
UNIVERSITY OF TARTU

Institute of Computer Science

 Software Engineering Curriculum

Philip John

Automated Testing of Hypermedia REST Ap-
plications

Master’s Thesis (30 ECTS)

Supervisor(s): Luciano García-Bañuelos

Tartu 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Automated Testing of Hypermedia REST Applications

Abstract:

Testing is one essential part of the software development lifecycle and Test Driven Devel-

opment is one of the main practices in agile methodology. During the development of a

RESTful web application, developers oftentimes focus only in testing the business logic and

neglect testing the protocol implementing REST interactions. In this context, we propose a

tool to automate the generation of test cases that exercise the interactions required by a

RESTful application. The tool takes as input user stories written in restricted version of

Gherkin, a widely use domain specific language for behaviour driven development. User

stories written in this variant of Gherkin capture the essence of the interactions required by

a REST application in a way that it is possible to derive test cases from them. Moreover, the

tool derives fully functional mock implementations from the same input user story. Such

mock implementations can be then used by programmers to develop the client side without

requiring the actual implementation of the REST application. This document introduces the

design principles and implementation of the tool and presents a study case showcasing its

use.

Keywords:

Test-Driven Development, RESTful Applications, Domain Specific Languages

CERCS: P170 - Computer science, numerical analysis, systems, control

Hypermedia REST rakenduste automatiseeritud testimine

Lühikokkuvõte:

Testimine on oluline osa tarkvaraarenduse elutsüklis ja testidel põhinev arendamine on üks

peamistest praktikatest Agile metoodikas. Tihti keskenduvad programmeerijad RESTful

rakenduse loomise protsessis äriloogika testimisele ja unustavad kontrollida protokolli, mis

teostab REST interaktsioone. Selles kontekstis pakutakse välja tööriist, mis automatiseerib

testide genereerimist ja teostab interaktsioone RESTful rakendusega. Tööriist võtab

sisendiks kasutuslood, mis on koostatud Gherkini kitsendatud versiooniga. See on

domeenispetsiifiline keel käitumispõhiseks arenduseks. Kasutuslood, mis on kirjutatud

selles Gherkini variandis, hõlmavad REST rakenduse poolt nõutud interaktsioone sellisel

viisil, et neist on võimalik genereerida teste. Veelgi enam, tööriist genereerib samalt

kasutusloolt täisfunktsionaalse pseudoteostuse. Programmeerijad saavad kasutada neid

pseudoteostusi kliendipoole arendamiseks, vajamata REST rakenduse tegelikku teostust.

Käesolev töö tutvustab tööriista kasutust ja disainiprintsiipe ning esitab näite selle

kasutamisest.

Võtmesõnad:

Testidel põhinev arendamine, RESTful rakendused, domeeni spetsiifiline keel

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

(automaatjuhtimisteooria)

3

Table of Contents

1 Introduction ... 5

1.1 Context ... 5

1.2 Proposed Approach .. 5

1.3 Objectives ... 6

1.4 Document Outline .. 6

2 Background ... 7

2.1 Representation State Transfer (REST) ... 7

2.2 Test-Driven Development .. 9

2.3 Class diagram and State chart diagram .. 11

2.4 Domain Specific Language (DSL) ... 12

2.5 Gherkin language .. 13

3 Related Work .. 16

3.1 Documentation ... 18

3.2 API Mock ... 19

3.3 Test cases .. 20

3.4 Discussion ... 21

4 Method .. 23

4.1 Xtext ... 23

4.2 Architecture overview .. 25

5 Code Generation .. 26

5.1 Specification of DSL .. 28

5.2 Grammar definition .. 31

5.3 Provision of Domain model .. 33

5.4 Generation of Mock Controller .. 34

5.5 Generation of Test cases ... 39

5.6 Discussion ... 43

6 Case Study ... 44

6.1 Test Evaluation ... 44

6.2 Limitations .. 47

7 Conclusion ... 49

7.1 Future Work .. 49

8 References ... 51

Appendix ... 53

I. Appendix A – RentIT Equipment Rental Process .. 53

4

II. Appendix B – Gherkin Feature file for PurchaseOrder .. 54

III. Appendix C – Grammar for a Gherkin Feature file ... 55

IV. Appendix D – Generated Mock Controller .. 57

V. Appendix E – Generated Unit test cases .. 61

VI. Appendix F – Prototype .. 63

VII. License .. 64

5

1 Introduction

1.1 Context

The number of web services is continuously increasing of which many of their distributed

systems uses the architectural style called Representational State Transfer (REST). The style

was suggested by Fielding in [1]. Given its simplicity and proved advantages, the software

industry has widely adopted the REST architecture in the development of not only web-

based applications but also other contexts, such as mobile applications.

In contrast to following the constraints and developing RESTful APIs, there is very limited

research based on the quality assurance of the corresponding services. One of the methods

to improve the quality of a REST service is by providing the quality assurance in the litera-

ture about the development of those services [2]. Another method is to provide automatic

test case generation which can lead to lower development costs. In the development of a

distributed application using RESTful architecture, the developers come up with test cases

to validate the functioning of the application. Writing tests is costly and oftentimes devel-

opers focus mainly on writing tests for business logic instead of writing tests for RESTful

interactions. Also, manually writing test cases is subjected to human errors. Providing auto-

matic test case generation would avoid manual writing of test cases by the developers and

thereby reduce the cost and reduce the chance of human errors.

1.2 Proposed Approach

This work tackles the problem of test case generation from scenarios using Model-Driven

Testing approach. From the design point of view, we see a RESTful application as consisting

of two aspects: a structural aspect, which deals with the data structure of the resources ex-

posed by the application, as well as CRUD operations over these resources (i.e. a resource

model), and a dynamic part, which deals with determining which operations can be applied

to a resource given its current state (i.e. a resource lifecycle model). The former aspect is

usually captured by means of annotated class diagrams while the latter can be captured by

means of state chart diagrams. We contend that existing tools (e.g. Apiary blueprint-related,

swagger-related, etc.) cover only the structural aspect.

The thesis proposes a tool to automate the generation of test cases that exercise the applica-

tion by providing class diagrams and state charts in the form of textual Domain Specific

Languages (DSLs). More concretely, we design domain specific languages embarked as a

tool that produces test code for Java applications using the Spring MVC framework. We

consider Gherkin language as the DSL used as it could capture the structural as well as

behavioural aspects of the application. Moreover, the Gherkin language can be written in

plain spoken language that can be understood by end users. Using this tool, the developers

have to provide the resource and its lifecycle models in the form of a Gherkin feature file

and it will generate the test cases automatically. Additionally, we provide the generation of

a mock controller which are tested by default with the generated test cases. We contend that

the generated test cases using our approach alleviate not only the effort in writing the test

code but also in bringing the benefits of TDD, by checking that all the RESTful interactions

are properly implemented. Unlike the existing tools that cover only the structural aspects of

a hypermedia REST application, this solution we propose covers the application’s structural

as well as dynamic aspects.

6

1.3 Objectives

From the above, we identify the following general objective:

Developing a domain specific language that allows programmers to specify the in-

teraction protocol of a RESTful application and the set of tools to generate testing

artefacts from the interaction protocols thus specified.

The above can be further refined in the following specific objectives:

- Designing a domain specific language for specifying RESTful interactions

- Implementing code generators for:

o Test case suites for exercising the protocol implementing the RESTful inter-

actions

o A mock testing implementation that mimics the actual RESTful application

according to the examples specified using the domain specific language

As a proof concept, we will consider code generation for RESTful applications written with

Spring Boot framework. The latter implies that we target applications written in Java and

more specifically, enterprise applications built on top of Spring MVC framework.

1.4 Document Outline

The rest of this thesis report is structured like the following.

Chapter 2 introduces the various theories and concepts which will be used to discuss the

approach throughout the thesis report.

Chapter 3 summarizes the various researches related to the context under discussion and

explains the existing tools providing similar functionalities as our aimed tool.

Chapter 4 provides an overview of the architecture used in the approach and provides an

initial idea about the planned method of implementation of the tool.

Chapter 5 is probably the most important chapter of the thesis as a tool will be developed

step by step using the approach discussed.

In chapter 6, the implemented tool will be evaluated in order to verify how much the tool

can be used to solve real-world problems. It also provides the existing limitations of the tool.

Chapter 7 summarizes the thesis as a whole, providing the final outcomes from the imple-

mentation and validation perspective. It also provides some suggestions for future work.

7

2 Background

In this chapter, some of the important theory and concepts, based on which the thesis dis-

cussion will be progressed, are briefly described. First, we discuss the main concept of this

thesis, which is Representational State Transfer or REST and its principles. Then we intro-

duce the concept of Test-Driven Development. The discussion is followed by a brief intro-

duction to class diagrams and statechart diagrams. Then we introduce the concept of Domain

Specific Languages (DSL) with examples explaining how we can represent class diagrams

and state diagrams in the form of simple DSLs. Finally, an introduction to Gherkin language

structure is briefly explained.

2.1 Representation State Transfer (REST)

REST or Representational State Transfer is an architectural style proposed by Fielding [1]

that consists of a set of constraints. A REST service is a web of interconnected resources,

based on a hypermedia model that determines possible resource state transitions along with

the relationships between the resources. The clients discover which controls to execute at

runtime. This constraint is named as HATEOAS [Hypermedia As The Engine Of Applica-

tion State]. As a result, it is possible to provide a finite set of valid URIs to the web services

as their entry points [3]. The services built on these constraints have a Resource-Oriented-

Architecture (ROA) [4]. In order to design and test a ReSTful API, it is important to find

the resources and their relationships so that uniform operations can be selected for each

resource, and can define the data formats for them.

Before knowing the principles behind REST, it is required to understand the various com-

ponents used in a REST API.

Http request and HTTP response

In a RESTful system, the clients and servers interact by sending messages across each other

following a predefined protocol. In the case of web APIs, this protocol is HTTP (HyperText

Transfer Protocol). The client sends an HTTP request to the server and the server responds

with an HTTP response.

HTTP is a request-response based protocol. The client initiates the communication by send-

ing an HTTP request and the server will respond back with HTTP response. The structure

of HTTP request and HTTP response is explained below.

HTTP request has three main components [5].

 Request Method, URI and Protocol Version – This constitutes the first line of the

request. It contains the HTTP Request Method, followed by the URI to the method,

and the HTTP protocol name with the version used.

 Request Header – It is used to communicate information regarding the client envi-

ronment. Some of the common headers are Content-Type, Content-Length, Host etc.

 Request Body – This is the actual request which is being sent to the server. The

headers and body are separated by a blank line. In our context, for REST, the request

body is sent in the form of a JSON string.

Similarly, Http response also has three main components [5] which are as follows.

8

 Protocol Version, Status Code and Short description – The first line of a HTTP re-

sponse contains the protocol name and version, the status code of the request and a

short description of the status code. A status code 200 would mean that the request

is successful and the description would be ‘OK’. A status 404 would mean that the

request was not found and the description would be ‘Not Found’.

 Response Headers – These are similar to request headers, except that request header

would provide the client environment information while the response header gives

the server environment information. For example, Content-Type informs the client

how to understand the response body.

 Response Body – This is the actual response which is rendered on the client window.

Similar to the request body, in our context, the request body has a JSON structure.

Principles of REST

According to Fielding [1], REST is based on four principles which are as follows.

Principle 1: Resource identification through URI – The first and main principle of REST

to think in terms of resources rather than physical files. These resources are identified using

URIs which are used for the discovery of resources and their corresponding services.

Some examples of resources with URI are:

 www.example.com/image/image.jpg (Image resource)

 www.example.com/customers/10001 (Dynamically pulled resource)

 www.example.com/videos/v10001 (Video resource)

 www.example.com/home.html (Static resource)

Principle 2: Uniform interface – It says to keep the interfaces uniform and simple. This

can be achieved by combining the uniform methods of HTTP protocol with the resource

operation. The various HTTP methods are GET (getting a resource), POST (creates or sub-

mits the resource), PUT (updates the resource) and DELETE (deletes the resource). By com-

bining the HTTP methods with the resource names, we can create uniform interfaces leading

to simplified communication. The principle is illustrated in Table 2.1.

Ordinary method names HTTP methods REST uniform URL

createPurchaseOrder POST rest/pos

getPurchaseOrders GET rest/pos

getPurchaseOrder GET rest/pos/10001

updatePurchaseOrder PUT rest/pos/10001

removePurchaseOrder DELETE rest/pos/10001

 Table 2.1 Sample method names, HTTP methods and URLs

Principle 3: Self-descriptive messages – The metadata of the resources are used and there-

fore, the resources are decoupled from their representation and their content can be accessed

http://www.example.com/image/image.jpg
http://www.example.com/customers/10001
http://www.example.com/videos/v10001
http://www.example.com/home.html

9

in various formats. To denote the request and the response, some kind of representation is

used, which is JSON in our context. For example, below shows a simple JSON snippet for

creating a new plant with name, description and price.

{
 "name":"Mini excavator",
 "description":"Excavator 1.5 tons",
 "price":100.0
}

A successful creation results in a response body like the following with HTTP status code

201 (created) and a generated id value.

{
 "id":1,
 "name":"Mini excavator",
 "description":"Excavator 1.5 tons",
 "price":100.0
}

Principle 4: Stateful interactions through hyperlinks – The interactions with the re-

sources are stateless. The interactions are based on explicit state transfer. Every request is

independent. The server need not keep track of the previous requests.

2.2 Test-Driven Development

Test-driven development is a programming practise that lets the developers to write addi-

tional code only when an automated test had failed and to eliminate duplication [6]. The

actual goal of TDD is to write working clean code. The conventional application develop-

ment cycle performs coding first, then testing and finally commit. Developers following the

TDD approach make an effective adjustment. They perform testing first, coding second and

commit. The process is repeated multiple times till the corresponding tests are passing. In

other words, the application design is driven by the test.

TDD approach also aims at eliminating duplication. In other words, the written code should

not only be testable but it should also be maintainable [6]. Once the test is passed, effort

should be put into refactoring the code. Eliminating duplication results in increased cohesion

decreased dependency, which are the core aspects of a maintainable code. The biggest ad-

vantage of using TDD approach is that a well-structured and test backed code is easier and

safer to change.

We will consider an example of Purchase Order - the implementation of the creation of

Purchase Order using TDD approach. Initially, we write the test case for the creation of

PurchaseOrder. The JUnit test case of the functionality would look like follows.

@Test
public void testCreatePurchaseOrder() throws Exception {
 Plant plant = new Plant();
 plant.set_id(new Long(1));

 PurchaseOrder purchaseOrder = new PurchaseOrder();
 purchaseOrder.setPlant(plant);

10

 purchaseOrder.setStartDate(LocalDate.of(2016, 05, 01));
 purchaseOrder.setStartDate(LocalDate.of(2016, 05, 04));

 MvcResult result = mockMvc.perform(post("/rest/pos")
 .content(mapper.writeValueAsString(purchaseOrder))
 .contentType(MediaType.APPLICATION_JSON))
 .andExpect(status().is(201))
 .andReturn();

 purchaseOrder = mapper.readValue(result.getResponse()

.getContentAsString(), PurchaseOrder.class);
 Assert.assertThat(purchaseOrder.getPoStatus(),
 equalTo(POStatus.PENDING));
}

On executing this test case, we would get the following result in Eclipse which implies the

test has failed.

The test has failed because the method corresponding to POST /rest/pos is not found.

As a result, we would provide the basic structure of the method.

@RequestMapping(value="/pos",method=RequestMethod.POST)

public ResponseEntity<PurchaseOrder> createPO(

@RequestBody PurchaseOrder po) {

 HttpHeaders headers = new HttpHeaders();

 return new ResponseEntity<PurchaseOrder>(po, headers,

 HttpStatus.valueOf(201));

}

We execute the test again. Again the test is failed due to assertion error saying that it ex-

pected a status of “PENDING” but obtained was null. As a result, we provide the complete

implementation of the creation of PurchaseOrder like follows.

@RequestMapping(value="/pos",method=RequestMethod.POST)
public ResponseEntity<PurchaseOrder> createPO(

@RequestBody PurchaseOrder po) {

po.setPoStatus(POStatus.PENDING);

po = purchaseOrderRepo.save(po);
 HttpHeaders headers = new HttpHeaders();
 return new ResponseEntity<PurchaseOrder>(po, headers,
 HttpStatus.valueOf(201));
}

The tests are run again.

11

As seen above, we got the tests passing. To summarize, we implemented the creation of

Purchase Order functionality using TDD approach by writing a failing test initially and then

by implementing the functionality by repetitive development and testing process.

2.3 Class diagram and State chart diagram

A class diagram is a UML static structure diagram that describes an application using its

classes, attributes and operations, and the relationships between those classes. A class in a

class diagram is represented by a box with three rectangular boxes inside it. The top box

provides the name of the class, the middle rectangle contains the attributes in the class and

the lower box contains the operations declared within the class. The classes will be related

or associated to other classes, which are depicted by lines between them.

Figure 2.1: Class diagram example

Figure 2.1 above shows a basic class diagram of a Purchase Order scenario. The class dia-

gram shows two classes (PurchaseOrder and Plant) and one enumeration (POStatus). It

shows the various relationships that exist between the classes. For example, Plant has a

“contains” relationship with PurchaseOrder which is a one-to-one relationship. The POSta-

tus enumeration provides the various statuses of PurchaseOrder.

A state chart diagram is a representation of a state machine that visualises the change of

states of a modelled element. It shows which activities are executed based on the occur-

rences of events. It displays the various states an object goes through in its life, based on an

12

external event [7]. States, events and transitions constitute a state diagram. States are those

values which certain attributes of an object possess. An object continues to be in a single

state until an event is triggered on it. An event is any kind of occurrence applied to the object

which may or may not change its state. The same event can have multiple effects for various

states. A relationship between two states is termed as a transition which indicates a change

from a state to another state [8].

Figure 2.2: Statechart diagram

The statechart diagram for a Purchase Order is shown in Figure 2.2. The state diagram dis-

plays various transitions Purchase Order could go through from one state to another. For

example, if the Purchase Order is in “Pending” state, it can either go to “Open” or “Rejected”

states. When the clerk calls acceptPO method, the status would become “Open” and if he

calls rejectPO method, then the status would be “Rejected”.

2.4 Domain Specific Language (DSL)

A domain specific language (DSL) is a small programming language or execution specific

language which provides a notation towards the application domain and is focused on some

concepts and features of that particular domain [9]. The domain can be anything. SQL and

XMLs are examples of domain specific languages. A DSL can be used to generate various

contents of a system in an application domain. A well-designed DSL is based on a clear

understanding of the underlying application domain so that the required contents can be

generated easily [9]. One example of textual DSL representation of the class diagram in

Figure 2.1 is represented below.

13

package domain.model {
 enum POStatus {}

 entity Plant {
 name: String
 description: String
 price: Double
 }

 entity PurchaseOrder {
 plant: Plant
 startDate: Date
 endDate: Date
 cost: Double
 poStatus: POStatus
 }
}

Similarly, the state chart diagram in Figure 2.2 can be denoted in the form of DSLs. One

such example is provided below.

events
createPO

acceptPO

rejectPO

updatePO

closePO

end

state empty
createPO => pending

end

state pending
acceptPO => open

rejectPO => rejected

end

state rejected

updatePO => pending

end

state open

closePO => closed

end

state closed
end

Since a DSL can take any structure, we can model it as a Gherkin feature and provide the

characteristics of a state chart model and other details in the feature file.

2.5 Gherkin language

We consider Gherkin language as the DSL in the approach as a Gherkin feature can be used

to represent the resource associations and the corresponding state transitions. Also, it is ideal

to use an existing language rather than generate a completely new DSL as it can be reused

for other purposes as well.

14

Gherkin is the language used for writing Cucumber features. The biggest advantage of using

Gherkin is that it is readable not only by the computer but also the stakeholders as it is

written using plain spoken language [10]. The keywords used in Gherkin has been translated

into over forty languages. It is not tied down to any particular spoken language. As a result,

we can say that even though it is considered as a programming language, its primary goal is

human readability. It means that we can write automated tests that can be read like a docu-

mentation. A small Gherkin example is given below.

Feature: PurchaseOrder feature
 As a customer
 In order to rent plant equipment
 I need to process a Purchase Order

Scenario: Creation of Purchase Order
 When customer submits po
 Then po is saved in database
 And customer is notified

Scenario: Accepting a Purchase Order
 When clerk accepts Purchase Order
 Then Purchase Order is accepted

A Gherkin file uses .feature file extension. Every file starts with the Feature key-

word. It is followed by a text which is the name of the feature and the lines below them is

the description or narrative. Any text can be provided in the description except a line starting

with one of the keywords used in the language. Gherkin keywords are as follows.

Feature Background Scenario Given

When Then And But

* Scenario Outline Examples

Here, the main keywords we would cover are Background, Scenario, Scenario Outline and

Examples. The keywords Given, And, But, When and Then are used to start a step within

the other keywords. The behaviour of the application is described in a feature file using the

scenarios. Each scenario provides a concrete example of how the application should respond

in a particular situation. Adding together all the scenarios would describe the expected be-

haviour of the feature. In Gherkin, we use mainly Given, When and Then keywords to

identify different parts of a scenario. The Given keyword set up the context where the

scenario is executed, When to start interacting with the system and Then to check if the

expected result is the same as the outcome of the interaction. And and But keywords are

used to add more steps to the above three keywords.

A simple example of a scenario in a Gherkin feature file is given below.

Scenario: Accept plant request
Given the plant status is 'PENDING'

 When customer receives request to accept

And customer accepts the plant
 Then status becomes 'ACCEPTED'

In the above scenario, we can see that the And keyword is used to add an additional When

step. Similarly, we can use the But keyword to extend the functionalities of each of the

three step keywords.

15

The background section provides a set of steps common to each scenario in the file. We use

them in order to avoid repetition of steps in each scenario. Let us consider the following

example where we define the initial database before the execution of each scenario.

Scenario: Accept plant request
Given the following plants

 | _id | name | description | price | status |
 | 1 | Plant1 | Excavator 1.5 tons | 100.00 | PENDING |
 When customer accepts the plant with _id '1'
 Then status becomes 'ACCEPTED'
Scenario: Reject plant request

Given the following plants
 | _id | name | description | price | status |
 | 1 | Plant1 | Excavator 1.5 tons | 100.00 | PENDING |
 When customer rejects the plant with _id '1'
 Then status becomes 'REJECTED'

We can see that the same database is initialized in multiple scenarios. The same can be

rewritten using Background section as follows.

Background: Initialize plant catalog
Given the following plants

 | _id | name | description | price | status |
 | 1 | Plant1 | Excavator 1.5 tons | 100.00 | PENDING |

Scenario: Accept plant request
 When customer accepts the plant with _id '1'
 Then status becomes 'ACCEPTED'
Scenario: Reject plant request
 When customer rejects the plant with _id '1'
 Then status becomes 'REJECTED'

Scenario Outlines are used in those cases where there are multiple scenarios that follow the

same pattern of steps and differ only in the input and expected values. The syntax of a sce-

nario outline is similar to scenario except that scenario outlines have additional examples

sections which provide the real values used in the steps. We use placeholders to represent

the real values and substitute the values in the place of these placeholders from the examples

defined in Scenario Outlines. Consider the following two scenarios with similar structure.

Scenario: Accept plant request
 When customer calls 'accept' on plant with _id '1'
 Then status becomes 'ACCEPTED'
Scenario: Reject plant request
 When customer calls 'reject' on plant with _id '1'
 Then status becomes 'REJECTED'

They can be made into a single Scenario Outlines as shown below.

Scenario Outline: Process plant request
 When customer calls <method> on plant with _id <id>
 Then status becomes <status>

 Examples:

 | method | id | status |

 | accept | 1 | ACCEPTED |

 | reject | 1 | REJECTED |

16

3 Related Work

Although the adoption of the REST architectural style has been growing, the number of

research papers related to the testing of the same is still very less. This section summarizes

the existing testing methods of RESTful applications using the classic way of manual testing

and using the automatic generation of test cases. The most common tools used to test an

application programmed in Java are the frameworks like JUnit, NUnit and other xUnit

frameworks. When they are used for testing web services they are tightly coupled with the

implementation language under test [2]. As a result, developers are searching for methods

to improve testing such services. Before we look into the various tools for test generation,

let us look into the various approaches for the generation of tests.

Code based test generation is one of the most common ways to generate test cases. Several

methods exist that facilitates in automatic generation of test cases based on the source code

of application under test. Most of these methods concentrate on path and branch coverage

of the code. These methods do not consider any model or specification. As a result, the tests

cannot generate the expected output for the generated inputs.

Saswat Anand et al. [11] performed an orchestrated survey on the following automated test

case generation methods.

 Adaptive random testing: This approach has been proposed as an extended random

testing method. It has been found that the failure causing inputs tend to form a failure

region. So non-failure inputs should correspondingly form a non-failure region. As

a result, the new test case should be far away from the non-failure test cases when

the previous test case is not a failure. Therefore, adaptive random testing enforces

an even spread of randomly generated test cases across the input domain to enhance

the failure detection effectiveness of random testing.

Compared to random testing, even though this approach provides better test cases,

it would require more memory and computation time because of the additional task

of even spreading across the domain. So it does not necessarily have a better cost-

effectiveness compared to random testing. Although adaptive random testing has

more potential for cost-effective by reducing the time and space complexities.

 Combinatorial testing: It involves the process of selecting a sample of input attrib-

utes that complies with a subset of element combinations to be tested. The attributes

and their input values are modelled as sets of factors and values. Using this model,

the test cases are generated by selecting the Cartesian product of values of all factors.

The overall testing cost of combinatorial testing is comparatively low and they fa-

cilitate higher code coverage. Higher efficiency combinatorial testing can be ob-

tained only by using a modelling language. In such cases, the testing approach would

require high skill level.

 Search-based testing: In order to maximize the achievement of test objectives by

minimizing the test cost, search optimization algorithms, using some fitness func-

tion, are used to generate the test data. The primary concern of search-based testing

is to generate a fitness function to capture the test objectives.

A lot of research is going on over search-based testing recently. The test objectives

that are measurable can be converted to a fitness function. Since any test objective

can be converted to fitness function in principle, this approach is highly generic and

widely acceptable. But there exist many other important test objectives which are

not applicable for search-based testing yet. Also, the approach does not support mul-

tiple test objectives handling while searching for a test suite using a fitness function.

17

 Symbolic execution: It is a program analysis method, which analyses a program

code and generates test inputs automatically for the program. It uses symbolic values

as program inputs, instead of concrete values, and depicts the values of program

variables as the symbolic expression of these inputs.

The application of symbolic execution testing on real-world problems is limited dues

to lack of research. However, it is used with other techniques like search-based test-

ing to provide a better test case. Symbolic execution mechanism for test generation

requires the source code. As a result, it cannot be used for Test-Driven development.

 Model-based testing: It is a lightweight method that uses models of the application

systems to generate test cases. It generally puts the focus on behavioural testing. The

models involved for the approach can either be in textual or graphical modelling

format.

This approach does not require the application code to generate tests. The mainte-

nance effort is very low as the test plan is the model itself. It also ensures higher

code coverage.

We have structured existing research and tools related to our proposed approach as shown

in Figure 3.1, where we have organised the discussion into the generation of three main

categories: Documentation, API Mock and Test cases.

Figure 3.1 Related tools and research

Now, let us discuss the related work among these three categories.

18

3.1 Documentation

The documentation is just the generation of a document which can be used as a contract

between the server and client systems in order to let the clients access their application. The

documentation specifies a well-formatted document what could be the input to a scenario

and what the output should be like. This section describes the various tools that were iden-

tified to generate the documentation of a REST API.

One very common open source tool is Swagger1 which can be used to document and de-

scribe RESTful APIs. The document specification defines a set of files which are used to

describe such an API. These files are used by other tools under swagger such as Swagger-

Codegen2 for generating the server implementation in different languages and Swagger-UI3

for displaying the API. Swagger support is incorporated in many commercial tools in the

market such as Microsoft Visual Studio, vREST etc.

RESTful API Modelling Language (RAML)4 is another tool used for documenting a REST

API. It is a tool which is becoming very common these days and it is being used by hundreds

of open source tools like API Console, API Notebook etc. to create specific custom docu-

mentation. Both Swagger and RAML documentations make use of YAML (recursive acro-

nym for YAML Ain't Markup Language) as the documentation language. YAML is a hu-

man-readable language which takes its concepts from other programming languages like

Perl, Python and XML.

Figure 3.2 API document for Creation of Purchase Order

API Blueprint5 helps in generating high-level API document for web APIs. The blueprint is

a Markdown document that can be used to describe REST API. It is an extension of mark-

down language tailored to provide the details of the interaction with the API. The document

is structured into specific logical sections, with each section specifying distinctive meaning.

It comes along with many tools that could mock and test the API. It also provides another

tool called RSpec API Blueprint6 that facilitates the generation of API documentation by

making use of the API blueprint format from request specs which can be used for testing the

1 http://swagger.io/specification/
2 http://swagger.io/swagger-codegen/
3 http://swagger.io/swagger-ui/
4 http://raml.org/
5 https://apiblueprint.org/
6 https://github.com/calderalabs/rspec_api_blueprint

http://swagger.io/specification/
http://swagger.io/swagger-codegen/
http://swagger.io/swagger-ui/
http://raml.org/
https://apiblueprint.org/
https://github.com/calderalabs/rspec_api_blueprint

19

REST APIs. An example of an API Blueprint document with a single scenario of the crea-

tion of Purchase Order is provided in Figure 3.2.

One drawback about the tools above is that the generated document is very verbose. It re-

quires a lot of lines to generate a properly structured document. Also, the documentation is

more technical when the tools use API blueprint and YAML languages.

3.2 API Mock

Mocking an API is the process of creating and using a replacement version of the API in-

stead of using an actual software API. It will behave as the actual API, but it will lack many

functional and non-functional logic of the actual API. This section discusses various tools

we came across that can be used to generate mock API.

Figure 3.3 API Mock of Creation of Purchase Order

A very common tool used for mock server generation from the API specification is the api-

ary’s API-Mock7. The user has to document the REST API in API blueprint format and the

tool generates a simple and fast mock server using the routes in the document and provides

the responses defined in the API specification. An example of API mock for the creation of

Purchase Order scenario is provided in Figure 3.3. The request body can be seen in the

figure. When the user clicks on “Call Resource” button, the REST call is made to the mock

server method running at http://localhost/rest/pos and returns the static re-

sponse provided in the document.

Swagger Mock API8 is an npm module. It is a connect-compatible middleware used in gen-

erating functions, which in turn generates a REST API based on Swagger compatible

YAML or JSON file. The Osprey Mock Service9 is another npm module used for mocking

7 https://github.com/localmed/api-mock
8 https://www.npmjs.com/package/swagger-mock-api
9 https://github.com/mulesoft-labs/osprey-mock-service

http://localhost/rest/pos
https://github.com/localmed/api-mock
https://www.npmjs.com/package/swagger-mock-api
https://github.com/mulesoft-labs/osprey-mock-service

20

the services from RAML definition. Again, the execution of Swagger and RAML mock

service is similar to the apiary. They make use of examples to provide the static responses.

All these tools respond with fixed data instead of dynamic data. Also, in order to set up a

complete mock server of an API, it would require a lot of documentation work.

3.3 Test cases

Most of the research regarding the related work was concentrated on the test case generation.

We have divided the identified tools and researches related to automatic test case generation

into three sections. Interactive testing tools are the tools which can be used to test against a

published REST API. Stepwise protocol testing tools are those tools which could perform a

single functionality testing of a REST API. Multi-step protocol testing involves the testing

tools and research which aimed at automatic test generation where the tests could test

multiple steps at a time. The tools and research in the three sections are briefly described

below.

2.4.1 Interactive Testing

The cases we consider in interactive testing are all tools for script-based testing, which is

the process of testing inputs and observations programmed in scripts using some dedicated

or general-purpose languages. Users are provided with an application by means of which

they can provide sample requests, which could include the HTTP verb, HTTP headers and

the test data, and check out the output of the underlying REST application. They can record

a sequence of calls in the form of a test script (e.g. a test workflow by some vendor) that can

be later used to test typical sequences of calls in the form of scenarios.

One such approach is the SoapUI10 tool which uses a Service-Oriented-Architecture to con-

figure functional, compliance, regression and load tests for web-services. SoapUI provides

test coverage and supports most of the technologies and standard protocols.

Postman is a script-based testing tool which comes as a Chrome browser plug-in. It is used

to test a REST API. It has a beautiful user interface for entering parameters. It does not

require the user to deal with commands. It also helps the user to automate the process of

making API requests and testing API responses.

2.4.2 Stepwise Protocol Testing

Apiary’s Dredd11 is a tool which can be used for testing API documentation described using

API Blueprint against its backend implementation. It helps to have the RESTful API docu-

mentation up-to-date by plugging the documentation to other continuous integration sys-

tems.

Haleby’s REST-assured12 is another approach to improving the test case development of

RESTful services. Haleby developed a tool for rapidly writing test cases for any RESTful

application, which worked on the when-then rule. Every test cases could be configured using

the fluent interface. As a result, the test cases were concise and efficient.

Elide13 is a framework which uses JSON API to develop RESTful applications. It has a

sibling framework which is used to specify test cases for the various CRUD services of

Elide. The framework uses Gherkin feature file as the domain specific language. A list of

10 http://www.soapui.org/
11 https://dredd.readthedocs.org/
12 https://github.com/jayway/rest-assured
13 http://elide.io/

http://www.soapui.org/
https://dredd.readthedocs.org/
https://github.com/jayway/rest-assured
http://elide.io/

21

collection and entities used by the application is specified in the gherkin file and the frame-

work tests all their combinations of CRUD operations by checking the actual result from

Elide with the expected result defined in the gherkin file. Any mismatches are considered

as test failures.

2.4.3 Multistep Protocol Testing

Chakrabarti and Rodriquez [12] introduces an algorithm which tests whether a service con-

forms to the property of connectedness of REST. Connectedness means that all other re-

sources of a service are accessible from a root resource. Klein and Namjoshi [13] in the

same context, formalize the properties and concepts of REST. This could be used to check

the behaviour of the system under test. These two methods verify the REST constraints,

former by using graph models and the latter by using a formal specification of the system

under test.

Another approach that uses automated test case generation is called Test-The-Rest (TTR)

[14] and a tool was created implementing this approach with the same name. It used XML

notations to configure each test case, which also had the facility to write test cases which

contained a sequence of other test cases. Each test case has pieces of information like the

HTTP method, resource URI and the expected representation. But the approach had to man-

ually configure each test cases in the XML to generate them which was a tedious task.

Fertig and Braun proposes a method for automated test case generation by using Model

Driven Testing (MDT). They were able to generate test cases based on the model, which

only contained the design of the API under test and had no particular information regarding

testing. The approach used textual Domain Specific Languages (DSLs) to depict the model

used for test generation.

Pinheiro, Endo and Simao proposes a Model-Based Testing (MBT) approach [15] which

promotes behavioural testing of RESTful APIs, providing a more formal and systematic

testing. They chose UML protocol state machine as the model since it gives importance to

the transition between the states and not the action that occurs in each state and thereby

providing the required level of abstraction. In other words, it focusses on the effect of tran-

sition than the behaviour of the states. The approach was implemented using a tool which

was developed in Java that generated test suites for state and transition coverage.

3.4 Discussion

The documentation of the API is generally used by the client systems to access the server

machine. The tools discussed above would require a large number of lines of code in order

to create a well-formatted document. In our approach, we consider a Gherkin feature file as

the documentation used as Gherkin by itself is an intuitive and easy to understand the doc-

ument written using plain spoken language which can be understood by the server side and

end users.

The mock servers generated by the tools discussed above mostly use examples to communi-

cate which in turn consider only a single scenario at a time. They are designed in such a way

that they could execute only one functionality, say “Creation of a Purchase Order”. Their

result is static as they provide static responses. Our proposed tool generates a mock from

the documentation (Gherkin file) which not only aims to consider a single scenario execu-

tion, but additionally, aims to provide a functionality of chaining by which we could execute

multiple scenarios. Also, it provides dynamic data, which will be the actual response when

a request is sent to the mock.

22

A research was done on the interactive testing tools. But they are used to test published

APIs. Since we concentrate more with the automatic generation of test cases and the mock

controller generation and do not deal with the actual API and its testing, we content that the

tools are out of scope for our approach. The test cases generated by single protocol testing

tools mainly concentrate on the execution of a single scenario. Our approach generates test

cases, which are tested with the mock controller by default. Also, they are able to consider

a single scenario as well as multiple scenarios in a single unit test case.

The multistep protocol testing researches mainly require some models and the target appli-

cation. If we map these researches to a state model, it would execute based on a sequence

of transitions. But this would imply multiple completely independent test cases in a single

test case, instead of keeping the state of the previous test case and providing a chaining of

the scenarios. Our method focuses on chaining by testing multiple scenarios, keeping the

state alive from the previous scenario. The aim of our method is to guide the developers to

follow a TDD approach in order to implement the target application.

23

4 Method

This chapter provides an overview of the architecture that was used for the implementation

and the corresponding approach taken to implement the DSL and its transformation to Java

code. But in order to generate Java code, we could make use of simple UML modelling

diagrams instead of a DSL. The reason why we have chosen DSL over UML diagrams is

that the diagrams are more compact with the amount of information it could provide. By

combining multiple UML diagrams, we could obtain information regarding the application,

yet it is a tedious task. This is why we have chosen to use DSLs as they are more direct,

appealing and easier to use [16] and they could be provided with as much details of the

application as possible.

The next discussion was to decide the structure of a DSL as it should be able to provide all

the relevant low-level information of the application in order to generate the complete mock

controller methods. Initially, we decided to create a DSL structure providing information of

each method, but then the idea was dropped and chose Gherkin language as the DSL. The

reason behind using Gherkin is that it is very widely used among software development

processes and that it can be written in plain spoken language which can be understood by

all users. Also, a Gherkin file could be used to evaluate the behaviour of the application

generated using TDD approach from the test cases generated using our method. The native

Gherkin file was custom tailored for our purpose by providing the low-level details in them

like the method name, the Uri, the verb etc.

Now that we have decided the DSL structure, we need a platform to implement a grammar

for the Gherkin language DSL. Since the targeted language is Java, we searched tools for

implementing DSL associated with Java. The main criteria we chose to select the tool were

the following.

1. It should have support to implement the grammar of the language.

2. It should have support for transforming one representation to another one.

3. It should contain a textual editor for the DSL so that the users could write code to

translate the DSL to the desired code.

Considering the above requirements, it was decided that Xtext would be the best option.

Additionally, Xtext came with Eclipse IDE which had support for Spring MVC framework.

Moreover, it is open source and supported by the Xtext community. Recently, the commu-

nity upgraded Xtext to be compatible with IntelliJ IDEA, although we did not proceed our

implementation to that area.

In the following sections, we provide a brief introduction to the architecture of Xtext fol-

lowed by the architecture of our proposed solution.

4.1 Xtext

Xtext is a very sophisticated tool which helps to implement simple domain specific lan-

guages with IDE support. If a language lacks decent tool support, Xtext14 can be used to

provide an Eclipse-based development environment. This environment is responsible to pro-

vide editing experience from modern Java IDEs in a short amount of time. The compiler

components of the language can be used in any Java environment. Unlike XML, which has

a strict syntax, there is no limitation in Xtext regarding syntax. It helps to define the required

14 https://eclipse.org/Xtext/

https://eclipse.org/Xtext/

24

syntax. The task of reading the model, parsing or working with it and writing it back is

simplified to a greater extent using Xtext. Figure 4.1 shows the architecture of Xtext.

Figure 4.1: Xtext architecture

Xtext provides a grammar definition language from which it generates a runtime support for

the language in connection with metamodel in order to apply the lexical parsing. Xtext uses

Eclipse Modelling Framework15 (EMF) models as the in-memory notation of any parsed

file. It decorates the model by using syntax highlighting rules and additionally allows us to

specify code generation support. This code generation is specified in another language pro-

vided by Xtext called Xtend16. It would have been possible to generate the code using Java,

but the number of lines of code was very much higher compared to what the lines of code

in Xtend.

Xtend is a statically-type programming language used along with Xtext in order to translate

the Xtext grammar to Java source code. It is based on Java programming language. With

Java, it has zero interoperability issues. Every code written in Xtend interacts directly with

Java as expected. Xtend also provides additional features like call-hierarchies, debugging,

rename refactoring etc. The EMF code generator will be run on the Xtend generator to gen-

erate the desired Java code.

15 http://www.eclipse.org/modeling/emf/
16 http://www.eclipse.org/xtend/

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/xtend/

25

4.2 Architecture overview

The architecture of our proposed approach is illustrated in Figure 4.2.

Figure 4.2: Process of Mock controller and Test generation

The modules Specification, Entities and the Actual controller (which highlighted in grey

colour) should be provided by the user and the ones in blue are generated. The main part of

the code generation is the specification DSL which must be provided by the user. As dis-

cussed before, we consider Gherkin language as the DSL so that it could cover resource

model as well as the state model. The user has to provide the specification followed by the

entities used in the application. The entities should be created in such a way that it supports

both Mock and JPA repositories. The actual controller is supposed to be developed by the

user only after the tests are generated using TDD approach.

Using the specification, the mock repository is generated first followed by the JPA reposi-

tory. The mock repository will be used by the mock controller for performing basic database

operations. They will only support the basic CRUD operations. The mock controller is also

generated using each scenario in the specification. The tests generated are first tested on the

mock controller and verified before they are used to create the actual controller using TDD.

After the generation of mock, we turn to the generation of the tests. The test data is to be

taken from the specification. Instead of loading all test data in the main unit test class, we

generate a helper class which stores all the data from the specification used for testing. Fi-

nally, the test class is generated covering all the scenarios provided in the specification.

Once it is generated, the test cases are verified against the mock controller. If they are suc-

cessful, then the actual controller is supposed to be developed using the test cases one by

one. The complete application is ready once all the tests pass in the actual controller.

26

5 Code Generation

We consider the scenario, originally described by Dumas in [17], where an equipment rental

company called RentIT rents out a wide range of construction equipment. A shortened ver-

sion of the scenario covering the workflow from creating and order to closing the order is

provided in Appendix A.

The discussion regarding the implementation will be based on the state transitions a Pur-

chase Order (PO) undergoes during an equipment rental process in RentIT. All the scenarios

can be referred from Appendix A. The complete transitions are illustrated by the state chart

below.

 Figure 5.1 State transition diagram of Purchase Order

The list of methods and their verb and Uri inferred from Figure 5.1, which provides the

complete state transition diagram of the application, are provided in Table 5.1.

Method name Verb Uri

createPO POST /pos

acceptPO POST /pos/{_poid}/accept

rejectPO DELETE /pos/{_poid}/accept

updatePO PUT /pos/{_poid}

27

closePO DELETE /pos/{_poid}

cancelPO DELETE /pos/{_poid}/cancel

createPOExtension POST /pos/{_poid}/poext

acceptPOExtension POST /pos/{_poid}/poext/{_extid}/accept

rejectPOExtension DELETE /pos/{_poid}/poext/{_extid}/accept

 Table 5.1 Methods involving Purchase Order state transitions

In order to begin the implementation, we consider a small section of the complete scenario.

The rental process starts when a new Purchase Order (PO) is received by the rental company

from a customer. A PO will have an inventory item along with the start date and end date

which marks the rental period. When a Purchase Order is received, the sales representative

of RentIT verifies the PO and checks the availability of the item requested in the PO. This

can lead to one of the following 2 outcomes.

1. the PO is accepted

2. the PO is rejected

The implementation phase is started with the above simple workflow of a Purchase Order.

The corresponding state transition diagram we consider for the discussion is provided in

Figure 5.2.

 Figure 5.2 State transition diagram of Purchase Order considered for discussion

First, the grammar is defined for the Gherkin structure as we are using a Gherkin feature file

to generate the test cases. The mock is generated first from the feature file. The mock will

contain all the methods defined in the feature file. Then a helper file to provide input data

to the test cases is generated. And finally, the test cases are generated from the feature file.

28

5.1 Specification of DSL

A feature file always starts with the keyword “Feature” followed by a text which becomes

the title of the feature. In our case, we call it “PurchaseOrder feature” as we are dealing with

Purchase Order scenarios. It is followed by a narrative. The narrative is optional as we do

not consider the narrative for code generation.

Feature: PurchaseOrder feature

 As a customer

 In order to rent plant equipment

 I need to process a Purchase Order

Now let us consider the first action associated with the rental system. A request is received

from the client for the creation of a Purchase Order. A high-level Gherkin scenario for this

action can be defined as follows.

Scenario: Creation of Purchase Order
 When customer submits po
 Then po is saved in database
 And customer is notified

Here, we can see a step which says po is saved in database. But we have not defined any-

thing as the database yet. Therefore, before considering the different scenarios of Purchase

Order, we need to setup the initial database. It is optional for simple APIs, but in our case

study, it is necessary to have at least some Plant objects in the database in order to create

Purchase Orders. So we define a Background which provides the initial database structure.

Background: Initial plant catalog and purchase orders
 Given the following plants
 | _id | name | description | price |
 | 1 | Mini excavator | Excavator 1.5 tons | 100.00 |
 | 2 | Mini excavator | Excavator 2.5 tons | 120.00 |
 | 3 | Midi excavator | Excavator 3.0 tons | 150.00 |
 | 4 | Maxi excavator | Excavator 5.0 tons | 200.00 |
 Given the following purchase orders
 | _id | plant | startDate | endDate | cost | poStatus |
 | 1 | {"_id": 1, …}1 | 2016-02-29 | 2016-03-19 | 2000.00 | PENDING |

1. { "_id":1, "name":"Mini excavator", "description":"Excavator 1.5 tons", "price":100.0}

Due to lack of space, the lengthier data is provided as a footer information as shown above

under plant column.

In the above case, we could provide some notation to identify the databases corresponding

to Plant and Purchase Order, say $Plants and $PurchaseOrders respectively, so that while

parsing the feature file, we could identify them as databases. This notation is selected be-

cause there is a technical reason which we would introduce later. So getting a Plant object

from the database with id=1 can be denoted by $Plants.findOne(1L). We also define a

method to convert from any object to JSON string. We could provide the notation $toJson

for this object. We adapt these notations so that we could identify them while parsing using

some parser during code generation phase. So the final Background can be rewritten as fol-

lows.

29

Background: Initial plant catalog and purchase orders
 Given the following $Plants
 | _id | name | description | price |
 | 1 | Mini excavator | Excavator 1.5 tons | 100.00 |
 | 2 | Mini excavator | Excavator 2.5 tons | 120.00 |
 | 3 | Midi excavator | Excavator 3.0 tons | 150.00 |
 | 4 | Maxi excavator | Excavator 5.0 tons | 200.00 |
 Given the following $PurchaseOrders
 | _id | plant | startDate | endDate | cost | poStatus |
 | 1 | {"_id": 1, …}1 | 2016-02-29 | 2016-03-19 | 2000.00 | PENDING |

1. #{$toJson($Plants.findOne(1l))}

Now let us consider the scenario of creation of Purchase Order once again.

Scenario: Creation of Purchase Order
 When customer submits po
 Then po is saved in database
 And customer is notified

The above scenario is too abstract. It does not provide any technical information like what

the value for po is, how the customer submits the po or how the customer is notified. Taking

these technical aspects also into consideration, we can reformat the scenario as follows.

Scenario: Creation of Purchase Order
 When customer calls 'createPO' using 'POST' on '/pos' with 'po'
 Then PurchaseOrders must contain 'po'
 And status code must be '201'
 And location must have '/pos/poId'
 And po status must be 'PENDING'

This provides low-level details like the method name (createPO), the uri to the method

(/pos), the parameter name (po) etc. Once the execution of the method is done, the Pur-

chaseOrder table should contain the newly created PurchaseOrder object (po). Using status

code of 201, we can inform the successful creation of PO to the client. Also, the location of

the created PurchaseOrder will be /pos/poId, where poId will be the id of the created

object. An additional step is added to check if the Purchase Order status has been updated

to PENDING.

The above scenario can be further improved by providing the database notation for Pur-

chaseOrder used in the background ($PurchaseOrders) for consistency. Also, in order to

understand that poId is the id of the created po, we can replace poId by po._id assum-

ing that the id of a Purchase Order is named as _id. Finally, we provide a variable name for

Purchase Order status as poStatus, which should be the name provided for the attribute

in the model. So the scenario can be rewritten as follows.

Scenario: Creation of Purchase Order
 When customer calls 'createPO' using 'POST' on '/pos' with 'po'
 Then $PurchaseOrders must contain 'po'
 And status code must be '201'
 And location must have '/pos/<po._id>'
 And 'poStatus' must be 'PENDING'

30

Even with the above scenario, one cannot understand what the value for po is. But for the

time being, we will consider the next action and postpone improving this scenario for later.

Once the Purchase Order is created, if a plant is available, then the PO is accepted, else it is

rejected. Ideally, this functionality should happen automatically. But since it requires a lot

of business logic, which would make our feature long and dirty, we would avoid automating

this functionality. Instead, we consider them as manual tasks by some actor. So there are

two actions now and the actor is the clerk. We will consider acceptance of PO first. The

corresponding scenario is given below.

Scenario: Accepting a Purchase Order
 When clerk accepts Purchase Order
 Then Purchase Order is accepted

Again this is a high-level scenario. We reformat them like the way we did while writing the

scenario for the creation of PO.

Scenario: Accepting a Purchase Order
 When clerk calls 'acceptPO' using 'POST' on '/pos/{id}/accept'
 Then 'po' should be ' $PurchaseOrders.findOne(id)'
 And status code must be '200'

 And 'poStatus' must be 'OPEN'

Similarly, for rejection of a Purchase Order, the scenario will be as follows.

Scenario: Rejecting a Purchase Order
 When clerk calls 'rejectPO' using 'DELETE' on '/pos/{id}/accept'
 Then 'po' should be ' $PurchaseOrders.findOne(id)'
 And status code must be '200'

 And 'poStatus' must be 'REJECTED'

The above two scenarios are almost a replica of each other except the field values. Therefore,

we could use a Scenario Outline instead of a Scenario and use placeholders instead of the

field values. Thus, the above two scenarios can be combined as given below.

Scenario Outline: Processing of a Pending Purchase Order
 When clerk calls <function_name> using <verb> on <uri>
 Then 'po' should be ' $PurchaseOrders.findOne(id)'
 And status code must be <status>

 And 'poStatus' must be <poStatus>
 Examples:
function_name	verb	uri	poStatus	status
acceptPO	POST	/pos/{id}/accept	OPEN	200
rejectPO	DELETE	/pos/{id}/accept	REJECTED	200

Similarly, we can rewrite the scenario for “Creation of Purchase Order” also as Scenario

Outline. The po also could be made into a placeholder depicting the JSON value of the po

object. Also, we can make use of JSON Patch and JSON Merge Patch in order to update a

JSON by sending the changes rather than the whole new JSON. In our case, we can use

JSON Patch to change one attribute and JSON Merge Patch when multiple attribute values

have to be changed. Since, in the above case, we are only updating the poStatus from

PENDING to OPEN/REJECTED. So we could use JSON Patch. In the case of “Creation of

Purchase Order”, we are updating the poStatus and the cost. So we could use JSON

31

Merge Patch. We would adopt some notation for them like the $toJson notation for a method

to convert to JSON in Background section. We make use of $patch(<JSONOb-

ject>,<PatchString>) and $mergePatch(<JSONObject>,<MergePatchString>) to repre-

sent JSON Patch and JSON Merge Patch respectively. So all the scenarios can be finally

written as follows.

Scenario Outline: Creation of PurchaseOrder
 When customer calls 'createPO' using 'POST' on <uri> with <po>
 Then $PurchaseOrders must contain $mergePatch(<po>,<po_patch_merge>)
 And status code must be <status>
 And location must have <location>
 And 'poStatus' must be <poStatus>
 Examples:
 | uri | po | status | location | po_patch_merge | poStatus |
 | /pos | {"plant": …}1 | 201 | /pos/<po._id> | {"id": …}2 | PENDING |

Scenario Outline: Processing of Pending PurchaseOrder
 When clerk calls <function_name> using <verb> on <uri>
 Then <po> should be '#{$PurchaseOrders.findOne(id)}'
 And $PurchaseOrders must contain $patch(<po>,<po_patch>)
 And status code must be <status>
 And 'poStatus' must be <poStatus>
 Examples:
function_name	verb	uri	status	po_patch	id	poStatus
acceptPO	POST	/pos/{id}/accept	200	[{"op": …}]3	1L	OPEN
rejectPO	DELETE	/pos/{id}/accept	200	[{"op": …}]4	1L	REJECTED

1. {"plant": #{$toJson($Plants.findOne(1l))}, "startDate": "2016-02-29", "endDate": "2016-03-04"}
2. {"_id": #{$PurchaseOrders.count()+1}, "poStatus": "PENDING", "cost": "200"}}
3. [{"op": "replace", "path": "/poStatus", "value": "OPEN"}]
4. [{"op": "replace", "path": "/poStatus", "value": "REJECTED"}]

We need to generate the test cases using chaining of the Scenario Outlines. This can be

facilitated by using scenarios. For example, the creation and acceptance of a Purchase Order

can be denoted by the following.

Scenario: Create and accept PurchaseOrder
 When scenario "Creation of PurchaseOrder" with [1]
 And scenario "Processing of Pending PurchaseOrder" with [1]

Here, the number provided in the square brackets denotes the corresponding example num-

ber. In the case of the scenario “Creation of PurchaseOrder”, there is only one example,

while in the case of “Processing of Pending PurchaseOrder”, [1] denotes the example for

acceptPO and [2] for rejectPO.

The complete Gherkin feature file created during the discussion in this section is provided

in Appendix B. Using this feature file, we proceed to implement the grammar.

5.2 Grammar definition

The actual grammar for a Gherkin feature file was obtained from [18].

When defining a grammar, the first and foremost task is to define a start entity that acts as

the root node. As the grammar is dealing with a cucumber feature file, Feature is the name

chosen for the starting entity.

32

The feature file usually starts with the keyword “Feature:” followed by a title. It can option-

ally contain one or more tags and a narrative description of what the feature does. In our

context, we have avoided these sections as we do not require them for the code generation.

The main sections of the file we consider are the sections provided below.

Feature:
 tags+=Tag*
 'Feature:'
 title=Title EOL+
 narrative=Narrative?
 background=Background?
 scenarios+=(Scenario | ScenarioOutline)+;

Background:
 'Background:'
 title=Title? EOL+
 narrative=Narrative?
 steps+=Step+;

Scenario:
 tags+=Tag*
 'Scenario:'
 title=Title EOL+
 narrative=Narrative?
 steps+=Step+;

ScenarioOutline:
 tags+=Tag*
 'Scenario Outline:'
 title=Title EOL+
 narrative=Narrative?
 steps+=Step+
 examples=Examples;

Step:
 stepKeyword=StepKeyword
 description=StepDescription EOL*
 tables+=Table*
 code=DocString?
 tables+=Table*;

Examples:
 'Examples:'
 title=Title? EOL+
 narrative=Narrative?
 table=Table;

A background is similar to a scenario just that it is invoked before every scenario is run. It

starts with the keyword “Background:” followed by the title and then the steps. It can op-

tionally have a description. The grammar for Background is provided above.

Scenario is the core of Gherkin structure. It starts with “Scenario:” keyword followed by the

title. Each scenario can have one or more steps. Scenario outline is used to avoid repetition

of scenarios for different values. It starts with the keyword “Scenario Outline:” followed by

its title. Scenario outlines contain placeholders which are replaced by the values from the

examples during their run. Apart from the additional examples in scenario outline, its struc-

ture is similar to that of a scenario. The grammar for Scenario and ScenarioOutline is given

33

above. In the course of the thesis, ScenarioOutline is used to provide the various processes

within the application (e.g. Creation of Purchase Order) and Scenario to provide the se-

quence of scenario outlines. The Background, Scenario and ScenarioOutline contain one or

more steps. A step starts with a step keyword which can be one of the following: Given,

When, Then, And, But. The step keyword is followed by a step description. The description

can either be simple text or text containing placeholders (within <> in the case of Scenario-

Outline). A step can optionally contain tables. The examples in ScenarioOutline usually

contains a table to replace the values in the corresponding placeholders in the steps. The

grammars for Step and Example is provided above. The complete grammar definition is

presented in Appendix C.

5.3 Provision of Domain model

Before we start the implementation of the mock, it is required to have a project structure

with the necessary models and other related classes or enums. These models have to be

manually provided.

In our case, it is evident that we consider 2 models, namely PurchaseOrder and Plant. From

the feature file, we can infer the various attributes of the models. Plant has the following

attributes: _id, name, description and price. PurchaseOrder has the following at-

tributes _id, plant, startDate, endDate, cost and poStatus. We consider the

poStatus as an enum. So we need to create an enum for the poStatus.

So the initial structure of PurchaseOrder model will be like

public class PurchaseOrder {
 Long _id;
 Plant plant;
 LocalDate startDate;
 LocalDate endDate;
 Double cost;
 POStatus poStatus;
}

But in the real world scenario, these models are supposed to be saved in the databases. In

order to facilitate database saving functionality, it is required to make some changes to the

model. Firstly, we must provide some annotations for the _id which are

 org.springframework.data.annotation.Id

 javax.persistence.Id – to denote that this attribute is the primary key of the JPA en-

tity.

 javax.persistence.GeneratedValue – to denote that the attribute value is automati-

cally generated.

We use Spring HATEOS as a middleware to provide hypermedia support. We get this sup-

port by extending the class org.springframework.hateoas.ResourceSupport. So the second

change to the model is to extend ResourceSupport. It is also advisable to provide ja-

vax.persistence.Enumerated annotation for enums used in a model (in our case poSta-

tus). Finally, when a model references another model, the corresponding association type

should also be annotated (OneToOne in the case of plant above). So the final structure of

PurchaseOrder looks like follows.

34

public class PurchaseOrder extends ResourceSupport {
 @org.springframework.data.annotation.Id
 @Id @GeneratedValue
 Long _id;

 @OneToOne
 Plant plant;
 LocalDate startDate;
 LocalDate endDate;
 Double cost;
 @Enumerated(EnumType.STRING)
 POStatus poStatus;
}

Similarly, we should manually create the other models used in the application before the

code generation. Once it is done, we carry forward to generate the mock. But before we deal

with the mock, we should generate the corresponding repositories from the Cucumber fea-

ture for each model. It is because the mock controller will be using these repositories to find,

save or delete based on the operations provided in the Cucumber feature and we need the

repositories for these tasks. It is ideal to use two different repositories. For the mock, we

generate the corresponding CrudRepository (org.springframework.data.repository.CrudRe-

pository) and for the actual controller, we use the JpaRepository (org.springframe-

work.data.jpa.repository.JpaRepository). The CrudRepository is used for the mock in order

to implement CRUD operations without having an actual database. In other words, the da-

tabase was mocked by using CrudRepository. The method of generation of repositories is

provided in the following section.

5.4 Generation of Mock Controller

As mentioned above, before we begin the generation of the mock controller, it is required

to generate the corresponding repositories. We create two repositories for a single model to

be used by the mock controller and the actual controller. The only information needed to

generate the repositories is the model name as the repositories we intend to generate are

basic repositories without specific querying functionalities, which implies that the only dif-

ferent between the repositories will be the corresponding model name.

Now we need to figure out how we could obtain the models used. We had provided a Back-

ground section in the feature which provided information regarding the existing database

like structure. The section is as follows.

Background: Initial plant catalog and purchase orders
 Given the following $Plants
 | _id | name | description | price |
 | 1 | Mini excavator | Excavator 1.5 tons | 100.00 |
 | 2 | Mini excavator | Excavator 2.5 tons | 120.00 |
 | 3 | Midi excavator | Excavator 3.0 tons | 150.00 |
 | 4 | Maxi excavator | Excavator 5.0 tons | 200.00 |
 Given the following $PurchaseOrders
 | _id | plant | startDate | endDate | cost | poStatus |
 | 1 | {"_id": 1, …}1 | 2016-02-29 | 2016-03-19 | 2000.00 | PENDING |

1. #{$toJson($Plants.findOne(1l))}

35

The name of the model is in each of the steps. We could iterate through the steps and obtain

the corresponding models used in the application. The corresponding generated mock re-

pository for PurchaseOrder model is given below.

package com.example.models;

import org.springframework.data.repository.CrudRepository;

public interface MockPurchaseOrderRepository
extends CrudRepository<PurchaseOrder, Long>{

}

Similarly, the repository for Plant also will be generated. This process makes Background

section of Cucumber feature file mandatory for code generation. Even when there are no

example rows, the steps should contain details about each of the models within the applica-

tion. Once the mock repositories are generated, we can move forward to the mock controller

generation.

The mock controller is used to verify the validity of the corresponding controller tests which

are to be generated. We provide a static name for the mock controller as Skeleton.java. JSON

Patch and JSON Merge Patch are being used in the approach. As a result, the corresponding

methods are generated in a static way as they do not depend on the scenario or the applica-

tion under test. An example of the generated code for JSON Merge Patch method is given

below.

public JsonNode $mergePatch(JsonNode obj, String json)
throws Exception {

 JsonMergePatch mp = mapper.readValue(
json, JsonMergePatch.class);

 return mp.apply(obj);
 }

Now we must setup the repositories within the mock in order to facilitate basic CRUD op-

erations. We inject the repositories using the Spring Autowired annotation. Since we are

generating the mock controller, we use the mock repositories instead of the actual JPA re-

positories. We make use of the Background section in Cucumber feature file to obtain the

various model names and generate the corresponding repository declaration.

Also, it is required to implement the Background in features by generating code to save the

examples provided. In order to facilitate this, using the generator, we convert each row under

a step to a JSON format and create an array of JSONs for a single model. The corresponding

generated code would look like shown below.

@Autowired
MockPurchaseOrderRepository purchaseOrderRepo;

String[] purchaseOrderFixtures = {"{\"_id\":\"1\","
 + "\"plant\":#{$toJson($Plants.findOne(1l))},"
 + "\"startDate\":\"2016-02-29\",\"endDate\":\"2016-03-18\","
 + "\"cost\":\"2400.00\",\"poStatus\":\"PENDING\"}",
};

36

In the above JSON strings generated, we used the notations we had used in the Cucumber

feature file like $Plants, $toJson etc. We need some mechanism in the mock to parse such

notations. We use the Spring Expression Language (SpEL17) expression parser for this pur-

pose. We define the database notations directly using an inner class. For example, by as-

signing $PurchaseOrders to the corresponding mock repository as shown below. We also

define the $toJson method within the inner class and register the function.

class LocalSpelContext {
 public MockPurchaseOrderRepository $PurchaseOrders

= purchaseOrderRepo;
 public String $toJson(Object o) throws Exception {
 return mapper.writeValueAsString(o);
 }
}

@RequestMapping("/initialize")
public void setupBackground() throws Exception {
 spelContext = new StandardEvaluationContext(

new LocalSpelContext());
 spelParser = new SpelExpressionParser();
 spelContext.registerFunction("$toJson",

LocalSpelContext.class.getDeclaredMethod(
"$toJson", new Class[] { Object.class }));

 for (String json: purchaseOrderFixtures) {
 Expression expression = spelParser.parseExpression(

json, new TemplateParserContext());
 String rewrittenJson = expression.getValue(

spelContext, String.class);
 purchaseOrderRepo.save(mapper.readValue(

rewrittenJson, PurchaseOrder.class));
 }
}

Once the initial setup is generated for the mock from the Background in the feature file, we

concentrate on the Scenario Outlines which provides us each of the methods in the mock

controller. Currently, we have created two Scenario Outlines. Let us first consider the Sce-

nario Outline for “Creation of PurchaseOrder”.

Scenario Outline: Creation of PurchaseOrder
 When customer calls 'createPO' using 'POST' on <uri> with <po>
 Then $PurchaseOrders must contain $mergePatch(<po>,<po_patch_merge>)
 And status code must be <status>
 And location must have <location>
 And 'poStatus' must be <poStatus>
 Examples:
 | uri | po | status | location | po_patch_merge | poStatus |
 | /pos | {"plant": …}1 | 201 | /pos/<po._id> | {"id": …}2 | PENDING |

1. {"plant": #{$toJson($Plants.findOne(1l))}, "startDate": "2016-02-29", "endDate": "2016-03-04"}
2. {"_id": #{$PurchaseOrders.count()+1}, "poStatus": "PENDING", "cost": "200"}}

17 https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

37

From the title of the Scenario Outline, we get the model being used for the method. Hence

in our case, it is PurchaseOrder. We could use a regular expression on the first step here to

obtain the method name, the verb and the URI (URI value can be obtained from examples

in the above case). We could also determine using the regular expression that if the step

ends with “with <something>”, then the method has a RequestBody as a parameter. The

name of the RequestBody parameter name is chosen as the name of the corresponding place-

holder. Therefore, the initial method structure for createPO will be as shown below.

@RequestMapping(value="/pos",method=RequestMethod.POST)
public ResponseEntity<PurchaseOrder> createPO(

@RequestBody String po) throws Exception{
}

Since we assume that after each execution of Scenario Outline, the database is reset, we add

an extra parameter to check if the existing database should be kept alive for the method or

not. Therefore, the method declaration structure changes slightly as follows.

@RequestMapping(value="/pos",method=RequestMethod.POST)
public ResponseEntity<PurchaseOrder> createPO(
 @RequestHeader("keepAlive") Boolean keepDbAlive,

@RequestBody String po) throws Exception{
 if (!keepDbAlive) {
 setupBackground();

}

}

As you can see that if keepDbAlive is false, we call the setupBackground method

which resets the database with the initial database provided in the Background section of

the feature.

Now we provide the following code when RequestBody parameter is not empty in order

to parse the parameter into a JsonNode object.

JsonNode (<ReqBodyParam>1 = mapper.readTree(<ReqBodyParam>);

We JsonNode object should be updated with the Patch or Merge Patch expression and the

resulting PurchaseOrder object should be derived. The corresponding code can be generated

as follows.

Expression expression = spelParser.parseExpression(
<po_patch or po_merge_patch>,

new TemplateParserContext());
String expressionResult = expression.getValue(

spelContext, String.class);
JsonNode mergePatchResult = <$mergePatch or $patch>(

<JsonNode>, expressionResult);
PurchaseOrder _purchaseOrder = mapper.treeToValue(

 mergePatchResult, PurchaseOrder.class);

From the following step, we infer that we use $mergePatch and the expression used to apply

on JsonNode is po_merge_patch value.

Then $PurchaseOrders must contain $mergePatch(<po>,<po_patch_merge>)

38

So, the above code, in this case, will be

Expression expression = spelParser.parseExpression(
"{\"_id\": #{$PurchaseOrders.count()+1}, "

 + "\"poStatus\": \"PENDING\", \"cost\": \"200\"}}",
 new TemplateParserContext());
String expressionResult = expression.getValue(

spelContext, String.class);
JsonNode mergePatchResult = $mergePatch(po1, expressionResult);
PurchaseOrder _purchaseOrder =

 mapper.treeToValue(mergePatchResult, PurchaseOrder.class);

Next to be done in this scenario is to generate code to save the derived PurchaseOrder object.

Since it is a creation process, we provide a Link to the newly created object before saving.

The corresponding location is added into headers and is returned using Re-

sponseEntity. The status code provided the scenario is also returned.

purchaseOrder.add(new Link("<uri>/"
+ _purchaseOrder.get_id()));

purchaseOrderRepo.save(_purchaseOrder);

HttpHeaders headers = new HttpHeaders();
headers.add("Location", _purchaseOrder.getId().getHref());

return new ResponseEntity<PurchaseOrder>(_purchaseOrder,

 headers, HttpStatus.valueOf(<status>));

Now let us consider the second Scenario Outline “Processing of Pending PurchaseOrder”.

Scenario Outline: Processing of Pending PurchaseOrder
 When clerk calls <function_name> using <verb> on <uri>
 Then <po> should be '#{$PurchaseOrders.findOne(id)}'
 And $PurchaseOrders must contain $patch(<po>,<po_patch>)
 And status code must be <status>
 And 'poStatus' must be <poStatus>
 Examples:
function_name	verb	uri	status	po_patch	id	poStatus
acceptPO	POST	/pos/{id}/accept	200	[{"op": …}]1	1L	OPEN
rejectPO	DELETE	/pos/{id}/accept	200	[{"op": …}]2	1L	REJECTED

1. [{"op": "replace", "path": "/poStatus", "value": "OPEN"}]
2. [{"op": "replace", "path": "/poStatus", "value": "REJECTED"}]

As you can see, the first, third and fourth steps are identical to the previous Scenario Outline.

But in this case, we do not have a RequestBody as there is no section like “with <some-

thing>” in the first step. Using regular expression, we parse the URI and check if it matches

something inside curly brackets. If it matches, then the corresponding variable is provided

as a path variable. In our case, we have the id as a path variable. Therefore, we get the

initial structure of acceptPO method as follows.

39

@RequestMapping(value="/pos/{id}/accept",
method=RequestMethod.POST)

public ResponseEntity<PurchaseOrder> acceptPO(
@RequestHeader("keepAlive") Boolean keepDbAlive,
@PathVariable Long id) throws Exception{

 if (!keepDbAlive) {
 setupBackground();
 }
}

Consider the case of the Scenario Outline “Creation of PurchaseOrder”. The steps for “Pro-

cessing of Pending PurchaseOrder” are similar except that we have an additional step in this

Scenario Outline.

Then <po> should be '#{$PurchaseOrders.findOne(id)}'

This is to obtain the existing PurchaseOrder object which should be accepted or rejected.

Correspondingly we generate a section of code to handle this. The generation is as follows.

Expression expression1 = null;
if (!keepDbAlive) {
 expression1 = spelParser.parseExpression(

"#{$PurchaseOrders.findOne(1L)}",
new TemplateParserContext());

} else {
 expression1 = spelParser.parseExpression(String.format(

"#{$PurchaseOrders.findOne(new Long(%d))}", id),
new TemplateParserContext());

}

PurchaseOrder _purchaseOrder1 = expression1.getValue(spelCon-

text, PurchaseOrder.class);
JsonNode purchaseOrderJsonNode = mapper.valueToTree(

 _purchaseOrder1);

We get the expression and if keepDbAlive is false, then we use the id value from the exam-

ples. Else we replace it with the parameter value provided. Then it is passed into SpEL

parser and we get the corresponding JSON string which is converted to PurchaseOrder ob-

ject. This is further converted to JsonNode object in order to apply the patch. The acceptPO

and rejectPO methods are almost similar. So I avoid to explain the generation of code for

rejectPO. The complete generated mock controller covering the discussed scenario outlines

is provided in Appendix D.

5.5 Generation of Test cases

Once the mock is generated, we would focus on the generation of test cases. As mentioned

before, we would consider the Scenarios in the Cucumber feature file, which provides a

sequence of Scenario Outlines for generating the test cases.

But before we consider the Scenarios, we can generate the static section of a spring test even

without considering the feature file. The generated static structure of a test is as follows.

40

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(

classes = DemoApplication.class)
@WebAppConfiguration
@DirtiesContext
public class SkeletonTest {
 @Autowired
 private WebApplicationContext wac;

 @Autowired
 @Qualifier("_halObjectMapper")
 ObjectMapper mapper;

 private MockMvc mockMvc;

 @Before
 public void setup() throws Exception {
 this.mockMvc = MockMvcBuilders.

webAppContextSetup(this.wac).build();
 }
}

Now let us consider the first Scenario.

Scenario: Create and accept PurchaseOrder
 When scenario "Creation of PurchaseOrder" with [1]
 And scenario "Processing of Pending PurchaseOrder" with [1]

The first step executes the Scenario Outline “Creation of PurchaseOrder”. The section “with

[1]” can be ignored in this case as there is only a single example. This step requires a Re-

questBody object to be passed into the method. The value of this object is taken from the

example value of placeholder in the Scenario Outline’s first step after “with” keyword. In

this case, it is the po. The corresponding value can be obtained and assigned in the Test

class. But to keep the Test class clean, we provide these values in a different Helper class.

Therefore, the Helper class should be generated before generating the Test class.

The structure of Helper class is similar to the mock controller, till the definition of set-

upBackground method. Instead of the methods following setupBackground, we

provide methods that return the object which is supposed to be the RequestBody used by

the tests. In our case, we consider the Scenario Outline “Creation of PurchaseOrder”. The

corresponding method to provide data will be generated as shown below.

public PurchaseOrder getCreatePOData() throws Exception{
 Expression expression = spelParser.parseExpression(

"{\"plant\": #{$toJson($Plants.findOne(1l))}, \"startDate\":

\"2016-02-29\", \"endDate\":

\"2016-03-04\"}", new TemplateParserContext());
 String expressionResult = expression.getValue(spelContext,

String.class);
 PurchaseOrder _purchaseOrder = mapper.readValue(

expressionResult, PurchaseOrder.class);
 return _purchaseOrder;
}

41

The Helper should be injected in the Test class. Also, the setupBackground method

should be called before the execution of each test case.

@Autowired
SkeletonHelper helper;

@Before
public void setup() throws Exception {
 this.mockMvc = MockMvcBuilders.

webAppContextSetup(this.wac).build();
 helper.setupBackground();
 mockMvc.perform(post("/generated/initialize"));
}

Now, let us consider the scenario again. The scenario title will be used to create the test

method name. We declare a MvcResult object in each test method. All the responses from

the REST call are supposed to be received as MvcResult object. We also declare two objects

of PurchaseOrder. One is to get the data of PO to be created from the helper class. The other

is the created PO object. Therefore, the initial structure of the test method looks like follows.

@Test
public void testCreateAndAcceptPurchaseOrder() throws Exception {
 MvcResult result = null;
 PurchaseOrder _purchaseOrder = null;
 PurchaseOrder purchaseOrder = null;

purchaseOrder = helper.getCreatePOData();

}

The URI for the corresponding method can be obtained from the corresponding Scenario

Outline. In case the URI has some variable within curly brackets, we detect the presence of

a path variable. If there is a path variable, then we assume that the path variable is the id of

the object. The corresponding verb and status can also be obtained from the example in the

Scenario Outline. We always take keepDBAlive value in the tests as true. This is because

the database will be reset when we execute the second step of the scenario. Considering all

these factors, the generated code to make the REST call corresponding to the first step will

be as follows.

result = mockMvc.perform(post("/generated/pos")
 .header("keepAlive", true)
 .content(mapper.writeValueAsString(purchaseOrder))
 .contentType(MediaType.APPLICATION_JSON))
 .andExpect(status().is(201))
 .andReturn();

The resulting PurchaseOrder object will be assigned to _purchaseOrder and will be

used for the next step in the scenario which is to accept the PO. In this case, we know that

we have a path variable and there is no RequestBody. Correspondingly, the generated code

for testing the acceptance of PO will be changed as shown below.

42

result = mockMvc.perform(post("/generated/pos/{id}/accept",
purchaseOrder.get_id())

 .header("keepAlive", true))
 .andExpect(status().is(200))
 .andReturn();

The generated code for testing the rejection of PO will be as shown below.

result = mockMvc.perform(delete("/generated/pos/{id}/accept",
purchaseOrder.get_id())

 .header("keepAlive", true))
 .andExpect(status().is(200))
 .andReturn();

The class containing the test cases covering the scenarios discussed in this section is pro-

vided in Appendix E.

Once we generate the mock and tests for the initial state diagram with the methods cre-

atePO, acceptPO and rejectPO, we would continue and implement the same approach

to generate the mock controller methods and the corresponding tests for the complete state

diagram. Therefore, the following additional methods will be generated in the mock con-

troller.

 cancelPO

 closePO

 updatePO

 createPOExtension

 acceptPOExtension

 rejectPOExtension

Before the generation of these methods in the mock controller, it is required to make an

additional entity PurchaseOrderExtension which contains the data to extend a Pur-

chase Order namely the endDate. Else it will result in compilation errors after code gen-

eration.

The updatePO and createPOExtension methods would need request body objects

for the tests. The corresponding methods to provide the request body will be generated in

the Helper class.

We need to update the Scenarios in the Gherkin file to consider the above methods also into

the tests. I gave the following scenarios in the final Gherkin file and the tests are generated

for the corresponding scenarios.

 Create accept and extend PurchaseOrder

 Create reject and cancel of PurchaseOrder

 Create accept and close of PurchaseOrder

 Create accept and cancel of PurchaseOrder

 Create reject and update of PurchaseOrder

 Create accept extend and reject extension of PurchaseOrder

43

The mock controller, test class and the helper class provided in the Appendix do not consider

the above scenarios. The complete structure of these classes can be obtained from the re-

pository provided in Appendix F.

5.6 Discussion

In this chapter, we considered the scenario of equipment rental process in RentIT to imple-

ment the code generators. Using the state transitions of Purchase Order, we initially designed

a Gherkin feature file, which was the chosen DSL. This Gherkin file was used to generate a

mock controller using the low-level details, and then to generate a helper class, in order to

provide the request body for the tests and finally to generate the test cases themselves.

In section 5.1, we implemented the implemented the Gherkin language for Purchase Order.

In the following section, we described the grammar corresponding to a Gherkin language

file. Before moving on to the code generation part, it was required to provide the domain

model. The domain model was provided manually, so as to avoid making our DSL compli-

cated by stuffing up details of the domain model in the Gherkin file. The mock controller

generation is described in section 5.4. We also discussed the generation the mock as well as

the actual repositories in this section. The following section dealt with the generation of test

cases. The generation of a helper class was also discussed in this section which was used to

provide the request body parameter values to the tests and thereby keeping our test class

clean.

44

6 Case Study

The purpose of the thesis was to use a Model-Driven approach to generate test cases and the

mock controller for a RESTful API. We evaluated the project by developing an actual con-

troller using TDD approach by using the test cases generated. First, the initial state transi-

tions which implemented createPO, acceptPO and rejectPO methods were verified.

Once the verification was a success, the project was validated using the complete state tran-

sitions.

6.1 Test Evaluation

The initial scenarios covering creation, acceptance and rejection of Purchase Order are as

follows.

Scenario: Create and accept PurchaseOrder
 When scenario "Creation of PurchaseOrder" with [1]
 And scenario "Processing of Pending PurchaseOrder" with [1]

Scenario: Create and reject PurchaseOrder
 When scenario "Creation of PurchaseOrder" with [1]
 And scenario "Processing of Pending PurchaseOrder" with [2]

We provide the initial structure of the actual controller with the related repository declara-

tion and run the test cases.

@RestController
@RequestMapping("/generated")
public class ActualController {

 @Autowired

 PlantRepository plantRepo;

 @Autowired

 PurchaseOrderRepository purchaseOrderRepo;

}

We can see that both the tests failed. As a result, we provide the structure of the methods.

45

@RequestMapping(value="/pos",method=RequestMethod.POST)
public ResponseEntity<PurchaseOrder> createPO(

@RequestBody PurchaseOrder po) {
 HttpHeaders headers = new HttpHeaders();
 return new ResponseEntity<PurchaseOrder>(po, headers,

HttpStatus.valueOf(201));
}

The tests are run again.

It throws an error at the assertion of poStatus value in the test. Therefore, we need to

update the poStatus and save the po.

@RequestMapping(value="/pos",method=RequestMethod.POST)
public ResponseEntity<PurchaseOrder> createPO(

@RequestBody PurchaseOrder po) {
 po.setPoStatus(POStatus.PENDING);
 po.calculateCost();
 po = purchaseOrderRepo.save(po);
 po.add(new Link("/pos/" + po.get_id()));

 HttpHeaders headers = new HttpHeaders();
 headers.add("Location", po.getId().getHref());

 return new ResponseEntity<PurchaseOrder>(po, headers,

HttpStatus.valueOf(201));
}

On running the tests again, an assertion error occurs saying that the returned status is 405

(Method not allowed). We do not have a method to accept and reject Purchase Order. There-

fore, we introduce these method structures with basic definition to the controller. The initial

method structure for acceptPO is given below. The rejectPO method would have a

similar structure.

@RequestMapping(value="/pos/{id}/accept",method=RequestMethod.POST)
public ResponseEntity<PurchaseOrder> acceptPO(

@PathVariable Long id) throws Exception{
 PurchaseOrder po = purchaseOrderRepo.findOne(id);

 HttpHeaders headers = new HttpHeaders();

 return new ResponseEntity<PurchaseOrder>(po, headers,

HttpStatus.valueOf(200));
}

This time on running the tests, we get assertion error regarding the updated poStatus. So

the methods have to be updated with code to set the poStatus and the result must be saved

to the database. So the resulting structure of acceptPO method is as follows.

46

@RequestMapping(value="/pos/{id}/accept",method=RequestMethod.POST)
public ResponseEntity<PurchaseOrder> acceptPO(

@PathVariable Long id) throws Exception{
 PurchaseOrder po = purchaseOrderRepo.findOne(id);
 po.setPoStatus(POStatus.OPEN);
 po = purchaseOrderRepo.save(po);

 HttpHeaders headers = new HttpHeaders();

 return new ResponseEntity<PurchaseOrder>(po, headers,

HttpStatus.valueOf(200));
}

The structure of rejectPO will be similar to acceptPO method above.

Now on running the tests, we get the following result.

As you can see, all the tests have passed once we gave the complete implementation of

createPO, acceptPO and rejectPO methods.

We have only verified the initial state transitions of Purchase Order. Now we will consider

the complete application. We need to update the Gherkin feature file with the complete list

of Purchase Order state transitions along with the following scenarios for testing.

 Create accept and extend PurchaseOrder

 Create reject and cancel of PurchaseOrder

 Create accept and close of PurchaseOrder

 Create accept and cancel of PurchaseOrder

 Create reject and update of PurchaseOrder

 Create accept extend and reject extension of PurchaseOrder

On building the project, it would regenerate the mock controller, with additional mock meth-

ods based on the updated feature, the helper class, with additional methods to provide the

test data, and finally the test class with the updated test cases provided by the scenarios in

the feature. After the generating the updated test cases, we run them against the actual con-

troller and get the following result in Eclipse.

47

Again, just like the way we implemented before, we need to make the changes in the con-

troller by defining the remaining methods. The method definition was done using the TDD

way, by defining each method and verifying it with the tests. Finally, we got the following

result.

We can see the all the tests are passing. Thereby, we establish the validity of the tool and

hence, the approach is considered successful.

6.2 Limitations

One of the main limitation to the approach is that the complete Cucumber feature has to be

provided by the user in order to generate the mock controller and tests. The task can be

tedious for larger REST applications. Therefore, we suggest the application of the tool

mainly for simple REST APIs. Also, we have provided the flexibility to the user to provide

the test data. As a result, the test data is also not generated but has to be provided in the

Example section of each Scenario Outline.

The Background section, which is optional in a normal feature file, is a mandatory section

for our tool. We used Background section to initialize the database before executing each

Scenario Outline. But, it is also used for the tool to understand the various entities which are

used in the application. As a result, even if the database for a particular entity is empty, a

step has to be provided in the Background section for that entity with an empty database.

48

Another limitation is that the syntax for the step descriptions is quite strict. We used regular

expressions to identify the type of step description. As a result, the descriptions should

match with the existing feature file developed for Purchase Order.

49

7 Conclusion

In this thesis, an approach to automatically generate test cases as well as the mock controller

using Model-Driven approach was discussed. For the proposed approach, Gherkin language

was considered as the DSL so that it could be used to depict the resource interactions and

the state transitions. Subsequently, a tool was developed to generate the test cases and the

mock controller.

The mock controller generated has the most of the functionalities as the mocks generated

by similar existing tools. Our mock controller can remain independent from the tests gener-

ated. It can be published just like any real controller and tested using script based testing

tools like Postman. While the other tools like apiary mainly focus on executing one scenario

at a time, which is also possible using our tool, we provide the functionality of chaining,

which helps in executing multiple scenarios at a time by selecting one example from each

scenario outline. Unlike other tools, which execute one method at a time and as a result, is

completely disconnected from what the previous step did, the chaining functionality in our

approach helps in connecting the method calls. Also, while testing the generated mock, it

provides dynamic data compared to the other tools which responds with static mock data.

For example, when we create an object through our mock controller, it returns the actual

object which is saved in the database and not a static response object like what apiary does.

Similarly, the test generation tools for REST mainly tests a single scenario. They concen-

trate more on unit testing of each functionality. The same approach is implemented in our

tool. Our tool is capable of performing unit testing considering a single scenario. Addition-

ally, our tool is also capable of chaining tests to test multiple scenarios in a single test case.

Thereby, we are expanding the testing process from simple unit testing to the much larger

integration testing by facilitating the testing of longer sequences of calls. Moreover, in our

approach, all the functionalities provided by the mock is tested by default by the generated

test cases unless the information is not provided in the feature. As a result, we provide a way

that will help the programmer to cover at least what is mocked.

Implementation of the DSL was done using Xtext and Xtend. Xtext provided a framework

for defining the language grammar and Xtend facilitated the code generation. The generated

test cases were first tested with the mock controller and the evaluation of the test cases was

done by using these test cases to develop an actual application controller following the TDD

approach.

7.1 Future Work

There is a lot of scope for improving the implementation and research for this approach in

the future. First of all, there is a lot of room for optimizing the current approach and the

implementation. During our approach, we did not concentrate on the performance of the

tool, instead, we gave importance to the successful generation of tests and mock. As a result,

a performance evaluation of the tool could be evaluated comparing with the other existing

tools.

Currently, the created tool is integrated with Eclipse IDE. Eclipse is the most ideally used

IDEs for Spring framework. Xtext is a well-integrated tool with Eclipse IDE. Since our tool

was generated based on Xtext, it will run on all IDEs that can successfully integrate Xtext

on them. Since Spring Tool Suite (STS) is Eclipse based, we assume that our tool would

work on STS. Additional developments are going on regarding integrating Xtext with other

50

IDEs. The team behind Xtext have already managed to integrate Xtext with IntelliJ IDEA.

So our tool may work even on IntelliJ and STS, but we leave that to be tested in the future.

The tool currently does not facilitate the generation of the various models and the actual

controller. From the current Gherkin feature file, the attributes in a model can be obtained,

but it does not provide information about their data types. A new DSL can be created for

implementing the domain model. Xtext provides functionality to use multiple DSLs and

thereby it could facilitate the generation of models. This can also be used to eliminate all

the technical values used in the feature file like the method name, URI, verb etc. and make

it completely human readable format. Such information can be provided either in the domain

model DSL or a completely new DSL, and thereby, keeping the feature file clean. The chal-

lenge would come in the compliance of the domain model with the Gherkin feature. Even

though this connection of the languages is possible in our approach, we did not focus on this

and have left it for future research. Similarly, by providing some kind of Xtext parsable form

of business logic for controller methods, the generation of the application controller can also

be implemented. By adding these functionalities, the cost of development can be reduced as

the developers need to concentrate mainly on writing a well-structured Cucumber feature

file for the application.

Also, in the current approach, the specification file is ignored once the mock controller and

the tests are generated. Research can be done by verifying the behaviour of the application

by testing the feature file with the actual controller. The coverage that we have achieved

through the controller can be presented it in the original feature by showing which section

of the feature has been covered.

51

8 References

[1] R. T. Fielding, Architectural styles and the design of network-based software

architectures, University of California, Irvine, 2000.

[2] T. Fertig and P. Braun, “Model-driven Testing of RESTful APIs,” Proceedings of

the 24th International Conference on World Wide Web, pp. 1497-1502, 2015.

[3] R. Alarcon, E. Wilde and J. Bellido, “Hypermedia-driven RESTful service

composition,” in Service-Oriented Computing, Springer Berlin Heidelberg, 2011, pp.

111-120.

[4] L. Richardson and S. Ruby, RESTful Web Services, O'Reilly Media, May 2007.

[5] “What's HTTP? Explain HTTP Request and HTTP Response,” 9 June 2008.

[Online]. Available: http://geekexplains.blogspot.com.ee/2008/06/whats-http-

explain-http-request-and.html. [Accessed 15 May 2016].

[6] P. Tahchiev, F. Leme, V. Massol and G. Gregory, JUnit in Action, Manning

Publications, 2010, pp. 78-83.

[7] Z. Maamar, B. Benatallah and W. Mansoor, “Service Chart Diagrams - Description

& Application,” in Proceedings of the Alternate Tracks of The 12th International

World Wide Web Conference, May 2003.

[8] R. Swain, V. Panthi, P. K. Behera and D. P. Mohapatra, “Automatic Test case

Generation From UML State Chart Diagram,” International Journal of Computer

Applications (0975 - 8887), vol. 42, no. 7, pp. 26-36, March 2012.

[9] A. v. Deursen and P. Klint, “Domain-Specific Language Design Requires Feature

Descriptions,” Journal of Computing and Information Technology, pp. 1-17, 2002.

[10] M. Wynne and A. Hellesoy, The Cucumber Book: Behaviour-Driven Development

for Testers and Developers, The Pragmatic Bookshelf, January 2012.

[11] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,

M. J. Harrold and P. McMinn, “An orchestrated survey of methodologies for

automated software test case generation,” Journal of Systems and Software, vol. 86,

no. 8, pp. 1978-2001, 2013.

[12] S. K. Chakrabarti and R. Rodriquez, “Connectedness Testing of RESTful Web-

Services,” in Proceedings of the 3rd India software engineering conference,

February 2010.

[13] U. Klein and K. S. Namjoshi, “Formalization and Automated Verification of

RESTful Behavior,” in Computer Aided Verification, Springer Berlin Heidelberg,

February 2011, pp. 541-556.

[14] S. K. Chakrabarti and P. Kumar, “Test-the-REST: An Approach to Testing RESTful

Web-Services,” in Future Computing, Service Computation, Cognitive, Adaptive,

Content, Patterns, 2009. COMPUTATIONWORLD '09. Computation World:,

Athens, 2009, pp. 302-308.

[15] P. V. P. Pinheiro, A. T. Endo and A. Simao, “Model-Based Testing of RESTful Web

Services Using UML Protocol State Machines,” in Brazilian Workshop on

Systematic and Automated Software Testing, 2013.

[16] M. Dalgarno and M. Fowler, “UML vs. Domain-Specific Languages,” 2008.

[Online]. Available: http://www.methodsandtools.com/archive/archive.php?id=71.

[Accessed 15 May 2016].

52

[17] M. Dumas, “Order-to-Cash at RentIT,” [Online]. Available:

https://courses.cs.ut.ee/MTAT.03.231/2016_spring/uploads/Main/RentIT-

OrderToCash.pdf. [Accessed 15 May 2016].

[18] S. W. Suan, 16 December 2015. [Online]. Available:

https://github.com/waisuan/SEED/blob/master/uom.ac.uk.msc.cucumber/src/uom

/ac/uk/msc/cucumber/Gherkin.xtext. [Accessed 2016 May 15].

[19] C. Pautasso, O. Zimmermann and F. Leymann, “Restful web services vs. big'web

services: making the right architectural decision,” Proceedings of the 17th

international conference on World Wide Web, pp. 805-814, April 2008.

[20] M. Laitkorpi, P. Selonen and T. Systa, “Towards a model-driven process for

designing restful web services,” in Web Services, 2009. ICWS 2009. IEEE

International Conference on, Los Angeles, CA, 2009.

53

Appendix

I. Appendix A – RentIT Equipment Rental Process

The edited Purchase Order scenario for document discussion purpose which is adapted

from [17].

RentIT is an equipment rental company (also known as a “plant hire” company) providing

a wide range of construction equipment on demand, all the way from minor equipment items

such as water pumps and drillers, to major equipment such as bulldozers, crawl dozers and

cranes.

The process of renting equipments in RentIT starts when a new Purchase Order (PO) is

received via its information system. A PO consists of a plant, and the corresponding start

and end period of the rental. When a Purchase Order (PO) is received, a sales representative

at RentIT checks the PO and the availability of the equipment requested in the PO. This may

lead to one of two outcomes: (i) the PO is accepted; (ii) the PO is rejected, in which the

customer is informed and the case is closed. In the latter case, the customer should update

the PO and send a response within three days. If the customer does not respond within this

delay, the PO is cancelled. A customer can send a request to cancel a PO, in which case the

plant is freed up and the delivery is cancelled. A cancellation request must be received

before the plant is dispatched from RentIT’s warehouse for delivery. Once the plant has

been dispatched (i.e. it has left RenIT’s warehouse), it is no longer possible to accept the

customer’s cancellation request.

Normally, the equipment is picked up on the end date indicated in the PO. It may happen

however that the customer asks for an extension to the deadline by sending an updated

purchase order (also known as a “PO extension”). When a PO extension asking for a

deadline extension request is received, the sales rep checks if it is possible to grant the

extension. If so, the extension request is accepted and the deadline extension is recorded in

RentIT’s information system. If an extension is not possible, the request is rejected and the

deadline remains unchanged. In both cases, the customer is informed.

54

II. Appendix B – Gherkin Feature file for PurchaseOrder

The Gherkin feature file for Purchase Order

The feature file contains only those scenarios discussed in the thesis report. The complete

feature file covering all the Purchase Order state transitions can be obtained from the repos-

itory link provided in Appendix F.

Feature: PurchaseOrder feature
 As a customer
 In order to rent plant equipment
 I need to process a Purchase Order

Background: Initial plant catalog and purchase orders
 Given the following $Plants
 | _id | name | description | price |
 | 1 | Mini excavator | Excavator 1.5 tons | 100.00 |
 | 2 | Mini excavator | Excavator 2.5 tons | 120.00 |
 | 3 | Midi excavator | Excavator 3.0 tons | 150.00 |
 | 4 | Maxi excavator | Excavator 5.0 tons | 200.00 |
 Given the following $PurchaseOrders
 | _id | plant | startDate | endDate | cost | poStatus |
 | 1 | {"_id": 1, …}1 | 2016-02-29 | 2016-03-19 | 2000.00 | PENDING |

Scenario Outline: Creation of PurchaseOrder
 When customer calls 'createPO' using 'POST' on <uri> with <po>
 Then $PurchaseOrders must contain $mergePatch(<po>,<po_patch_merge>)
 And status code must be <status>
 And location must have <location>

 And 'poStatus' must be <poStatus>

 Examples:
 | uri | po | status | location | po_patch_merge | poStatus |
 | /pos | {"plant": …}2 | 201 | /pos/<po._id> | {"id": …}3 | PENDING |

Scenario Outline: Processing of Pending PurchaseOrder
 When clerk calls <function_name> using <verb> on <uri>
 Then <po> should be '#{$PurchaseOrders.findOne(id)}'
 And $PurchaseOrders must contain $patch(<po>,<po_patch>)
 And status code must be <status>

 And 'poStatus' must be <poStatus>
 Examples:
function_name	verb	uri	status	po_patch	id	poStatus
acceptPO	POST	/pos/{id}/accept	200	[{"op": …}]4	1L	OPEN
rejectPO	DELETE	/pos/{id}/accept	200	[{"op": …}]5	1L	REJECTED

Scenario: Create and accept PurchaseOrder
 When scenario "Creation of PurchaseOrder" with [1]
 And scenario "Processing of Pending PurchaseOrder" with [1]

Scenario: Create and reject PurchaseOrder
 When scenario "Creation of PurchaseOrder" with [1]
 And scenario "Processing of Pending PurchaseOrder" with [2]

1. #{$toJson($Plants.findOne(1l))}
2. {"plant": #{$toJson($Plants.findOne(1l))}, "startDate": "2016-02-29", "endDate": "2016-03-04"}
3. {"_id": #{$PurchaseOrders.count()+1}, "poStatus": "PENDING", "cost": "200"}}
4. [{"op": "replace", "path": "/poStatus", "value": "OPEN"}]
5. [{"op": "replace", "path": "/poStatus", "value": "REJECTED"}]

55

III. Appendix C – Grammar for a Gherkin Feature file

The Xtext grammar for a Gherkin feature file [18].

grammar org.xtext.example.feature.Feature with org.eclipse.xtext.common.Ter-

minals

generate feature "http://www.xtext.org/example/feature/Feature"

Feature:

 tags+=Tag*

 'Feature:'

 title=Title EOL+

 narrative=Narrative?

 background=Background?

 scenarios+=(Scenario | ScenarioOutline)+;

Background:

 'Background:'

 title=Title? EOL+

 narrative=Narrative?

 steps+=Step+;

Scenario:

 tags+=Tag*

 'Scenario:'

 title=Title EOL+

 narrative=Narrative?

 steps+=Step+;

ScenarioOutline:

 tags+=Tag*

 'Scenario Outline:'

 title=Title EOL+

 narrative=Narrative?

 steps+=Step+

 examples=Examples;

Step:

 stepKeyword=StepKeyword

 description=StepDescription EOL*

 tables+=Table*

 code=DocString?

 tables+=Table*;

Examples:

 'Examples:'

 title=Title? EOL+

 narrative=Narrative?

 table=Table;

Table:

 rows+=TABLE_ROW+ EOL*;

DocString:

 content=DOC_STRING EOL*;

enum StepKeyword:

 GIVEN = 'Given' | WHEN='When' | THEN='Then' | AND='And' | BUT='But'

;

56

Title:

 (WORD | NUMBER | STRING | PLACEHOLDER) (WORD | NUMBER | STRING | PLACE-

HOLDER | TAGNAME)*;

Narrative:

 ((WORD | NUMBER | STRING | PLACEHOLDER) (WORD | NUMBER | STRING |

PLACEHOLDER | TAGNAME)* EOL+)+;

StepDescription:

 (WORD | NUMBER | STRING | PLACEHOLDER | TAGNAME)+;

BackgroundKeyword: 'Background:';

Tag: id=TAGNAME EOL?;

terminal NUMBER: '-'? ('0'..'9')+ ('.' ('0'..'9')+)?;

terminal PLACEHOLDER: '<' !('>' | ' ' | '\t' | '\n' | '\r')+ '>';

terminal TABLE_ROW: '|' (!('|' | '\n' | '\r')* '|')+ (' ' | '\t')* NL;

terminal DOC_STRING: ('"""' -> '"""' | "'''" -> "'''") NL;

terminal STRING:

 '"' ('\\' ('b' | 't' | 'n' | 'f' | 'r' | 'u' | '"' | "'" | '\\') |

!('\\' | '"' | '\r' | '\n'))* '"' |

 "'" ('\\' ('b' | 't' | 'n' | 'f' | 'r' | 'u' | '"' | "'" | '\\') |

!('\\' | "'" | '\r' | '\n'))* "'";

terminal SL_COMMENT: '#' !('\n' | '\r')* NL;

terminal TAGNAME: '@' !(' ' | '\t' | '\n' | '\r')+ ;

terminal WORD: !('@' | '|' | ' ' | '\t' | '\n' | '\r') !(' ' | '\t' | '\n' |

'\r')*;

terminal WS: (' ' | '\t');

terminal EOL: NL;

terminal fragment NL: ('\r'? '\n'?);

57

IV. Appendix D – Generated Mock Controller

The generated mock controller for Purchase Order

The following controller consider only the discussed scenarios within the thesis report. The

complete mock controller covering all the state transitions of Purchase Order can be viewed

from the repository link provided in Appendix F.

@Component

public class Skeleton {

 @Autowired

 MockPlantRepository plantRepo;

 @Autowired

 MockPurchaseOrderRepository purchaseOrderRepo;

 ObjectMapper mapper = new ObjectMapper().findAndRegisterModules();

 StandardEvaluationContext spelContext;

 ExpressionParser spelParser;

 class LocalSpelContext {

 public MockPlantRepository $Plants = plantRepo;

 public MockPurchaseOrderRepository $PurchaseOrders =

 purchaseOrderRepo;

 public String $toJson(Object o) throws Exception {

 return mapper.writeValueAsString(o);

 }

 }

 public JsonNode $mergePatch(JsonNode obj, String json)

 throws Exception {

 JsonMergePatch mp = mapper.readValue(json,JsonMergePatch.class);

 return mp.apply(obj);

 }

 public JsonNode $patch(JsonNode obj, String json) throws Exception {

 JsonPatch mp = mapper.readValue(json, JsonPatch.class);

 return mp.apply(obj);

 }

 String[] plantFixtures = {

 "{\"_id\":\"1\",\"name\":\"Mini excavator\",\"description\":"

 + "\"Excavator 1.5 tons\",\"price\":\"100.00\"}",

 "{\"_id\":\"2\",\"name\":\"Mini excavator\",\"description\":"

 + "\"Excavator 2.5 tons\",\"price\":\"120.00\"}",

 "{\"_id\":\"3\",\"name\":\"Midi excavator\",\"description\":"

 + "\"Excavator 3.0 tons\",\"price\":\"150.00\"}",

 "{\"_id\":\"4\",\"name\":\"Maxi excavator\",\"description\":"

 + "\"Excavator 5.0 tons\",\"price\":\"200.00\"}",

 };

 String[] purchaseOrderFixtures = {

 "{\"_id\":\"1\",\"plant\":#{$toJson($Plants.findOne(1l))},"

 + "\"startDate\":\"2016-02-29\",\"endDate\":\"2016-03-18\","

 + "\"cost\":\"2000.00\",\"poStatus\":\"PENDING\"}",

 };

58

 @RequestMapping("/initialize")

 public void setupBackground() throws Exception {

 spelContext = new StandardEvaluationContext(

 new LocalSpelContext());

 spelParser = new SpelExpressionParser();

 spelContext.registerFunction("$toJson",

 LocalSpelContext.class.getDeclaredMethod(

 "$toJson", new Class[] { Object.class }));

 for (String json: plantFixtures) {

 Expression expression = spelParser.parseExpression(

 json, new TemplateParserContext());

 String rewrittenJson = expression.getValue(

 spelContext, String.class);

 plantRepo.save(mapper.readValue(

 rewrittenJson, Plant.class));

 }

 for (String json: purchaseOrderFixtures) {

 Expression expression = spelParser.parseExpression(

 json, new TemplateParserContext());

 String rewrittenJson = expression.getValue(

 spelContext, String.class);

 purchaseOrderRepo.save(mapper.readValue(

 rewrittenJson, PurchaseOrder.class));

 }

 }

 @RequestMapping(value="/pos",method=RequestMethod.POST)

 public ResponseEntity<PurchaseOrder> createPO(

 @RequestHeader("keepAlive") Boolean keepDbAlive,

 @RequestBody String po) throws Exception{

 if (!keepDbAlive) {

 setupBackground();

 }

 JsonNode po1 = mapper.readTree(po);

 Expression expression = spelParser.parseExpression(

 "{\"_id\": #{$PurchaseOrders.count()+1}, "

 + "\"poStatus\": \"PENDING\", \"cost\": \"200\"}}",

 new TemplateParserContext());

 String expressionResult = expression.getValue(

 spelContext, String.class);

 JsonNode mergePatchResult = $mergePatch(po1, expressionResult);

 PurchaseOrder _purchaseOrder = mapper.treeToValue(

 mergePatchResult, PurchaseOrder.class);

 _purchaseOrder.add(new Link("/pos/" + _purchaseOrder.get_id()));

 purchaseOrderRepo.save(_purchaseOrder);

59

 HttpHeaders headers = new HttpHeaders();

 headers.add("Location", _purchaseOrder.getId().getHref());

 return new ResponseEntity<PurchaseOrder>(_purchaseOrder,

 headers, HttpStatus.valueOf(201));

 }

 @RequestMapping(value="/pos/{id}/accept",method=RequestMethod.POST)

 public ResponseEntity<PurchaseOrder> acceptPO(

 @RequestHeader("keepAlive") Boolean keepDbAlive,

 @PathVariable Long id) throws Exception{

 if (!keepDbAlive) {

 setupBackground();

 }

 Expression expression1 = null;

 if (!keepDbAlive) {

 expression1 = spelParser.parseExpression(

 "#{$PurchaseOrders.findOne(1L)}",

 new TemplateParserContext());

 } else {

 expression1 = spelParser.parseExpression(String.format(

 "#{$PurchaseOrders.findOne(new Long(%d))}", id),

 new TemplateParserContext());

 }

 PurchaseOrder _purchaseOrder1 = expression1.getValue(

 spelContext, PurchaseOrder.class);

 JsonNode purchaseOrderJsonNode = mapper.valueToTree(

 _purchaseOrder1);

 Expression expression = spelParser.parseExpression(

 "[{\"op\": \"replace\", \"path\": \"/poStatus\", "

 + "\"value\": \"OPEN\"}]", new TemplateParserContext());

 String expressionResult = expression.getValue(

 spelContext, String.class);

 JsonNode mergePatchResult = $patch(purchaseOrderJsonNode,

 expressionResult);

 PurchaseOrder _purchaseOrder = mapper.treeToValue(

 mergePatchResult, PurchaseOrder.class);

 purchaseOrderRepo.save(_purchaseOrder);

 HttpHeaders headers = new HttpHeaders();

 return new ResponseEntity<PurchaseOrder>(_purchaseOrder,

 headers, HttpStatus.valueOf(200));

 }

60

 @RequestMapping(value="/pos/{id}/accept",
method=RequestMethod.DELETE)

 public ResponseEntity<PurchaseOrder> rejectPO(
 @RequestHeader("keepAlive") Boolean keepDbAlive,
 @PathVariable Long id) throws Exception{
 if (!keepDbAlive) {
 setupBackground();
 }

 Expression expression1 = null;
 if (!keepDbAlive) {
 expression1 = spelParser.parseExpression(
 "#{$PurchaseOrders.findOne(1L)}",
 new TemplateParserContext());
 } else {
 expression1 = spelParser.parseExpression(String.format(
 "#{$PurchaseOrders.findOne(new Long(%d))}", id),
 new TemplateParserContext());
 }
 PurchaseOrder _purchaseOrder1 = expression1.getValue(
 spelContext, PurchaseOrder.class);
 JsonNode purchaseOrderJsonNode = mapper.valueToTree(
 _purchaseOrder1);

 Expression expression = spelParser.parseExpression(
 "[{\"op\": \"replace\", \"path\": "
 + "\"/poStatus\", \"value\": \"REJECTED\"}]",
 new TemplateParserContext());
 String expressionResult = expression.getValue(
 spelContext, String.class);
 JsonNode mergePatchResult = $patch(purchaseOrderJsonNode,
 expressionResult);
 PurchaseOrder _purchaseOrder = mapper.treeToValue(
 mergePatchResult, PurchaseOrder.class);

 purchaseOrderRepo.save(_purchaseOrder);

 HttpHeaders headers = new HttpHeaders();
 return new ResponseEntity<PurchaseOrder>(_purchaseOrder,

 headers, HttpStatus.valueOf(200));
 }
}

61

V. Appendix E – Generated Unit test cases

The generated test class for Purchase Order

The following test class consider only the discussed scenarios within the document. The

complete test class with the complete test cases involving all the state transitions of Purchase

Order can be viewed from the repository link provided in Appendix F.

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = DemoApplication.class)
@WebAppConfiguration
@DirtiesContext
public class SkeletonTest {
 @Autowired
 SkeletonHelper helper;

 @Autowired
 private WebApplicationContext wac;

 @Autowired
 @Qualifier("_halObjectMapper")
 ObjectMapper mapper;

 private MockMvc mockMvc;

 @Before
 public void setup() throws Exception {
 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();
 helper.setupBackground();
 mockMvc.perform(post("/generated/initialize"));
 }

 @Test
 public void testCreateAndAcceptPurchaseOrder() throws Exception {
 MvcResult result = null;
 PurchaseOrder _purchaseOrder = null;
 PurchaseOrder purchaseOrder = null;

 purchaseOrder = helper.getCreatePOData();
 result = mockMvc.perform(post("/generated/pos")
 .header("keepAlive", true)
 .content(mapper.writeValueAsString(purchaseOrder))
 .contentType(MediaType.APPLICATION_JSON))
 .andExpect(status().is(201))
 .andReturn();

 _purchaseOrder = mapper.readValue(result.getResponse()

.getContentAsString(), PurchaseOrder.class);
 Assert.assertThat(_purchaseOrder.getPoStatus().toString(),

equalTo("PENDING"));

 result = mockMvc.perform(post("/generated/pos/{id}/accept",

_purchaseOrder.get_id())
 .header("keepAlive", true))
 .andExpect(status().is(200))
 .andReturn();

 _purchaseOrder = mapper.readValue(result.getResponse()

.getContentAsString(), PurchaseOrder.class);
 Assert.assertThat(_purchaseOrder.getPoStatus().toString(),

equalTo("OPEN"));
 }

62

 @Test
 public void testCreateAndRejectPurchaseOrder() throws Exception {
 MvcResult result = null;
 PurchaseOrder _purchaseOrder = null;
 PurchaseOrder purchaseOrder = null;

 purchaseOrder = helper.getCreatePOData();
 result = mockMvc.perform(post("/generated/pos")
 .header("keepAlive", true)
 .content(mapper.writeValueAsString(purchaseOrder))
 .contentType(MediaType.APPLICATION_JSON))
 .andExpect(status().is(201))
 .andReturn();

 _purchaseOrder = mapper.readValue(result.getResponse()

.getContentAsString(), PurchaseOrder.class);

 Assert.assertThat(_purchaseOrder.getPoStatus().toString(),
equalTo("PENDING"));

 result = mockMvc.perform(delete("/generated/pos/{id}/accept",
_purchaseOrder.get_id())

 .header("keepAlive", true))
 .andExpect(status().is(200))
 .andReturn();

 _purchaseOrder = mapper.readValue(result.getResponse()

.getContentAsString(), PurchaseOrder.class);

 Assert.assertThat(_purchaseOrder.getPoStatus().toString(),
equalTo("REJECTED"));

 }
}

63

VI. Appendix F – Prototype

The prototype code for the implemented tool along with a simple maven Java project where

the generator is applied is submitted along with this thesis in an archived file. The source

code is also maintained in a git repository which could be accessed at https://bit-

bucket.org/philipjohn007/restautomatictestgenerator.git. The source code can be cloned us-

ing the following command.

git clone https://philipjohn007@bitbucket.org/philipjohn007/restautomatictestgenerator.git

The repository contains two folders.

 Grammar and Generator

 DSL and Sample Generator Applied Project

The folder “Grammar and Generator” contains the Xtext project which contains the DSL

grammar and the Xtend generator for generating code. The other folder contains a sample

Maven Spring project which contains the Gherkin feature file (named as PurchaseOr-

der.feature) and the generated mock controller (Skeleton.java) and the generated test cases

(SkeletonTest.java).

Running the generator code would require an Eclipse IDE configured with Xtext18. You

need to run the generator as an Eclipse Application which would prompt the runtime envi-

ronment of Eclipse IDE. Here you could create a project and provide the DSL in the form

of a Gherkin feature file. For more information, you can refer to the tutorial screencast video

using the URL https://youtu.be/ZeUUv5U0iJQ.

18 https://eclipse.org/Xtext/download.html

https://bitbucket.org/philipjohn007/restautomatictestgenerator.git
https://bitbucket.org/philipjohn007/restautomatictestgenerator.git
https://youtu.be/ZeUUv5U0iJQ
https://eclipse.org/Xtext/download.html

64

VII. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Philip John,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Automated Testing of Hypermedia REST Applications,

supervised by Luciano García-Bañuelos,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 25.05.2016

	OLE_LINK2
	OLE_LINK1
	Tekst1
	TitleTranslated

