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Generic Reloading for Languages Based on the Tru✏e Frame-
work

Abstract: Reloading running programs is a well-researched and increasingly popular fea-
ture of programming language implementations. There are plenty of proposed solutions
for various existing programming languages, but typically the solutions target a specific
language and are not reusable. In this thesis, we explored how the Tru✏e language imple-
mentation framework could aid language creators in adding reloading capabilities to their
languages. We created a reusable reloading core that di↵erent Tru✏e-based languages
can hook into to support dynamic updates with minimum amount of e↵ort on their part.
We demonstrate how the Tru✏e implementations of Python, Ruby and JavaScript can
be made reloadable with the developed solution. With Tru✏e’s just-in-time compiler
enabled, our solution incurs close to zero overhead on steady-state performance. This
approach significantly reduces the e↵ort required to add dynamic update support for
existing and future languages.

Keywords: Language implementation, Tru✏e, Graal, dynamic software updates

CERCS: P170, Computer science, numerical analysis, systems, control

Käitusaegne programmi uuendamine Tru✏e raamistiku keeltele

Lühikokkuvõte: Programmide käitusaegset uuendamist on põhjalikult uuritud ning sel-
le kasutamine programmeerimiskeelte implementatsioonides kogub hoogu. Senised paku-
tud lahendused programmide käitusaegse uuendamise osas on rakendatavad ainult konk-
reetsetele keeltele ja ei ole taaskasutatavad. Käesolevas lõputöös on uuritud seda, kuidas
Tru✏e-nimeline programmeerimiskeelte loomise raamistik suudaks aidata keelte loojatel
lisada käitusaegse uuendamise tuge. Autor on loonud taaskasutatava dünaamilise uuenda-
mise lahenduse, mida erinevad Tru✏e raamistikus loodud keeled saavad kasutada selleks,
et vähese vaevaga toetada käitusaegseid uuendusi. Antud lahendusega on võimalik uuen-
datavaks teha Pythoni, Ruby ja JavasScripti Tru✏e implementatsioone. Väljatöötatud
lahendusel on peaaegu olematu mõju keele tippvõimsusele, kui on sisse lülitatud Tru↵-
le täppisajastusega (JIT) kompilaator. See lahendus teeb käitusaegse uuendamise toe
lisamise uutele ja tulevastele keeltele märkimisväärselt lihtsamaks.

Võtmesõnad: Programmeerimiskeele implementeerimine, Tru✏e, Graal, dünaamiline
uuendamine

CERCS: P170, Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhti-
misteooria)
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Introduction

Overview

Tru✏e [1] is a novel programming language implementation framework. It is developed

by Oracle Labs in collaboration with the Institute for System Software at the Johannes

Kepler University Linz. The main goals are making implementing new languages easier,

while achieving competitive performance compared to existing well-tuned language run-

times. Language implementers have to implement an AST interpreter, within the Tru✏e

framework, for their new language and the framework handles the rest.

Tru✏e seeks to enable generic solutions to common but complex problems. Examples

include the ability to add high performance debugger support to a language [2] or the

Tru✏e Object Storage Model (OSM) for implementing types and objects [3]. Tru✏e has

even opened up the possibility for high performance cross language interoperability, where

Tru✏e can inline and optimize function calls across language barriers [4]. One problem

they have yet to provide a solution for is dynamically updating running applications.

After a developer makes a change in the source code, they typically need to restart

the running program to see those changes having an e↵ect. This is true for many pop-

ular languages such as Java and C# without relying on some external tools. In this

thesis we refer to reloading, also known as dynamic code evolution or dynamic system

update, as seeing the e↵ects of source code changes immediately in a running application.

Some dynamic languages such as Erlang, Ruby and Python have reloading support built

in, but developers must take explicit action, for example call a specific method, to achieve

the desired behavior. It would be more convenient if the running program was automat-

ically updated whenever source code changes are detected. This way developers could

just concentrate on getting the program’s behavior correct and iterate faster.

Importance of Reloading

Programming is a complex cognitive endeavor that puts a strain on both the short-term

(working) and long-term memory. Good working memory has been shown to predict a
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better ability to learn programming [5]. However, short-term memory is, as its name

suggests, fleeting. Research has shown a significant decay in working memory over time

spans as short as 15 seconds [6].

This means that every second counts when working on problems that require keeping

lots of details in working memory. At the same time programmers are constantly bom-

barded with interruptions. A Java developer productivity survey carried out in 2012

found that developers spend only about one third of their work week on actually writing

code [7]. The rest of the time is spent on various related activities such as debugging,

compiling, deploying, communicating, etc.

Given the fleeting nature of short-term memory and the general overhead associated with

programming, it becomes increasingly important to have coding feedback cycles shorter

than the short-term memory decay period. If source code changes are immediately visible

in the running application it decreases the strain on working memory and should increase

the likelihood of developers being able to complete the task without losing the state of

their working memory.

Developer productivity is only one aspect why reloading matters. Another well known

problem is updating high availability applications to include new critical bug fixes with-

out causing any downtime. Erlang is a programming language with a managed runtime

that is often used in 99.999% uptime guaranteed systems [8]. To help in meeting these

high expectations, Erlang has reloading built into the runtime so that modules could

evolve over time without causing any downtime [9, Chapter 13]. For such applications

reloading must not a↵ect the steady-state performance nor bring about unexpected side

e↵ects that can compromise the stability of the application.

The desire of developers to reload code changes can also be validated by the plethora

of di↵erent tools and solutions for various languages and platforms. JRebel [10] is a

successful enterprise Java reloading system that is actively used by tens of thousands of

developers. Many popular web application frameworks have built custom solutions to

avoid restarting the development server. Examples include:

1. Django1 — A web application framework written in Python. The provided devel-

opment server will automatically reload Python code for each request.

2. Ruby on Rails2 — A web application framework written in Ruby. When running

in development mode Rails also supports reloading changed code.

3. Grails3 — A Groovy-based web application framework. Can be configured to

reload classes and view files.
1https://www.djangoproject.com/
2http://rubyonrails.org/
3https://grails.org/
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Degrees of Reloading

Reloading is not a binary property that languages either support or not. Instead, we have

to look at the degree of code changes that the language enables us to apply at runtime.

For example, Java normally only supports changing method bodies in a running applica-

tion via HotSwap [11], but with external tools, many more modifications are possible.

Possible supported runtime changes can be loosely categorized as:

1. Function level changes

• Changing function bodies

• Changing function signatures (arguments, return type, visibility)

• Adding/removing functions

2. Changes in code organization/structure

• Changing visibility of classes/modules

• Changing structure of classes/modules (fields and methods)

• Adding/removing classes/modules

The second option depends highly on the semantics of the language. Some languages do

not even have notions of classes or modules, so only changes listed in Category 1 are more

universally applicable. Though, to the best of our knowledge, all programming languages

exhibit a notion of grouping code into callable units that can be classified as functions.

Having such groups of code, it is natural to modify one of them or to add new ones to

change the program’s behavior.

Research Questions

The main research question this thesis looks to answer is if and how the Tru✏e framework

can help language implementers in adding reloading to their languages. More specifically

the questions can be listed as:

1. Can the Tru✏e framework help language implementers achieve reloading in their

languages?

2. How much e↵ort, if any, is required from the language implementer to add code

reloading support?

3. What language constructs make supporting generic reloading harder?

4. How does adding reloading support a↵ect the steady-state performance of a lan-

guage?
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Contributions

Dynamically updating running programs is a subject that has been studied for many

decades already [12]. There have been many proposed solutions for specific programming

languages that do not natively provide reloading, such as [13] or [14]. Our focus was on

trying to produce a generic reloading solution with maximum reuse and minimal language

specific work. Of course, such a tool requires a common building block for representing

di↵erent languages by a shared model, which Tru✏e provides.

The main contribution of this thesis is a series of prototypes that show various ways

how language neutral reloading can be supported in the Tru✏e framework:

• The initial prototype contributes a simple approach to reloading languages by using

the Tru✏e Instrumentation API. That approach can be used to reload languages

that are already built with dynamic code changes in mind. The solution works

well in that it can leverage a lot of the existing tools in the Tru✏e framework and

requires no language specific code. Unfortunately the approach is fairly limited

and cannot be used to reload languages with more complicated ways of structuring

code, besides grouping it into functions.

• The next prototype contributes a more generic approach that can be used to reload

languages that have not been built with dynamic updates in mind. The prototype

supports languages with di↵erent code structuring semantics, such as classes and

modules. Unfortunately at this point we already lose absolute generality and require

some input from the language implementer. Though the solution works in setups

where Tru✏e is running on a default Java Virtual Machine, it does not work with

the GraalVM (introduced in Section 1.3).

• Finally we improve the last prototype so that it also works on the GraalVM and

has minimal overhead to the steady-state performance of the application. We also

describe how the needed changes to the Tru✏e framework can be applied automat-

ically via a Java agent.

The main results of this thesis were also summed up as a research paper, written together

with the supervisors, which has been accepted for publication as part of the 11th Im-

plementation, Compilation, Optimization of Object-Oriented Languages, Programs and

Systems Workshop (ICOOOLPS ’16).4

Thesis Structure

The thesis continues in Chapter 1 by giving an introductory overview of the components

and internals of the Tru✏e framework. Key aspects and techniques are explained, with

4http://2016.ecoop.org/track/ICOOOLPS-2016
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focus on the parts relevant to achieving the goals of this thesis. The goal of the chapter

is to help the reader understand the coming challenges and better follow the subsequent

chapters. Readers who are already familiar with the internals of the Tru✏e framework,

should be able to skip Chapter 1 without compromising their ability to follow subsequent

discussions.

Chapter 2 describes the first attempts at reloading the Tru✏e framework reference lan-

guage implementation, called Simple Language. Various obstacles met along the way are

explained together with things that have to be taken into consideration to avoid problems

down the road.

Chapter 3 builds upon the learnings from the initial prototype to work towards a more

generic reloading solution for Tru✏e. It is followed by Chapter 4 that discusses GraalVM

specific challenges, implementation details and minimizing the runtime overhead. Finally

Chapter 5 evaluates the proposed techniques by applying them for four concrete language

implementations: Simple Language, ZipPy, JRuby+Tru✏e and Graal.js.
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Chapter 1

Tru✏e Framework

There are many ways to implement a programming language, but loosely they fit into

the following categories [15, Chapter 1]:

1. Interpretation — Write an interpreter that follows the instructions in source code

and carries out the corresponding actions.

2. Compilation — Write a compiler that translates the source code into some other

language that can either execute directly on the hardware or be in turn subject to

interpretation or compilation.

Compilation generally should have better performance as there are usually inherent bot-

tlenecks to interpreters. Interpreters have to read instructions one by one and then decide

what is the right action to take. This causes unnecessary overhead, where instead of just

executing the programmers instructions there’s always a translation step in between dur-

ing runtime. Languages that compile directly to machine code do not have that overhead

as the program consists of instructions the CPU can execute directly.

Whichever strategy is chosen, there’s a common predecessor to both compilation and

interpretation, which is parsing the source code. A common way is to parse the source

code into an Abstract Syntax Tree (AST). The AST shows the structure of the instruc-

tions written in source code. This structure can then be translated into another language

— compiled — or directly interpreted.

Despite the inherent problems, the Tru✏e framework has chosen the interpreter route

with some clever tricks to overcome the shortcomings. The general idea is that a pro-

grammer wishing to create her own language implements an AST interpreter within the

Tru✏e framework. Tru✏e then overcomes the overhead usually associated with pure

interpretation of a language. This is a win-win situation as usually writing an AST in-

terpreter is easier than writing a compiler or a managed runtime [15, Chapter 1]. The

implementer gets the language up and running faster and Tru✏e ensures that the per-

formance of the language is comparable to other compiled languages.
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Figure 1.1: Architecture of the Tru✏e framework [16]

1.1. General Architecture

Tru✏e is implemented in Java and builds on top of the standard Java Virtual Machine

(JVM). The overall architecture is shown on Figure 1.1. It reuses existing runtime ser-

vices in the JVM, such as garbage collection. The Tru✏e Optimizer layer represents

partial evaluation using the Graal compiler which will be discussed further in Section 1.3.

The overall goal of the Tru✏e framework, of course, is to be able to execute applications

written in a guest language. Within tru✏e, the guest language runtime is implemented

in Java using the Tru✏e APIs that then runs on top of the JVM.

The main entry point for everyone who wants to implement a Tru✏e-based language

is the TruffleLanguage class. Implementers are expected to extend it and add the

@Registration annotation that declares the name, version and source code MIME

type for the language. Tru✏e uses this information to generate metadata associated

with the language project. The main abstraction used for running the languages is the

PolyglotEngine class that acts as a gateway into the world of Tru✏e languages.

Evaluation is triggered by calling the PolyglotEngine#eval method, which locates the

language implementation and invokes the TruffleLanguage#parse method. This in turn

transforms the source code into an executable AST. The suitable TruffleLanguage im-

plementation is chosen based on the MIME type from the @Registration annotation

and the MIME type of the source code file.

Each evaluation of a TruffleLanguage is associated with a global language context that

Tru✏e creates by calling the TruffleLanguage#createContext method. Typically the

context is where the all the global information about the running program is kept, such

as global variables and method definitions. Running evaluations are expected to access

the current context by using the #createFindContextNode and #findContext methods.

10



1.2. Self-Optimizing AST Interpreters

In the Tru✏e framework the AST itself is the interpreter. It consists of a tree of Java

objects that have an #execute method, which carries out the action the AST node rep-

resents. All AST node classes have to inherit from a single Node class and all callable

function definitions have to inherit from a RootNode class.

In order to call a function, a RootCallTarget has to be obtained from the Tru✏e frame-

work. After finishing parsing a function definition, the resulting RootCallTarget is stored

into the correct location depending on the language semantics. It could be a global names-

pace or part of a class definition, etc. RootCallTarget extends the CallTarget interface,

which defines the Object call(Object... arguments) method that can be invoked to

execute the underlying function. Each RootCallTarget corresponds to a tree of nodes

that carry out the actions of the function.

Interpreters are self-optimizing, meaning they change during execution by replacing one

node with another. Optimizations are triggered by reacting to actual runtime values

of variables and behavior of the program. As a simple example, imagine an abstract

AddNode that represents a + operator in source code. Depending on the constraints of

the language under evaluation, addition can mean several di↵erent operations. The code

could be adding text, integers or floating point numbers together.

Handling all the possible cases in a single node is not optimal because of the necessary

type checks and potential variable boxing. Instead, the first time the AddNode is executed,

the generic node, which handles all possible cases, can be replaced with a specialized one.

If the variables are both integers, then AddNode becomes an IntegerAddNode instead.

IntegerAddNode only knows how to add integers and ignores other possibilities, thus its

implementation is more e�cient.

Of course as soon as the node is specialized, an implicit assumption is created that

this specialization will always hold. The assumption might not be valid for the next

invocation of IntegerAddNode when it encounters text for example. If an assumption

fails a node will be replaced with a more generic one. The new node does not necessary

yet have to handle all possible cases, just the ones encountered so far [17]. The exact

method how the more generic node is chosen is explained in Section 1.4.

1.2.1. Examples of Optimizations

There are many possible optimizations the AST could perform, such as:

1. Operation Specialization — In dynamic languages the performed operation can

vary greatly depending on the types of operands. As shown with the AddNode,
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simple + operator can mean integer or floating point addition, text concatenation

or a method dispatch depending on the language semantics. Thus the AddNode

AST node can be specialized to di↵erent forms.

This specialization is not limited to dynamic languages. Say a programmer has

specified an addition on 2 double variables in a statically typed language. But in

runtime it turns out that they are both actually integers and the addition does not

overflow. Then doing an integer operation is beneficial as on all current architectures

integer operations can be performed faster than floating point computations [17].

2. Polymorphic Inline Caches (PICs) - Languages with dynamic dispatch have

to look up the call target of the function call before executing it, which can be

costly. It has been observed, however, that function call targets change seldom for

a specific call site — the place where the CallTarget is invoked. Call sites can be

divided into 3 classes [18]:

(a) Monomorphic — Only one target.

(b) Polymorphic — A few targets.

(c) Megamorphic — Arbitrarily many targets.

Polymorphic Inline Caches is a well known technique for caching and linking up to

a small number of call targets. When a function is called at a call site the cached

list of call targets is iterated for a type match. Tru✏e AST rewriting can easily

encompass PCIs by creating a chain of cached nodes. For every new entry in the

cache, a new node is added to the tree. When the chain reaches a certain predefined

length, the whole chain replaces itself with one node responsible for handling the

fully megamorphic case [16].

3. Dispatch Chains - Dispatch chains are a generalization of PICs that can be used

to optimize reflective method invocation. Essentially dispatch chains build layers

of caches. For reflective method invocation the first layer is caching on the method

name and the second layer is a classic PIC for the resolved method. Similar tech-

nique can be used to optimize reflective field and global access operations.

Again the AST can be modified with new nodes as new method names are encoun-

tered during runtime and new cache nodes added. Dispatch chains can be used to

eliminated the overhead of reflective operations [19].

1.2.2. Method Inlining

Operation Specialization can be rendered useless, when a method is always called with

di↵erent types of arguments. Listing 1.1 shows a simple Python function that is called

in an endless loop with both integers and text as arguments. In such a case the #add

function would be specialized into a form generic enough to handle both integer addition

12



def add ( f i r s t , second ) :
return f i r s t + second

while True :
add (1 , 1)
add ( ”He l lo ” , ” world” )

Listing 1.1: Calling methods with di↵erent types of arguments

and text concatenation. It would be more e�cient if the first call site would be specialized

for integers and the second for text.

Tru✏e handles this by doing AST level inlining. When a particular function call site

is executed a predefined number of times then Tru✏e will clone the function CallTarget

AST subtree into the calling function. The inlined subtree will be cloned as if the method

has not been called before; all of the nodes are back to the uninitialized state. On the

first invocation it can then specialize itself according to the argument types present in a

specific call site.

Naturally in a dynamic environment the inlined CallTarget might change for a given

call site. In this case it is up to the language implementers to guard against it. The

general approach is to create an assumption that the CallTarget for a given call site

does not change. Before calling the target, the assumption should be checked. When the

call target is changed then the assumption is invalidated causing the next check to fail.

On assumption failure the node replaces itself with one that looks up the CallTarget

once more before making the call. Tru✏e assumptions will be discussed in more detail

in Section 1.4.

1.3. Partial Evaluation

Replacing the AST nodes with more specialized ones makes sure that the performed

actions are optimal, but still leaves the overall overhead of traversing an AST. As men-

tioned in the Introduction, Tru✏e claims to achieve similar performance to compiled

languages. Partial evaluation is the process of taking a computation ⇡ with m + n vari-

ables c1, · · · , cm, r1, · · · , rn. Substituting known values of c1, · · · , cm into ⇡ resulting in

a computation with n variables (r1, · · · , rn) [20]. The known variables are substituted

where possible, computations carried out and unknown variables left into the remaining

computation.

Tru✏e leverages this to just-in-time (JIT) compile parts of the AST. It counts the number

of invocations of a CallTarget and resets the counter in the event of a node replacement.

When the number of invocations on a stable tree exceeds a threshold, Tru✏e assume that
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every node of the tree is constant and therefore many values in the tree can also be consid-

ered as constants. The tree is compiled into machine code with dynamic dispatch turned

into direct calls, thus removing one of the main performance penalties of interpreters [16].

Partial evaluation and compilation is performed by the Graal compiler, which integrates

with the Tru✏e framework, but will not be examined in much detail. Graal is a new JIT

compiler for Java bytecode written in Java. It plugs into a the standard HotSpot Java

Virtual Machine (JVM) through some newly developed interfaces. Ongoing e↵ort as part

of the JDK Enhancement Proposal (JEP) 243 is trying to standardize these interfaces so

that Graal could be used with a standard JVM in the future [21].

The result is that at the time of writing Tru✏e has two runtime modes:

1. Interpreted - When running on a standard JVM (without Graal) the AST nodes

will only be interpreted. Specialisations and optimizations via node rewriting still

occur, but nothing is compiled to machine code, thus the overhead of the interpreter

remains.

2. GraalVM - When running on GraalVM (that is a JVM with necessary patches

to make the Graal compiler work) then Tru✏e can schedule parts of the AST

to be compiled to machine code. Only when running with Graal can languages

implemented with the Tru✏e framework achieve the promised performance. As

after Graal JIT compilation the overhead of interpreters is removed altogether.

1.4. Tru✏e DSL

Figure 1.2: Tru✏e DSL annotation processing pipeline [22]

All the node specialisations have to be written by the language implementer. To make

it easier, Tru✏e o↵ers a Java annotations based domain specific language (DSL). Tru✏e

DSL is declarative, meaning annotations are used to declare the intent of the optimisa-

tions. The framework takes care of generating necessary code to express those intents.
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@NodeInfo ( shortName = ”+” )
@NodeChildren ({@NodeChild ( ” l e f tNode ” ) , @NodeChild ( ” rightNode ” ) })
public abstract class AddNode extends ExpressionNode {

public AddNode( SourceSect ion s r c ) {
super ( s r c ) ;

}

@Spec i a l i z a t i on ( rewriteOn = Arithmet icExcept ion . class )
protected long add ( long l e f t , long r i g h t ) {

return ExactMath . addExact ( l e f t , r i g h t ) ;
}

@Spec i a l i z a t i on
protected Big Intege r add ( B ig Intege r l e f t , B ig Intege r r i g h t ) {

return l e f t . add ( r i g h t ) ;
}

@Spec i a l i z a t i on ( guards = ” i s S t r i n g ( l e f t , r i g h t ) ” )
protected St r ing add ( Object l e f t , Object r i g h t ) {

return l e f t . t oS t r i ng ( ) + r i gh t . t oS t r i ng ( ) ;
}

protected boolean i s S t r i n g ( Object a , Object b) {
return a instanceof St r ing | | b instanceof St r ing ;

}
}

Listing 1.2: Hypothetical addition node using Tru✏e DSL

The DSL is implemented as a standard Java annotation processor to generate additional

source code during compilation [22]. Figure 1.2 shows the entire DSL processing pipeline.

As an example let’s look at a hypothetical addition node that can add arbitrary preci-

sion integer numbers and text together, shown in Listing 1.2. Starting from the top, the

@NodeChildren(...) annotation says that this AST node has 2 children called ”leftN-

ode” and ”rightNode”. The first add method takes in two Java long type variables and

adds them using ExactMath.addExact which throws an ArithmeticException when the

addition overflows. In that case the addition node will be rewritten to a more generic

one that uses BigInteger data type that has arbitrarily large precision. This is achieved

by the @Specialization annotation on the method. The annotation tells the Tru✏e

system to rewrite this node to a more generic one when that exception is thrown.

Every Tru✏e language has to provide a class that has the Tru✏e TypeSystem anno-

tation. The TypeSystem annotation contains an ordered list of types in which every type

precedes its super types. This means that the types that are more concrete come first
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in the list. The Tru✏e DSL uses this information to replace a node with a more general

one when the current specialization fails. A single guest language type could be modeled

with various Java level types, depending on what is actually needed. Tru✏e allows to

define implicit casts between di↵erent Java types.

In Listing 1.2, a single guest language type Number is simulated with either a Java long

or a BigInteger. Generally using a long is more performant, but in case precision larger

than 64 bits is needed, it automatically falls back on using BigIntegers.

Specialisations are guarded by various guards provided by the DSL in the form of at-

tributes on the @Specialization annotation [22]:

1. Type guards - In order for the specialization to hold the type of the arguments must

match those of the method parameters.

2. Method guards - The guards attribute defines the set of methods that need to

return true in order for the specialization to hold. An example of this is the

isString(left, right) value in Listing 1.2.

3. Event guards - The rewriteOn attribute says to trigger a re-specialization when a

specific exception occurs.

4. Assumption guards - The assumptions attribute defines a set of expressions whose

return types must be com.oracle.truffle.api.Assumption. When any of the

returned Assumption types are invalidated during runtime the node is triggered for

re-specialization.

An instance of the Assumption class can be obtained from the Tru✏e framework by

invoking the TruffleRuntime#createAssumption function. When running without the

Graal compiler (as described in 1.3) assumptions are essentially just wrapped boolean

flags that throw exceptions when invalidated. On GraalVM, when an assumption does

not hold anymore, it also takes care of invalidating all machine code generated based

on it. Invalidating machine code, also known as deoptimization, causes the execution to

switch back to interpreting the AST [23]. Thus execution never continues under faulty

assumptions, regardless whether the method is interpreted or running in machine code.

1.5. Discussion

For the purposes of this thesis Tru✏e already provides some necessary tools. We could

leverage the TruffleLanguage#parse method to re-parse the source code if needed.

The global context associated with the executing TruffleLanguage should be reused

when #parse is invoked again at a later stage, thanks to the way it is accessed via the

#findContext method. That should mean that all the state (global objects and stored

values) remain the same even after re-parsing.
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On GraalVM the existing Assumption mechanism can be reused to invalidate any code

executing the previous version of the source code. This theoretically should point towards

the possibility of having a very low overhead to the steady state performance of the ap-

plication, as everything that is related to reloading could be guarded by Assumptions.

As every method call in Tru✏e can result in cloning and inlining the RootCallTarget

nodes, then language implementations already have to be prepared that the execution of

a particular method restarts from an uninitialized AST state at any moment and build

their interpreters accordingly. This works to our advantage, as after reloading all the

method ASTs would be in an uninitialized state.

To sum up, Tru✏e is already built with a highly dynamic execution environment in

mind, where the interpreted AST is expected to change at any moment due to a change

in program behavior. Reloading can be seen as a node specialization to its newest ver-

sion. When source code changes then the whole AST, or parts of it if possible, should be

triggered to update. As an additional requirement, reloading should work correctly for

both the interpreted AST execution and compiled mode.

The next chapter will cover some of the tools Tru✏e itself provides to extend the frame-

work with new capabilities and evaluate if and how these could be reused to help language

implementers add reloading capabilities.
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Chapter 2

Reloading Simple Language

It is a good engineering practice to evaluate existing solutions before coming up with one’s

own. Following this guideline we started our quest of reloading by first investigating how

existing tools in the Tru✏e framework could be reused to help language implementers add

reloading to their languages. In this chapter we’ll outline the initial prototype for reload-

ing the Tru✏e Simple Language using the Tru✏e Instrumentation API. Key requirements

and techniques that were used to achieve reloading are outlined and described, together

with many shortcomings.

2.1. Simple Language Overview

Simple Language (SL) is a language created to demonstrate and showcase features of the

Tru✏e framework. Many new additions to the framework will first get implemented there,

so that other language implementers would have a place to learn. As the name hints, it is

a relatively simple programming language. SL is a dynamically strongly typed language

with C like syntax. Functions are first class citizens. SL supports arbitrary precision

integer numbers, booleans, Unicode characters, function types and the null type [24].

f unc t i on add (a , b ) { return a + b ; }

f unc t i on apply ( f , sum , i ) {
return f (sum , i ) ;

}

f unc t i on main ( ) {
i = 0 ;
sum = 0 ;
while ( i <= 10000) {

sum = apply ( add , sum , i ) ;
i = i + 1 ;

}
}

Listing 2.1: SL has first class functions

18



There are only a handful of built-in library functions such as println, readln and

nanoTime. Objects resemble JavaScript objects and just contain name/value pairs. List-

ing 2.1 showcases the simple C like syntax and how it handles functions as first class

citizens.

f unc t i on foo ( ) { p r i n t l n ( dynamic (40 , 2) ) ; }

f unc t i on main ( ) {
de f ineFunct ion ( ” func t i on dynamic ( a , b ) { r e turn a + b ; }” ) ;
foo ( ) ;
de f ineFunct ion ( ” func t i on dynamic ( a , b ) { r e turn a � b ; }” ) ;
foo ( ) ;

}

Listing 2.2: SL function redefinition

One interesting and relevant language aspect for this thesis is that SL also supports func-

tion redefinition via the built-in #defineFunction. Listing 2.2 shows how the function

#dynamic does not even exist when the program starts and is defined on line 4. Later

on it is redefined to subtract instead of adding. This shows that SL is already built with

the consideration that function definitions might change at any point during execution.

2.2. Requirements for Reloading

To proceed with reloading SL, the required high level steps can be grouped as:

1. Detecting source code changes - In order to reload anything the first step

is detecting source code changes to trigger a reload. Luckily Tru✏e associates a

SourceSection with every RootNode. A SourceSection is simply a contiguous sec-

tion of text within program code. Every SourceSection has a reference to a Source

that represents the whole original source code file under evaluation. A RootNode is

not required to have a SourceSection attached to it, but they are needed also by

other tools, such as the debugger support. Thus language implementers are likely

to add correct SourceSections to their RootNode implementations and indeed this

is the case for all Tru✏e based languages that were investigated.

There are many implementations of the abstract Source class in Tru✏e, but this

thesis focuses on the FileSource implementation, as it is the one used when eval-

uation of a source code file is triggered. From the FileSource one can obtain

access to the underlying java.io.File object. Thus detecting source changes can

be naively implemented by checking the lastModified value of the java.io.File

as it will be updated whenever a developer saves the file after making changes to

it.

2. Source code parsing - After detecting a source code change the next step is to

parse the code into an updated AST. The only o�cial API for invoking parsing is
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the TruffleLanguage#parse method that Tru✏e invokes when it starts evaluating

a Source. Parsing should not execute any user code, just create the tree of nodes

to represent the source.

3. Updating the execution tree - With the updated AST in place, the next step is

making sure that the running program actually starts to use it. As every method

in Tru✏e lives behind a CallTarget one approach would be to make sure that

CallTargets are invoked on their newest version.

This is easy in SL as all functions are kept in a global function registry. During

parsing all CallTargets are registered with their function names. If the function

has been registered before then the existing SLFunction node is modified to use

the new CallTarget. Function redefinition in SL relies on this behavior and it can

be reused for general reloading.

However this is a very implementation specific approach and not applicable in gen-

eral. A more general approach will be discussed in the next chapter.

2.3. Tru✏e Instrumentation API

To fulfill the requirements listed in Section 2.2, one of the first challenges is coming up

with a way of checking the current Source for changes during AST evaluation. In order

to achieve reloading one needs to inject some code into the running AST. This is where

the Tru✏e Instrumentation API was used to reload SL. It is specifically designed to o↵er

external tools access to the execution state of Tru✏e AST interpreters. Tru✏e Instru-

mentation API can be used to implement various tools such as debuggers, code coverage

trackers and even profilers [25, 26].

The API can be divided into two logical parts; one that the language implementer has to

implement in order to make the language instrumentable and the second part that the

tool developer uses to gain access to the executing AST state. The general approach of

the instrumentation API is to inject synthetic wrapper nodes into the AST that normally

just delegate to the nodes they wrap, but if needed also perform additional actions [25].

2.3.1. Probing

In practice the language implementer marks some AST nodes as instrumentable by

making TruffleLanguage#isInstrumentable(Node node) return true. If a node is

marked as instrumentable then Tru✏e creates a wrapper node for it by invoking the

TruffleLanguage#createWrapperNode(Node node) method. That method has to re-

turn an implementation of a WrapperNode interface for the given node. The language

implementer has to provide the correct implementation of WrapperNode for each instru-
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public class ReloadingFunctionInvokeASTProber implements ASTProber {
@Override
public void probeAST( Instrumenter instrumenter , RootNode startNode ) {

startNode . accept (new NodeVis i tor ( ) {
@Override
public boolean v i s i t (Node node ) {

i f ( node instanceof SLInvokeNode ) {
f ina l Probe probe = inst rumenter . probe ( node ) ;
probe . tagAs ( StandardSyntaxTag .CALL, null ) ;

}
return true ; // v i s i t a l l nodes

}
}) ;

}
}

Listing 2.3: Simplified custom ASTProber for SL

mentable node.

The wrapper nodes are created by walking the AST of a function when a CallTarget is

created for a RootNode. The language implementer has to provide an implementation of

an ASTProber to achieve this. The job of an ASTProber is to walk the tree of nodes and

create Probes for any nodes that could be of interest to tool developers.

A Probe is a binding between a location in the source code in an executing Tru✏e

AST and a dynamic collection of listeners that receive event notifications. Probes can

be also tagged with a SyntaxTag to mark that this AST location represents a specific

abstract action such as an assignment or a function call. This enables tool developers

to operate without specific knowledge about the AST nodes; they can simply state that

they are interested in being notified when a node representing an assignment statement

is executed. If the probes are properly tagged by the language implementer the tool

developer will get exactly what is requested.

Listing 2.3 shows a simplified ASTProber that was used to probe the function invoca-

tion nodes of SL and tag them as function calls. A custom ASTProber was needed as the

standard one provided by SL itself only tagged generic statements and assignments, but

no function calls.

2.3.2. Receiving Events

After the AST is populated with Probes, tool developers can attach two types of listeners

to them to receive events — SimpleInstrumentListener and StandardInstrumentListener.

Both of them contain methods that will be called before the wrapped node executes or
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after it returns (exceptionally or with a value).

The di↵erence between them is that the SimpleInstrumentListener only provides access

to the currently active probe, but StandardInstrumentListener additionally provides

access to the wrapped node and the current execution frame. Tool developers can imple-

ment these interfaces and carry out the necessary actions when the callbacks are invoked.

2.4. Initial Prototype

The initial prototype used the Tru✏e Instrumentation API to register a custom ASTProber

that tagged all function call nodes in the tree. For each probe tagged with the CALL syn-

tax tag an implementation of SimpleInstrumentListener is registered that enables us

to have a callback before every function call.

That callback obtains a reference to the underlying Source as described in Section 2.2.

As the java.io.File object is not directly accessible due to visibility limits, Java reflec-

tion is used to reflectively obtain the underlying file. Then in order to achieve reloading

before every SL function call:

1. Check the java.io.File time stamp. If it has changed goto 2. Otherwise proceed

with the function call as normal.

2. Clear any necessary caches using Java reflection.

3. Obtain a reference to the current TruffleLanguage object and invoke the #parse

method.

4. During parsing all function definitions are (re)registered to the function registry.

New functions are added and existing functions get a new CallTarget, thus on

next invocation the new method definition will be used.

As the Tru✏e framework was not designed with the reloading purpose in mind, many

of the needed parts of the system are not accessible by default. Luckily Java reflection

enables us to bypass these restrictions and allows carrying out the needed operations at

runtime. Similarly as mentioned in step 2 there are several caches along the way that

need to be cleared in order to correctly load and re-parse the Source. Otherwise the new

AST would be re-parsed based on cached source code or not at all.

2.5. Discussion

The approach outlined in this chapter achieves the desired behavior for the Tru✏e Sim-

ple Language. Whenever source code is changed the running evaluation of that code is

updated to reflect those changes. Unfortunately there are several steps in this prototype
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that are Simple Language specific and therefore do not necessarily apply to other Tru✏e

framework based languages.

The first problem is that this solution required a correct ASTProber to tag function

calls. As was seen then already SL did not provide such an ASTProber; a language imple-

mentation specific one had to be created. This could increase the amount of work that

needs to be done to add reloading to other languages.

Even if the language provides an ASTProber that tags function calls, there is no guarantee

about the location of the tag; it could be placed before or after the CallTarget invocation.

The exact location of the tagged AST node can usually be seen as an implementation

detail, but for reloading it’s an important aspect. If the tag is set before execution starts

the CallTarget can be swapped with a newer one, but when the CallTarget is already

executing, changing it requires knowledge about the specific language implementation

and its AST structure.

A bigger problem is the fact that thanks to the way SL was built we got reloading

requirement #3 (updating the execution tree) essentially for free. We did not need to do

anything after re-parsing as the function registry already contained updated and added

CallTargets. But that is a SL implementation detail that does not hold for other lan-

guages. In case other Tru✏e based languages follow the implementation pattern of SL,

with regards to a global function registry that supports redefinition, then the approach

outlined in this chapter can be used to modify and add functions. But in general the

initial prototype is not a generic solution that language implementers can use to add

reloading capabilities. Despite this, it did highlight many of the upcoming problems and

give better insight into the Tru✏e framework.

The above problems left us no other choice, but to continue with looking for an al-

ternative reloading strategy; one that would require as little language specific knowledge

as possible and would universally address the problem of updating the execution tree.
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Chapter 3

Tru✏eReloader

The previous chapter left us looking for a better reloading strategy. The approach using

the Tru✏e Instrumentation API was good in that it provided a clear injection point into

the framework. The downside was that it did not provide a general way of updating

the running AST. Having been inspired by the Instrumentation API we formulated a

collection of tricks that together form the tool called Tru✏eReloader. The main com-

ponents/approaches of Tru✏eReloader are: Proxy CallTarget, CallTarget Identity and

Partial AST Replay.

Figure 3.1: Default method invocation

in Tru✏e [24]
Figure 3.2: Tru✏e method invocation

with Proxy CallTarget

3.1. Proxy CallTarget

Figure 3.1 shows the default control flow of a method invocation in Tru✏e. A call site,

in the implemented programming language, invokes a call node that was obtained from

the Tru✏e runtime. The call node then in turn invokes the corresponding CallTarget,

which will start executing the RootNode of that CallTarget. This indirection through

the Tru✏e runtime for every function call is needed to detect and trigger optimisations

such as inlining or scheduling for compilation. The intermediate Tru✏e runtime nodes

keep the necessary metadata to decide whether a method is hot enough or not for com-

pilation.
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Every call node needs a CallTarget that it is meant to invoke. The CallTarget in turn

is obtained from the Tru✏e runtime by calling the TruffleRuntime#createCallTarget,

which expects the RootNode of the CallTarget as an argument. CallTargets are usually

created during the parsing phase of the evaluation, before any source code is executed.

Whenever the parser finishes parsing a function definition it creates a CallTarget for

the method and stores it.

Tru✏eReloader leverages the fact that every invocation in Tru✏e goes through the above

mentioned control flow by injecting a proxy node into it. Figure 3.2 shows the same

flow when a proxy CallTarget is added. When Tru✏e thinks it is invoking the actual

CallTarget it is instead calling a dummy proxy, quite similarly to the Tru✏e Instrumen-

tation API. Unlike the Instrumentation API, the proxy nodes are created automatically

by modifying the needed Tru✏e runtime method to wrap the returned CallTargets

with a proxy. This approach ensures that Tru✏eReloader receives a callback before any

method invocation.

Before every invocation the proxy CallTarget checks whether the Source of the actual

CallTarget has changed. In case it has changed Tru✏eReloader invokes the language

parsing method. During parsing new CallTargets are created, which are also wrapped.

At this point Tru✏eReloader has created two ASTs, parallel universes, both containing

our proxies.

The next task is to map the old CallTarget to its counterpart in the newly constructed

AST. In the simplest option this can be done by parsing the function name from the

underlying SourceSection of the RootNode. As mentioned in the previous chapter,

the SourceSection points to the continuous section of source code that represents this

AST node. For RootNodes it is the method declaration in the source code. Thus Truf-

fleReloader can simply parse the method name from the method declaration. Using this

simple strategy one can match the old and the new CallTarget by the underlying method

name and redirect the proxy to the newest known CallTarget.

In practice this means that Tru✏eReloader has to keep a reference to every CallTarget

as they are recreated all at once during parsing, but matching happens later, when the

proxy is actually invoked. In Tru✏eReloader, whenever a proxy CallTarget is created,

a java.lang.ref.WeakReference to the wrapped CallTarget is stored in a mapping

with the parsed method names as keys.

Weak reference are kept to avoid creating additional memory overhead. The assump-

tion is that if a CallTarget is needed, the AST itself or the global context holds a strong

reference to it. Whenever a CallTarget is not needed anymore, the AST removes the

reference and it can be reclaimed.
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Now Tru✏eReloader has all the needed pieces to achieve basic reloading:

1. Proxy CallTarget detects a source code change and triggers parsing.

2. Parsing creates new proxy CallTargets. Tru✏eReloader determines their corre-

sponding method names and updates the reference mapping with the newer values.

3. After parsing, control flow is redirected to the (potentially) new CallTarget.

However as stated, this strategy is limited by at least two problems:

1. Using method names, which are parsed directly from source code, as keys in the

mapping is not a viable solution for many real programming languages due to

existence of di↵erent scopes.

2. In practice this strategy will also not allow us to rename methods or add new ones.

Thus its functionality would be similar to the standard JVM HotSwap [11], which

is limited to updating statements inside methods.

These problems are addressed by the remaining two components of Tru✏eReloader.

3.2. CallTarget Identity

Besides using named functions to organize code, many programming languages also have

notions of classes or modules that make up larger chunks of code; usually with the goal of

helping the programmer navigate on higher abstraction levels. Say a developer is working

on two modules. One for calculating trigonometry values and another for modeling hu-

man social behavior. It is not impossible for both of these modules to contain a method

called #sin. The first calculates the sinus function and the other that makes a person

commit a bad deed.

The reloading strategy outlined above has no way of distinguishing between the two

and after a reload will start redirecting invocations for both of these methods to only

one of them. The underlying problem is that programming languages can have arbitrary

ways to group functions together. Tru✏e does not impose any concrete structure here,

and rightly so, as one of the goals of Tru✏e is to be able to support a wide range of

programming languages.

The problem boils down to understanding the context of the function definition. The

goal is to uniquely identify a CallTarget so that it can be correctly matched with its

newer counterpart on reload. Unfortunately there is no way of achieving this for any

programming language. Thus Tru✏eReloader leaves this burden to the language imple-

menter as only they can tell how to uniquely identify a CallTarget from others for their

language.
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CallTarget Identity simply means that every Tru✏e based language has to provide an

unique stable identity for every CallTarget. The identity has to be globally unique,

so that functions that have the same name, but belong to di↵erent context (classes or

modules) are not mixed up. The identity also has to be stable in that the same function

in the same context will always yield the same identity. As an example for Java a good

identity would be the fully qualified class name where the method is defined together

with the method signature.

A correct identity will ensure that Tru✏eReloader does not mix methods that have the

same name, but are defined in di↵erent modules. One could safely modify and invoke the

trigonometry #sin implementation without worrying about a potential transgression.

3.3. Partial AST Replay

After the problem of methods with the same name is solved the next challenge involves

renaming and adding methods. While the solution described so far can be useful in and

of itself, it is limited to supporting small fixes within method bodies. Ability to refac-

tor existing methods into smaller, more concise, ones is considered a good programming

practice and can make the program easier to read and understand [27, Chapter 3].

The reason the above solution does not work for renaming and adding methods is again

dependent on the language implementation details. For Simple Language the solution al-

ready supports also renaming and adding methods. As SL keeps all functions in a global

registry, which is populated fully during (re-)parsing (as mentioned in Section 2.5), then

both renamed and new methods will be registered. During execution SL will successfully

find and be able to invoke those functions.

In languages that have notions of di↵erent scopes the implementation cannot be as sim-

ple. For example in both Python and Ruby there are defined rules for method lookup,

where they usually start searching from the most concrete scope, moving up the hierarchy

to broader scopes. The method is returned from the first scope that contains it.

We observed that when such languages are implemented in Tru✏e they will do the pop-

ulation of scopes as first steps of the AST. As the tree is parsed from source code, the

first nodes in the AST take care of inserting function references to the correct scopes,

depending on the language semantics. With the current strategy when Tru✏eReloader

redirects execution to a reloaded CallTarget that tries to invoke a new method it would

fail to look up the new method as its reference has not been written to the appropriate

scope.
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Figure 3.3: Illustration of Partial AST Replay

To overcome this obstacle Tru✏eReloader employs the technique called Partial AST Re-

play. Partial AST Replay simply means that after re-parsing, the new AST will be

partially executed up to a certain point. Similarly to replaying only the first part of a

music track. This will allow us to execute all the nodes that write function references to

the various scopes again, which will ensure that all new methods are registered and later

found.

Figure 3.3 illustrates the process. The left side of the image shows the initial AST,

with first seven executed nodes drawn out. An important note here is that, not all exe-

cuted nodes go through the method invocation flow; most of them just directly call the

#execute method on some other node. On Figure 3.3 yellow boxes illustrate the nodes

that invoke a method, which means those are the nodes that also go through our proxy

CallTargets.

Say a programmer added a couple of Python methods to the running program. Af-

ter proxy CallTarget has triggered a reload, the new AST contains additional nodes

(colored green). Before redirecting execution to the new CallTarget from our proxy

node, Tru✏eReloader also starts executing the new AST.

At a certain point, called the replay barrier, it stops the execution and returns control

flow to the old AST. This is achieved by throwing an exception when the replay barrier

is hit, which will be caught in the proxy node. When the proxy node that triggered the

reload returns, Tru✏eReloader has re-parsed the source code and also partially executed

the new AST. Assuming that the replay barrier is at the correct place, then all necessary

scopes should be repopulated with (potentially) new function references.

Of course the knowledge about which nodes to re-execute and where to stop the re-

play is once more language implementation specific. There can be no common replay

barrier, as every programming language can define scopes with arbitrary structure and

implementation details. It is left up to the language implementer to provide the correct

location for stopping the replay.
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public interface LanguageReloader {

St r ing mimeType ( ) ;

Suppl i e r<Cal lTarge t Ident i ty> ge t Iden t i t yFor ( RootCal lTarget
c a l lTa rg e t ) ;

Rep layContro l l e r ge tRep layCont ro l l e r ( ) ;

default Predicate<Str ing> acceptCodePath ( ) {
return ( path ) �> true ;

}
}

Listing 3.1: Tru✏eReloader SPI main interface

3.4. Tru✏eReloader SPI

Both CallTarget Identity and Partial AST Replay require some input from the language

implementer. To achieve this, Tru✏eReloader provides a Service Provider Interface (SPI)

that the language implementers, wishing to add reloading to their language, are expected

to implement. Listing 3.1 shows the main interface that is the touch point between Truf-

fleReloader and a given programming language.

The first method #getDescriptorFor has to return a unique CallTargetIdentity for

a given RootCallTarget. CallTargetIdentity is a concrete class that consists of just

two java.lang.String fields for the context and method names. #getDescriptorFor

returns a Supplier to communicate the fact that CallTargetIdentitys are retrieved,

when they are really needed for the first time, which is only after the Partial AST Replay

has finished.

Determining the identity of a CallTarget after the AST replay is needed to give the lan-

guage implementation a chance to correctly initialize the required metadata to uniquely

identify the CallTarget. The suppliers of CallTargetIdentitys are stored when new

CallTargets are created during (re-)parsing, but at that time it might not yet be possible

to know the unique identity due to missing metadata. The idea is that when the AST

replay finishes all the necessary metadata is present, so that all RootCallTargets can be

uniquely identified.

Listing 3.2 shows the entire ReplayController interface that language implementers

also have to implement. It is used to define when to stop the Partial AST Replay. Addi-

tionally it provides two life cycle methods that language implementers can use to carry

out additional actions. The #beforeStart method is called before the source code is

re-parsed, so it can be used to clear some internal caches or carry out other necessary
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public interface ReplayContro l l e r<T extends ExecutionContext> {

default void be f o r eS t a r t (T context , Source source , Object [ ] currentArgs ) {}

default void a f t e rS top (T context , Source source , Object [ ] currentArgs ) {}

boolean shouldStopAt ( RootCal lTarget executab l eCa l lTarge t ) ;

}

Listing 3.2: ReplayController controls the Partial AST Replay

preparations. Similarly, the #afterStop method is called when AST replay has stopped,

but before forwarding execution to the new AST. It can be used to run any migration

steps needed to transfer items between the old and the new ASTs.

Tru✏eReloader normally proxies all functions declared in a file based Source, but often

the language’s standard library can also be implemented in the language itself. It is not

usually desirable to reload the standard library, so the Tru✏eReloader SPI provides a

way to exclude creating proxies for certain source code based on its canonical file path.

The #acceptCodePath is an optional method that can be used to control whether to

create proxies for the functions declared in the given source code file or not.

Finally, Tru✏eReloader is left with the problem of finding and initiating the LanguageReloader

instances implemented by di↵erent languages. We rely on the standard JDK utility

java.util.ServiceLoader, which was designed for just such use cases; to find and load

service providers that implement a predefined service interface.

To register a service provider, the language implementer has to create a provider con-

figuration file. It has to be stored in the META-INF/services directory of the Tru✏e

language’s JAR file. The name of the configuration file has to be the fully qualified class

name of the service provider, in which each component of the name is separated by a

period [28]. For Tru✏eReloader, the file name has to be:

com.poolik.tru✏e.reload.spi.LanguageReloader.

In that provider configuration file the language implementer has to write the fully qual-

ified class name of the service provider class. On startup Tru✏eReloader calls the

ServiceLoader#loadmethod to find all registered implementations of the LanguageReloader

interface. The correct LanguageReloader for a language is chosen by matching the MIME

type returned by the #mimeType method to the MIME type of the source code file.

Tru✏e language implementers should already be familiar with the way ServiceLoaders

work as Tru✏e itself also uses the same mechanism for detecting the MIME type of

di↵erent source code files. Based on this file MIME type Tru✏e knows which language

implementation from all the available ones it should use for evaluation, as each Tru✏e
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language also declares its expected MIME type.

3.5. Discussion

We introduced Tru✏eReloader, a tool consisting of three main approaches to achieve

reloading behavior that can be applied to various languages implemented using the Truf-

fle framework. Proxy CallTarget makes sure that Tru✏eReloader can execute reloading

checks before every method call and gives it a suitable place for forwarding the execution

flow to the new AST.

CallTarget Identity helps by making sure that Tru✏eReloader always forwards to the

correct new methods and Partial AST Replay tries to make sure that Tru✏eReloader

can support adding and removing methods as well. Parts of the solution that depend

on the language implementation details were pushed down to the language implementer

level by requiring them to implement the Tru✏eReloader SPI.

While these approaches form the basis of Tru✏eReloader, there are many implemen-

tation specific challenges that were not yet discussed. As outlined so far, Tru✏eReloader

works when Tru✏e is running in the interpreted mode (as described in Section 1.3). De-

tails about how to support Tru✏eReloader on the GraalVM, with minimum overhead,

are the topic of the next chapter.
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Chapter 4

Implementation Challenges

GraalVM is where the Tru✏e framework really shines and is able to provide great perfor-

mance for AST interpreters. The two modes of running Tru✏e are backed by two di↵erent

implementations of the Tru✏e APIs. This presents a challenge for Tru✏eReloader, be-

cause the implementation of Tru✏e that runs with Graal di↵ers substantially from the

default one.

This chapter explains how Tru✏eReloader was modified to account for the di↵erent im-

plementation of Tru✏e. The main approaches remained the same, just the injection

points had to be changed. Besides that, the implementation was reworked to get the

best possible performance from Graal when running with Tru✏eReloader. Finally, many

implementation details about overcoming most important technical challenges will be

explained to provide a thorough overview.

Figure 4.1: Tru✏eReloader injection

point before

Figure 4.2: Updated Tru✏eReloader in-

jection point

4.1. Reworking Tru✏e Hooks

Figure 4.1 shows how Tru✏eReloader initially injected itself between the caller and callee.

Every CallTarget created in the Tru✏e framework was automatically wrapped in a

proxy. It provided a convenient place to both redirect execution and to get a reference

to every (re)created CallTarget.
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Unfortunately the same strategy will not work on GraalVM, simply because it makes

certain assumptions about the caller and callee classes. Graal assumes the CallTarget

implementation will be of a concrete class and will e↵ectively break the CallTarget con-

tract by skipping the Object call(Object... arguments) method invocation; instead

it will call a method on the anticipated class directly.

More modifications to the Graal Tru✏e implementation are required to make the previous

strategy work. Seeing that Graal has a much closer relationship between the caller and

callee we thought it better to change the integration point. The goal was to decrease the

amount of changes required to Tru✏e and hopefully reduce future incompatibilities, when

Graal developers decide to do further optimisations/modifications between the caller and

callee nodes.

The only remaining option was for Tru✏eReloader to intercept the call on the language

invoke node and Tru✏e call node boundary. Figure 4.2 illustrates the new injection point.

However, Tru✏eReloader still needs to be aware of each created CallTarget so a second

hook was inserted before Tru✏e returns the CallTarget to enable us to keep a weak

reference to it.

The two hooks help us achieve the same behavior as before. The downside of the new

approach is that it requires more integration code. There are two alternative call nodes

that language implementers can use — direct and indirect; both of them need to be

proxied to correctly support reloading. When previously we had to implement and proxy

a single method call from the CallTarget interface then now we need to delegate all of

the method calls of the call node to the wrapped nodes.

4.2. Low Overhead Reloading

Ideally Tru✏eReloader would not introduce any overhead to the peak steady state per-

formance of the Tru✏e-based language. This is impossible when Tru✏e runs in the

interpreted mode, but on GraalVM leveraging the Assumptions used in node rewriting

help us minimize the overhead when nothing has actually changed.

The proxy call nodes have to do two things for each invocation:

1. Check whether we are currently running a Partial AST Replay. If yes, then also

check whether we have to stop the replay at the current invocation, otherwise

proceed.

2. Check whether the underlying Source has changed. If yes, then trigger a reload

and replace the current wrapped call node with a new one that has the latest

CallTarget, otherwise proceed.
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One can see, however, that if nothing has changed, there is no need to do anything. Truf-

fleReloader assumes that the Source has not changed and that it is not running a Partial

AST Replay. Until the assumptions are invalidated Graal should be able to optimize

away all of the actions performed when the assumptions do not hold. Tru✏eReloader

hooks and their associated overhead are e↵ectively removed.

To invalidate the assumptions, Tru✏eReloader creates a background thread that peri-

odically monitors all the source files for changes. Whenever a change is detected the

background thread invalidates the sourceFileNotChanged assumption associated with

the changed source file. This will cause Graal to deoptimize the compiled code for that

source and revert back to interpreter. The interpreter then triggers the correct reloading

behavior.

4.3. Partial Re-Parsing

Tru✏eReloader does not parse the entire program again, but only the changed files. The

reason behind this decision is simple — parsing only changed files is faster than starting

to re-evaluate the entire program. The risk of using incremental re-parsing is that the

partially produced AST may potentially violate assumptions made by language imple-

menters, but it works well in practice for the present set of Tru✏e languages.

One of the problems is that the partial AST will only have nodes representing the method

and module definitions declared within the changed files. However, the global context

associated with the TruffleLanguage, which remains the same after parsing, still has

references to all of the method and module definitions. Similarly, Tru✏eReloader will

have a reference to the newest versions of all CallTargets.

Another challenge concerns multi-file programs, where the language implementation might

cache the imported module definitions. This could result in old versions being used for

importing or that re-parsing will not happen due to cache hits of the module definitions.

As a solution, LanguageReloaders can use the #beforeStart and #afterStop life cycle

methods of the ReplayController to remove the needed items from the global cache of

imports.

There might be other potential problems, when the language implementation assumes

a special role for the source file where evaluation starts. Implementations might implic-

itly tag it as a main module in which case that knowledge cannot be used as part of the

CallTarget stable identity, as during partial re-parsing new modules will be marked as

main. Instead, the file name could be used as prefix to the identity.
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4.4. Handling Multiple Threads

Tru✏e language implementations are free to build any concurrency primitives they pre-

fer, with the obvious constraints of the underlying JVM. The consequence of this is that

Tru✏e languages can execute methods in several threads and therein can trigger a reload

in any of those threads. This complicates reloading because Tru✏e remembers the thread

where source evaluation was started and keeps a reference to the created metadata ob-

jects, such as the global language context, in a thread local variable. If the reloading

thread is not the same as the one where evaluation was started, then Tru✏e does not

have access to the thread local metadata and re-parsing results in errors.

To support reloading from any thread Tru✏eReloader keeps its own reference to the

thread local metadata. The reference is obtained when Tru✏eReloader is first initiated

for a given Source. When a reload is triggered, Tru✏eReloader simply sets the current

thread local to the initial value; making sure that Tru✏e can access the right metadata

context during reload.

4.5. Shape Matching

As mentioned in the Introduction, Tru✏e provides an Object Storage Model (OSM) for

implementing types and objects. The implementation of Tru✏e objects uses two separate

parts; a Shape defines the overall structure of the object, similar to a Java class, and Ob-

ject storage that contains the per-instance data, similar to a Java object in the heap [3].

The object storage has a predefined number of slots (fields on a class) for primitive types

and reference types and a reference to its current shape that knows what properties are

stored in which slot.

A common problem LanguageReloaders have to solve for languages using the OSM is

reflecting the changes to class definitions. This might happen automatically, when the

language implementation is already built with support for class redefinition. For example

all classes in Ruby are always open for extension; a single class definition can be spread

out over several files, all of which extend the same class definition. This means that

for the Ruby implementation all of the class definitions will automatically be up to date

after the reload, because the language modifies the current shapes of objects instead of

creating new ones. For languages that normally do not support class definition changes

at runtime, new shapes are created on reload for the updated classes, which means that

existing objects keep using the old shapes.

Recall that in Tru✏e-based languages all state is typically kept in the context of the

evaluation. LanguageReloaders can use the life cycle methods of the ReplayRecorder

to recursively iterate over all of the objects in the context and update object storage
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instances to point to their newest shape. This requires that it is possible to match the

old and the new shape of a class definition, which can usually be done based on the class

name. The details are highly dependent on the language implementation, but the general

approach remains the same.

By iterating and updating all objects to point to their newest shapes Tru✏eReloader

can successfully reload class definitions for existing objects as well. All new objects in

the updated AST are created using the newest shape; no additional work needed.

4.6. Tru✏eReloader Agent

To enhance the usability of Tru✏eReloader the required hooks are automatically injected

into the Tru✏e framework classes by means of a Java agent [29]. A Java agent consists of

a JAR file that specifies the agent class which will be loaded at the start of the agent in a

manifest attribute. The JVM will invoke the premain method of the agent class handing

it a reference to an Instrumentation API object.

The Instrumentation interface provides services needed to instrument Java code in

the running JVM. Java agents are used extensively by many existing tools in the market

to enhance applications with various capabilities, such as profiling1, aspects2 or reloading

itself3. Tru✏eReloader leverages the Instrumentation API to automatically transform

Tru✏e runtime classes to insert the required hooks. All the user has to do to enable

Tru✏eReloader is specify an additional JVM startup argument:

-javaagent:/path/to/truffle-reloader.jar.

The agent is built by using an existing Java code generation library called Byte Buddy [30].

Byte Buddy simplifies the creation of Java agents and the registration of class file trans-

formers to modify the needed Tru✏e classes. It provides an Java API for modifying

classes that works on a higher abstraction than manual Java bytecode generation and is

thus easier to use.

public interface Patcher {

St r ing className ( ) ;

AgentBui lder . Transformer t rans fo rmer ( ) ;
}

Listing 4.1: Tru✏eReloader Patcher interface

If the support for Tru✏eReloader is added by someone other than the original language

author, it might be necessary to tweak the implementation in some places in order to

1http://zeroturnaround.com/software/xrebel/
2http://www.eclipse.org/aspectj/
3http://zeroturnaround.com/software/jrebel/
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properly implement the SPI. For these purposes, Tru✏eReloader provides an experimen-

tal API to hook into the Tru✏eReloader Agent to register additional bytecode modifi-

cations. To transform additional classes, a class has to implement the Patcher interface

(shown on Listing 4.1) and made discoverable via the same ServiceLoader mechanism

as the LanguageReloader. Every patcher can currently register a Byte Buddy bytecode

Transformer for a single class. All patchers are applied when the Tru✏eReloader Agent

starts up.

4.7. Discussion

As was discussed, there are many important implementation details to making the pro-

posed approaches work in practice. The devil is in the details and language implemen-

tations in Tru✏e have quite a bit of leeway in their decisions, which makes building a

generic reloading solution a bit harder.

With the above described modifications in place Tru✏eReloader can run on GraalVM and

should have minimal, if any, overhead for the language runtime. The next chapter follows

with some benchmarking results to analyze the actual overhead and describe reloading

e↵ects on performance. Additionally we detail the covered reloading use cases and the

testing harness created to validate them.
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Chapter 5

Evaluation

Let us now turn our gaze towards investigating the generality and soundness of the

developed approaches. We present an overview of the supported reloading scenarios at the

time of writing and an initial investigation into the performance e↵ects of Tru✏eReloader

hooks. We evaluate Tru✏eReloader with regards to following Tru✏e-based languages:

1. ZipPy1 — A prototype Python 3 interpreter, written largely by Wei Zhang as part

of his PhD thesis [31].

2. JRuby+Tru✏e2 — A high performance Ruby 2.2 implementation, written largely

by Chris Seaton as part of his PhD thesis [32].

3. Graal.js3 — An ECMAScript 262 version 2015 compliant JavaScript engine devel-

oped by Oracle Labs.

4. Simple Language — Language to showcase the Tru✏e framework, introduced in

Chapter 2.

For each of the listed languages, we implemented the Tru✏eReloader SPI and packaged it

into the Tru✏eReloader Agent. Reloading will work out of the box when Tru✏eReloader

is enabled for those languages.

5.1. Functionality

As language implementations can vary greatly in their details, we opted to writing tests

that cover certain reloading scenarios in di↵erent languages to prove that the described

approaches are viable and work in practice. Table 5 lists all of the currently tested and

supported use cases. Many of them are not applicable for SL as it does not have the no-

tion of classes. Similarly the version 0.10 of Graal.js does not support the ECMAScript

1https://bitbucket.org/ssllab/zippy
2https://github.com/jruby/jruby/tree/truffle-head
3http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads/index.

html
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Table 5.1: Tested and supported reloading use cases across di↵erent languages
Use case SL ZipPy JRuby+Tru✏e Graal.js

Changing a function y y y y

Changing multiple functions y y y y

Adding a new function y y y y

Multiple consecutive reloads y y y y

Changing global variable definition n/a y y y

Adding a new global variable definition n/a y y y

Reloading functions with same name n/a y y y

Adding a new class n/a y y y

Changing a static method n/a y y y

Changing an instance method n/a y y y

Adding a new instance method used

from variable

n/a y y y

Adding a new instance method used

from new object

n/a y y y

Adding a new instance method used

from field

n/a y y y

Adding a new instance method used

from global variable

n/a y y y

Multiple file reload, changing a method

in dependency

n/a y y n/a

Multiple file reload, adding a new

method in dependency

n/a y y n/a

Multiple file reload, changing an in-

stance method in dependency on exist-

ing object

n/a y y n/a

Multiple file reload, changing an in-

stance method in dependency on new

object

n/a y y n/a

6 modules, so multiple file tests can not be run.

To test these use cases a simple reloading testing harness was developed that controls the

evaluation of the program via standard I/O. Tests are written as simple programs with

multiple versions of the program in di↵erent folders named versionN, where N stands for

the version number; however, some changes to ZipPy and JRuby+Tru✏e were needed to

make the testing harness work.

For JRuby+Tru✏e we re-implemented the puts keyword to use the Java System.out

output stream, as it defaulted to a native process stream that could not be controlled from
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tests. For ZipPy we implemented a FileTypeDetector to make the implementation work

using the PolyglotEngine abstraction. We also changed the PythonLanguage#parse

method to use the previously created context instead of creating a duplicate on each

invocation. Changing the #parse method was needed to make sure the assumptions of

Tru✏eReloader hold, but it can be seen also as a bug in the language implementation

since there is no need to create a duplicate context in #parse.

When the test program signals a version switch by writing a special token to the stan-

dard output, the harness copies over all the source code files from the next version to

the working directory. The program waits for this to finish by trying to read from the

standard input after triggering a reload, which will block until the switch is complete.

This simulates the behavior of a programmer making edits in source code, saving the file

and triggering the new code to execute (by a HTTP request for example).

The tests verify that the correct behavior was achieved by validating the expected output

of the program. All tests loop n times and output something at each iteration. Reloads

are triggered at specific iterations, after which the output changes in the new version

of the code. As reloads happen at known times, tests simply validate whether the real

program output matches the expected when the program finishes.

5.2. Case Study

Figure 5.1: Overview of the sample application

To verify Tru✏eReloader’s usefulness in a real world scenario, we tried running and reload-

ing a simple open source Ruby web application4. At the time of writing JRuby+Tru✏e

can not run Ruby applications that leverage native extensions, so we had to find a simple

enough application to test with. The test application is a web UI for a file based task

management system. It parses a file containing tasks on each line and presents them in

an easily navigable form. Figure 5.1 shows the main screen of the application.

4https://github.com/edavis10/sinatra_todo
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Within the application we did a series of fixes/improvements that a developer might

be required to do without having to restart the application once. The initial application

was forked and our fixes pushed there5.

5.2.1. Fixing Task Updating

Listing 5.1 shows the change needed to fix updating task descriptions. The bug was

caused by directly writing the array of tasks back to the file, which resulted in the file

containing a single array of tasks, instead of the tasks themselves on each line. Without

the fix the application corrupts the tasks file on a single task update as subsequent parsing

of the file will fail.

d i f f ��g i t a/ l i b / todo . rb b/ l i b / todo . rb
@@ �120 ,7 +120 ,7 @@ c l a s s Todo

begin
tmp = Tempfi le . new(” todo ”)

� tmp . wr i t e ( f i l e d a t a )
+ tmp . wr i t e ( f i l e d a t a . j o i n )

Listing 5.1: Code di↵ to fix task updating

5.2.2. Hiding Done Priority

The menu at the top of the application has links for seeing all tasks, active tasks, adding

a new task and dynamically generated links for all of the defined priorities. Done tasks

are marked with the X priority, but the application generated a link for looking at the

done priority as well. Listing 5.2 shows the changes we did to stop generating the link for

done items. We added a new utility method to distinguish done priorities and refactored

an existing method to use the new utility to reduce code duplication.

d i f f ��g i t a/ l i b / todo . rb b/ l i b / todo . rb
@@ �14,3 +14 ,3 @@ c l a s s Todo

de f a c t i v e ?
� s e l f . p r i o r i t y && ! s e l f . p r i o r i t y . match ( CompleteProir ityRegex )
+ s e l f . p r i o r i t y && ! Todo . i s done ( s e l f . p r i o r i t y )

end
@@ �25,3 +25 ,7 @@ c l a s s Todo

end
�
+
+ def s e l f . i s done ( p r i o r i t y )
+ p r i o r i t y . match ( CompleteProir i tyRegex )
+ end
+

def s e l f . a l l

5https://github.com/poolik/sinatra_todo
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@@ �72,3 +76 ,3 @@ c l a s s Todo
end

� p r i o r i t i e s . uniq . s o r t
+ p r i o r i t i e s . uniq . s o r t . s e l e c t { | p r i o r i t y | ! Todo . i s done ( p r i o r i t y ) }

end

Listing 5.2: Code di↵ to hide done priority link

5.2.3. Marking Tasks as Done

The initial application had no means for marking a task as done, so it was implemented.

To support this use case we needed to change the template to include a new link for each

task and add a new request handler to mark the task as done. Listing 5.3 shows all of

the code changes needed to do mark tasks as complete.

d i f f ��g i t a/ l i b / todo . rb b/ l i b / todo . rb
@@ �26,2 +26 ,7 @@ c l a s s Todo

+ de f done
+ s e l f . r aw l i n e [ 0 ] = ’X’
+ update ( s e l f . r aw l i n e . chomp)
+ end
+

def s e l f . i s done ( p r i o r i t y )
d i f f ��g i t a/ s i n a t r a t odo . rb b/ s i n a t r a t odo . rb
@@ �35,2 +35 ,6 @@ he lp e r s do

end
+
+ def done l i nk ( todo )
+ ”<a c l a s s =’ small ’ h r e f =’/done/#{todo . l ine number } ’>(mark as done )</a>”
+ end
end

@@ �75,2 +79 ,8 @@ end

+get ’/ done / : l i n e ’ do
+ @todo = Todo . f i nd ( params [ : l i n e ] )
+ @todo . done
+ r e d i r e c t ’ / ’ , 302
+end
+
put ’/ update ’ do
d i f f ��g i t a/ views / index . erb b/ views / index . erb
@@ �14,2 +14 ,3 @@

<%= ed i t l i n k ( todo ) %>
+ <%= done l i nk ( todo ) %>
</ l i >

Listing 5.3: Code di↵ to add ’mark as done’ button
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Figure 5.2: E↵ects of Tru✏eReloader on steady state performance

5.3. Benchmarks

To measure the overhead of Tru✏eReloader hooks we reused the benchmarking harness

created by Chris Seaton to evaluate the JRuby+Tru✏e implementation [33]. The bench-

marks focus on measuring peak temporal performance, otherwise also known as steady

state. The term loosely means the peak performance of an application after it has had

time to optimize and stabilize the AST.

The benchmarks include a combination of synthetic benchmarks from the Computer

Language Benchmarks Game as well as parts from various Ruby libraries, stressing dif-

ferent aspects of the language [32].

Thanks to the use of Assumptions Tru✏eReloader has a very low overhead on the steady

state performance on Graal. Figure 5.2 shows the results of running a set of synthetic

benchmarks on GraalVM with Tru✏eReloader enabled (colored green) compared to the

default GraalVM runtime (colored red). Some benchmarks show a small overhead whereas

some show an increase in performance. We attribute this to the non-deterministic nature

of Graal, where the hooks of Tru✏eReloader might have caused it to better optimize

some code paths.
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Figure 5.3: Overhead of reloading running code. The left chart shows the matrix multi-

plication and the right one the mandelbrot benchmark. The x-axis shows the iteration

number and the y-axis the iteration time in seconds.

Additionally we plotted the overhead of triggering a reload mid benchmark. Figure

5.3 illustrates the overhead of doing a reload. We executed the matrix-multiply and

mandelbrot benchmarks 60 times and triggered a reload after the 20th and 40th invo-

cation. As expected the first invocation of a reloaded code is slow, as the AST is in an

uninitialized state, but after a few invocations the tree is compiled again and achieves

the same steady state performance as before.
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Conclusions

This thesis started with the goal of figuring out whether the Tru✏e framework can help

language implementers in adding reloading to their languages. As we’ve seen there are

several ways how Tru✏e can be adapted to meet this goal. After several iterations and

refinements, we ended up with a reusable reloading core, called Tru✏eReloader, that

di↵erent languages can hook into to add the capability for dynamic updates.

Plugging new languages into Tru✏eReloader requires some language-specific implemen-

tation, but these e↵orts are negligible compared to the work required to implement

a language, with built in reloading support, that performs on par with the Tru✏e

framework. All that language developers have to do to support reloading is imple-

ment the Tru✏eReloader SPI and make their implementation discoverable. Our system

even allows external developers to add reloading support for a language, if needed, as

LanguageReloaders and language implementations are not tightly coupled.

Initial benchmarking showed that thanks to the use of the Assumption mechanism pro-

vided by Tru✏e, our solution has close to zero overhead on GraalVM. Each reload incurs

an initial performance penalty, but in time the system should be able to achieve the

same peak performance as before the reload. Having a low impact on performance is the

first step towards being able to keep Tru✏eReloader running on production systems to

achieve high availability, with the option to apply fixes when needed. Reloading produc-

tion systems would, of course, require additional and thorough testing, but low impact

on performance is important also during development; to achieve a fast feedback cycle.

Tru✏eReloader works thanks to the fact that all programming languages have units

of executable code, what we call functions, where we can redirect the execution flow to

newer versions of said functions. Reloading all other language features depend more on

the implementation details of that language, thus the di�culties in supporting reloading

lie in di↵erent areas. For some languages, updating class definitions requires no addi-

tional work (JRuby+Tru✏e for example), but others require more work to be done after

the AST replay.

Having successfully integrated Tru✏eReloader with four di↵erent language implemen-

tations, we have a strong belief that the system is in fact portable and reusable and
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that the underlying reloading techniques are not geared towards reloading a specific lan-

guage. We hope Tru✏eReloader will become a widely used productivity tool, for many

languages, once implementations mature and gain widespread adoption.

Future Work

Tru✏e itself and the languages built on top of it are in active development. We intend to

keep up with their developments and, if need be, revise some design decisions. As existing

implementations mature and developers start using them, we hope to get feedback from

more people trying to reload changes in their real world applications, so that we can

expand the list of covered use cases where needed.

Some concrete improvement ideas include adding a native file system watcher to get

notifications when source code is changed, instead of polling in a background thread.

Should the slightly risky incremental re-parsing strategy prove to incur incorrectness for

new languages, an option can be added to parse the entire program instead. While this

will have a negative e↵ect on the reloading speed, the correctness is regained.

The experimental Patcher API might see radical changes when we encounter more com-

plicated bytecode transformation requirements. Currently it directly exposes the under-

lying Byte Buddy transformation API, which tightly couples Tru✏eReloader to it. A

better option is to provide an abstract interface for transforming bytecode, so imple-

mentations would be able to choose concrete technologies themselves. Besides the above

listed ideas for improvements, we’ll tackle any unforeseen obstacles with enthusiasm and

eagerness to improve Tru✏eReloader.
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