
 UNIVERSITY OF TARTU 

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE 

Institute of Computer Science 

Computer Science Curriculum 

Lembit Gerz 

An Akka-based middleware for Laboratory 

Information Systems 

Bachelor’s Thesis (9 ECTS) 

 

Supervisor: Naved Ahmed, Ph.D. 

  

Tartu 2015 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

An Akka-based middleware for Laboratory Information Systems 

 

Abstract 

Data exchange with medical analyzers is an important requirement of any laboratory 

information system. Analyzers and the information system exchange data such as analysis 

results, orders and patient information. In high-throughput laboratories, clinical tests are 

performed around the clock, therefore manual data entry can become a bottleneck in their 

usual workflow. In order to increase the effectiveness of the lab staff and reduce the chance 

of human error, the data exchange has to be automated.  

Due to technical restrictions and the large number of communication protocols used 

by different analyzers, middleware software is often used to mediate communication 

between the information system and analyzers. An interruption in the data exchange can 

cause financial damage or even risk to life. Therefore, certain requirements should be 

considered during the implementation of such software to make it reliable and maintainable. 

This thesis gives an insight into the laboratory middleware field and builds a 

middleware prototype using the Akka toolkit. As a part of the prototype, an interface 

between a hypothetical analyzer and a laboratory information system is also implemented. 

The implemented prototype is used as a reference to analyze up to which extent Akka is 

suitable for implementing middleware software that satisfies requirements such as fault-

tolerance, concurrency and code reusability.  

As a result, the prototype can be used as a minimal framework to connect additional 

analyzers with laboratory information systems. 

 

Keywords 

Middleware, actor model, Akka, laboratory information system, concurrency, fault-

tolerance, component reusability, monitoring.  



3 

 

Akka teegil põhinev laboriinfosüsteemi vahevara 

 

Lühikokkuvõte 

Andmevahetus meditsiiniliste analüsaatoritega on oluline osa igast laboriinfosüsteemist. 

Analüsaatorid ja infosüsteem vahetavad andmeid nagu näiteks analüüside tulemused, 

tellimused ja patsiendi informatsioon. Suure koormusega laborites teostatakse analüüse 

ööpäevaringselt, mistõttutu võib käsitsi andmete sisestamine pudelikaelaks labori töös. Et 

suurendada laboripersonali efektiivsust ning inimeksimusi, tuleb andmevahetus 

automatiseerida. 

Tehniliste piirangute ja andmevahetusprotokollide rohkuse tõttu kasutatakse sageli 

vahevara tarkvara, mis vahendab andmevahetust laboriinfosüsteemi ja analüsaatorite vahel. 

Katkestus andmevahetuses võib põhjustada rahalist kahju või isegi ohtu elule. Seega tuleb 

vahevara arendamisel arvesse võtta teatud nõudeid, et see oleks usaldusväärne ja hallatav. 

See bakalaureusetöö annab ülevaate laboriinfosüsteemi ja analüsaatorite 

liidestamisest ning selle käigus valmib Akka teegil baseeruv vahevara prototüüp. Prototüübi 

ühe osana implementeeritakse ka liidestus ühe hüpoteetilise analüsaatori ja 

laboriinfosüsteemi vahel. Prototüübi näitel analüüsitakse, kuivõrd on Akka teek sobilik 

implementeerimaks vahevara, mis rahuldab nõudeid nagu veataluvus, paralleelsus ning 

koodi taaskasutatavus.  

Tulemusena valmivat prototüüpi on võimalik kasutada raamistikuna, millel toetudes 

saab implementeerida liidestusi erinevate analüsaatorite ja laboriinfosüsteemide jaoks. 

 

Võtmesõnad 

Vahevara, aktorimudel, Akka, laboriinfosüsteem, paralleelsus, veataluvus, komponentide 

taaskasutatavus, monitoorimine. 



4 

 

Table of Contents 

Chapter 1: Introduction .............................................................................................................................. 6 

1.1. Problem description ....................................................................................................................... 8 

1.2. Thesis structure ............................................................................................................................ 10 

Chapter 2: Background ............................................................................................................................ 11 

2.1. The Actor model .......................................................................................................................... 11 

2.2. Akka ............................................................................................................................................. 12 

2.2.1. Actors ................................................................................................................................... 12 

2.2.2. Actor systems and supervision ............................................................................................. 13 

2.2.3. Difference between conventional multithreading ................................................................. 14 

2.3. Related work ................................................................................................................................ 16 

2.3.1. Mirth Connect....................................................................................................................... 16 

2.3.2. Froid - Free Open Instrument Middleware ........................................................................... 16 

2.3.3. LabTechie ............................................................................................................................. 16 

2.4. Example scenario ......................................................................................................................... 17 

Chapter 3: Implementation ...................................................................................................................... 20 

3.1. General architecture ..................................................................................................................... 20 

3.2. Back-end module ......................................................................................................................... 20 

3.2.1. Driver architecture ................................................................................................................ 21 

3.2.2. Driver configuration ............................................................................................................. 24 

3.3. User interface ............................................................................................................................... 25 

Chapter 4: Validation .............................................................................................................................. 28 

4.1. Parallelization and concurrency ................................................................................................... 28 

4.2. Fault tolerance .............................................................................................................................. 29 

4.3. Monitoring ................................................................................................................................... 30 

4.4. Code reusability ........................................................................................................................... 31 

4.5. Testability .................................................................................................................................... 33 

4.5.1. Testing individual components ............................................................................................. 33 

4.5.2. Testing drivers ...................................................................................................................... 34 

Chapter 5: Conclusion ............................................................................................................................. 36 

5.1. Limitations ................................................................................................................................... 36 

5.2. Future work .................................................................................................................................. 36 

Bibliography ............................................................................................................................................ 38 

Appendix A: Running the middleware and automated tests.................................................................... 39 

Source code ......................................................................................................................................... 39 

Running the middleware ..................................................................................................................... 39 

Running automated tests ..................................................................................................................... 40 

License..................................................................................................................................................... 41 



5 

 

 

Index of figures 

Figure 1: Conceptual model of the middleware and its interactions. .................................... 8 

Figure 2: Actor system hierarchy. ....................................................................................... 14 

Figure 3: Conceptual overview of an analyzer-LIS message exchange.............................. 17 

Figure 4: Message exchange sequence between an analyzer, middleware and LIS. .......... 19 

Figure 5: Back-end module architecture. ............................................................................ 20 

Figure 6: User interface. ...................................................................................................... 26 

Figure 7: The user interface with the filter and detailed message view visible. ................. 27 

Figure 8: Testing an individual actor. ................................................................................. 33 

Figure 9: Testing a driver. ................................................................................................... 34 

 

Index of listings 

Listing 1: Akka actor implementation using the Akka API for Java. ................................. 13 

Listing 2: Driver configuration. .......................................................................................... 25 

Listing 3: Testing a single actor with JavaTestKit. ............................................................. 34 

Listing 4: Example of a driver test (LIS2A2OverTCPTest.java) ......................................... 35 

 

file:///C:/Users/dante/Desktop/Thesisssss.docx%23_Toc419404523
file:///C:/Users/dante/Desktop/Thesisssss.docx%23_Toc419404524
file:///C:/Users/dante/Desktop/Thesisssss.docx%23_Toc419404526
file:///C:/Users/dante/Desktop/Thesisssss.docx%23_Toc419404527
file:///C:/Users/dante/Desktop/Thesisssss.docx%23_Toc419404528
file:///C:/Users/dante/Desktop/Thesisssss.docx%23_Toc419404529
file:///C:/Users/dante/Desktop/Thesisssss.docx%23_Toc419404536
file:///C:/Users/dante/Desktop/Thesisssss.docx%23_Toc419404537


6 

 

Chapter 1: Introduction 

Every laboratory that performs clinical testing on a larger scale uses a Laboratory 

Information System (LIS). An LIS is software that provides the functionality to manage data 

related to clinical testing, e.g., the entry of orders and results, specimen processing and 

patient information [1]. The LIS is usually a web application that is used throughout the 

laboratory by the personnel. Another important part of the LIS is the ability to integrate with 

other systems, such as the national health record, a hospital information system or medical 

analyzers. 

Medical analyzers are physical devices that reside in the laboratory and are used by 

the laboratory personnel to perform clinical analyses on specimens. For example, a 

hematology analyzer can measure the white blood cell count on a blood specimen. 

Analyzers need to communicate with the LIS to perform the analyses. This includes, 

for example, information about the required analyses that should be performed on a 

specimen, information about the patient and the analysis results. While smaller laboratories 

might enter the data manually, this approach is not sustainable for larger laboratories and 

must be automated. Most analyzers provide an interface for exchanging data with other 

systems. This can be, for example, over a TCP1 connection or a file-based protocol. 

Some LIS vendors choose to connect the analyzers to their systems directly, including 

all the logic needed for the data exchange as a part of their LIS installation. However, this 

approach has some drawbacks [2]: 

Technical restrictions. Some analyzers only support an interface that cannot be directly 

connected to a web-based LIS. For example, older analyzers can only communicate via a 

local filesystem. In that case the device must be connected to a host computer which is a 

regular PC that resides near the analyzer. The analyzer then uses the computer’s file system 

to exchange messages (e.g., writes analysis results as files in a folder ‘C:/results’ and reads 

orders from files ‘C:/orders’). This prevents connecting these analyzers directly to the LIS 

and requires the use of an intermediary that performs file-based IO and exchanges the data 

with the LIS over a web-based transport protocol (e.g., TCP or HTTP). 

Lacking modularity. Analyzers employ a myriad of different data formats. These specify 

how the messages exchanged between the analyzer and LIS are structured (e.g., the patient 

name is located in the 5th field of the 3rd line in the message). There are some recommended 

                                                 
1 Transmission Control Protocol 



7 

 

standards such as HL72 and ASTM3 that many analyzer vendors support, but some still use 

their own custom data formats [2]. When the logic of processing all the different data 

formats is included in the LIS installation, the modularity of the system suffers. Consider 

the case when the laboratory needs to connect a new analyzer. After a new interface for that 

analyzer is implemented as a part of the LIS, the new version has to be deployed. A 

redeployment usually comes with temporary downtime. The work of the whole laboratory 

is disturbed because of one analyzer. It can be argued that the processing logic of different 

data formats is conceptually not a core part of an LIS. An analyzer and an LIS can be 

implemented as a client-server architecture, where the LIS (i.e., server) should know as little 

as possible about analyzers (i.e., clients). 

To address these problems, middleware software is often used. In the context of this 

thesis,  middleware is a piece of software that mediates all communications between the LIS 

and the analyzers. It  translates different analyzer protocols for sending messages to the LIS 

and vice versa. That allows LIS vendors to expose a uniform interface to communicate with 

their system (e.g., a REST API) while the middleware takes care off all the nuances of 

different analyzer protocols. This also enables the middleware to be deployed separately 

without affecting the LIS [2]. 

The middleware can also apply additional control logic as it is mediating 

communication, such as filtering out certain messages, persisting the messages in a database 

and converting measurement units [1]. Figure 1 illustrates how the middleware plays a part 

in the data exchange. There are multiple analyzers connected to one instance of a 

middleware. The part of the middleware that serves an analyzer is called a driver for that 

respective analyzer. 

 

                                                 
2 Health Level 7 - http://www.hl7.org/ 
3 ASTM standards committee - http://www.astm.org/ 

http://www.hl7.org/
http://www.astm.org/


8 

 

 

Figure 1: Conceptual model of the middleware and its interactions. 

 

1.1. Problem description 

This thesis proposes an implementation of a laboratory middleware using the Akka toolkit. 

The solution aims to provide a framework of the middleware that can be relied upon to add 

new drivers for other analyzers. As a reference implementation, a driver is implemented for 

connecting a hypothetical analyzer and an LIS. 

The following criteria are established to evaluate the suitability of the proposed 

implementation and the Akka toolkit. These characteristics are important in a middleware 

application [1, 2]: 

1. Parallelization and concurrency. A single installation of the middleware must be able 

to serve multiple analyzers without interfering with each other. For example, if there are 

two analyzers connected to the middleware, then the drivers for both analyzers should run 

in parallel. 

In addition, processes within one driver should not be subject to concurrency-related 

problems, such as race conditions or deadlocks. This is a problem with bidirectional 

communication. For example, consider a situation when an analyzer is in the process of 

sending a message to the LIS. At the same time a message arrives from the LIS that should 

be delivered to the analyzer. If not handled correctly, this can result in a state where the 

middleware attempts to send a message to the analyzer when the latter is not ready to receive 



9 

 

it. A correct implementation should finish receiving the current message and put any other 

messages from the LIS on hold until the analyzer has finished sending the current message. 

2. Fault tolerance. If an error occurs during the execution of a specific driver, it should not 

affect other drivers. Also, the failure to process a message should not result in termination 

of the driver. Instead, the message that caused the error should be logged and the driver 

should continue processing the next messages.  

3. Code reusability. Analyzer interfaces can usually be divided into two parts: 

 Delivery mechanism. This specifies how the messages are transmitted to the 

analyzers and the LIS (e.g., file-based, HTTP requests or over TCP). 

 Data format. This specifies the format of the message content. It outlines  how 

certain data can be extracted from a message (e.g., the patient name is in the 4th field 

of the 2nd line). 

Analyzers use a combination of these parts to communicate with the LIS. If a part for one 

analyzer is already implemented, then it is not beneficial to implement the whole 

communication protocol for another analyzer. For example, if there exists a driver that 

communicates HL7 over files, then implementing a driver that communicates HL7 over 

TCP should mean only writing code for the TCP delivery. 

4. Monitoring. Finding the source of an error in retrospect is important as reproducing 

errors sometimes requires testing with the actual analyzer, making it expensive and time-

consuming. Therefore, the message processing should be logged with enough thoroughness, 

so that the logs provide an accurate feedback about at which processing stage the error 

occurred. The middleware should effectively monitor the communications to quickly detect 

problems as soon as they occur. 

5. Testability. Testing on real analyzers is often complicated, because it requires the 

cooperation of multiple parties (e.g., the developer, lab specialist and lab IT staff). Making 

changes to drivers that are used for life-critical analyzers is risky. Reusing code introduces 

the need for ensuring that after making changes to a reused functionality, all dependent 

drivers remain fully functional. The middleware implementation should provide a way to 

write automated tests that verify the correctness of the implemented analyzer drivers. 



10 

 

1.2. Thesis structure 

The thesis is divided into 5 chapters. The first chapter gives a brief overview of the 

laboratory middleware domain and describes the problem addressed by this thesis. The 

second chapter explains the necessary background – the actor model and Akka, related work 

in the field and an example analyzer-LIS interfacing scenario. The third chapter discusses 

the implementation of the proposed middleware. The fourth chapter analyzes how the 

implementation satisfies the requirements raised in the first chapter. Lastly, a concluding 

chapter with summarizing notes and possible directions for future work. The appendix 

contains instructions on how to use files included in the extras that are submitted with the 

thesis. 

 



11 

 

Chapter 2: Background 

This chapter starts by introducing the concept of the actor model and its Akka 

implementation. Next, provides an overview of related studies in the field of LIS 

middleware. Finally, an example scenario of an analyzer-LIS communication is illustrated. 

The scenario is used in Chapter 3 showing the implementation for solving the identified 

problem. 

2.1. The Actor model 

The actor model is a mathematical theory of computation that treats actors as the 

fundamental units of computation [3, 4]. An actor is a unit of computation within a set of 

actors called an actor system. The model is based on one-way asynchronous communication. 

An actor communicates by sending immutable messages to other actors. Once a message 

has been sent, it becomes the responsibility of the receiver. The sender can continue its work 

without waiting for a response. The message is placed in the recipient’s mailbox and the 

recipient will process the message at a later time. When processing a message an actor can 

only do the following: 

 send messages to other actors, 

 create more actors, 

 specify how it handles the next message it receives (i.e., change its internal state). 

Erlang4 was the first language to prove that the actor model could be used in large scale 

mission-critical software systems. Erlang was developed for telephony applications and was 

used at Ericsson to develop a product with over 1.7 million lines of code which is also 

considered as one of the most reliable of the company’s products [5]. 

  

                                                 
4 http://www.erlang.org/ 

http://www.erlang.org/


12 

 

2.2. Akka 

Akka is an implementation of the actor model for the Java Virtual Machine (JVM). Akka 

allows to combine actors with the object oriented programming paradigm, whereas the actor 

model suggests treating everything as actors. In addition to providing an API to write 

applications following the actor model, Akka provides many built-in features and 

recommended practices that ease the development process. The Akka toolkit is implemented 

in Scala, but also provides an API for the Java language. Akka can be taken into use by 

including a single jar-file into the Java project. 

 

2.2.1. Actors 

In Akka, an actor is a container for the following [6]: 

 State – data exclusive to the actor that cannot be directly accessed by other actors. 

 Behavior – the definition of actions to be taken on receiving a message. 

 Mailbox – the buffer for messages that are sent by other actors. 

 Children – the set of actors that have been created by the actor. Actors in Akka form 

a hierarchy – when an actor creates another actor, it automatically becomes its 

parent. 

 Supervision strategy – the parent of an actor is known as its supervisor that must 

handle the failures of its children. The supervision strategy defines the action to be 

taken when a child actor fails. 

Listing 1 shows an example of how an actor can be defined using the Java API for Akka. 

An actor in Akka is a subclass of AbstractActor and can have an internal state. In its 

constructor, the actor defines how it handles the messages it receives depending on the 

message type (Message type 1-3). All actors in Akka are hidden behind an ActorRef object, 

which acts as the address for the actor. It exposes a limited API, most importantly the tell 

method, which can be used to send messages to the actor. This ensures that the internal state 

of the actor cannot be accessed or modified by anything but the actor itself. The only way 

to communicate with the actor is to send it one of the types of messages it is able to process. 

An actor’s interface to other actors are its address (e.g., ActorRef) and the types of messages 

it can process. 

  



13 

 

public class Greeter extends AbstractActor { 

 

  private final List<Greet> greetHistory = new ArrayList<>(); // internal state 

 

  private Greeter() { 

    receive(ReceiveBuilder 

      .match(Greet.class, msg -> { // Message type 1 

        greetHistory.add(msg); 

        System.out.println("Hello, " + msg.greetee); 

      }) 

      .match(SayFarewell.class, msg -> { // Message type 2 

        System.out.println("Goodbye, " + msg.farewelssssslee); 

      }) 

      .match(Stop.class, __ -> { // Message type 3 

        System.out.println("Stopping"); 

        context().stop(self()); 

      }) 

      .build()); 

  } 

} 

 

public static void main(String[] args) { 
  ActorSystem system = ActorSystem.create(); 

  ActorRef greeter = system.actorOf(Props.create(Greeter.class)); // ActorRef 

  greeter.tell(new Greet("Peter"), ActorRef.noSender()); // tell method 

  greeter.tell(new SayFarewell("Peter"), ActorRef.noSender()); 

  greeter.tell(new Stop(), ActorRef.noSender()); 

} 

Listing 1: Akka actor implementation using the Akka API for Java. 

 

2.2.2. Actor systems and supervision 

Actors in Akka are part of an actor system and form a tree-like hierarchy. Each actor has 

one parent actor that created it (also known as supervisor). Figure 2 shows an example of 

an actor system. In this figure, actors /, user and system are top-level actors that are 

created automatically by Akka for internal purposes. Actors A-F are user-created actors and 

form a hierarchy (e.g., B is a child of A and the parent of E, F). 

The hierarchical structure of the actor system is useful for two reasons: 

 Delegation. A good practice in actor systems is to split tasks into smaller subtasks. 

For example, if actor B is responsible for searching a keyword, it can split the search 

space between E and F. When E and F have finished, B aggregates the results. This 

helps in both reasoning about the code and allows to execute some parts of the tasks 

in parallel. 

 Supervision. When a child actor fails (i.e., throws an exception) it suspends itself 

and its children and notifies its supervisor (i.e., parent actor) about the failure. The 

supervisor has four directives to choose from for  handling the failure: 

o Resume the child actor (i.e., continue processing the next message). 



14 

 

o Restart the child actor, clearing out its internal state. 

o Stop the child actor permanently. 

o Escalate the failure to its own parent. 

Actors are the units of fault-isolation, which is key to designing fault-tolerant 

software [5]. When an actor fails and is restarted or resumed, it does not affect other 

actors in the system. Other actors holding an address to the actor can still send 

messages to its mailbox. Restarting the actor does not clear its mailbox, so no 

messages sent to it are skipped, except the message that caused an error. 

 

Figure 2: Actor system hierarchy. 

 

2.2.3. Difference between conventional multithreading 

Concurrency 

One of the main aspects that makes concurrent programming difficult is shared state [7]. 

When two threads need to communicate, they must do so by mutating a shared piece of 

memory. For example, message-passing between two threads can be implemented by 

initializing the threads with a shared message queue – one thread adds items into the queue 

while the other periodically checks the queue for new messages. Mutating shared state 



15 

 

requires explicit synchronization (e.g., locks). Incorrect synchronization can result in race 

conditions, deadlocks or corrupt state [7].  

The actor model takes a different approach that removes the need for explicit 

synchronization. All mutable state inside an actor system is encapsulated within actors, 

which can mutate it while processing a received message. Since messages are immutable 

and message processing within an actor is single-threaded, there cannot be multiple 

processes accessing the same state at a given time. Isolating mutable state and enforcing 

immutable messages guarantees implicit synchronization and makes the actor model 

inherently parallel [7]. 

Fault-tolerance 

Writing fault-tolerant code in Akka also differs from a thread-based approach. When an 

exception is thrown in the execution of a thread and it is not handled, the thread stops and 

there is no way to restart it other than instantiating a new thread. The common approach is 

to adopt a style of defensive programming to minimize the risk of a thread crashing [5]. This 

is the practice of trying to validate all the input data and handling all the possible errors that 

can occur with the aim of not letting an unhandled exception stop the thread. With this 

approach, code readability suffers as business logic becomes intertwined with the error-

handling code. A programmer reading the code afterwards must figure out the intent of the 

author – which errors can actually happen and which error-handling code is added “just in 

case” [5]. 

Error-handling in Akka follows the “let it crash” philosophy known from Erlang [5]. This 

approach discourages defensive programming and advises that actors are fail-fast. It means 

that an actor should only do as it is supposed, otherwise it should fail and let its parent handle 

the failure. Since actors are the units of fault-isolation, the failing actor can be restarted by 

the parent without affecting the rest of the system. This also allows to write more concise 

code that clearly communicates the intent of the author. 

  



16 

 

2.3. Related work 

Most of the existing LIS middleware solutions currently available are commercial products 

that are not freely obtainable. These solutions serve well for large LISs, but are not feasible 

for smaller laboratories. This section presents the existing freely obtainable solutions and 

related research in the LIS middleware field. 

 

2.3.1. Mirth Connect 

Mirth Connect is an open-source healthcare interface engine [8]. It is designed to be a 

generic tool to connect different medical information systems (e.g., LIS, hospital 

information system or national health record). The commercial version also includes some 

functionality for connecting medical analyzers. It features a graphical user interface for 

configuring different channels between a source and a destination system. The interface can 

be used to configure the processing logic for the exchanged messages, such as filtering, 

transformation, data extraction and routing. For more complex use cases, additional 

processing logic written in JavaScript can be added. Though the free version has no built-in 

support for analyzer integration, it is open-source and therefore can be modified for 

interfacing an external analyzer.  

Mirth Connect is quite feature-rich and general to facilitate a variety of use cases, but 

this has the downside of complexity and a large application size of nearly 140MB. This 

reduces the portability of the application as deploying and updating it on multiple computers 

can be slow. 

 

2.3.2. Froid - Free Open Instrument Middleware 

Froid is a proposed solution for an open-source LIS middleware [10]. It is managed by Bika-

LIMS, which is an open-source laboratory information system. Although the development 

is in early planning phase, the objectives of Froid are promising as it aims to be a vendor-

neutral instrument server that can be used with any LIS as an interface to any analyzer. 

Another goal is to establish a community around Froid to encourage collaborators to share 

their implementations of analyzer drivers. 

 

2.3.3. LabTechie 

LabTechie is middleware that was developed for interfacing analyzers in two different 

laboratories in USA [9]. It is designed to interface analyzers that employ a file-based 



17 

 

communication protocol using comma- or tab-delimited text files. The middleware parses 

the files’ contents and converts them into XML format. These XML messages can be sent 

to the LIS and are also stored in a database for archival purposes. XSLT and XPath are used 

for extracting data and converting the messages into different formats. A graphical user 

interface can be used to search previously exchanged messages, manage the connected 

analyzers and manually verify the results before they are sent to the LIS.  

LabTechie is not publicly available and the implementation details are not discussed. 

Although the middleware is stated to be general-purpose, modifying it for other 

communication protocols and LISs is not discussed. Another possible downside of 

LabTechie is that is requires Oracle’s XML Database, which includes licencing fees. 

 

2.4. Example scenario 

To better illustrate the task that the middleware must fulfil, a concrete example is presented 

below. Figure 3 illustrates the workflow between the analyzer and the LIS. 

 

 

  

Figure 3: Conceptual overview of an analyzer-LIS message exchange. 



18 

 

A container with a specimen (e.g., blood or urine) is registered in the LIS and given a 

barcode (also called a specimen ID). The set of analyses that should be performed on the 

specimen is also registered in the LIS (1). The barcoded container is placed into an analyzer 

which has a barcode scanner (2). After scanning the barcode (3), the analyzer queries the 

LIS to determine which analyses it should perform on that sample (4). The LIS finds the 

previously registered container based on the barcode in the query (5) and sends the set of 

ordered analyses to the analyzer (6). After performing the analyses (7), the analyzer sends 

the analysis results to the LIS (8). 

The analyzer communicates over a TCP connection. The data is transmitted following the 

ASTM E1381-95 low-level protocol [11]. This specifies sending the message line by line 

with the receiving party responding with an acknowledgement after each line. The data 

format of the message content follows the LIS2-A2 specification [12]. This is a higher level 

protocol, which specifies the message structure (i.e. where in the message certain data can 

be found). The LIS accepts and responds to HTTP requests using a custom JSON message 

format. The middleware stands between the analyzer and LIS mediating the data exchange 

by translating the analyzer protocol into the LIS protocol and vice versa. 

Figure 4 illustrates the data exchange sequence when the analyzer sends an analysis 

result message. The message parts with the black background make up the abovementioned 

low-level protocol, the text with a white background enclosed between the low-level 

characters is part of the high-level protocol. The analyzer starts communication with an 

enquiry message (<ENQ>). The middleware signals its readiness with an acknowledgement 

(<ACK>). When all the lines of the message are transmitted, the analyzer sends the end-of-

transmission message (<EOT>). The middleware then aggregates the received lines into one 

message, converts the message into the required JSON format and sends it to the LIS via an 

HTTP request. 

 



19 

 

 

In addition to the minimal middleware framework, a reference driver for this scenario is 

implemented as a part of this thesis. Next, Chapter 3 illustrates a detailed implementation 

of the proposed middleware using the scenario introduced in this section. The hypothecial 

LIS in this example is named MyLab. 

Figure 4: Message exchange sequence between an analyzer, middleware and LIS. 



20 

 

Chapter 3: Implementation 

This chapter provides an overview of the implementation details of the proposed 

middleware prototype. 

 

3.1. General architecture 

The application is divided into two separate modules that can be deployed separately: 

 Back-end. This is a Java application which includes the core of the message 

processing logic. 

 User interface. This module is used to monitor the state of the back-end module. It 

is a web application implemented with TypeScript5. 

 

3.2. Back-end module 

The back-end module includes the core of the message processing logic.  It is a single actor 

system making up the actor hierarchy shown in Figure 5. 

 

 

Figure 5: Back-end module architecture. 

                                                 
5 http://www.typescriptlang.org/ 

http://www.typescriptlang.org/


21 

 

Nodes in the hierarchy represent actors which have the following roles: 

 Master. The top-level actor which loads the configuration and starts the Observer 

and DriverManager actors. 

 DriverManager. This actor’s task is to start the necessary drivers depending on the 

configuration passed to it by the Master actor (the two DynamicDriver actors in 

Figure 4). 

 Any number of DynamicDriver actors. The DynamicDriver actor initializes and 

supervises the driver components that are needed to communicate with a specific 

analyzer. There is one DynamicDriver actor for every analyzer connected to the 

middleware instance. 

 Driver components. A set of cooperating actors that mediate the data exchange 

between the LIS and a specific analyzer (see Section 3.2.1.). 

 Event stream. The Event stream is a feature provided by Akka. It is a publish-

subscribe bus that can be accessed by all actors in the actor system. Actors can 

publish messages to the Event stream and subscribe to receive messages published 

by other actors. 

 Observer. This actor collects information from the Event stream about the state of 

the drivers and messages that they exchange. The collected information is forwarded 

to the user interface. 

 

3.2.1. Driver architecture 

The Driver components shown in Figure 4 are actors that are directly responsible for the 

data mediation between an analyzer and the LIS. The structure of the components is based 

on the Pipe and Filter Pattern [13]. This pattern suggests dividing the message processing 

into isolated components and arranging them into a pipeline. Each component performs a 

single step of the processing logic and passes the result to the next component in the pipeline. 

This is analogous to the notion of “piping” in a Unix-based command-line. 

Consider the example introduced in Section 2.4., where the analyzer sends an order 

inquiry to the hypothetical LIS called MyLab asking to retrieve the set of ordered analyses. 

As a response, the analyzer receives an order message containing the set of analyses that 

need to be performed on a given sample. Figure 5 shows how this exchange can be separated 

into components (this is a detailed view of the „Driver components“ section in Figure 4). 

 



22 

 

Figure 5: Driver architecture. 



23 

 

The AnalyzerX and MyLab nodes are not part of the driver and represent the actual analyzer 

and LIS that communicate via the middleware. Nodes inside the Driver components area 

are the components which mediate the data exchange between MyLab and AnalyzerX. 

Arrows that connect the nodes show the direction of messages that are exchanged between 

the components. An arrow is annotated with the type of the message a particular component 

passes to the receiving component. 

The SocketServer starts a TCP server (1) that enables AnalyzerX to establish a connection 

(2). SocketServer reads the byte stream sent by the analyzer and forwards it to 

AstmE138195Controller (3). AstmE1381Controller performs the ASTM E1381-95 

exchange sequence by responding through the SocketServer with an acknowledgement 

message after each line of the message (4). After receiving the end-of-transmission message, 

AstmE138195Controller aggregates the received lines into a string and sends it to 

StringToLIS2A2Converter (5). StringToLIS2A2Converter parses the received string into 

LIS2A2QueryMsg (6), which is a data structure that can be easily queried for individual parts 

of information. The parsed message is sent to LIS2A2ToMyLabConverter (7). 

LIS2A2ToMyLabConverter extracts the necessary data from the received message to 

construct a MyLabQueryMsg, which the LIS is able to process (8). This message is sent to 

MyLabHttpClient (9). MyLabHttpClient constructs the HTTP request with the JSON 

representation of the received message as the request body (10) and sends the request to 

MyLab (11). The HTTP response contains the order in the MyLab-specific format. The 

response is parsed into a MyLabOrderMsg (12) and forwarded to 

MyLabToLIS2A2Converter (13). 

The rest of the message processing is carried out analogously to the previous steps. 

The order message is transformed into the analyzer-specific format and forwarded via 

AstmE138195Controller and SocketServer. 

 

A driver component is an actor that performs a single part of the overall message processing 

logic. For each actor and message type, there is a corresponding Java class (e.g. 

SocketServer.java and LIS2A2OrderMsg.java).  

Each component actor extends the class FlowComponent, which intercepts every 

message before it is processed. It publishes the following information to the Event Stream 

for every intercepted message: 

 receiving component (i.e., current component), 



24 

 

 sender component, 

 message content, 

 processing start and end times, 

 the stack trace of the exception, in case an error occurred while processing the 

message. 

The published messages are collected by the Observer actor that forwards them to the user 

interface module. 

 

3.2.2. Driver configuration 

Each component is initialized by the DynamicDriver actor with a configuration object, 

which contains the information needed for the component to operate (e.g., the TCP address 

and port for the SocketServer and the MyLab URL for the MyLabHttpClient). Each 

configuration object also contains the address for  the actor that the result of the current 

processing step should be sent to (e.g. SocketServer has the address to 

AstmE138195Controller). 

At source-code level, the components of a driver are independent actors, which are 

not bound to each other at compile-time. The information about which components are 

started with a driver and how messages flow through them is specified via runtime 

configuration. 

Listing 2 shows the configuration files for the sample driver implementation. File 

/driverDefinitions/LIS2A2OverTCP.conf contains a general configuration for any analyzer 

that communicates LIS2-A2 over TCP. It specifies the components that are a part of the 

driver and how they are linked. As more drivers are implemented, the corresponding general 

configuration files can be added to the /driverDefinitions folder. 

File /application.conf contains the configuration for a specific middleware instance. 

The DriverManager configuration entry specifies the drivers that should be started to serve 

the analyzers connected to the middleware instance. The example in Figure 2 imports the 

LIS2A2OverTCP.conf driver configuration and sets the analyzer specific configuration 

parameters to serve the AnalyzerX analyzer. 

  



25 

 

/application.conf /driverDefinitions/LIS2A2OverTCP.conf 
Drivers = { 

 LIS2A2OverTCP = { 

  include "driverDefinitions/LIS2A2OverTCP.conf" 

 } 

//  add an entry for every driver, e.g: 

//  HL7OverFile = { 

//    include "driverDefinitions/HL7OverFile.conf" 

//  } 

//  ... 

} 

 

DriverManager { 

 AnalyzerX = ${Drivers.LIS2A2OverTCP} { 

  SocketServer { 

   address = "127.0.0.1" 

   port = 50000 

  } 

  MyLabHttpClient { 

   resultUrl = "http://localhost:8070/result" 

   queryUrl = "http://localhost:8070/query" 

  } 

 } 

} 

 

SocketServer { 

 address = null 

 port = 0 

 recipientActor = "AstmE138195Controller" 

} 

 

AstmE138195Controller { 

 maxFrameSize = 240 

 lowLevelRecipient = "SocketServer" 

 highLevelRecipient = 

"StringToLIS2A2Converter" 

} 

 

StringToLIS2A2Converter { 

 recipient = "LIS2A2ToMyLabConverter" 

} 

 

LIS2A2ToMyLabConverter { 

 recipient = "MyLabHttpClient" 

} 

 

MyLabHttpClient { 

 recipient = "MyLabToLIS2A2Converter" 

 resultUrl = null 

 queryUrl = null 

} 

 

MyLabToLIS2A2Converter { 

 recipient = "LIS2A2ToStringConverter" 

} 

 

LIS2A2ToStringConverter { 

 recipient = "AstmE138195Controller" 

} 

Listing 2: Driver configuration. 

 

 

3.3. User interface 

Akka does not provide a built-in feature to monitor the actors in an actor system and the 

messages exchanged between them. Getting an overview of the running system would mean 

manually shifting through log files. To provide a better overview of the system state, the 

user interface module was developed. It is a web application that connects to the back-end 

module via a websocket connection and provides an overview of the deployed drivers. 

Figure 6 shows a screenshot of the application. 



26 

 

 

The numbered sections serve the following purposes: 

1. Analyzer list. Displays the currently connected analyzers and their driver components. 

In this case, AnalyzerX and AnalyzerY are connected and AnalyzerX is selected. If the 

analyzer driver has encountered errors during communication, the number of unread errors 

is shown next to the analyzer name. Selecting a different analyzer from the list expands the 

list of its components and changes the contents of tables 2 and 3 to only display data relevant 

to the selected driver. Clicking on the Filter button displays the Filter component (4). 

2. Message table. Displays the messages exchanged between the selected driver’s 

components. If` processing the message failed, the row is displayed with a red background. 

The following information about every message is shown: date and time of message 

processing, sender component, recipient component, message content. 

3. Log event table. Displays the log events that are triggered within the selected driver’s 

components. These are messages that are manually added by the developer to more easily 

monitor and debug the components. 

Figure 6: User interface. 



27 

 

4. Filter (see Figure 7). The Filter component is used for searching messages in the Message 

table. It allows filtering based on the following criteria: 

a) Only display messages that have been either successfully (Successful) processed or 

have caused an error (Failed). To ensure that all failures get checked, the number of 

unread failures is also displayed. 

b) Only display messages that were processed within a given timeframe by specifying 

the Start time/date and End time/date. 

c) Only display messages that were sent or received by the specified component pair(s). 

d) Only display messages that contain a certain string. 

Double-clicking a row in the Message table expands the details of this message. If the 

message caused an error, the stack trace of the exception is also displayed and the error is 

marked as read. When the detailed view of a message is opened, the Log event table is 

filtered to only display the log events that occurred during the processing of the selected 

message. 

 

 

Figure 7: The user interface with the filter and detailed message view visible. 



28 

 

Chapter 4: Validation 

This chapter discusses how the Akka toolkit and the implemented middleware prototype 

satisfy the requirements identified in Section 1.1. Each requirement is discussed in terms of 

how Akka can be used to address it and how it is solved in the prototype. JUnit6 automated 

tests are used for requirements that can be directly measured. 

 

4.1. Parallelization and concurrency 

Parallelization 

As stated in Section 2.2.3., the actor model has no shared state, which is the main reason for 

concurrency-related problems. Because no state is shared between driver component actors 

and the execution within a single actor is single-threaded, there is no need for explicit 

synchronization (e.g., locking). That means all drivers and their components can run in 

parallel. 

ParallelDriversTest.java was created to verify that the proposed middleware is able 

to serve multiple analyzers at once. It simulates a number of analyzers being connected to 

the middleware and exchanging messages with the LIS simultaneously. The test was run 20 

times with 10 simulated analyzers and 20 times with 1 simulated analyzer. The average 

times to complete the message exchanges were 12.2s and 11.5s, respectively. In all cases all 

messages were successfully delivered between the analyzers and the LIS. This shows that 

the middleware can simultaneously serve multiple analyzers without explicit 

synchronization or significant performance loss. 

 

Concurrency 

Race conditions caused by multiple processes accessing the same state are eliminated with 

the actor model. However, race conditions caused by invalid business logic can still occur. 

Consider the case of AstmE1381Controller, which sends and receives messages in a stateful 

manner – by exchanging a sequence of <ACK> messages and aggregating the received lines 

into a single message. The actor can be in one of the following states: sending a message, 

receiving a message or an idle state. Consider a scenario when the actor is in the process of 

receiving a message from the analyzer and at the same time also receives a message from 

                                                 
6 http://junit.org/ 

http://junit.org/


29 

 

the LIS that should be sent to the analyzer. If handled incorrectly, the middleware can start 

sending a message to the analyzer while the latter is also sending a message, resulting in the 

failure of both parties to deliver their messages. 

Akka provides a built-in feature called stashing for handling these kinds of use cases. 

An Akka actor provides the methods stash() and unstashAll(). The stash() method places 

the message in a waiting list and the unstashAll() method moves the stashed messages back 

to the actor’s mailbox. For example, when the AstmE1381Controller actor is in the process 

of receiving a message from the analyzer, it can choose to stash all messages not sent from 

the analyzer. Once the exchange sequence with the analyzer has been completed and the 

actor transitions to an idle state, it can unstash the messages in the waiting list and continue 

processing them.  

AstmE138195ControllerTest.java was implemented to verify the validity of this 

approach. It simulates the same scenario, where the AstmE1381Controller is receiving 

messages from both the LIS and analyzer at the same time. Running the test shows that all 

messages get delivered to both the LIS and the analyzer. 

 

4.2. Fault tolerance 

Errors in a driver’s execution mainly occur when the programmer’s assumptions of a 

message format or delivery protocol do not hold (e.g., incorrectly assuming the presence of 

a data field and generating a NullPointerException by trying to read it). 

Two requirements were considered when designing the prototype for fault-tolerance: 

 An error within the execution of one driver should not affect other running drivers. 

 A driver should recover from an error – the invalid message should be logged and 

the driver should continue processing the next message. 

Akka ensures that an error occurring in one actor is isolated from the rest of the actor system. 

The supervision architecture provides an effective way for handling errors and not leaving 

the application in an invalid state. When an error occurs in one of the driver’s component 

actors, it is restarted by its parent (DynamicDriver) and continues processing the next 

message while not affecting other actors in the system. 

FaultToleranceTest.java was implemented to verify that the two requirements are 

met. Similarly to the parallelization test, it simulates 5 analyzers that are simultaneously 

exchanging messages via the middleware: 

 faultyAnalyzer – simulates both valid and invalid messages sent from the analyzer. 



30 

 

 analyzerWithFaultyLIS – simulates an analyzer that sends valid messages, but 

receives invalid responses from the LIS. 

 mockAnalyzer1-3 – remaining 3 analyzers that send valid messages and receive valid 

messages from the LIS. 

The expected behaviour is that all valid messages are delivered, the invalid messages are 

skipped and the errors are logged. Running the test verifies that the system behaves as 

expected – errors caused by the invalid messages have no effect on delivering the valid 

messages. 

 

4.3. Monitoring 

Since Akka does not provide a built-in feature to monitor the actors and the messages 

exchanged among them, the user interface module was developed. The following 

requirements were considered during implementation: 

Detection of errors. When an error occurs, it should be easily detectable from the user 

interface. 

The user interface highlights any messages that have caused an error so that they are 

easily spotted in the Message table (see Section 3.3.). In addition, it keeps track of the unread 

error count. When an error occurs, it is marked as “unread” and the unread error count is 

displayed next to the analyzer name in the Analyzer list. This ensures that the user has an 

overview of whether any new errors have occurred. 

Identifying the cause of the error. The cause of errors should be traceable in retrospect, 

because reproducing an error can be complicated as it usually requires testing on real 

analyzers. 

This is achieved by displaying the stack trace of the thrown exception in the Message 

table. This allows the developer to identify the line of code that threw the exception. In 

combination with the message content that caused the error and the log events that occurred 

while processing the message, the cause can be identified. 

Searching the message history. If the system is not behaving as expected, the message 

history has to be observed find the cause. To ease the troubleshooting process, it is beneficial 

to provide functionality for searching messages. For example, if the analysis results for a 

specific patient have not reached the LIS, then searching for messages containing the patient 

name can help locate the problem. 



31 

 

This functionality is provided by the Filter in the sidebar. It enables to filter the content 

of the Message table based on message processing status, time of message, the sender and 

receiver components and message content. 

 

4.4. Code reusability 

The middleware implementation adopts a component-based model with components being 

the actors that can be linked to form a driver for a specific analyzer. The following 

characteristics of reusable components were considered when designing for reusability [14]: 

High cohesion. Cohesion shows how well-defined is the purpose of a component. It is the 

notion of how related is the functionality offered by the component. A component that has 

a more focused purpose is more cohesive than a component that tries to do many unrelated 

things. 

As discussed in Section 3.2.1., a driver is made up of component actors, each 

performing a single step of the message processing. The reason for splitting the message 

processing into a pipeline is to achieve high cohesion. As each component actor in the 

pipeline is only responsible for a single well-defined task, the cohesion of the components 

is increased. 

Low coupling. Coupling shows how dependent a component is on others. A component that 

requires five other components to function is more highly coupled than a completely self-

contained component. Highly coupled components are difficult to modify, because changes 

in one component often require changes in other components. 

A single driver component has no knowledge of the other components within a driver 

and thus is not bound to a particular driver. It only knows the address of the component that 

it should forward the processed message to, which is specified via the runtime configuration 

(see Section 3.2.2.). This lowers the level of coupling as different drivers can be composed 

from existing components by changing the configuration file and without making changes 

to the components themselves. A generic component can be used in different drivers just by 

instantiating it with a different recipient component address. 

However, since the components need to communicate, they cannot be completely 

decoupled. The interface for a component is the types of messages it can process. Making 

changes to this interface may also require changes to other components. For example, if a 

message type is removed from a component, all components that depend on the component 

being able to process that message type, have to be modified accordingly. As long as this 



32 

 

interface is unchanged, the internal implementation of components can be changed without 

affecting others. 

 

Consider the sample driver implemented in this thesis (Figure 5). It communicates with the 

analyzer using the LIS2-A2 data format. The data transfer protocol is ASTM E1381-95 over 

a TCP connection. Consider a case where a new analyzer needs to be connected that 

communicates the same data format over the local file system (i.e., writes and reads text 

files from a directory). This can be achieved by implementing a component that reads and 

writes files to a directory. As long as it sends and is able to process messages of type String, 

the AstmE138195Controller and SocketServer components can be replaced by it using the 

runtime configuration file without modifying the source code of any of the other 

components. Similarly, the current driver implementation can be modified for another LIS 

by implementing replacements for only the MyLab-specific components. 

  



33 

 

4.5. Testability 

When writing automated tests for the middleware, the developer should be able to test 

different levels of functionality. 

 

4.5.1. Testing individual components 

These tests are used to verify the behaviour of an individual component actor. For example, 

the StringToLIS2A2Converter component can be tested by sending it a String and verifying 

that the LIS2A2Msg it sends out was correctly constructed (Figure 8). 

 

The akka-testkit library provides features for testing actor systems. One of them is the 

JavaTestKit class, which is an actor that allows to examine the messages it receives. It acts 

as a probe that receives the output of the component under test and verifies its content. 

Listing 3 shows a part of StringToLIS2A2ConverterTest.java that uses JavaTestKit to verify 

the behaviour of the StringToLIS2A2Converter component.  

  

Figure 8: Testing an individual actor. 



34 

 

4.5.2. Testing drivers 

Another level of functionality to test is the whole driver, i.e., the combination of cooperating 

component actors (Figure 9). This ensures that when changing an individual component, all 

dependent drivers retain their functionality. 

@Test 

public void resultStringToLIS2A2ResultMessageTest() { 

  //create the actor under test (AUT) 

  final ActorRef actorUnderTest = system.actorOf(Props.create(StringToLIS2A2Converter.class)); 

  //create a probe and tell the AUT to forward its messages to the probe 

  final JavaTestKit probe = new JavaTestKit(system); 

  stringToLIS2A2Converter.tell(new RecipientConf(probe.getRef()), ActorRef.noSender()); 

  //specify the input and expected output for the AUT 

  String inputString = 

    "H|\\^&||Password1|Micro1|2937 Southwestern [...] |19890501074500" + CR + 

    "P|1||52483291||Smith^John|Samuels|19600401|M|W|4526 C [...]" + CR + 

    "O|1|5762^01||^^^BC^BloodCulture^POSCOMBO| [...] |Instrument#1" + CR + 

    "R|1|^^^Org#|51^Strep Species|||N" + CR + 

    "R|2|^^^Bio|BH+^Beta Hemolytic|||N" + CR + 

    "L|1" + CR; 

  LIS2A2ResultMsg expectedOutput = [...]; // manually construct a LIS2A2ResultMsg 

  //send the input to the AUT 

  stringToAstmConverter.tell(inputString, ActorRef.noSender()); 

  //order the probe to expect a message (the output of the AUT)    

  LIS2A2ResultMsg received = probe.expectMsgClass(LIS2A2ResultMsg.class); 

  //after the message has been received, verify that the content matches the expected output 

  Assert.assertEquals(expected, received); 

  Assert.assertEquals(inputString, received.asString()); 

} 

Listing 3: Testing a single actor with JavaTestKit. 

Parts of text are ommited with „[...]“ for formatting purposes. 

Figure 9: Testing a driver. 



35 

 

Listing 4 shows a part of LIS2A2OverTCPTest.java, which was implemented to test the 

example driver in this thesis. It uses two helper actors: 

 mockAnalyzer – a TCP client that connects to the driver and mimics the analyzer 

using the ASTM low level protocol. 

 mockMyLab – an HTTP server that can receive HTTP requests and mimics the 

MyLab LIS. 

Running the test starts the middleware with the /driverDefinitions/LIS2A2OverTCP.conf 

configuration file. Next, mockAnalyzer starts an ASTM low level exchange sequence with 

the driver and mockMyLab waits for an HTTP request containing the information sent by 

mockAnalyzer in the MyLab-specific format. This test is treats the driver as a black box and 

is not concerned with individual steps in the message processing pipeline. It verifies that the 

endpoints of the driver (the analyzer and LIS) receive the correct messages. 

Besides verifying the functionality of the driver, the test also serves as documentation for 

the implemented driver. It gives the reader a high-level overview of the driver protocol 

ithout having to examine how the driver is implemented in terms of individual components. 

@Test 

public void receiveResult() { 

  mockAnalyzer 

    .send("<ENQ>") 

    .expect("<ACK>") 

    .send("<STX>H|\\^&||Password1|Micro1|2937 Southwest [...] <CR><ETX>{CS}<CR><LF>") 

    .expect("<ACK>") 

    .send("<STX>P|1||52483291||Smith^John|Samuels|19600401 [...] <CR><ETX>{CS}<CR><LF>") 

    .expect("<ACK>")    

    .send("<STX>O|1|5762^01||^^^BC^BloodCulture^POSCOM [...] <CR><ETX>{CS}<ETX><CR><LF>") 

    .expect("<ACK>") 

    .send("<STX>R|1|^^^Org#|51|||N<CR><ETX>{CS}<CR><LF>") 

    .expect("<ACK>") 

    .send("<STX>R|2|^^^Bio|BH+|||N<CR><ETX>{CS}<CR><LF>") 

    .expect("<ACK>") 

    .send("<STX>L|1<CR><ETX>4A<CR><LF>") 

    .expect("<ACK>") 

    .send("<EOT>") 

    .expectNoMsg(); 

  mockMyLab 

    .expect( 

      MyLabResultMsg( 

        Order( 

          Patient("John", "Smith", "52483291"), 

          containers( 

            Container("5762", 

                      analyses( 

                        Analysis("Org#", "", Result("51", "")), 

                        Analysis("Bio", "", Result("BH+", "")))))))) 

    .send(""); 

} 

Listing 4: Example of a driver test (LIS2A2OverTCPTest.java).  

Parts of text are ommited with „[...]“ for formatting purposes. 



36 

 

Chapter 5: Conclusion 

This thesis addressed the problem of connecting medical analyzers with laboratory 

information systems. It introduced the concept of laboratory middleware and its 

requirements. The actor model and its Akka implementation were also introduced. The aim 

of the thesis was to find out whether Akka is suitable for implementing laboratory 

middleware. 

An Akka-based middleware prototype was developed with the goal of satisfying these 

requirements. The prototype also includes a reference implementation that shows an 

approach of using Akka for developing interfaces between an analyzer and a LIS. This 

approach can be used as a basis for interfacing different analyzers and LISs. 

The thesis is concluded with a discussion about how Akka and the implemented 

prototype satisfy the identified requirements of laboratory middleware.  

 

5.1. Limitations 

The implemented middleware prototype has limitations that should be addressed before 

considering using it in a production environment. Firstly, there are security concerns – the 

back-end module shares the message history with any client that connects to it. This poses 

a security risk as the messages contain patient credentials and medical information. 

Secondly, the message history is currently memory-based. This means there is a limit on the 

number of messages that can be viewed from the user interface. The history is also lost when 

the middleware is restarted. This can become a problem when it is necessary to view 

messages from a past period.  

5.2. Future work 

As the implemented middleware is only a prototype, there are many possible improvements. 

The current solution has no security features. Therefore, additional development is 

required to make a middleware instance accessible only to the authorized personnel. 

The current monitoring feature is memory-based. This makes it not suitable for high-

throughput scenarios, as the memory for storing message history is limited. A persistent 

storage mechanism (e.g., a database) for the message history would enable to store message 

history for a longer time period. That would also allow to buffer messages, if they cannot 

be forwarded immediately (e.g., if the LIS is unavailable). 



37 

 

The configuration management is currently based on local text files. A form-based 

configuration management solution would be more user-friendly than editing the syntax-

sensitive configuration files. Also, a remote way to manage the configuration would help 

troubleshoot problems more quickly, as the developers are not usually present at the 

laboratory and would otherwise have to rely on the laboratory staff sending configuration 

files back and forth.  



38 

 

Bibliography 

1. Terry, M. (2011): Transferring Laboratory Data Into The Electronic Medical 

Record: Technological Options For Data Migration In The Laboratory Information 

System. 

2. Selmeyer, J., Cloutier, B. (1996): Interfacing the Clinical Laboratory: A Primer for 

LIS Managers 

3. Hewitt, C., Bishop, P., Steiger, R. (1973): A Universal Modular ACTOR Formalism 

for Artificial Intelligence. 

4. Hewitt, C. (2010): Actor Model of Computation: Scalable Robust Information 

Systems. 

5. Armstrong, J. (2003): Making reliable distributed systems in the presence of 

software errors. 

6. Typesafe Inc (2015): Akka Java Documentation. 

http://doc.akka.io/docs/akka/2.3.9/AkkaJava.pdf 

7. Erb, B. (2012): Concurrent Programming for Scalable Web Architectures. 

8. Mirth Connect - http://www.mirthcorp.com/products/mirth-connect 

9. Zhu, J. (2005): Automatic laboratory operations by integrating laboratory 

information management systems (LIMS) with analytical instruments and 

scientific data management system (SDMS). 

10. Froid. Free Open Instrument Middleware. https://github.com/bikalabs/Bika-

LIMS/wiki/GSoC-%C2%B7-Froid.-Free-Open-Instrument-Middleware 

11. ASTM E1381-95 Standard 

http://www.astm.org/DATABASE.CART/HISTORICAL/E1381-95.htm 

12. Clinical and Laboratory Standards Institute: Specification for Transferring 

Information Between Clinical Laboratory Instruments and Information Systems: 

Approved Standard - Second Edition. 

13. Roestenburg, C., Bakker, R., Williams, R. (2015): Akka in Action (MEAP edition, 

version 15). 

14. Sametinger, J. (1997): Software Engineering with Reusable Components. 

 

http://doc.akka.io/docs/akka/2.3.9/AkkaJava.pdf
http://www.mirthcorp.com/products/mirth-connect
https://github.com/bikalabs/Bika-LIMS/wiki/GSoC-%C2%B7-Froid.-Free-Open-Instrument-Middleware
https://github.com/bikalabs/Bika-LIMS/wiki/GSoC-%C2%B7-Froid.-Free-Open-Instrument-Middleware
http://www.astm.org/DATABASE.CART/HISTORICAL/E1381-95.htm


39 

 

Appendix A: Running the middleware and automated tests 

 

Source code 

The source code is included as a zip file in the extras that are submitted with this thesis. It 

can also be accessed from the following repository: https://github.com/teoreteetik/aesop 

 

Running the middleware 

 

Back-end module 

The packaged back-end module is available in /backend/dist/dist.zip. The zip archive 

contains two files: middleware-1.0.jar and application.conf. File application.conf contains 

the configuration for the middleware. By default, it contains the configuration to start the 

example driver on port 50000 and the websocket server for the user interface on port 8900. 

The middleware can be run from the command line using the following command (Java 8 

required): 

java -jar middleware-1.0.jar 

User interface 

The packaged user interface is located in /ui/build/index.html. When this file is opened, the 

application first asks for the websocket address to connect to the back-end module. The 

default address is ws://127.0.0.1:8900. After pressing the Connect button, the connection to 

the back-end module is established and the user interface is displayed. 

Usage example 

To simulate an analyzer and LIS communicating via the middleware, follow these steps: 

1. Start the back-end module and user interface (see above). 

2. Run the following command in the /backend directory: 

gradlew test --tests *LIS2A2OverTCPDemo 

After running this command, the message exchange should be displayed in the user 

interface. 

Ports 50000 and 8070 should be free as these are used by the mimicking analyzer and LIS.  

https://github.com/teoreteetik/aesop


40 

 

Running automated tests 

 

The tests used in Chapter 4 can be run from the command line using Gradle7. When running 

a test for the first time, a local copy of Gradle is downloaded automatically. The commands 

for running the tests are presented in the table below. These commands should be run in the 

/backend directory. Ports 50000-50010 and 8070, 8071, 8900 should be free for running the 

tests, because these ports are used for mimicking the analyzers and LIS in some of the tests. 

The test reports are saved to /backend/build/reports/tests. 

ParallelDriversTest gradlew test --tests *ParallelDriversTest.parallelDriversTest 

AstmE138195ControllerTest gradlew test --tests *AstmE138195ControllerTest.parallelTest 

FaultToleranceTest gradlew test --tests *FaultToleranceTest.faultToleranceTest 

StringToLIS2A2ConverterTest gradlew test --tests *StringToLIS2A2ConverterTest 

LIS2A2OverTCPTest   gradlew test --tests *LIS2A2OverTCPTest 

 

 

  

                                                 
7 http://gradle.org/ 

http://gradle.org/


41 

 

License 

Non-exclusive licence to reproduce thesis and make thesis public 

I, Lembit Gerz (date of birth: 07.06.1992), 

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to: 

1.1. reproduce, for the purpose of preservation and making available to the public, 

including for addition to the DSpace digital archives until expiry of the term of 

validity of the copyright, and 

1.2. make available to the public via the web environment of the University of Tartu, 

including via the DSpace digital archives until expiry of the term of validity of the 

copyright, 

of my thesis 

An Akka-based middleware for Laboratory Information Systems, 

supervised by Naved Ahmed, Ph.D. 

 

2. I am aware of the fact that the author retains these rights. 

3. I certify that granting the non-exclusive licence does not infringe the intellectual property 

rights or rights arising from the Personal Data Protection Act.  

Tartu, 14.05.2015 


