartner, Thomas Eiter, Georg Gottlob, Marcus Herzog, and
Christoph Koch. Information Extraction for the Semantic Web. In Nor-
bert Eisinger and Jan Maªuszy«ski, editors, Reasoning Web, number 3564
in Lecture Notes in Computer Science, pages 275�289. Springer Berlin Hei-
delberg, 2005. DOI: 10.1007/11526988_8.

[BFG01a] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Declarative Infor-
mation Extraction, Web Crawling, and Recursive Wrapping with Lixto. In
Thomas Eiter, Wolfgang Faber, and Miros law Truszczy«ski, editors, Logic
Programming and Nonmotonic Reasoning, number 2173 in Lecture Notes
in Computer Science, pages 21�41. Springer Berlin Heidelberg, September
2001. DOI: 10.1007/3-540-45402-0_2.

[BFG01b] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. The Elog Web
Extraction Language. In Robert Nieuwenhuis and Andrei Voronkov, edi-
tors, Logic for Programming, Arti�cial Intelligence, and Reasoning, number
2250 in Lecture Notes in Computer Science, pages 548�560. Springer Berlin
Heidelberg, December 2001. DOI: 10.1007/3-540-45653-8_38.

[CKGS06] Chia-Hui Chang, Mohammed Kayed, Moheb Ramzy Girgis, and Khaled F.
Shaalan. A Survey of Web Information Extraction Systems. IEEE Trans.
on Knowl. and Data Eng., 18(10):1411�1428, October 2006.

[CMM05] Valter Crescenzi, Paolo Merialdo, and Paolo Missier. Clustering Web Pages
Based on Their Structure. Data Knowl. Eng., 54(3):279�299, September
2005.

[CYL+08] Rui Cai, Jiang-Ming Yang, Wei Lai, Yida Wang, and Lei Zhang. iRobot: An
Intelligent Crawler for Web Forums. In Proceedings of the 17th International
Conference on World Wide Web, WWW '08, pages 447�456, New York, NY,
USA, 2008. ACM.

[DH99] Je�rey Dean and Monika R. Henzinger. Finding Related Pages in the World
Wide Web. In Proceedings of the Eighth International Conference on World
Wide Web, WWW '99, pages 1467�1479, New York, NY, USA, 1999. Else-
vier North-Holland, Inc.

[FB11] Emilio Ferrara and Robert Baumgartner. Intelligent Self-repairable Web
Wrappers. In Roberto Pirrone and Filippo Sorbello, editors, AI*IA 2011:
Arti�cial Intelligence Around Man and Beyond, number 6934 in Lecture
Notes in Computer Science, pages 274�285. Springer Berlin Heidelberg,
September 2011. DOI: 10.1007/978-3-642-23954-0_26.

[FDMFB14] Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and Robert Baum-
gartner. Web data extraction, applications and techniques: A survey.
Knowledge-Based Systems, 70:301�323, November 2014.

[FGG+12] Tim Furche, Georg Gottlob, Giovanni Grasso, Giorgio Orsi, Christian
Schallhart, and Cheng Wang. AMBER: Automatic Supervision for

30

Multi-Attribute Extraction. arXiv:1210.5984 [cs], October 2012. arXiv:
1210.5984.

[GC14] Tomas Grigalis and Antanas Cenys. Using XPaths of inbound links to
cluster template-generated web pages. Computer Science and Information
Systems, 11(1):111�131, 2014.

[GLSRN00] Paulo B. Golgher, Alberto H. F. Laender, Altigran S. da Silva, and Berthier
Ribeiro-Neto. An Example-Based Environment for Wrapper Generation.
In Stephen W. Liddle, Heinrich C. Mayr, and Bernhard Thalheim, editors,
Conceptual Modeling for E-Business and the Web, number 1921 in Lecture
Notes in Computer Science, pages 152�164. Springer Berlin Heidelberg,
October 2000. DOI: 10.1007/3-540-45394-6_14.

[GRI14] Tomas GRIGALIS. STRUCTURED DATA EXTRACTION FROM
TEMPLATE-GENERATED WEB PAGES. DOCTORAL DISSERTA-
TION, VILNIUS GEDIMINAS TECHNICAL UNIVERSITY, Vilnius,
2014.

[KB00] Raymond Kosala and Hendrik Blockeel. Web Mining Research: A Survey.
SIGKDD Explor. Newsl., 2(1):1�15, June 2000.

[KFT14] K. Kanaoka, Y. Fujii, and M. Toyama. Ducky: A data extraction system
for various structured web documents. In ACM International Conference
Proceeding Series, pages 342�347, 2014.

[KT02] Stefan Kuhlins and Ross Tredwell. Toolkits for Generating Wrappers.
In Mehmet Aksit, Mira Mezini, and Rainer Unland, editors, Objects,
Components, Architectures, Services, and Applications for a Networked
World, number 2591 in Lecture Notes in Computer Science, pages 184�198.
Springer Berlin Heidelberg, October 2002. DOI: 10.1007/3-540-36557-5_15.

[KT14] Kei Kanaoka and Motomichi Toyama. E�ective Web Data Extraction with
Ducky. In Proceedings of the 19th International Database Engineering
& Applications Symposium, IDEAS '15, pages 212�213, New York,
NY, USA, 2014. ACM.

[Kus97] Nicholas Kushmerick. Wrapper Induction for Information Extraction. PhD
thesis, University of Washington, 1997. AAI9819266.

[Kus00] Nicholas Kushmerick. Wrapper veri�cation. World Wide Web, 3(2):79�94,
October 2000.

[Liu11] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage
Data. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2011.

[LMJ04] Hongyu Liu, Evangelos Milios, and Jeannette Janssen. Probabilistic Models
for Focused Web Crawling. In Proceedings of the 6th Annual ACM Interna-
tional Workshop on Web Information and Data Management, WIDM '04,
pages 16�22, New York, NY, USA, 2004. ACM.

31

[LPH00] L. Liu, C. Pu, and W. Han. XWRAP: an XML-enabled wrapper construc-
tion system for Web information sources. In 16th International Conference
on Data Engineering, 2000. Proceedings, pages 611�621, 2000.

[LRNdST02] Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran S. da Silva, and
Juliana S. Teixeira. A Brief Survey of Web Data Extraction Tools. SIGMOD
Rec., 31(2):84�93, June 2002.

[LYHL10] Cindy Xide Lin, Yintao Yu, Jiawei Han, and Bing Liu. Hierarchical Web-
Page Clustering via In-Page and Cross-Page Link Structures. In M. J.
Zaki, J. X. Yu, B. Ravindran, and V. Pudi, editors, Advances in Knowledge
Discovery and Data Mining, Pt Ii, Proceedings, volume 6119, pages 222�
229. Springer-Verlag Berlin, Berlin, 2010. WOS:000281629400022.

[O'R06] Sean O'Reilly. Nominative Fair Use and Internet Aggregators: Copy-
right and Trademark Challenges Posed by Bots, Web Crawlers and Screen-
Scraping Technologies [article]. Number 3. 2006. TY: GEN; ID: Accession
Number: hein.journals.lyclr19.20; Item Citaton: Loyola Consumer Law Re-
view, Vol. 19, Issue 3 (2007), pp. 273-288, O'Reilly, Sean, 19 Loy. Consumer
L. Rev. 273 (2006-2007); Accession Number: hein.journals.lyclr19.20; Pub-
lication Type: periodical; Source: Loyola Consumer Law Review; Lan-
guage: English; Publication Date: 20060101.

[PPPD08] K. Pol, N. Patil, S. Patankar, and C. Das. A Survey on Web Content
Mining and Extraction of Structured and Semistructured Data. In First
International Conference on Emerging Trends in Engineering and Technol-
ogy, 2008. ICETET '08, pages 543�546, July 2008.

[SC13] H. A. Sleiman and R. Corchuelo. A Survey on Region Extractors from
Web Documents. IEEE Transactions on Knowledge and Data Engineering,
25(9):1960�1981, September 2013.

[SFG+11a] Andrew Sellers, Tim Furche, Georg Gottlob, Giovanni Grasso, and Chris-
tian Schallhart. Taking the OXPath Down the Deep Web. In Proceedings
of the 14th International Conference on Extending Database Technology,
EDBT/ICDT '11, pages 542�545, New York, NY, USA, 2011. ACM.

[SFG+11b] Andrew Jon Sellers, Tim Furche, Georg Gottlob, Giovanni Grasso, and
Christian Schallhart. OXPath: Little Language, Little Memory, Great
Value. In Proceedings of the 20th International Conference Companion on
World Wide Web, WWW '11, pages 261�264, New York, NY, USA, 2011.
ACM.

[SWL+13] Shengsheng Shi, Wu Wei, Yulong Liu, Haitao Wang, Lei Luo, Chunfeng
Yuan, and Yihua Huang. NEXIR: A Novel Web Extraction Rule Language
toward a Three-Stage Web Data Extraction Model. In Xuemin Lin, Yan-
nis Manolopoulos, Divesh Srivastava, and Guangyan Huang, editors, Web
Information Systems Engineering � WISE 2013, volume 8180 of Lecture
Notes in Computer Science, pages 29�42. Springer Berlin Heidelberg, 2013.

32

[TVE14] Maarten Truyens and Patrick Van Eecke. Legal aspects of text mining.
Computer Law & Security Review: The International Journal of Technology
Law and Practice, 2014.

[Vel13] Juan D. Velásquez. Web mining and privacy concerns: Some important
legal issues to be consider before applying any data and information ex-
traction technique in web-based environments. Expert Systems with Appli-
cations, 40(13):5228�5239, October 2013.

[WPC+15] Tim Weninger, Rodrigo Palacios, Valter Crescenzi, Thomas Gottron, and
Paolo Merialdo. Web Content Extraction - a Meta-Analysis of its Past
and Thoughts on its Future. arXiv:1508.04066 [cs], August 2015. arXiv:
1508.04066.

[YG14] T Yang and A Gerasoulis. Web Search Engines: Practice and Experience.
In Computer Science Handbook. Chapman & Hall/CRC Press, 3rd edition,
2014.

33

Non-exclusive licence to reproduce thesis and make thesis public

I, Andres Viikmaa (date of birth: 25th of September 1979),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Web Data Extraction For Content Aggregation From E-Commerce Websites

supervised by Timo Petmanson

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016

34

	Introduction
	Overview of web data extraction methods
	Semantic Web
	Web data extraction
	Wrappers
	Expressing extraction rules
	 Semi-automatic tools
	Wrapper induction
	 Automatic Wrapper Generation

	Web crawling
	Focused crawlers

	ZedBot information extraction system
	System architecture
	Information extraction tool
	Schema definition
	Semantic Web and microdata

	Rule generation
	Simple rules
	Data refinement rules
	Structure transformation rules
	Executing rules

	Crawler
	Link extraction

	Results and discussion
	Crawler Performance
	Extracted dataset
	Integration with product search engine

	Conclusions and future work

