
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science
Computer Science Curriculum

Mihkel Visnapuu

Device-to-Device Mobile Gaming

Bachelor’s Thesis (6 ECTS)

Supervisor: Huber Flores, MSc

Supervisor: Satish Narayana Srirama, PhD

Tartu 2015

Device-to-Device Mobile Gaming

Abstract:

Device-to-Device(D2D) mobile gaming is a new trend which is emerging as a result of the increasing

advances in mobile devices and social network interaction with mobile peers. As these games are played

between players in proximity, it is possible to take advantage of computational offloading to balance the

load of these applications. Smartphone games can be instrumentalized with computational offloading

mechanisms in order to save energy and increase response time of the applications. In this context,

remote cloud and D2D offloading has been proposed. It is well known that low latency is preferable to

high latency in the communication when offloading, and as a result, D2D offloading is more suitable

than remote cloud. However, the idea of offloading to a nearby device is not feasible in practice, be-

cause a user may not be willing to process the task from another device. This can be clearly seen as

processing a task from another device does not represent a gain but rather a loss in resources for the

device that executes the task. In this thesis, we investigate a new perspective, in which a device is not

requested to process a task, but it is alleviated from processing one task that another device has already

processed. To achieve this purpose, we develop a framework and a case study. Based on the result of

the validation, we found out that it is possible to balance the execution load of an application between

nearby interconnected devices.

Keywords:Android, Code offloading, Bluetooth

Seadmelt-seadmele Mobiilsed Mängud

Lühikokkuvõte:

Tänu läbimurretele mobiilsete seadmete ja sotsiaalvõrgustikes vastastikuse mobiilse suhtlemise vald-

kondades on seadmelt-seadmele (ingl. k. device-to-device) mobiilsed mängud muutunud aktuaalseks

trendiks. Selleks, et säästa rakenduste poolt nõutavat energiat ja kiirendada nende reaktsiooniaega, on

võimalikuks vahendiks kasutada koodi mahalaadimist pilve vahendusel või seadmelt-seadmele. Teatavasti

on andmevahetuses eelistatud madal latentsusaeg, mille tõttu on seadmelt-seadmele mahalaadimine so-

bilikum. Sellegipoolest ei ole lähedal asuvale seadmele mahalaadimine praktikas otstarbekas, sest ka-

sutaja ei pruugi olla nõus teise seadme poolt edastatud ülesande lahendamises, kuna sellega kaasneb

lisanduv energia kadu. Antud töös läheneme probleemile uuest küljest: selle asemel, et lasta teisel

i

seadmel töö ära teha on võimalik kasutada juba lahendatud ülesannete tulemusi. Püstitatud eesmärgi

saavutamiseks arendati välja raamistik ja teostati juhtumiuuring. Valideerimise tulemusele põhinedes

leidsime, et lähedal asuvate, omavahel ühendatud seadmete puhul on võimalik vähendada rakenduse

koormust.

Võtmesõnad:Android, Koodi mahalaadimine, Bluetooth

ii

Contents

List of Figures v

1 Introduction 1

1.1 Introduction . 1

1.1.1 Motivation . 1

1.1.2 Contributions . 2

1.1.3 Outline . 2

2 State of the Art 3

2.1 Mobile Cloud Computing . 3

2.2 Code offloading . 3

2.3 Technologies and Implementations . 4

2.3.1 Java Reflection . 5

2.3.2 .NET framework . 6

2.4 Computational Offloading Frameworks . 6

2.4.1 Cloudlets . 6

2.4.2 Mobile Assistance Using Infrastructure . 7

2.4.3 ThinkAir . 7

2.4.4 COMET . 7

2.4.5 Evidence-aware Mobile Code Offloading . 8

2.5 Device-to-Device (D2D) Communication . 8

2.5.1 Context-Aware Hybrid Computational Offloading 8

2.5.2 Serendipity . 9

2.5.3 Hyrax . 9

2.6 Summary . 9

iii

CONTENTS

3 Problem Statement 10

3.1 Summary . 11

4 D2D Mobile Gaming 12

4.1 D2D framework . 12

4.2 Implementation . 12

4.3 Validation . 15

4.4 Summary . 19

5 Conclusions 21

6 Future Research Directions 22

Bibliography 24

iv

List of Figures

2.1 General code offloading schema . 4

4.1 D2D code offloading schema . 13

4.2 Generalized architecture of D2D Framework . 14

4.3 Sequence diagram of D2D framework . 14

4.4 Level 1 of the battle game . 16

4.5 Level 2 of the battle game . 17

4.6 Scoreboard of the game, once the player dies . 18

4.7 Setup of the devices used for measuring the power consumption 19

4.8 Diagram showing the power consumption of two devices- without using the framework

and with using it . 20

v

1

Introduction

1.1 Introduction

1.1.1 Motivation

Global smartphone usage has drastically increased in recent years and it is estimated that by 2018 one

third of consumers worldwide will be using them 1. This is due to the increase of inexpensive smart-

phones coming to the market, which increases the need for applications to use less resources to accom-

modate low-end devices. Also because smartphones have batteries that are limited by size and thus

capacity, it is extremely important to handle energy consumption optimally. It is common to charge the

battery daily. Code offloading is an approach that could foster better energy saving for the smartphones

resources (1).

The proliferation of smartphone applications is on the rise, in particular mobile games, which already

have PC-like features. D2D mobile games is a trend that is emerging as a result of this sophistication.

While code offloading can be utilized to delegate resource intensive tasks, it can also be utilized to

balance the execution load of using mobile applications when they are connected in proximity.

Our hypothesis is that intermediate results can be shared between devices. For instance, in the case

of 3D mobile games, the 3D models(.obj, .x3d, .3ds, etc.) are large and require heavy computational

processing to build. Lets imagine a multiplayer mobile game that allows the user to take a video of a

room, process it and create a 3D model that will be used to create a new level. When this game is played

with other nearby devices, they too would need to get the model in order to visualize it in-game. Instead

of going through the process of making the video and creating the 3D model, it is possible to share the

already processed 3D model and so decreasing the processing load for the device.
1http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694

1

1.1 Introduction

1.1.2 Contributions

A framework to support D2D offloading was developed. The framework follows a master/slave model,

in which the master device gives the slaves offloading tasks. Java reflection is used to offload to other

devices. Also a simple 2D battle game was developed to validate the framework.

1.1.3 Outline

Chapter 2: discusses the state of the art for code offloading.

Chapter 3: provides the problem statement for the thesis. In particular, we look at the possibility of

code offloading for D2D mobile games.

Chapter 4: describes the contribution of the thesis. This section includes the discussion of the developed

framework as well as the game that serves as the use case.

Chapter 5: provides the conclusions for the thesis.

Chapter 6: describes the future research directions

Chapter 7: is the abstract in Estonian.

2

2

State of the Art

2.1 Mobile Cloud Computing

Mobile computing is a technology that allows the device to transmit data without having to be connected

to a fixed physical link 2. For example being able to read the news and stay connected with friends and

family while on the move is possible thanks to mobile computing.

Cloud computing is a technology that allows the user to consume services, which follows an utility

model (2, 3, 4, 5). It provides virtually infinite processing capabilities as servers to the end users (2).

These servers are accessed by the users using thin clients (6).

Because mobile devices are constrained by limited storage, processing capabilities, memory, battery

etc., connecting them to the cloud enables augmenting these constraints (7, 8, 9, 10). The most prominent

technique to empower the mobile devices with cloud power is code offloading and we will discuss this

in more detail in the upcoming sections.

2.2 Code offloading

Code offloading refers to a technique in which a computational task is transferred from one place to

another and then processed there (3, 7, 8, 11). As long as both execution environments are the same, a

computational task can be transferred between them. A general schema for code offloading is shown in

Figure 2.1.

The primary purpose of code offloading is to decrease the energy usage in the device as this is one

of the biggest constraints of mobile devices today. By diverting energy consuming processes from client
2http://www.doc.ic.ac.uk/ nd/surprise_96/journal/vol4/vk5/report.html

3

2.3 Technologies and Implementations

to server, this technique allows balancing and maintaining energy usage in the client. It is a necessity for

code offloading to take less or equal amount of time to execute, otherwise it would make the application

unresponsive and would drive the user away. Offloading is beneficial when large amounts of computation

is needed with relatively small amount of data used for connection (4).

Figure 2.1: General code offloading schema

Figure 2.1 shows the traditional model for code offloading. The application(1), is installed in both

the device(2) and Dalvik Virtual Machine (VM)(5) located in the cloud server(4). When the bar method

is called, the offloading framework in the device sends the necessary data(3) to the Dalvik VM, that then

executes the method(6) and sends the result(7) back to the application in the device. This means that the

device got the result for the method, without actually executing it itself.

2.3 Technologies and Implementations

There are different technologies and implementations that have been made for offloading. In this section

we will be looking at the most prominent of these.

4

2.3 Technologies and Implementations

2.3.1 Java Reflection

The Reflection API has been included in Java since version 1.1 3. It allows to examine or modify the

runtime behaviour of applications 4.

The Snippet 1 shows a simple example of Java reflection, where the method localFoo is executed

from the class Test by calling the method foo. In order to execute localFoo, the method is first captured

using getMethod function, which requires the method name and parameter types as parameters. As

localFoo does not require any parameters, null values are given to getMethod and invoke calls. The

invoke function then executes the method localFoo.

Snippet 1 Example of Java reflection implementation
public class Test {

public void localFoo() {

//do something

}

public void foo() {

Class<?> paramTypes = null;

Object[] paramValues = null;

Method method = Test.getClass().getMethod(

"localFoo",

paramTypes

);

method.invoke(Test, paramValues);

}

}

Java Remote Method Invocation (RMI) —RMI uses object serialization to assemble and disassemble

parameters and does not truncate types, supporting true object-oriented polymorphism 5. Java RMI

system allows an object running in one Java VM to invoke methods on an object running in another Java

VM 6.

Java Remote Procedure Call (RPC) —RPC follows a client-server model 7 where the client can call for

the execution of the method in the server. Unlike RMI, the client does not have the code to execute, but
3http://docstore.mik.ua/orelly/java-ent/jnut/ch14_01.htm
4http://docs.oracle.com/javase/tutorial/reflect/index.html
5http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
6https://docs.oracle.com/javase/tutorial/rmi/
7http://www.cs.cf.ac.uk/Dave/C/node33.html

5

2.4 Computational Offloading Frameworks

the reference to the code which resides in the server.

2.3.2 .NET framework

.NET Framework is a software framework developed by Microsoft 8. Among other objectives it is

designed to remotely execute code 9. It consists of the Common Language Runtime (CLR) and the

.NET Framework class library 10. The CLR is the execution engine that handles running applications by

providing memory management and other system services 11. CLR is used by implementations such as

MAUI (7).

2.4 Computational Offloading Frameworks

The idea behind computational offloading, which is also known as cyber foraging (12), is to dynam-

ically augment the computational and storage capabilities of mobile devices by taking advantage of

opportunistically discovered servers in the environment (13).

There have been many breakthroughs in code offloading over the years as it is a subject that has been

researched for over a decade. In this section we will be looking at the most prominent of these solutions.

2.4.1 Cloudlets

Cloudlets are decentralized and widely-dispersed Internet infrastructures whose compute cycles and

storage resources can be leveraged by nearby mobile computers (6). The purpose of them is to bring

cloud closer to mobile devices, meaning that the connection could be established by Wireless LAN

instead of WAN. By doing this, the delays in connection can be brought down.

The connection between mobile devices and cloudlets can be viewed as a client server relationship.

In this sense the mobile devices are thin-clients as the bulk of data processing occurs on the server

(cloudlet) 12.

Using cloudlets takes the burden away from the programmer to modify the application for offloading

purposes.
8https://msdn.microsoft.com/en-us/library/ff361664(v=vs.110).aspx
9https://msdn.microsoft.com/en-us/library/vstudio/zw4w595w(v=vs.100).aspx

10https://msdn.microsoft.com/en-us/library/w0x726c2(v=vs.110).aspx
11https://msdn.microsoft.com/en-us/library/hh425099(v=vs.110).aspx
12http://www.webopedia.com/term/t/thin_client.html

6

2.4 Computational Offloading Frameworks

2.4.2 Mobile Assistance Using Infrastructure

MAUI is a system based on .NET framework, that at runtime uses an analyser to decide what code

should be executed remotely, determined from performance and energy standpoints.

Annotations are used to let the application developer and analyser determine which methods and/or

classes can be offloaded (7). The developer marks the ones that can be offloaded and the framework

determines whether it should be offloaded. Local execution is used as a fallback in case the remote

execution is not possible for various reasons.

The tests that were run indicate that MAUI has the capabilities to reduce processing and energy

usage in mobile devices (7).

2.4.3 ThinkAir

Similar to MAUI, ThinkAir (8) provides method-level computation offloading using annotations. How-

ever it addresses MAUIs lack of scalability by creating VMs of a complete smartphone system on the

cloud (8).

On first encounter, the analyser that is used to determine whether to offload or not, takes into account

current environmental parameters and starts collecting data for future usage. In later stages, the collected

data is used to determine where to execute the method. Java reflection is used for offloading (8).

ThinkAir provides an efficient way to perform on-demand resource allocation and exploits paral-

lelism by dynamically creating, resuming, and destroying VMs in the cloud when needed. Parallel ex-

ecution is exploited by either using multiprocessor support or splitting the work among multiple VMs.

By doing this it was possible to reduce the execution times and energy consumption of applications,

compared to non-parallel executions (8).

2.4.4 COMET

Code Offloaded by Migrating Execution Transparently (COMET) (9) is a system that focuses on im-

proving the speed of computation. In order to achieve this, they introduced Distributed Shared Memory

(DSM) to offloading. By doing this they have succeeded in developing an offloading engine that fully

supports multi-threaded computations. As such COMET is more focused on not what to offload but how

to offload (9).

By offloading computationally heavy tasks over WiFi, the system has on average managed to de-

crease battery consumption of the applications. It is also noted that due to 3G characteristics, offloading

7

2.5 Device-to-Device (D2D) Communication

via 3G usually ends up consuming more energy as opposed to executing locally. This is however taken

care of by the decision engine, when latency is high and bandwidth is limited, the tasks are run locally.

2.4.5 Evidence-aware Mobile Code Offloading

EMCO (14) follows the traditional offloading model. However it also adds data analysing and a cache.

By gathering data from users and analysing it with Evidence analyser, it is possible to determine what,

when and where to offload more optimally (5, 14).

Cache allows reusing the result for a given code that is often called, thus lowering the execution time.

It can also store results in client side, if it is determined to be reused again or later in the applications

execution. Initially the advantages of this approach would be comparable to other proposals, however as

it takes advantage of crowdsourcing, it should show it’s true potential over time (14).

2.5 Device-to-Device (D2D) Communication

As demonstrated by previous works offloading to remote cloud is feasible. However the latency issues

in communication is still a major drawback. Another proposed solution is to offload to nearby devices,

which are in a low-latency networks. Latency is the time taken to send data between two points in a

network, a low-latency network is where this time taken is minimized 13.

Mainly two connection protocols are used in D2D mobile clouds - WiFi and Bluetooth. The main

downside of Bluetooth is its limited range (~10 m), compared to WiFis range of around 100 meters (15).

However the upside of Bluetooth is that the power consumption is low (16).

It is also important for the participating devices to have incentive to share their resources with other

devices and there needs to be a mechanism to prevent ’free riding’ (15).

2.5.1 Context-Aware Hybrid Computational Offloading

The main idea behind dynamic D2D infrastructure is to create a dynamic infrastructure of multiple

mobile devices in proximity to share the load of processing heavy computational tasks (1). The D2D

infrastructure is created by transforming nearby devices into servers, which can process offloading tasks

from other devices.

The system combines features from cloudlets and code offloading models, by offloading to cloud

and relying on D2D communication to foster computational offloading in proximity. It is adaptive to
13http://www.cl.cam.ac.uk/teaching/0708/AddTopics/Low-Latency-Networking.ppt

8

2.6 Summary

the applications context, as the system can decide whether to offload to cloud or to a D2D infrastructure

nearby. (1)

2.5.2 Serendipity

Serendipity (11) is a system, that enables mobile devices to remotely access computational resources

of other mobile devices (11). Benchmarks are ran by profilers to gather data about the devices capa-

bilities. When two devices encounter, they first exchange metadata, which also includes the data from

profilers (11). This data is used to determine if it is feasible to offload from execution time and energy

consumption standpoints.

However as mobile devices have limited energy, the user might not want to share the energy they

have. Serendipity proposes that the reasonable solution would be for each device to last as long as

possible while still timely finishing their tasks (11). To battle this they use an algorithm proposed

in (17).

2.5.3 Hyrax

Hyrax uses a cluster of mobile devices as resource providers and have succeeded in showing the feasibil-

ity in such a mobile cloud (15). A modified Hadoop 14 is transplanted into Android so that these devices

can act as PCs to deploy a real cloud computing system (18). WiFi is used to establish connection with

nearby devices (19).

2.6 Summary

In this section we explained what is computational offloading, how it can be implemented and briefly

looked at the current solutions provided. From the works done, it can be seen that offloading succeeds

in being able to improve performance and decrease power consumption. However it is also stated that

the tests are mainly done in controlled environments and because of this in most cases computational

offloading is actually counterproductive in real-world scenarios (1).

14https://hadoop.apache.org/

9

3

Problem Statement

In the previous section, we explored current solutions for computational offloading. Most of the frame-

works discussed take advantage of remote cloud, which has its advantages and disadvantages. One of the

biggest disadvantage is that the connection established with cloud servers can suffer from high-latency.

In this section we raise the question, how is it possible to acquire computational resources without having

to deal with high-latency.

It has been demonstrated in previous section that computational offloading can decrease energy

consumption and increase performance if the offloaded task requires a lot of computational process-

ing (4, 7, 8, 9, 14). The offloading can happen either to a remote server or a device in proximity (mobile

devices, cloudlets etc.). As connecting to the cloud involves higher latency than connecting to nearby

devices, it should be more feasible to use these resources instead.

Current mobile games are already with PC-like features and with the emerging of D2D mobile

games, there is a need to balance the computational load for the devices. When dealing with mobile

devices in proximity, everyone has limited battery life. As different offloading tasks are given to a

device, instead of gaining energy they spend it. This raises the question, whether users are willing to

share their already limited processing capabilities with other devices as it increases energy consumption.

As a result, D2D offloading has been proposed. Instead of processing a task for another device,

computational offloading can also be used to share the intermediate results of a processed task. By

doing this, the device is alleviated from processing a task that another device has already processed. To

validate our ideas, we built a D2D framework and a simple 2D game.

10

3.1 Summary

3.1 Summary

In order to counter the problems of high-latency when trying to acquire computational resources we pro-

pose to use nearby devices. The devices can establish connection between themselves using Bluetooth.

By taking into account the next generation D2D mobile games, it may be highly beneficial to be able

to share data with nearby devices. This could lead to smoother gameplay, lower loading times, better

battery consumption and better overall user satisfaction.

11

4

D2D Mobile Gaming

In the previous section, we talked about the possibility of sharing the computational load between mul-

tiple devices in proximity. When dealing with games, more specifically multiplayer games, it is possible

to reduce load times and power consumption by sharing the computational tasks between nearby de-

vices. For example when two devices are playing a multiplayer game, it is unnecessary for both of them

to load each image, sprite, model etc. locally. Instead they can divide these tasks between them and

share the results with each other.

4.1 D2D framework

In order for devices to offload computational heavy tasks between nearby devices, we created a D2D

framework. The general schema for D2D code offloading can be seen on Figure 4.1. When comparing

it to the general schema in Figure 2.1 on page 4, it can be seen that instead of a cloud server, a collection

of nearby devices are used for offloading purposes.

Figure 4.1 shows the model for code offloading in D2D framework. The application(1), is installed

in both the device(2) and nearby devices(4). When the bar method is called, the offloading framework

decides which nearby device to use as a slave and sends the necessary data(3) to it. The slave then

executes the method(5) using Java reflection and sends the result(6) back to the application in the master

device.

4.2 Implementation

The framework is implemented for Android devices. Java reflection is used to offload to other devices.

Bluetooth is used to establish a connection between devices in proximity. This is done by creating an

12

4.2 Implementation

Figure 4.1: D2D code offloading schema

insecure radio frequency communication(RFCOMM) BluetoothSocket between the devices. Once the

runtime execution details of the code are captured, they can be sent back and forth in the communication

using ObjectInputStream and ObjectOutputStream, respectively. Capturing the runtime details of the

code allows the devices to reconstruct the code in environments that share the same execution properties.

Figure 4.2 shows the generalized architecture of D2D framework. Each of these devices has an

application(.apk file) and the framework installed. The Connection Manager establishes a connection

between the devices. The System profiler is in charge of collecting data about the device, application

and network. The Code profiler determines what code to offload based on annotations added by the

developer of the application. Both devices(1 and 2) have a role, which can be either master or slave. The

role is assigned by the frameworks Orchestrator. Once the slave is chosen, the master sends a request

to get the intermediate results from the slave. The slave handles the request and sends the result back to

the master. This sequence can be seen in Figure 4.3.

If there are multiple slaves to select from, greedy algorithm is used to make the decision. This

algorithm selects the best choice available at the current time without taking into account possible future

13

4.2 Implementation

Figure 4.2: Generalized architecture of D2D Framework

Figure 4.3: Sequence diagram of D2D framework

consequences 15.
15http://www.encyclopediaofmath.org/index.php/Greedy_algorithm

14

4.3 Validation

Snippet 2 Greedy algorithm in D2D framework
public List<String> greedyDecision(ConnectedDeviceList deviceList) {

List <String> devices = new ArrayList<String>();

statustable.sortDescStatus("cpuIdleness");

for (int i=0; i<deviceList.size(); i++) {

if (deviceList.getJobStatusList().get(i) == true) {

devices.add(deviceList.getDeviceList().get(i));

}

}

return devices;

}

The method shown on Snippet 2 returns the connected devices descendingly ordered by CPU idle-

ness and that are currently not busy. The deviceList contains all the devices MAC addresses and the sta-

tustable has the data collected for each device that is currently connected to the master device. The

device is busy if it is in process of offloading data. First devices’ MAC address returned from this

method will be assigned to be in the slave role.

The framework also includes a custom logger, that uses the devices database to store information

about the offloading process. By being able to download the contents of the database table into the

device, it is possible to analyse the data to improve the framework.

4.3 Validation

To validate the framework, we built a battle game. The game was implemented using the Android 2D

OpenGL Game Engine called AndEngine 16. GLES2 version of the AndEngine was used for the game,

which is based on OpenGL ES 2.0 17. PhysicsBox2DExtension 18 was used to create the physics of the

world.

The game consists of two levels populated with enemies, that need to be destroyed. Level 1 of the

game can be seen in Figure 4.4 and level 2 from Figure 4.5. The user has control over the character(wiz-

ard) in the middle of the screen. The knight and the ghost serve the purpose of enemies. The available
16https://github.com/nicolasgramlich/AndEngine
17http://www.andengine.org/blog/2012/06/andengine-gles2-old-and-new-news/
18https://github.com/nicolasgramlich/AndEnginePhysicsBox2DExtension

15

4.3 Validation

controls are as follows: moving to the sides, jumping and shooting projectiles. Projectiles are shot by

triggering a touch event in the desired direction.

Figure 4.4: Level 1 of the battle game

A total of 22 images were used for the sprites in the game. These images include the tiles, animated

characters, backgrounds and controls for the game. The art used in the game comes from PlatForge 19. It

is estimated that 46 sprites and 35 bodies of these sprites are created during one gameplay. For example

in Figure 4.4 there are a total of 16 sprites visible and Figure 4.5 displays 15 sprites. If the player

dies, the scoreboard is shown, which can be seen in Figure 4.6. This screen consists of two sprites, the

background image and a back button. These do not include the projectiles, as these are created when an

attack is initiated and destroyed after contact or reaching the end destination.

Bodies are used in order to add physics attributes like weight, elasticity, fixture, movement etc. to

sprites. They are divided into three types: static, kinematic and dynamic. As the name says, static bodies

are static, they will not move(e.g. tiles, buttons etc.). Kinematic and dynamic bodies are used when

movement is necessary. Kinematic bodies do not interact with the forces(e.g. gravity) of the physics

world, instead they can be given a velocity at which they move in a certain direction. In contrast dynamic
19https://play.google.com/store/apps/details?id=edu.elon.honors.price.maker

16

4.3 Validation

bodies can be fully simulated and they interact with other body types. The movement of dynamic bodies

is created by adding a force to them in a specific direction. For instance the wizard is a dynamic body

type, the player has control over the forces that manipulate the body by using movement commands.

Figure 4.5: Level 2 of the battle game

It was decided that the offloading shall be tested on loading the sprites of the game as this could

in theory greatly decrease the loading times. The method to be offloaded was hard-coded into the

application. This means that every time the game is run, the framework will try to offload the loading

of sprites to other nearby devices at runtime. Figure 3 shows one part of the code that is offloaded. This

code is responsible for creating the ITextureRegion for the mountain that is accessed by the game, once

the loading of level 1 is initiated.

17

4.3 Validation

Figure 4.6: Scoreboard of the game, once the player dies

Snippet 3 Code that loads the mountain image used for background in level 1 of the game
ITextureRegion mountain =

BitmapTextureAtlasTextureRegionFactory.createFromAsset(

backgroundTextureAtlas,

activity,

"mountain.png"

);

The source code for the game can be obtained from GitHub 20 The game requires the device to

have touch screen capabilities 21 and atleast Android Ice Cream Sandwich (4.0) platform. However the

required minimal platform for the device is Android Jelly Bean (4.1) as this is the requirement of the

framework itself.

For the validation we used a Samsung Galaxy S3 I9300 equipped with Android Jelly Bean (4.1.2)

and a Sony Xperia Z1 that has Android KitKat (4.4.4). The setup can be seen in Figure 4.7 and the
20https://github.com/huberflores/CaseStudy-QoS-CodeOffloading
21https://source.android.com/devices/input/touch-devices.html

18

4.4 Summary

results can be seen in Figure 4.8. PowerTutor (20) was used for the measurement of energy. The first

column shows the energy usage when not using D2D framework and the second column shows when it

was used.

When playing the game normally, the master device used 3252 J and the slave 4321 J of energy.

However when they shared results, the master device spent only 457 J and the slave used 4786 J of

energy. It can be seen that by using the framework, the slave device had to spend a little more energy

than usual, but the master device was able to save almost six times the energy used when compared to

normal usage. Combined the devices ended up saving energy.

Figure 4.7: Setup of the devices used for measuring the power consumption

4.4 Summary

Developing the game and making a use case out of it, made it possible to demonstrate the abilities of the

framework. The master device succeeded in getting the results for a task, that had already been done by

19

4.4 Summary

Figure 4.8: Diagram showing the power consumption of two devices- without using the framework and with
using it

the slave and ended up saving energy. Although the slave ends up wasting more energy than it would

normally, the two devices combined used less energy in total.

20

5

Conclusions

Smartphones keep evolving as consumers demand for better performance and battery life. For example,

performance can be boosted by equipping the device with a more powerful processor and more RAM.

But this in consequence usually increases the battery usage. It has been suggested to use computa-

tional offloading to augment the devices capabilities as it has been shown that by using computational

offloading techniques, it is possible to increase both the performance and battery life of smartphones.

There are different solutions proposed for code offloading which include using cloudlets, VMs lo-

cated in the cloud etc. However it is also possible to harvest the resources of nearby devices as discussed

earlier. This can be highly advantageous when dealing with D2D mobile games.

By giving tasks to other nearby smartphones to solve means that the offloading process comes at the

expense of other devices’ battery life. If only one device does the offloading for others then it results in

being disadvantageous for it and highly rewarding for others. It is the job of the framework to determine

how to offload, so that all devices can benefit from it.

However, it is also possible to share the intermediate results of tasks with other nearby devices.

This enables to alleviate the device of processing said task. We developed a prototype and results give

positive insights about the applicability of the technique.

21

6

Future Research Directions

As the main target of D2D mobile games are nearby devices, computational offloading techniques should

be used to balance the processing of computationally heavy tasks. However there are still some draw-

backs to computational offloading.

For instance, current frameworks designed for offloading include poor profilers. ThinkAir suggests

gathering data about the offloading processes to improve this. However with crowdsourcing as proposed

by EMCO it is possible to take it a step further. By gathering data about different offloading processes

and environments to a central cloud database, it enables profilers to more accurately determine the best

solution for offloading.

Because of constant changes to applications, network infrastructures and devices, we believe that

by creating a hybrid framework designed to offload would be most suitable. By allowing different

types of connections to be established(3G, 4G, WiFi, Bluetooth etc.) and targets(cloud, cloudlet, mobile

devices etc.) to choose for offloading, it is possible to accommodate different needs for both the user and

the application. Cloud servers might grant access to more computational power as opposed to nearby

devices, but this comes at a cost of using connections other than Bluetooth, therefore requires more

energy and may suffer from high-latency.

On the other hand in 2014, Google announced a new Android runtime(ART). The main purpose of

this is to replace Dalvik, the VM on which Android Java code is executed on 22. ART is designed to be

compatible with Dalvik Executable format and Dex bytecode specification, however some techniques

that work on Dalvik do not work on ART 23.
22http://anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l/
23https://source.android.com/devices/tech/dalvik/

22

The biggest change coming with ART is that it implements Ahead-of-Time(AOT) compilation in-

stead of Just-in-Time(JIT) as it was with Dalvik 22. This means that the application is compiled once

during the first execution and every subsequent executions will not compile it again, instead reuse the

already compiled native code. Optimizing and compiling the entirety of code only once results in de-

creasing overall power consumption. Because of this, the first-run of an application takes considerably

more time than in the case of Dalvik. However the tests indicate a performance boost of roughly two

times compared to Dalvik 22.

In theory, this does not however have a negative effect to the D2D framework, as the already com-

piled code is still reusable by another device by sharing the necessary results before the first run of the

application on another device.

23

Bibliography

[1] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, R. Buyya, Mobile code offloading: from concept to practice
and beyond, Communications Magazine, IEEE 53 (3) (2015) 80–88. 1, 8, 9

[2] H. Flores, S. N. Srirama, C. Paniagua, A generic middleware framework for handling process intensive
hybrid cloud services from mobiles, in: Proceedings of the 9th International Conference on Advances in
Mobile Computing and Multimedia, ACM, 2011, pp. 87–94. 3

[3] H. Flores, S. N. Srirama, Mobile cloud middleware, Journal of Systems and Software 92 (2014) 82–94. 3

[4] K. Kumar, Y.-H. Lu, Cloud computing for mobile users: Can offloading computation save energy?, Com-
puter (4) (2010) 51–56. 3, 4, 10

[5] H. Flores, S. Srirama, Mobile code offloading: should it be a local decision or global inference?, in: Pro-
ceeding of the 11th annual international conference on Mobile systems, applications, and services (MobiSys
2013), ACM, pp. 539–540. 3, 8

[6] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-based cloudlets in mobile computing,
Pervasive Computing, IEEE 8 (4) (2009) 14–23. 3, 6

[7] P. Bahl, R. Y. Han, L. E. Li, M. Satyanarayanan, Advancing the state of mobile cloud computing, in: Pro-
ceedings of the third ACM workshop on Mobile cloud computing and services, ACM, 2012, pp. 21–28. 3,
6, 7, 10

[8] S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading, in: INFOCOM, 2012 Proceedings IEEE, IEEE, 2012, pp.
945–953. 3, 7, 10

[9] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, X. Chen, Comet: Code offload by migrating ex-
ecution transparently, in: Proceedings of the 10th USENIX conference on Operating Systems Design and
Implementation, USENIX, 2012, pp. 93–106. 3, 7, 10

[10] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic execution between mobile device
and cloud, in: Proceedings of the sixth conference on Computer systems, ACM, 2011, pp. 301–314. 3

24

BIBLIOGRAPHY

[11] C. Shi, V. Lakafosis, M. H. Ammar, E. W. Zegura, Serendipity: enabling remote computing among intermit-
tently connected mobile devices, in: Proceedings of the thirteenth ACM international symposium on Mobile
Ad Hoc Networking and Computing, ACM, 2012, pp. 145–154. 3, 9

[12] M. Satyanarayanan, Pervasive computing: Vision and challenges, Personal Communications, IEEE 8 (4)
(2001) 10–17. 6

[13] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, H.-I. Yang, The case for cyber foraging, in:
Proceedings of the 10th workshop on ACM SIGOPS European workshop, ACM, 2002, pp. 87–92. 6

[14] H. Flores, S. Srirama, Adaptive code offloading for mobile cloud applications: Exploiting fuzzy sets and
evidence-based learning, in: Proceeding of the fourth ACM workshop on Mobile cloud computing and
services, ACM, 2013, pp. 9–16. 8, 10

[15] N. Fernando, S. W. Loke, W. Rahayu, Mobile cloud computing: A survey, Future Generation Computer
Systems 29 (1) (2013) 84–106. 8, 9

[16] D. Jian-jun, X. Heng-cheng, A distributed online test system based on bluetooth technology, in: Software
Engineering (WCSE), 2010 Second World Congress on, Vol. 1, IEEE, 2010, pp. 15–17. 8

[17] J.-H. Chang, L. Tassiulas, Energy conserving routing in wireless ad-hoc networks, in: INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, Vol. 1, IEEE, 2000, pp. 22–31. 9

[18] H. Qi, A. Gani, Research on mobile cloud computing: Review, trend and perspectives, in: Digital Informa-
tion and Communication Technology and it’s Applications (DICTAP), 2012 Second International Confer-
ence on, ieee, 2012, pp. 195–202. 9

[19] E. E. Marinelli, Hyrax: cloud computing on mobile devices using mapreduce, Tech. rep., DTIC Document
(2009). 9

[20] Z. Yang, Powertutor-a power monitor for android-based mobile platforms, EECS, University of Michigan,
retrieved September 2. 19

25

Non-exclusive licence to reproduce thesis and make thesis public

I, Mihkel Visnapuu (date of birth: 14th of August 1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public, including for
addition to the DSpace digital archives until expiry of the term of validity of the copyright,
and

1.2 make available to the public via the web environment of the University of Tartu, including
via the DSpace digital archives until expiry of the term of validity of the copyright,

Device-to-Device Mobile Gaming

supervised by Huber Flores and Satish Narayana Srirama

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property
rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2015

	List of Figures
	1 Introduction
	1.1 Introduction
	1.1.1 Motivation
	1.1.2 Contributions
	1.1.3 Outline

	2 State of the Art
	2.1 Mobile Cloud Computing
	2.2 Code offloading
	2.3 Technologies and Implementations
	2.3.1 Java Reflection
	2.3.2 .NET framework

	2.4 Computational Offloading Frameworks
	2.4.1 Cloudlets
	2.4.2 Mobile Assistance Using Infrastructure
	2.4.3 ThinkAir
	2.4.4 COMET
	2.4.5 Evidence-aware Mobile Code Offloading

	2.5 Device-to-Device (D2D) Communication
	2.5.1 Context-Aware Hybrid Computational Offloading
	2.5.2 Serendipity
	2.5.3 Hyrax

	2.6 Summary

	3 Problem Statement
	3.1 Summary

	4 D2D Mobile Gaming
	4.1 D2D framework
	4.2 Implementation
	4.3 Validation
	4.4 Summary

	5 Conclusions
	6 Future Research Directions
	Bibliography

