
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science Curriculum

Kaarel Tõnisson

Mechanism for Change Detection in HTML

Web Pages as XML Documents

Bachelor's Thesis (6 ECTS)

Supervisor: Peep Küngas, PhD

Tartu 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mechanism for Change Detection in HTML Web Pages as XML
Documents

Abstract:
Change detection of web pages is an important aspect of web monitoring. Automated web
monitoring can be used for the collection of speci�c information, for example for detecting
public announcements, news posts and changes of prices. If we store the HTML code of a
page, we can compare the current and previous codes when we revisit the page, allowing
us to �nd their changes. HTML code can be compared using ordinary text comparison,
but this brings the risk of losing information about the structure of the page. HTML code
is treelike in structure and it is a desirable property to preserve when �nding changes.
In this work we describe a mechanism that can be applied to collected HTML pages to
�nd their changes by transforming HTML pages into XML documents and comparing
the resulting XML trees. We give a general list of the components needed for this task,
describe our implementation which uses NutchWAX, NekoHTML, XMLUnit, Jena and
MongoDB, and show the results of applying the program to a dataset. We analyse the
results of measurements collected when running our program on 1.1 million HTML pages.
To our knowledge this mechanism has not been tested in previous works. We show that
the mechanism is usable on real world data.

Keywords: Change detection, Di�erence detection, di�ng, HTML, Jena, MongoDB,
NekoHTML, NutchWAX, XMDi�, XML, XMLUnit

Mehhanism HTML veebilehtede muudatuste tuvastamiseks XML
dokumentidena

Lühikokkuvõte:
Veebilehtede muudatuste tuvastamine on oluline osa veebi monitoorimisest. Veebi au-

tomaatset monitoorimist saab kasutada spetsii�lise informatsiooni kogumiseks, näiteks
avalike teadaannete, uudiste või hinnamuutuste automaatseks märkamiseks. Kui lehe
HTML-kood talletada, on võimalik seda lehte uuesti külastades uut ja eelnevat koo-
di võrrelda ning nendevahelised erinevused leida. HTML-koode saab võrrelda tavateksti
võrdlemise meetodite abil, kuid sel juhul riskime lehe struktuuri kohta käiva informat-
siooni kaotamisega. HTML-kood on struktuurilt puulaadne ja selle omaduse säilitamine
muudatuste tuvastamisel on soovitav. Selles töös kirjeldame mehhanismi, millega eelne-
valt kogutud HTML-koodis lehed teisendatakse XML dokumentide kujule ning võrreldak-
se neid XML puudena. Me kirjeldame selle ülesande täitmiseks vajalikke komponente ja
oma teostust, mis kasutab NutchWAX-i, NekoHTML-i, XMLUnit-it, Jena-t ja MongoDB-
d. Me analüüsime mõõtmistulemusi, mis koguti selle programmiga 1,1 miljoni HTML lehe
läbimisel. Meile teadaolevatel andmetel pole sellist mehhanismi varem rakendatud. Me
näitame, et mehhanism on kasutatav tegelikkuses esinevate andmete töötlemiseks.

Võtmesõnad:Muudatuste tuvastamine, di�mine, HTML, Jena, MongoDB, NekoHTML,
NutchWAX, XMDi�, XML, XMLUnit

2

Contents

1 Introduction 4

2 Related Works 6

3 Implementation 8
3.1 Process Components . 8
3.2 Our Implementation . 8

3.2.1 Additional Constraints on Our Implementation 8
3.2.2 Components Used . 9
3.2.3 NutchWAX Crawler . 10
3.2.4 MongoDB Previous HTML Versions Storage 10
3.2.5 NekoHTML HTML to XML Cleaning and XMLUnit Change De-

tection . 10
3.2.6 Jena Model . 12

4 Experimental Results 12
4.1 Testing Environment . 12

4.1.1 Hardware and Software . 12
4.1.2 Dataset . 13
4.1.3 XMDi� XML Change Detection Comparison 13
4.1.4 Recorded Measurements . 14

4.2 File Size Frequency . 15
4.3 Change Distribution by File Size . 17
4.4 Quality of Changes . 18
4.5 Computation Time Dependence on File Size 19
4.6 Computation Time Dependence on Change Count 22
4.7 MongoDB Processing Speed Dependence 23
4.8 Threats to Validity . 23

5 Conclusion and Future Work 24

3

1 Introduction

The amount of content available on the World Wide Web has been rapidly growing and
is showing no signs of slowing down. Hundreds of online shops, blogs, news portals and
various other web pages post new content every day that a particular Internet user might
�nd useful and important.
As the amount of content grows, it becomes increasingly di�cult for a human user to keep
track of the addition of new data. Manually visiting and checking dozens of web pages
for updates is time-consuming, visiting hundreds or thousands is not feasible. Computer
systems can help reduce the workload of humans by automatically visiting web pages and
checking for changes, informing the human user whenever changes are found. However,
automated change detection presents many challenges.
Change detection or di�ng is the process of �nding the changes between two objects, in
our case two versions of a web page. Given two documents, di�ng them results in a list
of changes that when performed on the �rst document turn it equivalent to the second
document.
Separating important and non-important changes is something an automated system can-
not do alone. Not all changes are important to humans. For example, the date displayed
in the corner of an online shop changing to a new day every midnight is rather unimpor-
tant information to someone interested in �nding new special o�ers. Locating changes
relative to the structure of the page is bene�cial as it provides more information about
the nature of the changes. Automatically generated pages often display the same infor-
mation, for example the products for sale in an online shop, in a di�erent order when the
page is revisited. If the change detection system operates in a structure-aware manner, it
is possible to �lter out low-importance changes like reorderings. Although HTML pages
are tree-like in structure, errors like unclosed tags are common enough to prevent tree
change detection algorithms from working on them directly. A solution would be to �rst
apply a cleaning algorithm to the HTML to give it a well-formed tree structure. HTML
to XML cleaners such as NekoHTML [1] and HtmlTidy [2] exist that are capable of con-
verting most HTML pages into XML documents that follow strict tree structures. Once
a page has been turned into an XML document, we can apply an XML change detection
algorithm to �nd changes that include structural info.
Timeliness and completeness are two important properties of change detection. Timeli-
ness describes how quickly a change is detected once it occurs. Completeness describes
how many of all changes that occurred were successfully detected. An ideal change de-
tection system would detect all changes with minimal delay. In practice computational
resources have limitations and some degree of loss of both will occur. An automated
system can only process web pages at a certain speed. If pages are revisited often, the
number of revisits that have to be processed is large, therefore changes to each page take
longer to detect and the system loses timeliness. If pages are not revisited often enough,
it is possible for changes to appear and disappear before the automated system notices
them and the system loses completeness. Di�erent pages change with highly varying fre-
quencies, so revisiting all pages at equal intervals is most often suboptimal. The revisiting
strategy which describes when to revisit each page has to be con�gured to suit to the
needs of the system's users.
Many page monitoring services such as changedetection.com and changealarm.com exist
that notify the user when the content of a page they subscribe to has changed, usually
showing which parts of the page were altered. Other services are more specialised and

4

exist to ful�l certain speci�c tasks, for instance import.io extracts data (for example
product names and prices) from web pages and converts them into a form usable for data
analysis. On subsequent uses, it also o�ers change detection between two data collections.
These services detect changes to pages only after a user speci�es the page to be monitored.
As such they are not useful for cases when old versions of the page become important at
a later time. If we are interested in change detection between older versions of pages, we
need to archive the pages beforehand. The Internet Archive [3] is the most well-known
archiver of web pages for preservation purposes. It is very likely that if we have a certain
scope of web pages we are interested in, the Internet Archive does not collect all of the
pages we want or does not do it at su�cient frequency, requiring us to create our own
archive. Archival web crawlers such as Heritrix [4], which is also used by the Internet
Archive, can be used to archive web pages according to our requirements.
Although there exist change detection systems for live pages and archiving systems that
store pages, there are no ready-made systems available that would allow us to detect
changes to web pages we have archived. We would also want to consider the structure
of each page when detecting changes so that we could �lter out less relevant changes
such as reorderings. Converting the HTML page into an XML document would allow
us to use XML change detection algorithms that are structure-aware. However, there
are no ready-made solutions that combine HTML to XML conversion and XML change
detection.
Many of the components required for solving this task already exist. Tools such as Nutch-
WAX [5] can be used to access HTML �les from archives. HTML to XML cleaners such as
NekoHTML [1] and JTidy [6] perform relatively well on most HTML pages. Several XML
change detection algorithms exist, some tested in scienti�c works (such as DeltaXML and
XyDi� [7], XMDi� and MMDi� [8]), some with implementations only, but available in
software packages (such as XMLUnit [9]).
In this work, our goal was to combine existing solutions into a single program that
processes archived HTML pages and extracts structure-aware changes between di�erent
versions.
Our approach was to make use of existing software packages and apply them in our pro-
gram to access archived HTML pages and clean them into XML documents. Once the
page conforms to XML standards we can process it using an XML document change de-
tection algorithm to obtain the changes between the two documents. Finally we output
the detected changes in a format suitable for future processing.
For our implementation, we created a program using NutchWAX [5] crawler to access
archived pages stored as WARC �les, NekoHTML [1] to convert archived HTML pages
into XML documents, XMLUnit [9] DetailedDi� to perform change detection of the XML
documents, MongoDB [10] for storing previous versions of HTML pages for change detec-
tion and Apache Jena [11] for outputting the detected changes as RDF/XML documents.
We used XMDi� [8] as a reference XML change detection algorithm to compare the per-
formance of XMLUnit DetailedDi� to. We tested our program on a collection of WARC
�les archived from Estonian public web pages.
Our program was used to process 1.1 million pages and it extracted 28.0 million changes.
The error rate (pages that failed to be processed) was 3.3% which is acceptable for the
given dataset. While successful at performing its task, there are several possible improve-
ments to the program. Using an alternative change detection algorithm or using another
way of accessing archived HTML pages can improve throughput and allow quicker pro-
cessing. Some extreme values of computation costs and change counts were detected in

5

some tests. However, their reasons remain unknown as performance dependence on page
content and structure was not analysed.
The document is structured as follows. Section 2 describes related works. Section 3 de-
scribes the components used in our approach, both in general and in our implementation.
Section 4 shows the experimental results of running the program on the data. Section 5
concludes with a summary of the results and possibilities of future work.

2 Related Works

Several web monitoring systems exist that o�er a change detection and noti�cation service
to its users. Generally they operate on live pages and not on archived pages.
WebVigiL [12] is a change detection and noti�cation system which o�ers HTML and XML
change monitoring. It uses the CH-Di� algorithm for HTML and the CX-Di� algorithm
for XML change detection. Page monitoring is performed by user-de�ned sentinels which
specify page URL, keywords and page fetching frequency. WebVigiL operates a repository
of di�erent versions of pages it has fetched to reduce network tra�c. When a request
is made for a page, it is �rst looked for in the repository and only if not found there
it is fetched from the website. Detected changes are displayed to the user as merged
and highlighted documents or as two side-by-side documents with changes highlighted.
WebCQ [13] is a change monitoring service that monitors pages chosen by the user and
provides personalised change noti�cation. WebCQ performs data extraction from certain
logical structures (Table, List, Paragraph, Link, Image) from the HTML code of a page
using a small HTML parser. For change detection, a sentinel compares the extracted
data to a previous version cached in WebCQ. If changes exist, both versions are passed
to the di�erence extraction module and the old version in the cache is replaced with the
new one. WebCQ stores only one version of each page in its cache, it deliberately avoids
archiving and therefore can detect changes only between the two latest versions of each
page. Most web monitoring approaches have been based on continuous monitoring where
web pages are accessed from the web directly. Liu [14] describes the WebCQ continual
query system for large-scale monitoring.
WIC [15] is a general purpose algorithm for near real-time monitoring to achieve either
timeliness or completeness. It allows calibrating revisit times to focus on either timeliness
or completeness of results.
Multiple XML change detection algorithms exist with various methods of functioning.
Chawathe [8] describes the MMDi� and XMDi� algorithms, the names standing for "main
memory" and "external memory", which describe where data is stored during the di�ng
process. MMDi� has quadratic memory operations, XMDi� has quadratic �le system
operations. Otherwise they operate in the same way, producing a minimal length list
of node additions and removals needed to transform one document into the other. The
algorithms work with node additions and removals only, no other operations are allowed.
This makes the results of the algorithms useful reference points because the minimal
number of additions and removals is a constant value between a pair of documents.
On the other hand, their computation speed is much slower than that of many other
algorithms.
XyDelta and DeltaXML algorithms have been tested by Cobena [16, 7]. We applied some
of the metrics used there in our work, including the usage of the XMDi� algorithm as a
reference for comparison and quality estimation based on change list length ratios.

6

Vi-DIFF [17] is a change detection algorithm for HTML pages that detects both content
and structural changes based on visual perception. It applies and extends the VIPS
algorithm to segment the page based on horizontal and vertical separators and constructs
a "visual tree" that represents the structure of the page. That tree is used as the basis for
change detection using node addition, removal and updating. Moving nodes is supported
by a few approaches as well.
In this work we used MongoDB as a database for storage of previous versions of web
pages. The performance of MongoDB has been analysed in some works in comparison to
other database systems. One has to consider that MongoDB development is (as of time
of writing) ongoing and the performance may have improved signi�cantly compared to
the versions used in those tests. A 2013 study compares MongoDB performance to SQL,
showing that MongoDB is faster for insertions and simple queries, the situation relevant
in our work [18]. A study by Abramova in 2014 [19] compares the execution times of
MongoDB and several other NoSQL database systems run against YCSB (Yahoo! Cloud
Serving Benchmark) database workloads. The results indicate that in most tests, several
other database systems (such as Cassandra) have better performance than MongoDB.
Another study by Abramova in 2013 [20] compares MongoDB and Cassandra at di�erent
database sizes. The study shows that as the size of the database increases, Cassandra is
usually faster than MongoDB in most operations.
While there have been several approaches to HTML to XML conversion and several
automatic parsers exist, there are relatively few papers on the topic of fully automated
conversion. Several specialised approaches exist that depend on user interaction or set
some constraints to the input HTML. HTML to XML conversion to collect data from
selected online newspapers following manually speci�ed parameters for each newspaper
has been implemented in the VIPAR system [21]. HTML to XML conversion with the
help of user input from visual interfaces has been done in [22]. Transformation-based
learning has been applied to convert semi-structured HTML into XML [23].

7

3 Implementation

This section describes the components and their interactions used in our process. First
the general types of components needed for the process are described, then each compo-
nent of our implementation are separately covered.
The source code repository of our program is available in Appendix 1.

3.1 Process Components

In this work our aim was to detect changes of HTML pages by converting them into XML
documents and �nding the changes of the created XML documents. This requires the
usage of certain components.
First, a main method that takes HTML input and performs our other actions on it is
needed. It has to be easy to apply to a large number of HTML pages, possibly in parallel.
Second, a storage and retrieval mechanism is needed that can store at least one previous
version of each HTML page. If a previous version exists, it is retrieved to be compared
to the version currently being processed. If a previous version does not exist, there is
nothing to compare the current version to and therefore no changes can be found.
Third, a method for converting HTML to XML is needed. HTML code may contain some
number of deviations from a clean tree structure, making its usage in tree comparison
problematic. If the HTML is parsed or cleaned to follow XML constraints, it can be
compared using tree comparison methods more e�ectively. Conversion to XML is a
sensible choice since the languages have many similarities. Several HTML to XML parsers
are readily available, but perfect conversion can't be expected as some badly formed
HTML pages can be problematic to all existing parsers.
Fourth, the XML documents must be compared and their changes extracted. As XML
documents follow strict tree structures, they should be reasonably comparable using tree
comparison methods. Some algorithms allow only node addition and removal while others
might allow node moving or changing. Several algorithms have been tested in previous
studies [16, 7].
Fifth, a method is needed to save the detected changes in a sensible format. As we wish
to further process the changes in other programs, they have to be stored in an easy to
use manner. A reasonable choice might be to save them as XML or JSON documents.
This requires us to apply some conversion to the output of the change detection method.

3.2 Our Implementation

3.2.1 Additional Constraints on Our Implementation

Our implementation was built as one component of a larger system for web monitoring.
This applied some constraints to our implementation.
In the surrounding system, HTML pages are collected into WARC �les using the Heritrix
[4] web crawler. WARC (Web ARChive) �les are archival �les which contain the content
of web pages along with data about when and how it was collected [24]. Each WARC
�le contains some number of objects, including the HTML codes of web pages. We can
assume that WARC �les are given to our program in chronological order of collection and
that storing only a single previous version of each page for change detection is su�cient.

8

Our program has to output the changes as RDF/XML documents. RDF/XML [25] doc-
uments are a type of XML documents which contain Resource Description Framework
(RDF) "triples" which are subject-predicate-object expressions. The RDF/XML docu-
ments are used by another component outside of our program to display change statistics
to users. We chose to use the http://vocab.deri.ie/di� ontology to encode the detected
changes into RDF/XML triples.
Our program has to access a WARC �le and for each HTML page inside, retrieve its
previous version from the database of HTML pages, convert both versions into XML
documents, �nd changes between the XML documents, and save the detected changes
into RDF/XML �les.

3.2.2 Components Used

For our implementation, we used the NutchWAX crawler to access WARC �les and exe-
cute our required processes, MongoDB to store previous versions of HTML, NekoHTML
parser to convert HTML to XML, XMLUnit to perform change detection of the XML
documents and Apache Jena to create RDF/XML documents from the detected changes.
The deployment diagram is shown in Figure 1. The following subsections describe the
components in greater detail.

Figure 1: NutchWAX component diagram of our implementation. Components in blue
are our additions to the base NutchWAX.

9

3.2.3 NutchWAX Crawler

NutchWAX (Nutch Web Archive eXtensions) [5] is a modi�ed version of the Nutch [26]
web crawler. Nutch is written in Java and uses the Hadoop framework for distributed
processing. While the original Nutch is designed for crawling and indexing pages from the
web directly, NutchWAX takes WARC �les as input instead. NutchWAX works in two
steps: parsing and indexing. Parsing processes the WARC �les given as input: for each
object in the WARC it applies a parser function and any parse �lter plugins, then saves
their results into a Nutch data segment. Indexing processes the data segment created by
the parser: for each object (HTML page) it applies an indexer function and any indexing
�lter plugins, then saves the results into an index.
Nutch (and NutchWAX) have modular con�gurations, allowing us to create and activate
plugins so that only actions we require are performed on each HTML page. For this work,
we created two plugins: HtmlRawParser and HtmlDi�Indexer. Their activity diagrams
as parts of NutchWAX are shown in Figure 2.
HtmlRawParser is applied during parsing to preserve the HTML code of the pages which
the parser normally discards.
HtmlDi�Indexer is applied during indexing. It performs the major part of work in our pro-
gram: it retrieves the HTML code of the previous version of the page from the MongoDB
database, uses NekoHTML to convert HTML to XML for both versions, uses XMLUnit
to detect changes between the two XMLs, and uses Jena to convert the detected changes
into RDF/XML format �les encoded with http://vocab.deri.ie/di� ontology.
We performed additional alterations to the con�guration of NutchWAX. URL �ltering
was set so only HTML �les were allowed into parsing as we were not interested in other
�le types. The base output from the indexing step was disabled as we did not need to
create an index, only to identify the changes.

3.2.4 MongoDB Previous HTML Versions Storage

MongoDB [10] is a document-oriented NoSQL database system. In our implementation,
we used it to store the HTML code of web pages ordered by their URL address and date of
collection. This allowed us to query the database for a page with a certain URL address
and retrieve only the most recent version. HtmlDi�Indexer interacts with MongoDB
with its Java driver, using it to request the previous version of the HTML code of the
currently processed page and to save the new version of HTML code to the database. If
a previous version does not exist, HtmlDi�Indexer saves the HTML code of the current
version into the database, but cannot continue detecting changes as there are no two
pages to compare.

3.2.5 NekoHTML HTML to XML Cleaning and XMLUnit Change Detection

CyberNeko HTML Parser [1] or NekoHTML is a Java-based HTML scanner and tag bal-
ancer. We applied NekoHTML in HtmlDi�Indexer to parse or HTML pages into XML
documents.
XMLUnit [9] is a Java library for unit testing, including change detection of XML doc-
uments. We used XMLUnit class DetailedDi� to detect the changes of the XML doc-
uments created by NekoHTML. XMLUnit o�ers several quali�ers that can be used to
detect changes in XML documents. We used RecursiveElementNameAndTextQuali�er
which promises support for comparing complex and deeply nested types. It matches an

10

(a) NutchWAX parser. (b) NutchWAX indexer.

Figure 2: NutchWAX parser and indexer activity diagrams. Activities in blue are our
additions to the base NutchWAX.

11

element to an equivalent element that can be located any number of child elements deeper
in the tree.

3.2.6 Jena Model

Apache Jena [11] is an open source Java framework for Semantic Web and Linked Data
applications. We used Jena to convert the changes detected by XMLUnit into RDF/XML
format. For that we created a Jena model, inserted changes detected by XMLUnit into
the model following the http://vocab.deri.ie/di� ontology, then output them from the
model as RDF/XML documents.

4 Experimental Results

In this section we �rst describe the system hardware, software, dataset and measurements
used to test the performance of our program. Then we display and analyse the results of
the tests we performed.

4.1 Testing Environment

4.1.1 Hardware and Software

The experiments were run on a server. Its parameters are listed in Figure 3. The versions
of software and libraries used are listed in Figure 4.

System component Speci�cation
Operating System Debian 3.2.57-3
CPU Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
RAM 4x Kingston 4GB RAM (2x 9905471-011.A00LF, 2x

9905471-020.A00LF)
HDD 4x HGST HMS5C4040BL 4TB

Figure 3: Operating system and hardware parameters of the testing system.

Software/Library name Version
Java 1.8.0_40
NutchWAX 1.3
NekoHTML 1.9.21
XMLUnit 1.6
Jena 2.11.1
MongoDB 2.6.1
di�xml 0.96

Figure 4: Software and its version used in testing.

12

4.1.2 Dataset

The program was run on WARC �les crawled from Estonian web pages using the Heritrix
[4] crawler. Due to the nature of the crawling con�guration used, each WARC contained
web content including HTML pages but also �les of di�erent types such as pictures or text
�les. We con�gured NutchWAX to only accept HTML type �les for parsing as it is the
only type we were interested in. The dataset also includes some number of "trap" cycles
where the crawler keeps following automatically generated links, creating an unwanted
number of pages with little relevant content. We did not attempt to remove them as that
is di�cult to perform automatically.
In the beginning of the experiment, the MongoDB collection of previous versions of HTML
pages was emptied so that we could measure the e�ect of database size on MongoDB
processing speed.
The number of HTML pages processed and the outcomes are listed in Figure 5. The
program took 152 hours to process nearly 1.1 million pages, including repeated pages.
This time does not re�ect the actual performance of the program as it includes performing
XMDi� change detection, which is very time-consuming and not a part of the main
program.

Result Count Percentage
Changes were detected and extracted 543816 49.5%
No changes detected 273957 24.9%
No previous document exists 245959 22.4%
Error(could not complete process) 35881 3.3%
Total 1099613 100%

Figure 5: Outcome counts and percentages of page processing.

4.1.3 XMDi� XML Change Detection Comparison

In our implementation we used XMLUnit DetailedDi� with the RecursiveElementName-
AndTextQuali�er quali�er as the change detection method. For comparison we chose to
use the XMDi� algorithm.
XMDi� is an XML document change detection algorithm that �nds the minimal number
of node additions and deletions [8]. It uses temporary �les to perform change detection,
resulting in high computation time as writing to �le system is nearly always much slower
than in-memory calculations. XMDi� operates only with node addition and removal, it
does not use any other operations (such as moving nodes). As XMDi� �nds the minimal
length change list, it is useful as a reference algorithm to compare performance to as that
result is constant between a pair of documents. If operations other than node addition
and removal are allowed, an algortihm can beat XMDi� in change list length. XMDi�
has been used as a reference for comparison in previous works studying XML document
change detection performance [16, 7]. In this work we used an existing Java implementa-
tion of XMDi� in the di�xml package by Adrian Mouat [27] and edited it slightly to run
in our program.

13

4.1.4 Recorded Measurements

To evaluate the performance of our program we added measurements logging to a number
of components during the work of HtmlDi�Indexer. The recorded properties are listed in
Figure 6.

Measurement code Measurement description
doc_size HTML document size in characters
time_DBread time spent reading the previous version of the page from

MongoDB database
time_DBwrite time spent writing the current version of the page into

mongoDB database
time_parseXML time spent parsing the HTMLs of both versions of the

page into XML documents using NekoHTML
time_di�XML time spent detecting the changes between the XML doc-

uments using XMLUnit
time_JenaModel time spent inserting detected changes into the Jena

model
time_Di�sToFiles time writing changes from the Jena model into �les in

RDF/XML format
oldDoc_nodes XML node count of previous version of page
newDoc_nodes XML node count of current version of page
di�count_di�XML length of change list found by XMLUnit
time_xmdi� time spent detecting the changes between the XML doc-

uments using XMDi� reference method
dist_xmdi� smallest edit distance between the XML documents

found by XMDi� reference method

Figure 6: Names and descriptions of measurements taken during testing.

14

4.2 File Size Frequency

Figure 7 shows the distribution of the sizes of HTML pages that were processed. Figure
8 shows the cumulative distribution. 82.2% of pages are below 50 KB in size, 99.6% are
below 150 KB. The largest size of a single page is 1048 KB. From 400 KB and above, page
sizes that exist are sparse. In more frequent values, �le sizes are unevenly distributed
with several spikes of unusually frequent �le sizes. This is likely due to the nature of
the dataset as it can contain a large number of near-identical pages created by "traps"
where the crawler keeps following links from one automatically generated page to another
similar automatically generated page.

0 50 100 150

0.
00

0.
05

0.
10

0.
15

Input file size (KB)

Fr
ac

tio
n

of
 a

ll
do

cu
m

en
ts

21.5 KB (11.83%)

Figure 7: Distribution of HTML input �le sizes. 0.5 KB resolution.

15

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Input file size (KB)

Fr
ac

tio
n

of
 a

ll
do

cu
m

en
ts

11.6 KB (5%)

24.9 KB (50%)

72.7 KB (95%)

Figure 8: Cumulative distribution of HTML input �le sizes. Values at 5%, 50% and 95%
quantiles are shown in blue. 0.5 KB resolution.

16

4.3 Change Distribution by File Size

Figure 9 shows the distribution of changes by the sizes of HTML pages that were pro-
cessed. Noticably high spikes of XMDi� change counts exist at 425 KB and 550 KB.
XMLUnit change counts stay relatively low . In most cases, XMLUnit creates a shorter
change list than XMDi�. Over all instances of successful change detection, XMLUnit has
a change count mean of 49.06 and XMDi� has a change count mean of 51.46, indicating
that XMLUnit may have slightly better results.

0 200 400 600 800 1000

0
10

00
20

00
30

00
40

00

Input file size (KB)

N
um

be
r

of
 d

iff
er

en
ce

s

XMLUnit
XMDiff

Figure 9: Change count distribution by HTML input �le size. 5 KB resolution.

17

4.4 Quality of Changes

Change list quality is a measure of the ratios between the lengths of change lists. If
we assume that both algorithms �nd the list of changes needed to transform one XML
document into the other, the shorter list could be considered the better one. In this test
we measure quality as the division between XMLUnit and XMDi� change list lengths.
Quality 1 stands for an equal number of changes detected. A value above 1 means that
XMLUnit has that many times more changes than XMDi�. A value below 1 means that
XMLUnit has that fraction of the number of XMDi� changes.
The distribution of quality values can be seen in Figure 10. The cumulative distribution
can be seen in Figure 11. In most cases, the change list lengths are equal or near-equal:
in 72.9% of cases the quality is between 0.75 and 1.33. However, outliers exist in both
directions where either method gives a much longer change list than the other. 1.26%
of cases have their values outside the 0.25 and 4 interval. This means that while the
algorithms often give similar change counts, certain pages exist where one algorithm
greatly outperforms the other.

0 1 2 3 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Quality

Fr
ac

tio
n

of
 a

ll
do

cu
m

en
ts

1.00 (30.22%)

0.80 (14.91%)

Figure 10: Distribution of XMLUnit DetailedDi� quality compared to XMDi�. 0.05
quality resolution.

18

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quality

Fr
ac

tio
n

of
 a

ll
do

cu
m

en
ts

0.574 (5%)

1.000 (50%)

2.077 (95%)

Figure 11: Cumulative distribution of XMLUnit DetailedDi� quality compared to XMD-
i�. Values at 5%, 50% and 95% quantiles are shown in blue. 0.05 quality resolution.

4.5 Computation Time Dependence on File Size

Figure 12 shows the relation between the size of input HTML code and the computation
time of XMLUnit and XMDi�. XMDi� is considerably more time-consuming than the
rest of the process. This is expected as a similar outcome was observed in previous
studies [16, 7]. For a more relevant comparison of our components, Figure 13 shows
the computation time without XMDi� and includes other components that are parts of
the HtmlDi�Indexer plugin. We can see that �le size is not noticeably correlated to the
processing time of the pages. In many cases, XMLUnit change detection is the slowest
part of the system. Omitted from the graph are outliers with very high computation
time of Jena change insertion at certain values, which may indicate the existence of an
unknown issue.
For all pages where changes were detected, the mean of the computation time sum over
all components is 64.4 ms per page. This totals to 9.7 hours or only 6.4% of the program
running time. When changes were not detected and therefore only a small number of
components were used, the mean time cost was 23.1 ms, totalling to 3.6 hours or 2.3%
of the total time. XMDi� computation time was 765.3 ms on average, resulting in 115.6
hours or 76.0% of the total computation time. The remaining 23.1 hours or 15.2% of the
total was taken by separately unmeasured components, mainly NutchWAX parsing.

19

0 200 400 600 800 1000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Input file size (KB)

C
om

pu
ta

tio
n

tim
e

(m
s)

XMLUnit
XMDiff
Process total

Figure 12: Computation time depending on input �le size with XMDi�. Process total
does not include XMDi� computation time. 20 KB resolution.

20

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Input file size (KB)

C
om

pu
ta

tio
n

tim
e

(m
s)

XMLUnit
Database read
Database write
HTML to XML parse
Jena insertion
Output to file
Process total

Figure 13: Computation time depending on input �le size without XMDi�. 20 KB
resolution.

21

4.6 Computation Time Dependence on Change Count

Figure 14 shows the computation time of each component depending on the number of
changes detected by XMLUnit. Note that while there are 541583 (99.6%) data points
with change count lower than 600, there are only 2233 (0.4%) data points with change
count above 600 with many empty intervals. Thus the reliability of the lines on the right
side of the graph can be considered lower as fewer points exist.
As variance is high, it is di�cult to tell which components are dependent on the number
of changes. One would assume that XMLUnit change detection, Jena model insertion
and outputting to �le would be dependent as they process the detected changes. From
our results, the correlations coe�cients are 0.45 for XMLUnit change detection, 0.03
for Jena model insertion and 0.36 for outputting changes to �le. Therefore moderate
correlation exist for XMLUnit change detection and for outputting changes to �le, but
not for insertion into Jena model.

0 500 1000 1500

0
20

0
40

0
60

0
80

0
10

00

XMLUnit difference count

C
om

pu
ta

tio
n

tim
e

(m
s)

XMLUnit
Database read
Database write
HTML to XML parse
Jena insertion
Output to file
Process total

Figure 14: Computation time dependence on the number of changes detected by
XMLUnit. 75 change resolution.

22

4.7 MongoDB Processing Speed Dependence

We tested if the speed of MongoDB read and write operations depends on the number of
previous pages in the database. Previous studies have shown that the computation time
of MongoDB operations may be slowed down if the amount of data becomes larger [20].
To support testing this, we started our program on an empty MongoDB collection. The
results can be seen in Figure 15. Our tests did not show operation speed to be noticeably
correlated to the number of documents in the database. It is worth considering that
database fullness might not a�ect processing time at this number of documents and
that testing with a larger amount of data may be necessary for dependence to become
noticeable.

0e+00 2e+05 4e+05 6e+05 8e+05

0
5

10
15

Database document count

C
om

pu
ta

tio
n

tim
e

(m
s)

read
write
read+write

Figure 15: Computation time dependence on MongoDB database entry count.

4.8 Threats to Validity

The contents and structures of the processed pages were not analysed, therefore we cannot
con�rm the accuracy of our detected changes. As seen in Figure 7, the input data
distribution by size has high variance in this dataset with some page sizes being much
more prevalent, most likely because the dataset contains a large number of nearly identical
automatically generated pages. In Figure 9 we see that there is a large variance of the
number of detected changes over di�erent �le sizes for both XMLUnit and XMDi�, with

23

XMDi� having seemingly unreasonably large values at certain �le sizes. In Figure 11 we
see that while the number of changes detected by XMLUnit and XMDi� stays within
0.5 and 2.0 for more than 90% of the cases, there exist some pages with extreme values
where the number of changes detected di�er by several hundred times.

5 Conclusion and Future Work

In this work we proposed a mechanism for extracting changes from archived HTML pages
by �rst converting them into XML documents and then �nding the changes in the created
XML documents. We described the general components one would need to perform this
task and our implementation using NutchWAX, NekoHTML, XMLUnit, Jena and Mon-
goDB. We recorded the metrics of computation time and change list lengths and analysed
the results. Our program gave reasonably good results in most cases. The change de-
tection of XMLUnit gave similar change list lengths to XMDi� in the majority of cases,
although there existed outliers where the change lists were of very di�erent lengths. How-
ever XMDi� is much slower to run than XMLunit change detection, therefore XMLUnit
is more usable in practice. We observed the speed of MongoDB database operations in
relation to the number of documents in the database, but could not �nd a correlation. It
is possible that if a correlation exists, it is only revealed under a much larger database
load.
There is room for future work in multiple areas related to this work. Alternatives to most
components exist and testing them can give useful insight into their performance.
Alternative change detection algorithms can be used. While we used XMLUnit Detailed-
Di� for change detection, several other implementations and algorithms exist, such as
XyDelta and DeltaXML [16, 7].
Alternative database systems can be tested. Some studies have shown that other NoSQL
databases such as Cassandra can provide better performance than MongoDB [19, 20]. Al-
though our tests showed database operation times to be relatively small, improvements
to the speed of the overall process would still provide useful.
An alternative way of processing WARC �les can be tested. While NutchWAX is con-
�gurable and plugin-friendly, it is reasonable to believe that a more specialised program
could perform the task more e�ectively, although with less �exibility.
Testing on larger datasets may provide information not obtained in our work. We pro-
cessed a dataset of 1.1 million pages. This may not have been enough to reveal the e�ects
of database fullness on database operations.

24

References

[1] http://nekohtml.sourceforge.net/. NekoHTML project page.

[2] http://tidy.sourceforge.net/. HtmlTidy project page.

[3] https://archive.org/. Internet Archive.

[4] https://webarchive.jira.com/wiki/display/Heritrix/Heritrix. Heritrix
project page.

[5] http://archive-access.sourceforge.net/projects/nutchwax/index.html.
NutchWAX project page.

[6] http://jtidy.sourceforge.net/. JTidy Project page.

[7] G. Cobéna, T. Abdessalem, and Y. Hinnach, �A comparative study for xml change
detection,� 2002.

[8] S. S. Chawathe, �Comparing hierarchical data in external memory,� in Proceedings
of the 25th International Conference on Very Large Data Bases, VLDB '99, (San
Francisco, CA, USA), pp. 90�101, Morgan Kaufmann Publishers Inc., 1999.

[9] http://www.xmlunit.org/. XMLUnit project page.

[10] https://www.mongodb.org/. MongoDB homepage.

[11] https://jena.apache.org/. Apache Jena project page.

[12] J. Jacob, A. Sachde, and S. Chakravarthy, �Cx-di�: a change detection algorithm for
xml content and change visualization for webvigil,� Data & Knowledge Engineering,
vol. 52, no. 2, pp. 209 � 230, 2005.

[13] L. Liu, C. Pu, and W. Tang, �Webcq-detecting and delivering information changes
on the web,� in Proceedings of the Ninth International Conference on Information
and Knowledge Management, CIKM '00, (New York, NY, USA), pp. 512�519, ACM,
2000.

[14] L. Liu, W. Tang, D. Buttler, and C. Pu, �Information monitoring on the web: A
scalable solution,� World Wide Web, vol. 5, no. 4, pp. 263�304, 2002.

[15] S. Pandey, K. Dhamdhere, and C. Olston, �Wic: A general-purpose algorithm for
monitoring web information sources,� in Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30, VLDB '04, pp. 360�371, VLDB
Endowment, 2004.

[16] G. Cobéna, T. Abdessalem, and Y. Hinnach, �A comparative study of xml di� tools,�
2004.

[17] Z. Pehlivan, M. Ben-Saad, and S. GanÃ§arski, �Vi-di�: Understanding web pages
changes,� in Database and Expert Systems Applications (P. Bringas, A. Hameurlain,
and G. Quirchmayr, eds.), vol. 6261 of Lecture Notes in Computer Science, pp. 1�15,
Springer Berlin Heidelberg, 2010.

25

http://nekohtml.sourceforge.net/
http://tidy.sourceforge.net/
https://archive.org/
https://webarchive.jira.com/wiki/display/Heritrix/Heritrix
http://archive-access.sourceforge.net/projects/nutchwax/index.html
http://jtidy.sourceforge.net/
http://www.xmlunit.org/
https://www.mongodb.org/
https://jena.apache.org/

[18] Z. Parker, S. Poe, and S. V. Vrbsky, �Comparing nosql mongodb to an sql db,� in
Proceedings of the 51st ACM Southeast Conference, ACMSE '13, (New York, NY,
USA), pp. 5:1�5:6, ACM, 2013.

[19] V. Abramova, J. Bernardino, and P. Furtado, �Experimental evaluation of nosql
databases,� in International Journal of Database Management Systems Jun2014,
Vol. 6 Issue 3, 2014.

[20] V. Abramova and J. Bernardino, �Nosql databases: Mongodb vs cassandra,� in
Proceedings of the International C* Conference on Computer Science and Software
Engineering, C3S2E '13, (New York, NY, USA), pp. 14�22, ACM, 2013.

[21] T. Potok, M. Elmore, J. Reed, and N. Samatova, �An ontology-based html to xml
conversion using intelligent agents,� System Sciences, 2002. HICSS. Proceedings of
the 35th Annual Hawaii International Conference on, pp. 1220 � 1229, 2002.

[22] A. Sahuguet and F. Azavant, �Web ecology: Recycling html pages as xml documents
using w4f,� 1999.

[23] J. R. Curran and R. K. Wong, �Transformation-based learning for automatic trans-
lation from html to xml,� 1999.

[24] http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml. WARC
format speci�cation.

[25] http://www.w3.org/TR/rdf-syntax-grammar/. RDF/XML W3C Recoomenda-
tion.

[26] http://nutch.apache.org/. Nutch project page.

[27] http://www.docjar.com/html/api/diffxml/pulldiff/pulldiff.java.html.
XMDi� implementation in Java by Adrian Mouat.

26

http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml
http://www.w3.org/TR/rdf-syntax-grammar/
http://nutch.apache.org/
http://www.docjar.com/html/api/diffxml/pulldiff/pulldiff.java.html

Appendix 1. Project repository

The source code repository of our implementation is located at https://bitbucket.

org/kaareltonisson/nutchwax-with-diffing.

27

https://bitbucket.org/kaareltonisson/nutchwax-with-diffing
https://bitbucket.org/kaareltonisson/nutchwax-with-diffing

Non-exclusive licence to reproduce thesis and make thesis public

I, Kaarel Tõnisson (date of birth: 6th of October 1991),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Mechanism for Change Detection in HTML Web Pages as XML Documents

supervised by Peep Küngas

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2015

28

	Introduction
	Related Works
	Implementation
	Process Components
	Our Implementation
	Additional Constraints on Our Implementation
	Components Used
	NutchWAX Crawler
	MongoDB Previous HTML Versions Storage
	NekoHTML HTML to XML Cleaning and XMLUnit Change Detection
	Jena Model

	Experimental Results
	Testing Environment
	Hardware and Software
	Dataset
	XMDiff XML Change Detection Comparison
	Recorded Measurements

	File Size Frequency
	Change Distribution by File Size
	Quality of Changes
	Computation Time Dependence on File Size
	Computation Time Dependence on Change Count
	MongoDB Processing Speed Dependence
	Threats to Validity

	Conclusion and Future Work

