
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Suido Valli

Visualization of simulations of a robot oper-
ated car park system

Master’s Thesis (30 ECTS)

Supervisor: Dirk Oliver Theis

Tartu 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Visualization of simulations of a robot operated car park system

Abstract:

The aim of the MA thesis "Visualization of simulations of a robot operated car park system"

is to identify the best practices and technologies to present the effectiveness of robot

operated car park system's underlying algorithm to potential customers. An application

demonstrating the work of the robots is built using the identified technologies and best

practices. The user experience of the application and the application's compliance to the

requirements of the tool are validated in the thesis.

Keywords:

Web application, simulation, visualization, Python, JavaScript, HTML canvas element

CERCS:

P175, Informatics, systems theory

Lühikokkuvõte:

Magistritöö „Robotiseeritud parkimissüsteemi simulatsioonide visualiseerimine“

eesmärgiks on identifitseerida parimad praktikad ja tehnoloogiad robotiseeritud

parkimissüsteemi algoritmi efektiivsuse esitlemiseks potentsiaalsetele klientidele.

Magistritöös leitud praktikaid ja tehnoloogiaid kasutades luuakse robotite tööd

demonstreeriv veebirakendus. Töö lõpus hinnatakse rakenduse pakutavat kasutajakogemust

ning vastavust seatud nõuetele.

Võtmesõnad:

Veebirakendus, simulatsioon, visualiseerimine, Python, JavaScript, HTML canvas element

CERCS:

P175, Informaatika, süsteemiteooria

3

Table of Contents

1 Introduction ... 5

2 Overview ... 6

2.1 Robot car park system .. 6

2.2 Similar solutions ... 7

PathFinding.js .. 8

VisuAlgo ... 8

Robotized car parking visualizations .. 9

3 Application requirements .. 10

3.1 Non-functional requirements .. 10

Scalability .. 10

Usability .. 10

Reliability .. 10

Correctness .. 10

Efficiency .. 10

Reusability ... 10

Portability .. 11

Extendibility .. 11

3.2 Functional requirements ... 11

Application is able to read the robroute file format .. 11

Application is able to construct parking lot and machines’ instructions from a robroute

instruction file ... 12

Application is showing static images of start and end state of the simulation 12

Application is visualizing the simulation of the algorithm ... 13

Application is able to scale accordingly to parking lot and viewport size 13

User is able to choose the scenario to visualize from application 13

4 System architecture ... 14

4.1 Server side platform selection .. 14

Python web framework selection .. 15

4.2 Data object transmitting standards ... 15

4.3 Client side platform selection ... 16

JavaScript Libraries ... 17

4.4 Machine movement approach ... 18

5 Application overview .. 20

5.1 Application flow ... 21

4

Rendering the index page .. 21

Choosing the parking lot and instructions ... 21

Rendering the main workspace ... 24

Visualizing the scenario .. 24

5.2 Application functions ... 25

Index page functionality .. 26

Visualization page functionality ... 27

6 Validation .. 29

6.1 Sanity testing .. 29

6.2 Efficiency of application .. 31

Client side efficiency ... 31

6.3 Integrity .. 32

6.4 Validation of presentation choices ... 33

7 Conclusions and future opportunities .. 35

8 References ... 36

Appendix ... 38

I. Glossary .. 38

II. Source code .. 39

III. Installation guide .. 40

IV. User guide ... 41

V. License .. 42

5

1 Introduction

In this thesis a new web application is introduced to visualize the simulation of robot oper-

ated car park system. The car movement algorithm is developed by Algorithms & Theory

group, a sub-group of Theoretical Computer Science at the University of Tartu led by Dirk

Oliver Theis. The objective of the thesis is to identify the best practices to present the work-

ings of the mentioned algorithm to potential clients of the robot car park system. The thesis

tries to find answers for following questions:

1. What technologies to use for making the application that complies with the set re-

quirements derived from the business needs of the project?

2. What approach to use for visualizing machine movement in a parking lot?

As the research questions suggest, the main obstacles to overcome are to find the best tech-

nology stack and approach that satisfy the business needs. Objective of this project is to

have an appropriate tool to present the effectiveness of the algorithm to potential enterprise

clients. The research description and results for finding the best approach, tools and tech-

nologies can be found in chapter 4.

In addition, the thesis tries to identify the best apprach to visualize car parking, taking into

account the comprehensibility of the car and robot movement by users. In the thesis, an

approach to visualize the robotized car parking system is introduced and validated.

As a proof of concept, web application is built using the identified tools, technologies and

practices. The thesis covers the extensive practical work during the development of the web

application, the requirements of the application and validation of the web application’s

compliance with the requirements and user experience.

The findings of the thesis are demonstrated in developing the aforementioned visualization

application.

6

2 Overview

In the following chapter the background of the application is described and compared to the

similar solutions. In addition, it is explained why the proposed solution fits the best for the

needs of the project.

2.1 Robot car park system

Nowadays parking a car is more and more challenging task – especially in metropolitan

areas. The problem is that the cities are getting denser, there are more people and cars in the

centre of the cities than there has ever been – but the area for parking spaces is not changing

correlatively with the increase of cars.

To overcome that problem, cars have to be fitted to the parking lot more densely than it is

possible in regular parking lots. There are options in the market to do that, for example Ferris

wheel-like parking systems, also known as paternoster systems [1]. These systems have

been around from 1920s and are starting to make a comeback in Europe and USA. The

problem of paternoster system is the high cost of construction and the need to change exist-

ing infrastructure extensively.

Additional problem that can be observed in bigger or multi-story car parking lots is the time

it takes to park and retrieve the car. It can take exceptionally long time, especially when the

parking lot is operating almost in full capacity. Finding a place can be really arduous.

Newer parking lots and parking houses have got smarter. They have sensors that can identify

if the parking space is occupied or not. Information received from the sensors can be aggre-

gated to show how many parking spaces are free in the parking lot. It is additionally possible

to have lights above every parking space to identify whether the space is free or occupied.

Although these systems have made parking more convenient, the capacity of a parking lot

or parking house can be improved even more. The parking/retrieval time for the car owner

can also be reduced dramatically.

This can be done by using an automated parking system that can use existing infrastructure

with minimal changes needed. Suggested robot car park system (RCPS for short) is using a

specified amount of small robots to park the cars.

The simplified flow of parking in RCPS parking lot from driver’s perspective is as follows:

 Driver drives the car to the designated drop off area of the parking lot.

 Driver and passengers get out of the car.

 Driver locks the car and takes a ticket from the parking lot printer or uses a mobile

application to park the car.

 Robot retrieves the car from the area driver left it.

 Robot takes the car into the parking lot and parks it.

As one can see, the process of a driver finding a parking space in a parking lot is eliminated

fully from the parking process with RCPS.

The simplified flow of retrieving the car in RCPS parking lot from driver’s perspective is

described:

 Driver inserts the ticket received from the parking lot printer to the parking lot in-

formation system or driver uses mobile application to order the robot to retrieve the

car.

7

 Robot retrieves the car from parking lot and parks it outside the parking lot in des-

ignated retrieval area.

 Driver and passenger(s) enter the car and drive away.

In conclusion, advantages of RCPS compared to usual parking lots are:

 Bigger car density,

 no damage on cars (paint scratches by other people parking etc.),

 no exhaust fumes (robots are working with electrical motors),

 dramatically reduced noise pollution (no combustion engines and people talking),

 quicker car parking and retrieval for clients,

 less stressful parking experience.

These advantages can be found in other automated parking systems compared to the usual

parking lot, but not usually at once. One of the main advantages compared to other auto-

mated parking systems of RCPS is the relative cheapness of it.

As said before, the basic infrastructure of the already existing parking lot or parking lot does

not need to be demolished and can be used as a basis for RCPS. All the needed components

of RCPS can be installed easily to regular parking lot. The usage of existing parking lots is

the main factor that differs RCPS’s solution from other robotized parking systems.

The robots used by RCPS are rectangle shaped and low enough to drive under cars. Robots

move cars by driving underneath the platform the car is on and lifting the platform up. The

robot will carry car to the parking space using the instructions got from the main controller

of the parking lot and lower the platform to the ground.

The movement of cars and robots is controlled by the main controller, that gives instructions

to the robots what to do at what timeframe. The algorithm for the said controller is being

developed in University of Tartu and is part of a project developed together with an external

company.

To be able to present the movement of the machines in the parking lot and to prove that the

RCPS algorithm works as intended, an application is to be made that can be used to satisfy

these requirements.

2.2 Similar solutions

The main objective the RCPS application tries to accomplish is to show potential customers

that RCPS is more efficient with the parking space than the usual parking lot and the cus-

tomers of parking lot will have better user experience.

The user experience consists of, amongst other indicators, the time it is needed to park the

car. This indicator is directly correlated to how effectively the parking spaces in the parking

lot are used. In busy days, there can be times that all of the spaces of a parking lot are full.

Now, the question is how does the RCPS handle these busy days and does it handle them

better than people in usual parking lots would do that.

To present the RCPS to a customer, two different paths can be taken – the RCPS can be

either presented on a big screen by the RCPS provider’s company to the customer, or cus-

tomer can interact himself or herself with the virtual RCPS parking lot. The objective is to

build an application that can be used for both options.

In essence RCPS is an application that takes a parking lot as an input and will start executing

movements on the screen relative of time. Also, it is, in essence, visualizing the work of an

8

algorithm. Taken those two approaches into account, similar solution can be found in algo-

rithm visualization and time-based graphical movement. In some cases, they overlap.

PathFinding.js

PathFinding.js itself is a pathfinding library written in JavaScript for tile-based games1. The

online demo of the library2 is for visualizing the different pathfinding algorithms imple-

mented in the library. Upon opening the demonstration, client is introduced to a screen with

a grid where all but two squares are white. The green square is the start position and red

square the end position for path finding. User can add obstacles to the grid by using the

mouse and move the start and end positions from their original positions. There is possibility

to choose from 8 different algorithms and compare how they find the solution for the prob-

lem. When the user starts the visualization, every step of algorithm is shown on the screen

with grey, green or blue squares, depending on the algorithm. When the algorithm has fin-

ished, user can see the length of the path, time it took and how many operations did the

algorithm have to do.

The PathFinding.js demonstration is similar to RCPS in many ways – it visualizes the work

of an algorithm, is somewhat interactive (user can give the input for the program) and is an

application in Web browser. On the other hand, there are many differences – PathFinding.js

demonstration is meant for demonstrating only one type of algorithms and is not capable of

working with parking lots. Furthermore, the movement of the grids is not smooth – some-

thing that is a requirement to make the visualization of machine’s movement resemble real

life situations as much as possible.

VisuAlgo

VisuAlgo is an application that visualizes data structures and algorithms through animation3.

User has a plethora of different data structures to choose from where each of the data struc-

tures has its own algorithms that can be visualized. The visualization can be shown auto-

matically or step-by-step. In addition, pseudocode of the algorithm with highlighted step is

shown on the screen for better understanding of inner workings of the algorithm. VisuAlgo

has two modes: exploration mode where a user can simply discover the data structures and

algorithms that go with them him/herself and e-Lecture mode, where the user will first learn

about the data structure and has a tutorial of how to animate the algorithms before actually

using them.

The overlapping of RCPS’s and VisuAlgo’s functionality is quite small – the only similarity

is the abstract algorithm visualization. VisuAlgo is showing the algorithms quite differently

from what RCPS has to. The purpose of VisuAlgo is to educate people on how different

data structures and algorithm works. The aim of RCPS is to show that the algorithm used

for car parking robots is more efficient than the contemporary manual parking system. The

algorithm beneath it is a trade secret and the inner workings of it are not meant to be public.

1 https://github.com/qiao/PathFinding.js
2 https://qiao.github.io/PathFinding.js/visual/
3 http://visualgo.net/

https://github.com/qiao/PathFinding.js
https://qiao.github.io/PathFinding.js/visual/
http://visualgo.net/

9

Robotized car parking visualizations

Several robotized car parking visualizations can be found on the Internet, for example Park

plus4 and FATA Automated Parking System5 videos. The visualization resembles the most

with what are the requirements of the project – the movement of the robots and cars in the

parking lot is shown. Visualization for RCPS differs from the videos by showing how the

algorithm reacts to a particular configuration. RCPS visualization will allow the client to

provide initial and terminal situations of the whole parking lot. The visualization will answer

the client’s question on what will the RCPS’s algorithm do in this situation and if it will be

able to retrieve the requested cars in time.

4 https://www.youtube.com/watch?v=Dm-twxXt5D8
5 https://www.youtube.com/watch?v=VwS1QwXqgpk

https://www.youtube.com/watch?v=Dm-twxXt5D8
https://www.youtube.com/watch?v=VwS1QwXqgpk

10

3 Application requirements

In the following chapter functional and non-functional requirements are described that the

application to be created has to fulfil.

3.1 Non-functional requirements

Following non-functional requirements define the design of the application. The require-

ments are distributed to 7 subcategories.

Scalability

The application can display parking lot with up to 50 parking spaces in a row and 25 parking

spaces in a column. The smallest parking space size is 25 pixels wide and 50 pixels high -

this is to ensure that the movement of the machines can still be perceived by the users of the

application. To ensure that the usage of the application needs minimal scrolling by the users,

aforementioned parking lot limits are put to place taking into account the w3schools.com

screen resolution statistics where in January 2016, the most popular screen resolution

amongst the visitors of the site was 1920x1080 pixels [2].

Up to 200 users can use the application concurrently, which is the reasonable maximum

amount of people in the audience of the RCPS presentation.

Usability

The application can be used without external instructions by an English speaking person

with medium computer usage skills. As the application is meant to be used by potential

customers of the RCPS, it has to be ensured that an average person with no special technical

skills could use the application with minimal set of instructions shown in the application.

Reliability

The application works without any fatal errors 99% of the uptime to ensure the potential

customers can use the application at any time.

Correctness

The application shows the correct movement of the machines on the screen 99% of execu-

tion times to ensure that potential customers get the same user experience.

Efficiency

The application must use less than 1 MB of network resources loading the application. This

is to ensure that the application is loaded in reasonable time taking into account the average

Internet speed of 5.6 Mbps of the world in Q4 2015 according to the Akamai’s review [3].

Reusability

The application has to have the ability to be rewritten in minimal effort to visualize any

upcoming robot car parking solutions with either implicit or explicit instruction set.

In implicit instruction set, the whole parking layout and every parking space’s state is writ-

ten out for every instruction step. It is necessary for the RCPS application to convert these

instructions to explicit instructions.

Explicit instruction set has explicit orders for every machine on the lot for every movement

step. For example, “R0”, “E” would mean that robot with ID R0 should move one step east.

11

Portability

The client application has to be usable from any contemporary Linux, OS X and Windows

operating system using Mozilla Firefox, Safari, Chrome or Microsoft Edge web browsers.

In addition, the client application has to be usable from Android and iOS mobile devices

using respective native web browsers. This requirement ensures that vast majority of the

customers could use the application from either their PC or mobile device.

According to w3schools.com statistics, in April 2016 76,5% used Windows 7, 8 or 10, 5,5%

Linux and 10.6% Mac OS X to access the w3schools.com website. Also, 92,8 % of users

used web browsers mentioned in the requirement [4]. Requirements also cover 96,7% of the

mobile devices on the market in Q2 2015 according to IDC Research [5].

The server application has to run on Linux and Windows operating systems with Python

3.5+, bottle and Jinja2 installed. This requirement ensures that the server application can be

run on more than 99,9% of the web servers [6].

Extendibility

The application has to be written in such way that following simulation features could be

added to the application with minimal changes on the source code:

 Clicking on a car to simulate the owner of the car requesting its retrieval,

 Clicking on a button that represents an outside car to simulate an owner arriving who

wants to have his/her car parked,

 Transmitting the changes to the server and from the server to the compute server,

 Real-time retrieval of an updated robroute file which accommodates the user’s de-

mands.

3.2 Functional requirements

Following requirements describe the functionality of the application to be created

 Application is able to read the robroute file format.

 Application is able to construct parking lot layout and machines’ instructions from

a robroute instruction file.

 Application is showing static images of the start and end state of the simulation.

 Application is visualizing the simulation of the algorithm.

 Application is able to scale accordingly to parking lot size and viewport size.

 User is able to choose the scenario from the application to visualize.

In the following subchapters the requirements are explained in detail.

Application is able to read the robroute file format

Robroute file format is the outcome of the robot car park system algorithm. It consists

largely of four that can be seen in code example 1:

1. The width and height of the parking lot

2. The layout of parking lot

3. Number of movement steps

4. Movement steps

Robroute file -- part of the Robots project http://ac.cs.ut.ee

12

4 4

BHHGBPPOBPPOBNNM

100

cA|[cA|[cA|[cA|[eA|[cA|[cA|[cA|[cA|[dA|[cA|[cA|[cA|[cA|[cB|[fA|[

…

cA|[cA|[cA|[cA|[eA|[cA|[cA|[cA|[cA|[dA|[cA|[cA|[cA|[fB|[cA|[cA|[

Code example 1. Excerpt of a robroute file.

Width and height of the parking lot are two integers that describe the size of the parking lot.

The layout of the parking lot describes in which directions it is possible to move from the

parking spaces.

Number of movement steps shows how many movement instructions will follow in the file.

Movement steps show the state of every parking space in given step. Every parking space

has four state variables.

1. onNode state shows what type of car is in the space at this step or if the space is

empty.

2. ndStat shows the robot’s state. There can either be no robot or the robot can be ready,

moving or lifting/dropping a car. Also, on the state it is shown either the robot is

there with a type of car or alone.

3. rVertical state describes the vertical movement of the robot. It can either lift the car

(there are 5 different levels of lifting), drop the car or there might be no vertical

movement.

4. rMove state describes the horizontal movement of the robot. It describes the move-

ment in all four possible directions (North, South, East or West), if the robot is mov-

ing with or without the car and is it accelerating or already moving.

To make robroute files smaller in size, the states of parking spaces are encoded into charac-

ters as can be seen from code example 1. The states have to be decoded by the application.

Application is able to construct parking lot and machines’ instructions from a
robroute instruction file

As mentioned before, the robroute file includes the width and height of the parking lot and

the layout of parking lot. The parking spaces have to be given coordinates in a grid (x and y

coordinates). In addition, the different types of parking spaces have to be considered as there

might be cases where the parking lot is not perfect rectangle without any obstructions in the

middle.

The instructions in robroute file are generated by C++ algorithm which uses bitwise addition

to characters for differentiating the states. The states need to be converted back from char-

acters to ensure meaningful state enumeration.

Furthermore, the instructions are not explicit as in they do not give a unique ID to the ma-

chine. For visualization purposes the instructions have to be converted to explicit instruc-

tions.

Application is showing static images of start and end state of the simulation

In order to grasp the simulation fully by the user, start and end state of the simulation has to

be seen on the screen.

13

Application is visualizing the simulation of the algorithm

User has to be able to see all of the steps of algorithm simulation on screen. The simulation

has to be visualized continuously – it cannot have step-by-step static images.

Application is able to scale accordingly to parking lot and viewport size

As the application can be used from variety of devices with different screen resolutions and

the parking lot sizes can vary vastly, the application has to be able to scale the parking lot

accordingly.

User is able to choose the scenario to visualize from application

There are different scenarios that can be visualized. User has to be able to choose between

them before the simulation. User has to be able to go back to choosing the scenario at any

time during the visualization of a scenario.

14

4 System architecture

In this chapter, the architecture of the system and the selection of the development technol-

ogies are described. In addition, the selection of machine movement approach is described.

Technologies used are state-of-art and work for the best result. Web application approach

was chosen as in recent years, the browser support for HTML5 technology stack standards

has improved drastically, which makes web application developed for HTML5 truly

crossbrowser and cross-device experience. The other advantage is the ability to access the

application from any location.

Originally, Phaser was chosen as a JavaScript library supporting the visualization part of the

development as it has the right support for the requirements of the application. This includes

scalability in screen sizes and JSON support. JSON is used as data object transmitting

standard as it is quicker to parse and transmit, but also because of its integration in JavaScript

language. In the early stages of development process, where the architecture of the

application came more apparent, Phaser was ditched from the technology stack as it did not

support the core methodologies used in the application.

Python is used as a server side language for its easy to read syntax and possibility to

implement new features quickly. Bottle is used as a web framework for its lightweightness

and simplicity. It has the ability for function-call mapping for clean and dynamic URLs.

4.1 Server side platform selection

Nowadays server side programming can be made by many different languages that have

different approaches on the web server design patterns. These language include Java,

ASP.NET, Python, PHP, Ruby on Rails et cetera. For this project four languages were taken

under review that could fill the requirements set by the client side application. These

languages are Python, PHP, Java and ASP.NET, which builds on C#.

Java is a general-purpose programming languages. The approach in Java is to let developers

“write once, run anywhere” [7]. Java is used in a huge variety of use cases, including desktop

applications, mobile applications and web applications, client and server side.

PHP is a server-side scripting language which is designed for web development. It can also

be used as a general-purpose programming language. PHP is still one of the popular choices

of web developers, known for huge community, big variety of frameworks and good

documentation. ASP.NET is Microsoft’s open-source web application framework designed

to produce dynamic Web pages.

ASP.NET uses C# programming language. A comparative study [8] compares the three

aforementioned web technologies using MVC (Model-View-Controller) design pattern on

all of the cases to build a web application. In Java that means using JSP web pages (*.jsp)

as views, the controllers are developed using Java servlets and the models are developed

using Enterprise Java Beans and Java Persistence API. In ASP.NET, views were developed

using Active Server Pages. The controllers are in C# code and views can be developed by

either razor or aspx. As PHP does not have its own MVC design pattern, PHP system was

implemented using CakePHP framework.

The study concluded that Java processes Login HTTP requests faster than two other

systems. The study also shows that Java is the quickest to process GET method requests,

but ASP.NET is the quickest in processing POST method requests. All in all, Java and PHP

were found to be cheaper to implement compared to ASP.NET. The downside of Java is the

difficulty of using it compared to CakePHP and ASP.NET.

15

Python is a general-purpose dynamic programming language first appeared on 20 February

1991. Amongst others, these are the guiding principles of Python’s design [9]:

 “Beautiful is better than ugly”,

 “Explicit is better than implicit”,

 “Simple is better than complex”.

For web serving purposes, Python uses Python Web Server Gateway Interface (WSGI) as a

standard interface between web servers and Python web applications or frameworks [10].

In addition of Python having clean, simple syntax, it also has a wide variety of WSGI

frameworks to choose from.

Taking into account the findings in the study, Python is used in the development of server

side application for robot car parking system visualization. The reasoning is the advantages

over other mentioned programming languages – cleaner syntax without much broilerplate

(compared to ASP.NET and Java) and clearer function naming (compared to PHP).

Python web framework selection

Choosing the right web framework for the application can be troublesome as there is vast

number of different frameworks available. As the application does not need all the function-

ality that full-stack frameworks provide, the lightweight frameworks will suit the best. Three

of most popular ones are compared: Bottle, CherryPy and Flask.

Bottle

Bottle is a lightweight Python micro web framework. It was first released on July 1 2009 by

Marcel Hellkamp. It is easy to use, has built-in template engine, support for JSON client

data and can be extended with different plugins [11]. Furthermore, Bottle has a built-in web

development server and supports any WSGI capable HTTP server. Built-in web server

makes it easy to develop and test the code.

CherryPy

CherryPy is an object-oriented web framework for Python. It has a flexible plugin system,

powerful configuration system, reliable WSGI thread-pooled webserver amongst other fea-

tures. CherryPy has been available over ten years and is open-source project. [12]

Flask

Flask is a micro framework for Python that is based on Wekzeug and Jinja 2. Flask’s inten-

tion is to keep the framework core simple and at the same time extensible, where an exten-

sion can be added to the project when it really is needed. This makes Flask minimal and

keeps points of failures low. [13]

All of the three aforementioned web frameworks provide similar functionality keeping the

application simple without adding any unnecessary overhead. Bottle framework was chosen

for building the application. The reasoning was the subjective ease of starting and clearness

of documentation by author.

4.2 Data object transmitting standards

The traffic between client and server in the discussed web application in this thesis will, in

majority of times, be by asynchronous calls. AJAX [14] standard will be used to accomplish

that. Under review are two most popular data object transmitting standards, XML and JSON.

16

XML (The Extensible Markup Language) is considered the ‘holy grail’ of computing for its

universal data representation format. The priorities when designing the languages were

simplicity and human readability. It is primarily used for Remote Procedure Calls. XML

does not have any pre-defined tag sets – everything can be configured by user. An example

of an object in XML is provided in code example 2.

<person>

 <firstname>Suido</firstname>

 <lastname>Valli</lastname>

</person>

Code example 2. Example of XML object.

JSON is designed to be human readable and easily parsed and used by computers. JSON is

directly supported inside JavaScript. It is estimated to parse up to hundred times faster than

XML. The disadvantages over XML include lack of namespace support, lack of input

validation and extensibility drawbacks. An example of an object in JSON is provided in

code example 3.

{

“firstname”: “Suido”,

“lastname”: “Valli”

}

Code example 3. Example of JSON object.

From the comparative case study [15] it can be concluded that sending data in JSON

encoding is in general faster than sending it in XML encoding. On the other hand, the

transmission times of XML are lower when fever objects are transmitted. As for the fact

that sending and parsing JSON data is generally faster than doing the same with XML data

and that JSON is natively supported in JavaScript, JSON will be used in the thesis project

for transmitting data objects between client application and server.

4.3 Client side platform selection

There are quite a lot web technologies in use to make a graphic animation. Three of the

biggest are Flash, Java and combination of HTML5, CSS3 and JavaScript.

Adobe Flash, formerly known as Macromedia Flash and Shockwave Flash, is a platform for

creating rich Internet applications, usually used for development of Web-based games and

interactive tools. Flash Player plugin is required for Flash content to work as it runs as a

client-side sandboxed virtual machine [16]. Downside of Flash is the fact that it is

proprietary technology.

Java is a powerful development platform. In Web browsers, Java runs in sandboxed virtual

machine. For that fact, Java applets are theoretically platform-independent. The problem

with Java is its need for the plugin and the fact that different applications may need different

versions of the plugin. Furthermore, the initialization of the applet can be long. Also, there

are serious security issues, due to which Java applets are not executed automatically in Web

browsers anymore [17].

HTML5, CSS3 and JavaScript provide open source alternative to Java and Flash. HTML5

is used to provide static content, CSS3 to style the said content and JavaScript is used to

make the content dynamic. As HTML5 is supported by all major browsers without needing

a plugin, the users do not have to be worried about security risks. One potential disadvantage

of HTML5 would be the different interpretation of the standards by different browsers, but

these can be overcome with some JavaScript libraries, for example jQuery. The main

17

disadvantage of HTML5 is the relative ease to see the source code. As this thesis is in public

domain, this fact is not accounted as a disadvantage when choosing the web technologies

[18].

As the main reason the web application approach for visualization was chosen was the

application to run seamlessly on plethora of devices, Java and Flash are ruled out mostly

because of their plugin requirement, but also for the fact that they are obsolete technologies

and, as use of them decreases steadily, they might not be supported soon. The technology

used for making the visualization application is HTML5 technology stack: HTML5,

JavaScript and CSS3.

JavaScript Libraries

JavaScript as a language is very extensive and for now, the language that web programmers

use. For visualization, one could start from scratch and invent the logic behind the animation

him/herself. As there are plenty of different graphics frameworks written on top of

JavaScript, it is neccessary to consider them as an option instead of building the visualization

directly on HTML5 native canvas element.

Ten different options of WebGL Graphics Engine from survey [19] will be studied and best

suited for the application’s purpose is chosen.

CAAT (Canvas Advanced Animation Toolkit) is a 2D director based scene graph renderer.

CAAT has a chance to have multiple instances as you can have unlimited number of

directors for each web page. It is very diverse toolkit with unlimited number of timelines

and actors. CAAT has an abstracted input system and it does resource management and

preloading. Disadvantages of CAAT is that it was last updated over two years ago and it

does not have an active community behind it.

CakeJS is a scene graph library written in JavaScript meant for HTML5 canvas element. It

has animation timelines and it supports mouse events. It does not support easy resizing of

application in different screen sizes and aspect ratios. Furthermore, this project has been

archived.

Canvas Engine is a library for easily creating games in HTML5 Canvas. It works on modern

browsers and also smartphones. The scenes can be structured and preloaded. In addition,

Canvas Engine has a model for handling server-side events to develop a multiplayer game.

Although Canvas Engine is meant for building games, it is also suitable for the purpose of

robot car parking system visualization and simulation. The main disadvantage is the

smallness of community and the fact that Canvas Engine has not been updated for over a

year.

ChesterGL (Chester Game Library) focuses on ease of use and performance. It supports a

simple scene graph. It has time based actions, different shaders (for WebGL) and batched

sprites. The disadvantage of ChesterGL is smallness of community and infrequent updates,

lastly updated 2 years ago.

Cocos2d-JS is a game engine for web and native games. It has high performance, has

modern JavaScript API, full platform without needing plugins. Furthermore, there is a

capability to test and debug the developed application on the browsers before pushing them

to target device. It has vast API including transitions, events, persistence et cetera. Cocos2d-

JS is a good candidate for the JavaScript library to be used in the thesis practical work.

Construct 2 is designed for creating 2D applications rapidly. It is very high level framework.

Construct 2 is not open source nor free as majority of other libraries discussed in this thesis.

18

The major difference of Construct 2 is that it does not require any coding – the primary

method of programming is through the event sheets. As Construct 2 is not free and there can

be issues interfacing with server that cannot be issued inside the event sheets environment,

it is not suitable for the purpose of the application developed in thesis.

Crafty is a flexible 2D framework for JavaScript games. It can either use Canvas or DOM,

it has sprite map support and collision detection. It is also lightweight framework and open

source. Furthermore, it is actively developed and has active community. All in all, Crafty is

a considerable candidate, taking into account the requirements of the application developed.

EaselJS is a 2D graphics engine which supports objects nesting and has mouse interaction

model. It uses familiar approach for developers which should make it easy to work with.

EaselJS is frequently used in making HTML advertisements. ImpactJS is a 2D and isometric

HTML5 graphics engine. Tit supports real time multi user application and implements a

scene graph based architecture. It has a built in physics module.

ImpactJS is a considerable framework to use for the application, as it allows creating in

addition to two-dimensional scenes isometric scenes, which can be beneficial for

understandability of algorithm workings.

Phaser is a free 2D game framework that supports Canvas and WebGL rendering. It uses

Pixi.js internally for rendering. Phaser can automatically switch between Canvas and

WebGL rendering, according to the available technologies in the device. Phaser can use

JSON and XML for asynchronous calls, it supports inputs from mouse, touch screen,

keyboard. Furthermore, with Phaser has built-in Scale Manager which allows developer to

scale the application to fit any size screen. Phaser is actively developed and has active

community.

Although there are plenty of good candidates in the 10 reviewed libraries, the author chose

Phaser as it has the most useful features needed for the development of parking system

visualization built in. For example, it can use JSON or XML data without any further

libraries or development on programmer part.

In the early stages of development it came apparent that the chosen framework is not the

best choice for developing an application specified by requirements mentioned in chapter

3.2. Phaser is meant to develop games and as such there is no easy way to give instructions

where an object has to be on specified frame. After considering alternatives, author ditched

the additional layer of 2D framework and used pure JS and jQuery to construct a working

visualization on HTML5 canvas element.

4.4 Machine movement approach

The presentation of machine movement is a crucial part of this application. Taking into

account the nature of the task and the requirements of the application, 2D approach was

chosen.

The parking lot is presented to the user from top-down perspective. This lets the users grasp

the parking lot as a whole and arguably the movement of the cars can be presented concisely

in this perspective.

Presenting horizontal movement of machines is straight-forward using the top-down per-

spective – the machine is moving up, down, left or right on the screen depending on the

instructions (N, S, W, E).

Presenting vertical movement of machines can be more challenging. The solution is to com-

bine following techniques:

19

 Scale the machine size up by a degree when lifting

 Move the machine diagonally by a degree when lifting

 Cast a shadow of the machines – distance of the shadow from the machine depends

on the height of the machine from the ground

In addition to the chosen perspective and techniques, 3D and isometric presentation were

also considered. The 3D and isometric approaches were dismissed because of the little added

value for the effort. In addition, 3D visualization requires more system and networking re-

sources than 2D visualization, which would narrow the range of devices that could run the

visualization.

The approach is validated in chapter 6 of the thesis.

20

5 Application overview

Figure 1. Top level sequence diagram of the application

From high level standpoint, the application consists of two separate parts - the client appli-

cation and server application. Client application is built using HTML5, vanilla JavaScript

and jQuery. Server is built using Python 3.x and uses Bottle web framework with added

Jinja2 templating library for building HTML page and serving the web content.

As seen from Figure 1 which describes the top level program sequence, after user opens the

application website, the static page content is returned and shortly after, the list of scenarios

21

is requested from server by client. When client has chosen the scenario, the layout and in-

structions are requested from server using AJAX calls to RESTful web service. Once the

server has sent the responses for aforementioned calls, visualization page is rendered and

ready to visualize the scenario.

In the following subchapters, the detailed flow of the application and application functions

are described.

5.1 Application flow

Rendering the index page

Figure 2. Index page rendering sequence diagram.

Application starts by user going to the index page of application web page. For development

process, it is http://localhost:8080. Upon arrival to the page, the web server will return the

index page template. Next, AJAX call is made to /Scenarios page of server to retrieve the

available parking scenarios. The scenarios are held in ./Examples folder on server. When

server gets a request on /Scenarios address, get_json_route_list() function is called

which finds all the files with .robroute extension in Example folder and returns a JSON

array with the names and values of the available scenarios.

Choosing the parking lot and instructions

When the available scenarios have been retrieved, user can choose scenario of what he or

she wants to see the visualization of. Also, user has to specify if realistic visualization or

visualization with the ability to choose speed is needed. When a scenario gets chosen, the

client makes three AJAX calls to server. First AJAX call is made to URL

/Scenarios/<scenarioNr>/Layout/0 to get the end state of the visualization and shortly after

http://localhost:8080/

22

that /Scenarios<scenarioNr>/Layout/1 to get the starting state. The need for two calls is to

show the user static images of the parking lot at the beginning and end of visualization at all

times. Third AJAX call is made to /Scenarios/scenarioNr/Instructions/Realistic to get

the instruction steps for the parking lot. Instead of keyword Realistic 0 or 1 is used – when

user requested realistic visualization, the keyword is 1, otherwise it is 0.

Retrieving parking lot layout.

Figure 3. Sequence diagram of server side coordinates retrieval

Server, upon getting a request to return parking lot layout, calls get_parking_layout(route)

function. Route is an object that is returned by function get_route(filename).

get_route(filename) reads the file with the name given in function argument and returns

Route class object. Route class object consists of three parts:

 lot_size, which is an array with two values – number of parking spaces in parking

lot vertically and horizontally,

 lot_layout, which is a two-dimensional array that holds the parking space’s state (to

which directions is it able to move from this parking space),

 instructions_array, which is an array of instruction steps that hold the four differ-

ent states for each parking space in each array.

23

get_parking_layout(route) returns a JSON object describing the width and height of the

parking lot concerning the parking spaces, layout with parking spaces states and machine

array that describes the position of the machines in the grid, their ID and their sprite type.

Detailed diagram of the function can be seen on Figure 3.

Machine array is retrieved from get_coordinates(route, level, making_instructions =

False) function which iterates over the scenario’s instructions at the given level. When it

finds a machine on any parking space, it will add its type (either car or robot), coordinates,

unique ID and sprite image type to the array that is going to be returned in the end of the

iteration. Example of server’s response to layout request can be seen on Code example 4.

{

 "layout": [

 ["wallNW", "wallN", "wallN", "wallNE"],

 ["wallW", "nowall", "nowall", "wallE"],

 ["wallW", "nowall", "nowall", "wallE"],

 ["wallSW", "wallS", "wallS", "wallES"]

],

 "machines": [

 ["C0", 0, 1, "C0"],

 ["R", 1, 2, "R0"]

],

 "width": 10,

 "height": 4

}

Code example 4. Example of layout JSON response

Retrieving instructions

Figure 4. Sequence diagram of server side instructions retrieval

24

Function get_instructions(route) is called upon server getting a request to

/Route/routeNr/Instructions. The function will take initial machine array as a starting

point by calling function get_coordinates(route ,0, True). Adding True as third argument

will add the four states to every machine’s array. Next, the function loops over every ma-

chine in the machine array and goes over all the instruction steps. When looping over the

instructions, it keeps record of machine’s ID and coordinates and will change the machine’s

coordinates accordingly to the states. If machine is moving at some level, the machine ID,

instruction direction and speed is added to the instruction array.

The function returns the array of explicit instructions needed by the client to move the ma-

chines accordingly as a JSON object. The example of said JSON object can be seen at Code

example 5.

[

 [

 ["R0", "W", 2],

 ["R1", "S", 4]

],

 [

 ["R0", "W", 1],

 ["R1", "S", 2]

],

 [

 ["R0", "W", 1],

 ["R1", "S", 4]

],

 [

 ["R0", "W", 1]

],

 [

 ["R0", "W", 1]

]

]

Code example 5. Example of instructions JSON response.

Rendering the main workspace

After client application receives the instructions and parking layout JSON objects, it does

the following

1. Renders the final state of scenario on canvas, makes it an image and adds it to the

menu,

2. Renders the start state of scenario on canvas, makes it an image and adds it to the

menu,

3. Hides loading div, shows visualization workspace,

4. Starts visualization loop.

The application only requests the types of parking lot images from the server that are needed

for the scenario. Retrieved images are cached in an array to keep network traffic low. Fur-

thermore, the parking space is rendered in two or three layers, depending on if the user wants

to see the grid on the parking lot or not. This solution allows to change the underlying asphalt

or concrete pattern with minimal effort – only one image needs to be changed.

Visualizing the scenario

After the rendering of the scenario, user has two options: either to start automatic visualiza-

tion or step-by-step visualization. Automatic visualization can be changed to step-by-step

visualization and vice versa during the scenario. The visualization works on frame basis.

That means that each frame simulationLoop() function is called. Said function controls all

25

of the visualization. Firstly, it increments variable STEPS by one if there is any movement

on the screen. After that, it will clear the canvas element from everything and calculates the

instruction array index from the STEPS variable. If the function discovers that it is time for

new instructions, it will firstly stop all the movement on the screen by calling

stopAllMovement() function. Next it will call moves(routeInstructions, step) function

that gives new instruction to all the machines which will move at next instruction step. After

that, parking lot is rendered by calling createParkingLayout() function, then robots are ren-

dered calling renderMachines(robots) and lastly, cars with renderMachines(cars). Last but

not least, frames per second are calculated in the simulationLoop() function. As

simulationLoop() calls window.requestAnimationFrame(simulationLoop) function as the

first thing, the next time that browser is ready to get the next frame, simulationLoop() is

called again.

Function moves()

Function moves(instructions, stepNr) takes the array of instructions and the step of in-

structions as arguments. Function checks if the new step is in the bounds of instructions

array. If it is, it will iterate over all of the instructions in that step and calls

moveMachine(machine, instruction, speed) function which gives the machine object di-

rection on what to do next. This function is described in details in the next chapter.

moveMachine(…) function also changes the text shown to the user describing what machines

are moving where at what speed in that step.

Function moveMachine()

Function moveMachine(machine, instruction, speed) gives instructions to the machine ob-

ject. It goes through the different instruction cases and updates the x and y coordinate direc-

tion of the machine, the speed and calls the machine’s update function. The sprite class, that

all machines have, will be covered in detail in next subchapter.

Class sprite()

Class sprite(options) is the class for all machines. It holds all the settings of the machine,

most important of them are the width, height, image, x coordinate, y coordinate and moving,

lifting flags of the machine. The class also has methods render(), update(dirX, dirY) and

addPixel(dirX, dirY, updateshadow = true). Method render() renders the machine itself

and its shadow. Method update will increment the machine’s speedCount variable and will

call addPixel() method when the machine’s direction, speed and speedCount variables

match the set conditions are matching. For north, east, west and south movement the ma-

chine will be moved certain amount of pixels away from its current location. When machine

is lifting or dropping, the machine is, in addition to coordinates movement, scaled up or

down, depending on the vertical movement.

5.2 Application functions

In this subchapter, the functions of the application are described. The functionality is divided

into two parts – the index page functionality and visualization page functionality.

26

Index page functionality

Screenshot 1. Index page of the application

On the index page, user can choose between different visualization scenarios that are present

in the server. User also has the opportunity to choose if the visualization is going to be

realistic or if there is option to change the speed of the visualization. Realistic mode means

that machines in the visualization are accelerating and decelerating as cars and robots do in

real life.

27

Visualization page functionality

Screenshot 2. Visualization page with settings menu expanded.

On the visualization page, user has chance to change several settings of the visualization.

Settings can be seen by clicking on the hamburger button in the top left corner of the page.

By clicking on the robot button on its right, user is taken back to the index page where he

or she can choose a new scenario. The opacity of the machines can be changed from 50%

to 100% by moving the slider to left or right. The current opacity is shown under the slider.

Default opacity is 75%. The purpose of this functionality is for the user to see the robots

under the cars, if he or she feels the neccessity for that.

The theme of the page can be changed from dark to light by toggling the theme checkbox.

Default value is light theme. This changes the background of the page, the parking lot image

and the text color according to the theme settings. New themes can be easily made for the

program doing minimal changes in the source code.

Furthermore, users have option to turn the grid on the parking lot on or off. By default, grid

is turned on as it makes following the visualization easier.

28

When the user had selected the option to choose the speeds of the simulation, there is option

to choose if the visualization is going to be made at original speed or two or four times the

original speed. Once the visualization has started, it is not possible to choose the speed

anymore.

Also, visualization start and end states are shown on the side of the vizaulisation canvas for

better understanding what the algorithm has to do.

When visualization is running, the information about the movement on the current step is

shown. The information shown is the ID of the machine, it’s movement direction (north,

west, east, south, lifting or dropping) and the speed or level of the machine. The speed of

the machine shows how many steps it is needed for the machine to get from one space to

the adjacent space. In case of vertical movement such as lifting and dropping, it shows the

level of progress the machine is at. For example, „Machine R0 makes step L 1“ means that

Robot with ID „R0“ is lifting and is on level 1.

Once the visualization has started, the frames per second are shown. The purpose of this is

to indicate wether the machine running the visualization is up to the task – if the FPS drops

under 24, user experience can suffer. The lower limits of the machine are determined in

validation chapter.

To start automatic visualization, user has two options – either to click on the „Start automatic

visualization“ button or to click on any car on the parking lot. On user input, the

visualization starts. The automatic visualization can be changed to step-by-step visualization

by clicking on relevant button at any time during the visualization.

Starting step-by-step visualization is done by the „Step-by-step“ visualization button. The

button will be disabled, colored red and the text on the button is changed to „Active

movement“ until the step is finished. After the step is finished, it turns back to active button

with text „Proceed to next step“. Now user can watch the next step whenever it is convenient

for him or her.

29

6 Validation

In this chapter, the application’s working on different platforms, its efficiency and integrity

are validated. As the application consists of client and server parts, then two of them are

tested separately in all of the mentioned categories. In addition, the choices of presenting

the machines’ movement are validated by a survey.

6.1 Sanity testing

All application’s core functions were tested on all the platforms and browsers specified in

the requirements to ensure that application is working properly regardless of the operating

system and browser user’s device uses. In addition, the performance of the client application

was verified by capturing the average framerate of the visualization.

Platforms on which server side of application was tested are as follows: Windows 10, Linux

Mint 17.3 “Rosa” and Ubuntu 14.04.

Windows 10 was running on a physical PC with following specifications:

 Intel core i5-3570K @ 3.4 GHz

 12 GB DDR3 RAM

 nVidia GeForce GTX 660 Ti

 120 GB Samsung SSD 840 series

Linux Mint 17.3 “Rosa” was installed on a virtual machine with 4 GB of RAM and 128 MB

3D hardware graphics acceleration on the physical PC mentioned.

Ubuntu 14.04 is running as a virtual machine in Nitrous.io platform, which is a development

environment in the cloud.

Client side web browsers used were as follows:

 Linux Mint

o Firefox 42.0

 Windows 10

o Google Chrome 50.0.2661.102 m

o Firefox 46.0.1

o Microsoft Edge 25.10586.0.0

 Mac OS X 10.11.4 (CPU – Intel core i7 @ 2.2 GHz, 16 GB RAM)

o Safari

 Android (OnePlus 2, Android version 6.0.1)

o Google Chrome 50.0.2661.89

 iOS (iPhone 4S, iOS 9.2)

o Safari

By combining the server platforms with client platforms and web browsers, following test

scenarios were created:

Table 1. Test scenarios for application

Test scenario num-

ber

Server platform Client operating

system

Browser

1 Linux Mint Linux Mint Firefox

2 Windows 10 Windows 10 Google Chrome

30

3 Windows 10 Windows 10 Firefox

4 Windows 10 Windows 10 Microsoft Edge

5 Ubuntu Linux Mint Firefox

6 Ubuntu Windows 10 Chrome

7 Ubuntu Android Chrome

8 Ubuntu iOS Safari

9 Ubuntu OS X Safari

During the testing of scenarios, all of the functionality was tested and the behaviour of the

application asserted. Furthermore, the average FPS was captured.

All the tests were successful and while the appearance of some HTML elements changed

depending on the browser, everything worked as specified. In the beginning of testing, it

came apparent that Safari and Microsoft Edge are not supporting default parameters in func-

tion arguments as described in ES6/ES20156. Mentioned browsers raised an exception when

parsing following code:

that.addPixel = function (dirX, dirY, updateShadow = true) {

 …

}

Code example 6. Parameter default value

To mitigate the problem, the functions with default parameter values had to be changed as

follows:

that.addPixel = function (dirX, dirY, updateShadow) {

 updateShadow = typeof updateShadow !== 'undefined' ? updateShadow : true;

 …

}

Code example 7. Alternative to parameter default value.

The average FPS of the test scenarios can be found in table 2. The FPS in modern browsers

is usually capped at 60 frames per second.

Table 2. Average FPS on visualization in test scenarios.

Test scenario number Average FPS

1 58

2 60

3 60

4 60

6 http://wiki.ecmascript.org/doku.php?id=harmony:parameter_default_values ECMAScript parameter default

values

http://wiki.ecmascript.org/doku.php?id=harmony:parameter_default_values

31

5 58

6 60

7 58

8 32

9 60

As can be seen from table 2, almost all the browsers were able to run the visualization with

60 FPS, where browsers limit the framerate. The only significant change in the framerate

can be seen in test scenario 8 where iPhone 4S was used as a test device. Considering that

the device was released in 2011, has dual-core 1 GHz processor and 512 MB RAM, this

result was expected. In addition, 32 frames per second on average will not make a drastic

difference in the user experience considering the nature of the application.

6.2 Efficiency of application

The efficiency of client application is partly covered in previous chapter showing the aver-

age framerate of the visualization. The application’s network efficiency and CPU load are

tested in this chapter. For server, the average time for serving JSON is tested.

Client side efficiency

For client side efficiency, Google Chrome developer tools are used to check the CPU load

and network efficiency.

Network efficiency is measured by recording network log with Chrome developer tools.

The recording is started when the index page of application is opened and ended after full

visualization. In addition, the theme and grid settings are toggled during the time to ensure

maximum network load. The results are as follows: 34 requests were made and 362 KB of

data was transferred from server to the client. The content was loaded in 1.46 seconds. Those

values are in limits with the requirements from chapter 3.

Measuring the load to the processor uses the same test scenario as network efficiency test.

The test output has been taken from Google Chrome’s task manager. Application’s browser

tab uses 34,468 MB of memory and when the visualization is ongoing, it takes 2-4% of the

CPU time. Considering that most contemporary computers have at least 4 GB of RAM and

smartphones 2 GB, the program is efficient in using the device’s resources.

Server side efficiency is measured by finding the average time to get scenario list, layout

and instructions as a response to requests. The percentage of CPU utilization by the server

process is also captured. All of the test scenarios made 100 requests to the server. The test

scenarios and results can be found in table 3.

32

Table 3. Server efficiency test results.

Test scenario

number

Request Average time in

milliseconds

Responses

under

250/300/350

ms

CPU

utilization

% of the

process

1 Get list of sce-

narios

151 ms 77/97/100 0.2 %

2 Get ending

state layout for

first scenario

178 ms 62/86/91 9.8 %

3 Get starting

state layout for

first scenario

177 ms 67/90/93 10.5 %

4 Get realistic

movement in-

structions for

first scenario

236 ms 66/89/93 23.7 %

5 Get normal

movement in-

structions for

first scenario

235 ms 61/88/92 23.1 %

As seen from the test results, getting the list of scenarios took on average 151 milliseconds

and 97% of requests were done under 250 milliseconds. Server used 0.2% of CPU time for

this request on average.

There is minimal difference in requesting the starting and ending state layouts of the sce-

narios, with the average response time being 177 milliseconds, 86% of responses being un-

der 250 milliseconds. The server was using roughly 10% of CPU time dealing with the

requests.

Requesting the movement instructions took on average 235 milliseconds to respond with

88% of responses being under 250 milliseconds. Application utilized on average 24% of

CPU while processing the requests.

Finally, all of the test scenarios were run sequentially 1000 times. The average response

time was 231 milliseconds and the CPU utilization 11%.

6.3 Integrity

The integrity of the application is tested by using unit tests on server and visual confirmation

on client side.

The unit tests on server side cover functions get_parking_layout(), get_instructions(),

get_realistic_instructions() and get_json_route_list(). Unit tests are situated in

tests.py file. Unit tests control if the functions return the proper Python type object and con-

trol if the length of different arrays and lists are what they should be. In addition, more

detailed positive and negative test cases are performed to see that the application returns the

33

same correct object every time. All of the performed tests passed, so it can be said that the

server part of the application is integral. Test coverage on fileReader.py is 96% when not

taking into account non-essential helper functions that are never used by the client applica-

tion. These functions are for converting computer generated scenario file’s instructions to

more human readable instructions for checking the compliance of the visualization to the

original instructions.

Testing the client side of application was done as follows: Scenario 3 with realistic visuali-

zation was chosen and 10 steps were done with step-by-step visualization in Google

Chrome, Mozilla Firefox and Microsoft Edge. The results were compared side by side.

Screenshot 3. Superimposed image of canvas elements from three browsers.

As browsers render default HTML elements differently, there was some differences between

the pages on different browsers. Regardless, all the functionality worked as expected. Fur-

thermore, on screenshot 3 there is superimposed image of the canvas element of the three

outcomes of the test. As can be seen, the match is pixel perfect.

6.4 Validation of presentation choices

Validation of presentation choices was validated by a survey. People who answered to the

survey were asked to start up the client application and start a visualization of a scenario of

their choice and observe it. They were asked to rate the usefulness of the options to change

the opacity and application’s theme and the toggling of the grid on parking lot. Furthermore,

34

they were asked how easy it was to start a visualization, how useful were the instructions

and how well they perceived horizontal and vertical movement.

The survey got answers from 8 persons. 50% of the people who answered to the survey were

from age group 24 – 40 years, 37,5% from 19 – 24 years and 12,5 % from 40 – 60 years old.

62,5% of people who answered rate their computer literacy as 8 in a scale from 1 to 10,

where 1 means that a person is computer illiterate and 10 that they know everything about

computer. Average of all the people for computer literacy was 6,875.

All of the users used Chrome web browser to access the application, where 6 of the answered

used PC with Windows 7, one MacBook running Mac OS X and one used Android device.

62,5% found the option to change the opacity of the machine helpful to perceive the move-

ment of the machines. 75% of persons found the option to change the theme on website

helpful and 100% found the option to display grid on parking lot helpful. From these results

it can be concluded that the options do help most of people to perceive the movement of the

machines better.

37,5% of the answered found the instructions helpful. The others found them somewhat

helpful. One of the issues with the instructions was that they were too long. This issue was

addressed after survey and the instructions of the application are now shorter and easier to

read.

Regarding the fact that there were some issues with instructions, on scale 1 to 10 persons

rated the easiness to start a visualization on average at 8,875 points.

Persons were asked to rate on scale 1 to 10 how well did they perceive the horizontal move-

ment of the cars during the visualization, 1 being to lowest grade and 10 highest. The aver-

age grade was 8,75 while majority of persons rated their ability to perceive the movement

at 10.

The same scale was used for people to rate how well they grasped the vertical movement of

the vehicles. Here, the average grade was 7,5. This somewhat low rate can be addressed to

the fact that at the time of the survey, dark theme was default in the application. Dark theme

might be visually more appealing to some than light theme, but the disadvantage of dark

theme is poor presentation of machines’ shadows. To address the issue, light theme was

made the default of the application.

Even when considering the fact that the number of people who answered the survey was

relatively low, it can be concluded that majority of the people, who had no knowledge of

the application prior to the survey, found it easy to use and machine’s movement was per-

ceived well.

35

7 Conclusions and future opportunities

In this thesis, two research questions were answered – what is the best approach and tool

stack to satisfy the business needs of this particular project and what would be the best way

to visualize the particular problem to potential customers. An application was made as a

proof of concept based on the answers on the thesis and validated.

As validation confirmed, building and web application is the way to go. It is lightweight,

can be made available from plethora of devices and it works also on low-end devices like

iPhone 4S is nowadays without lowering the user experience. Web application can be used

either by the presenter in front of the potential customers or the customers can try it

themselves on their smartphones or PC. The decision to choose plain HTML5 canvas

element and plain jQuery for AJAX calls and DOM element manipulations turned out to be

a good idea. Using canvas element without any additional framework makes the code of the

application more readable and lightweight. The JavaScript source code is 18 KB

uncompressed and can be compressed up to 7.82 KB with JSCompress.com7 tool.

Using Python 3.x with Bottle web framework turned out to be good idea. Everything works

as needed, it can be run on all three big operating systems without a problem. Bottle

framework is lightweight, responsive and uses little processing power. It is also compatible

with all WSGI web servers.

The choice of having the visualization in 2 dimensional space with birds-eye view seems to

be efficient approach presenting the movement of machines in a parking lot. The horizontal

movement of the cars was clear to all interviewees, so was the vertical movement (robot

lifting and dropping a car). The presentation of the vertical movement of the car was made

more clear by applying the light theme as a default for the application after the survey.

In conclusion, the thesis answered the two research questions formed in the introduction of

the thesis. An application was built as a proof of concept to confirm the findings in thesis.

The questions were confirmed in validation part by efficiency tests and the survey amongst

the users of the application.

In the future, as the underlying algorithm improves, it is possible to make the application

interactive. That means that the user could add new car to the parking lot or retrieve a car

by clicking on it. The function to identify the car that was clicked on already exists in the

source code of the application and can be easily modified to make an AJAX call to server

to retrieve new instructions. Furthermore, Python was chosen as a server side programming

language partly because of the existence of Boost.Python8 – a C++ library that allows seam-

less interoperability between Python and C++. This is relevant as the underlying algorithm

is written in C++.

Furthermore, the application can be used by other upcoming researches to visualize new

parking algorithms. The application’s ability to work with implicit and explicit instructions

is making it versatile to use with different types of algorithms. In addition, machine moving

speeds and grid’s width and height can be easily configured by changing the global variables

in the client script.

7 http://jscompress.com/ JavaScript compressor
8 http://www.boost.org/doc/libs/1_61_0/libs/python/doc/html/index.html Boost.Python website

http://jscompress.com/
http://www.boost.org/doc/libs/1_61_0/libs/python/doc/html/index.html

36

8 References

[1] S. S. McDonald, „Cars, Parking and Sustainability,“ Transportation Research

Forum, 2012.

[2] Refsnes Data, „Browser Display Statistics,“ 2016. [Online]. Available:

http://www.w3schools.com/browsers/browsers_display.asp. [Used 18 May 2016].

[3] Akamai Technologies, Inc, „akamai's [state of the internet],“ 2016. [Online].

Available: https://www.stateoftheinternet.com/downloads/pdfs/Q4-2015-SOTI-

Connectivity-Executive-Summary.pdf. [Used 18 May 2016].

[4] Refsnes Data, „Browser statistics,“ 2016. [Online]. Available:

http://www.w3schools.com/browsers/browsers_stats.asp. [Used 18 May 2016].

[5] IDC Research, Inc., „IDC: Smartphone OS Market Share 2015, 2014, 2013, and

2012,“ August 2015. [Online]. Available:

https://www.idc.com/prodserv/smartphone-os-market-share.jsp. [Used 18 May

2016].

[6] „Usage Statistics and Market Share of Operating Systems for Websites, May 2016,“

Q-Success, May 2016. [Online]. Available:

http://w3techs.com/technologies/overview/operating_system/all. [Used 18 May

2016].

[7] N. Langley, „Write once, run anywhere?,“ May 2002. [Online]. Available:

http://www.computerweekly.com/feature/Write-once-run-anywhere. [Used 14 April

2016].

[8] D. A. Botwe ja J. G. Davis, „A Comparative Study of Web Development

Technologies Using Open Source and Proprietary Software,“ International Journal

of Computer Science and Mobile Computing, kd. IV, nr 2, pp. 154-165, 2015.

[9] T. Peters, „PEP 20 -- The Zen of Python,“ 19 August 2004. [Online]. Available:

https://www.python.org/dev/peps/pep-0020/. [Used 20 April 2016].

[10] P. J. Eby, „PEP 333 -- Python Web Server Gateway Interface v1.0,“ 07 December

2003. [Online]. Available: https://www.python.org/dev/peps/pep-0333/. [Used 20

April 2016].

[11] M. Hellkamp, „Bottle: Python Web Framework,“ 19 April 2016. [Online].

Available: http://bottlepy.org/docs/dev/index.html#. [Used 20 April 2016].

[12] The CherryPy team, „CherryPy -- A Minimalist Python Web Framework,“ 2015.

[Online]. Available: http://www.cherrypy.org/. [Used 20 April 2016].

[13] A. Roacher, „Foreword -- Flask Documentation (0.10),“ 2013. [Online]. Available:

http://flask.pocoo.org/docs/0.10/foreword/#what-does-micro-mean. [Used 20 April

2016].

[14] J. J. Garrett, Ajax: A New Approach to Web Applications, San Fransisco: Adaptive

Path, 2005.

[15] N. Nurseitov, M. Paulson, R. Reynolds ja C. Izurieta, Comparison of JSON and

XML Data Interchange Formats: A Case Study, Montana: Montana State University,

2009.

[16] N. Stewart ja S. Reimers, „Presentation and response timing accuracy in Adobe

Flash and HTML5/JavaScript Web experiments,“ Behavior Research Methods, pp.

309-327, 2015.

37

[17] N. Ganesh, Static Analysis of Malicious Java Applets, San Jose: San Jose State

University, 2015.

[18] P. Trivedy ja S. Harneja, „HTML5 – the new standard for Interactive Web,“

International Journal of Research, kd. 1, nr 10, pp. 39-42, 2014.

[19] AIR FORCE RESEARCH LAB ROME NY INFORMATION DIRECTORATE,

Advanced Visualization and Interactive Display Rapid Innovation and Discovery

Evaluation Research Program task 8: Survey of WEBGL Graphics Engines, New

York: AIR FORCE RESEARCH LAB ROME NY INFORMATION

DIRECTORATE, 2014.

38

Appendix

I. Glossary

RCPS

Abbreviation of Robot Car Parking System

RCPS

Robot Car Parking System lühend, robotiseeritud

parkimissüsteem

robroute file

The file with the description of the parking lot

layout and the instruction steps,

generated by C++ algorithm

robroute fail

C++ algoritmi poolt genereeritud fail, mis sisaldab

parkla plaani ning masinate instruktsioone

JSON

JavaScript Open Notation – open-standard

format to transmit data objects between

systems.

JSON

JavaScript Object Notation – lihtsustatud

andmevahetusvorming, mida kasutatakse

sageli andmete edastamisel ühest süsteemist

teise

ASP.NET

Server-side web application framework

designed to produce dynamic web pages

ASP.NET

Serveri poolne veebiraamistik, mis on disainitud

dünaamiliste veebilehtede loomiseks

XML

Extensible Markup Language – standard

format that is human-readable and

machine-readable. Is used to share

information between systems.

XML

Extensible Markup Language ehk laiendatav

märgistuskeel – eesmärgiks on

struktueeritud info jagamine eri süsteemide

vahel

CSS3

Cascading Style Sheets level 3 – language

used to describe the presentation of a

document written in a markup language

CSS3

Cascading Style Sheets ehk kaskaadlaadistik tase 3

– keel mida kasutatakse märgistuskeeles

kirjutatud dokumendi presentatsiooni

kirjeldamiseks.

Sanity testing

Testing technique where the functions of an

application are tested without any

scripts to find missing functionality

Sanitaarne testimine

Testimistehnika kus rakenduse funktsioone

testitakse ilma etteantud stsenaariumita

leidmaks puuduolevat funktsionaalsust

FPS

Frames per second – commonly used unit to

measure frame rate – frequency at

which imaging device is showing

consecutive images

FPS

Frames per second ehk kaadrit sekundis - sageli

kasutatud kaadrisageduse mõõtühik.

39

II. Source code

Source code of the application can be acquired from https://github.com/dot-

at/crobots/tree/master/Simulation. The content in the parent directory of Simulation is not

created by the author of the thesis. In addition, source code of the application is bundled

with the thesis.

https://github.com/dot-at/crobots/tree/master/Simulation
https://github.com/dot-at/crobots/tree/master/Simulation

40

III. Installation guide

Requirements for running the application’s server:

 Windows, Linux or Mac OS X PC

 Python 3.x installed

To install the application’s server, following steps are to be taken:

1. Download the source code of the application from https://github.com/dot-

at/crobots/archive/master.zip

2. Unpack the archive

3. In UNIX environments it might be neccessary to make a virtual environment to the

Python by using commands
virtualenv -p /usr/bin/python2.7 py27env

source py27env/bin/activate

Make sure to be in the root directory of the downloaded unpacked archive before

running the commands.

4. If not installed, install Jinja2 and bottle to the Python using commands
pip install Jinja2

pip install bottle
5. On command line, go to the Simulation directory in the unpacked archive

6. Run the server by using command python start.py

7. Open web browser and go to http://localhost:8080/

https://github.com/dot-at/crobots/archive/master.zip
https://github.com/dot-at/crobots/archive/master.zip
http://localhost:8080/

41

IV. User guide

These steps can be taken after installing the server on the PC.

 Go to page http://localhost:8080/ in the browser,

 Choose the scenario.

 Choose either realistic or speed choosing mode.

 Click „Choose scenario“ button.

 To see settings, press hamburger menu on the top left corner of the screen.

 Change opacity by clicking or dragging the opacity slider.

 Toggle the grid button for the application to show or hide the screen,

 If speed selection mode was selected, choose the speed by checking one of the

checkboxes.

 Click the theme button to toggle between light and dark theme of the visualization,

 To start the automatic visualization, press either on „Start automatic visualization“

button or on any of the cars shown on the main visualization screen on the right of

settings.

 To start step-by-step visualization, press on „Step-by-step visualization“. After

every step has been finished, the button has to be pressed again for next visualization

step.

 The visualization can be resumed automatically and vice versa at any time during

visualization.

 To go back to the scenario selection, press on the robot icon on the top left of the

screen.

 User guide can be accessed at any time by clicking on question mark on top right

corner of the screen.

http://localhost:8080/

42

V. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Suido Valli,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Visualization of simulations of a robot operated car park system,

(title of thesis)

supervised by Dirk Oliver Theis,

(supervisor’s name)

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016

