
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Information Technology

Taavi Ilp

Improving the Usability of the Thonny Integrated

Development Environment

Bachelor’s Thesis (6 ECTS)

Supervisor: Aivar Annamaa, BA

Tartu 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Improving the Usability of the Thonny Integrated

Development Environment

Summary:

The thesis contains a description of a software development project that was launched to improve

the usability of Thonny, an integrated Python development environment designed for novice

programmers. First, the concept of usability of beginners’ IDE is examined based on a literature

study. The main findings of an expert analysis of the usability of Thonny are then presented. The

thesis gives a detailed overview of the new features and improvements that were implemented and

integrated with Thonny based on the results of the analysis. In addition, a number of ideas for

future Thonny features and implementation changes are listed.

Keywords:

Python, Programming, IDE, Usability

Thonny arenduskeskkonna kasutatavuse täiustamine

Lühikokkuvõte:

Bakalaureusetöö kirjeldab autori poolt teostatud tarkvaraarendusprojekti, mille eesmärgiks oli

Pythoni programmeerimiskeele algõppeks loodud arenduskeskkonna Thonny täiustamine. Esmalt

uuritakse erialase kirjanduse põhjal kasutatavuse mõistet algajatele programmeerijatele mõeldud

arenduskeskkonna kontekstis. Seejärel tuuakse välja Thonny kasutatavuse ekspertanalüüsi

peamised tulemused. Kirjeldatakse ka tarkvaraarenduse käigus valminud uusi funktsionaalseid

võimalusi ning selgitatakse nende positiivset panust Thonny kasutatavuse aspektist vaadelduna.

Samuti on bakalaureusetöös välja toodud mõned autori ideed Thonny edasiste võimalike arenduste

osas.

Võtmesõnad:

Python, Programmeerimine, IDE, Arenduskeskkond, Kasutatavus

3

Table of Contents

Introduction .. 5

Usability and Programming Education ... 6

General Concept of Usability ... 6

Difficulties of Learning Introductory Programming .. 6

Overview of Usability of Beginners’ IDE .. 7

Thonny Integrated Development Environment ..10

Overview of Thonny ...10

Thonny’s Graphical User Interface ..10

Editors Notebook ...11

Editor ...12

Menu ..12

Shell ...12

File Browser ...13

Views Pane ..13

Analysis of Thonny’s Usability ...14

Methodology ...14

Results of the Analysis ...15

Final Project Scope ...17

Development and Deliverables ..19

Development Principles ..19

Find & Replace Window ..20

Implementation Overview ...20

Predicted Usability Improvements ..22

Suggested Future Work ...22

Autocomplete Functionality ...23

4

Implementation Overview ...23

Predicted Usability Improvement ..25

Outline View ...25

Implementation Overview ...25

Predicted Usability Improvement ..27

Suggested Future Work ...27

Identifier Refactoring Support ..28

Implementation Overview ...28

Predicted Usability Improvement ..29

Suggested Future Work ...29

Block Comment Toggle ..30

Implementation Overview ...30

Predicted Usability Improvement ..30

Future Thonny Development Suggestions ...31

Conclusion ...33

References ...34

Appendix A: Test Suites ..37

Appendix B: License ..66

5

Introduction

The thesis describes a software development project that was completed to improve the usability

of Thonny, an integrated development environment (IDE) that is mainly intended to be used by

university students taking an introductory programming course.

Based on a literature study in the fields of usability and computer science education, the thesis will

first examine the general concept of usability, followed by an analysis of the unique needs and

problems of novice programmers. Subsequently, the relationship between the usability of an IDE

and learning introductory programming will be examined. It will be demonstrated that a user-

friendly and intuitive programming environment is conducive to increased learning productivity,

and that various unique factors must be considered when designing and developing such IDEs

compared to general purpose IDEs.

The thesis will then describe the Thonny integrated Python development environment, which has

been designed and developed by Aivar Annamaa at the University of Tartu. Although Thonny can

be used as a general purpose lightweight IDE similar to IDLE, it has been created to be mainly

used for the purposes of teaching and learning introductory programming, and thus provides

various tools to assist in a pedagogical environment. An expert analysis of the usability of Thonny

will be presented, concluding with the list of new features that were selected for development and

integration with Thonny to address some of the identified usability concerns.

An overview of the development project will then follow, with detailed descriptions of the final

implementations of the features with short usage guides and illustrating screenshots. Finally,

author’s ideas and suggestions for future developments which would further improve Thonny will

be listed.

The complete list of test suites that were used to verify the quality of the delivered code can be

found in the Appendix A of the thesis.

6

Usability and Programming Education

Before Thonny’s usability analysis was started and the scope of the development project finalized,

a thorough literature study was performed in the fields of usability and computer science education.

The following chapter summarizes the main findings of the literature study on the general concept

of usability, the various challenges faced by novice programmers and the attributes considered

beneficial for a beginners’ IDE.

General Concept of Usability

A general definition of usability, as formulated by Nielsen, is as follows: “Usability is a quality

attribute that assesses how easy user interfaces are to use” [1]. Nielsen contrasts the usability

quality attribute with utility, which assesses whether a software program provides the features

needed by the user [1]. The same distinction is made in the current thesis.

An important fact to consider when discussing a program’s usability is that it should always be

evaluated from the perspective of the intended end users of the software [2]. Therefore, decisions

regarding usability should take into account the specific needs and prior experiences of the users.

For example, a professional programmer would very likely have significantly different usability

requirements from the development tools than a student who is beginning to learn programming

[3]. Thus the problems faced by novice programmers had to be broadly understood before the

usability priorities of a beginners’ IDE were formulated.

Difficulties of Learning Introductory Programming

The learning difficulties that novice programmers often face are widely discussed in literature [4,

5], with many students failing to acquire sufficient programming knowledge and skills during the

introductory programming courses. This has been a cause of major concern for decades as these

courses teach students the material that is absolutely vital for subsequent courses in computer

science programs [6].

7

The reasons for failing to acquire the course material at a satisfactory level are likely to vary

considerably by individual students. A more detailed analysis is beyond the scope of the current

thesis, but some of the common problems that novice programmers often face are the following:

 Failure to apply acquired knowledge to solve problems [4];

 Inability to approach code generation from a sufficiently top-down abstract level [3, 4, 7];

 Failure to efficiently trace the cause of unpredicted program behaviour [4, 8];

 Surface-level knowledge of syntax [4];

 Incomplete or incorrect mental model of code execution [3, 9];

 Inefficient organization of cognitive working memory [4, 7];

 Unwillingness to refactor or modify their program upon discovering implementation mistakes

[9, 10].

Additionally, it is very likely that the majority of students have never used an IDE prior to their

first programming course. Therefore, learning to independently use their IDE constitutes yet

another challenge that students must overcome.

Overview of Usability of Beginners’ IDE

The usability of a software program depends on the expected needs and usage patterns of its end

users. It serves the pragmatic purpose of assisting its users to achieve their goals, which in the case

of a beginners’ IDE means providing its users with tools to focus more efficiently on acquiring the

relevant programming knowledge and practical skills. The presence of tools which assist with

eliminating time-consuming but trivial tasks helps to save students’ time and mental energy, which

could instead better be used for abstract reasoning and meaningful code generation [10, 11]. Time

spent for independent code generation correlates well with positive results [4, 12, 13] and has been

shown to increase student confidence in their skills [6, 11]. High usability also eliminates some

unnecessary causes of frustration, which may also have a positive effect on their learning progress

as students’ emotional response to programming has been shown to be significant for successfully

acquiring the introductory programming course material [4, 5, 9].

8

A distinctive attribute of a beginners’ IDE is that the demands of its users change quite rapidly as

the students acquire more programming knowledge [4]. During the initial IDE usages, the presence

of a large number of features that students at that point in their programming education do not

comprehend or need - the so-called ‘feature clutter’ - is highly likely to confuse and overwhelm

beginners [3, 14, 15]. It therefore seems reasonable to limit the number of IDE features available

or at least visible to students to those they need and understand, improving the learnability

component of usability [1, 11]. The more advanced features can then be enabled and introduced

later on in the course, when students are already more comfortable with the IDE [14].

Whenever possible and feasible, the features that novices are initially introduced to at the

beginning of the course should be similar to analogous functions in software programs that the

students are likely to be already familiar with [7, 10, 13]. For example, university students have

likely used various text editors for completing their high school assignments. It would therefore

facilitate their learning process and increase their confidence if they were able to use familiar tools

for some aspects of code generation [16].

As the students’ programming knowledge increases, so does the size of the source code they

generate. Some of the more curious students are also likely to start expanding their programming

knowledge on their own, for example by writing simple computer games or investigating the

source code of programs they are interested in [13]. Therefore they start needing tools which help

to deal with the code complexity, for example by providing quick navigation assistance or helping

to perform multiple related changes together. Students might also find it useful to have access to

graphical overviews providing information on the current code structure, such as a display of its

class and method tree [10]. Such additional tools improve the IDE usability by making code

generation, refactoring and error tracing simpler and faster [12, 15], directly leading to more

learning opportunities [13].

Finally, it should be taken into account that the IDE’s non-functional attributes such as its

performance and stability can have a significant effect on its perceived usability [15]. The ability

of beginners to download, install and start using the IDE on their own is a significant contributor

to its usability [7, 14]. Students would also likely find it very distracting and frustrating to deal

9

with slowness or unresponsiveness, frequent unexpected error messages, component failures or

even program crashes [15, 17]. Furthermore, IDE stability issues during a graded test or an exam

may cause students to lose their work, creating educational complications. Therefore, the IDE and

its features should be thoroughly and consistently tested and maintained to ensure long-term and

high quality performance and stability.

The current chapter summarized the main findings of the literature study which investigated the

concept of usability within the context of an IDE used mainly by introductory programming course

students. This information formed the theoretical background which the subsequent Thonny’s

usability analysis was based upon.

10

Thonny Integrated Development Environment

The following chapter gives an overview of the Thonny integrated development environment.

First, a general overview of Thonny is given, including its history and the non-functional attributes.

This is followed by a description of Thonny’s graphical user interface and the relevant details of

its main components.

Overview of Thonny

Thonny is an integrated Python development environment, which has been designed and

developed by Aivar Annamaa at the University of Tartu. It is sufficiently mature in its development

to have been used by some students for the introductory programming course at the University of

Tartu as a voluntary alternative to IDLE, the IDE bundled with the default implementation of

Python [18]. It provides a beginner-friendly development environment suitable for novice

programming students, while also offering many of the features and options expected from a

modern IDE. A significant amount of the development focus thus far has been on implementing

debugging tools accessible for beginners, such as an interface for stepping through the code as it

is executed and runtime object information inspection. Thonny is open-source, free to use and

plans are in place for its active future development and support [17]. Windows, Linux and Mac

OS distributions are available for each release version and its only dependencies are Python 3.2 or

later along with its standard libraries. Any Python 3 programs can be compiled and launched with

Thonny. Currently, the only language available for its graphical user interface is English, although

support for other language packs may be added in the future. Source code and binary release

executable can be downloaded from a public BitBucket repository [19].

Thonny’s Graphical User Interface

Although the full overview of Thonny is out of the scope of the current thesis, the following

subchapter gives an overview of the graphical user interface of Thonny, describing its main layout

and listing its most important components. Due to the fact that no relevant documentation or

program-level help exist, the presented information is based on the impressions and understanding

of the author of the current thesis. The names of all the interface elements are also derived by the

11

author of the current thesis based on source code variable names and common naming conventions

of graphical interface components.

The graphical user interface of Thonny uses just one top level window, which acts as a container

for the individual sub-components and areas. The size of the Thonny window can be adjusted by

the user, with its components attempting to correspondingly resize themselves as the main window

is resized. The size of many of the individual components can also be changed in relation to each

other. Thonny’s graphical user interface is implemented in Python 3 and extensively uses the

TkInter framework.

Figure 1. Thonny’s graphical user interface.

Editors Notebook

The Editors Notebook handles the management all of the opened files. From the point of view of

the user, the only visible elements of the Editors Notebook are the tabs at the upper part of the

screen, clicking on which activates the associated Editor and which display the name of the

associated file for quick visual identification.

12

Editor

The Editor text area is situated in the middle of the Thonny window and provides a visual interface

for viewing and editing the contents of the file associated with the currently active Editors

Notebook tab. Vertical and horizontal scrollbars are dynamically enabled if the file contents do

not fit inside the Editor area. Additional features assist with Python code generation, such as syntax

coloring, parentheses matching and automatic indentation support.

Menu

The vertical Menu bar is located at the top of the Thonny window. Clicking on any header opens

a list of Menu items, which have been grouped under headers based on their type and function.

The contents of the menus are dynamic and some of the menu items may be disabled based on the

current state information. For example, the Save item under the File menu is disabled if no Editors

are currently opened.

Many of the menu items provide an alternative keyboard shortcut, for example the functionality

of the New menu item under the File menu can also be invoked with the Ctrl+N key combination.

The alternative keyboard shortcut is displayed after the menu item’s name.

A few of the menu items provide access to functionality which can either be in enabled or disabled

state. Clicking on the menu item or pressing the keyboard shortcut causes a switch to the opposite

state. For example, the Variables view can either be hidden or shown. For such menu items, the

current state of the corresponding functionality is indicated by having a check mark before the

menu item’s name when the functionality is enabled.

Shell

The Shell view, which is located directly underneath the Editor area, has two main functions:

displaying the output of code runs and providing an interactive interpreter. Some basic output

coloring is available, for example:

 Error messages are displayed in red, with the filename and line number of the incorrect syntax

location displayed in blue.

13

 With every code run, the previous contents of the Shell are coloured gray, allowing the user

to differentiate between the current and previous outputs.

File Browser

The File Browser component provides easy access to files overview and management. It can be

activated and hidden by the user via the View menu. When activated, it is located to the left of the

Editor area and the Shell view, and contains a tree view of nodes representing folders and files.

Nodes containing further items can be expanded to list all of its sub-nodes or collapsed for a more

compact view.

Views Pane

The Views pane is the container on the right side of the Editor area which contains the optional

views that the user can enable and disable from the View menu. Prior to the development described

in the current thesis, the following child views could be added to the Views pane:

 Variables view, which is used during debugging mode to show the table of variables and their

values;

 Object inspector, which contains details about the object currently selected in the Variables

view.

The Views pane is dynamically enabled and disabled as needed - if all of the components that are

contained within the Views pane are disabled by the user, the Views pane is hidden and the vacated

space automatically occupied by Editor area and Shell view instead. As soon as at least one of the

views is enabled by the user, the Views pane is re-displayed and the Editor area and Shell view

are dynamically resized to accommodate it.

14

Analysis of Thonny’s Usability

The analysis phase of the development project was carried out to identify some of the usability

deficiencies of Thonny, based on which the scope of the project could then be established. First,

the following chapter describes the methodology of the usability analysis along with the reasons

why this approach was selected. The main findings of the usability analysis are then listed and

finally the feature list scope of the development project is presented.

Methodology

Usability literature proposes many methodologies and perspectives for usability testing, including

two approaches that can be broadly referred to as user testing and expert review [1, 2], both of

which were considered for the development project. User testing involves having a representative

group of users carry out a number of tasks using the analysed software and assessing their

performance [1, 2]. Although it can be considered to provide more accurate results due to direct

communication with representative end users, it also involves considerable effort. Expert review

involves a usability review by a small number or even a single expert based on their subjective

opinion or comparing the software program’s attributes to predetermined heuristic criteria [1, 10,

13]. This approach carries the risk of the decreased accuracy due to not considering the opinions

of the representative end-users, but also has several advantages, for example the speed at which

the analysis can be performed if the experts are readily available.

The preliminary and exploratory investigation of Thonny already revealed a number of usability

deficiencies which were considered to be sufficiently significant to include in the list of concerns

to be immediately addressed. As the aim of the usability analysis was not to provide a full and

systematic evaluation of the usability of Thonny but rather to identify a small number of usability

concerns which could realistically be improved by the subsequent development project, the

decision was made that a sufficient project scope could be established based on a thorough expert

review alone, considering the available project time. User testing was decided against as it seemed

reasonable to assume that due to the nature of the project and the relatively young maturity level

of Thonny, the effort required for creating the testing tasks, finding representative end users,

carrying out the user observations and subsequently analysing user performance would not be an

15

efficient use of the available project time. Furthermore, finding a representative user group would

have been complicated as the main introductory programming course mandatory for first-year

computer science students at the University of Tartu is held during the fall semester, but the

analysis was performed at the beginning of the spring semester.

The usability research on Thonny was carried out by performing a variety of different tasks that

were considered to be common for novice programmers and assessing the problems that users

might encounter when carrying out these tasks. The aspects of usability that are important for

novice programmers have been outlined previously in the current thesis. The analysis was

performed by the author of the current thesis, based on his experience as a software developer,

computer science student and programming teacher. Although any such analysis is admittedly

subjective, the best attempt was made to consider the perspective of a novice programmer who has

not used any other IDE before but is very likely familiar with common user interface solutions in

widely used text editors and web browsers [7]. The fact that user testing was not conducted is an

acknowledged risk of validity of the usability analysis and the current thesis as a whole, as is the

author’s lack of experience as a usability evaluator.

Results of the Analysis

The following subchapter presents some of the relevant results of the analysis. Generally, the

usability of Thonny was found to be at a satisfactory level and in many ways equal to or better

than that of IDLE. No performance or stability issues were identified and no functional software

defects were discovered. However, certain usability areas were found to be in need of

improvement. The most relevant findings of the analysis are listed below.

When a student first launches Thonny, they are shown just the Menu bar, an empty Editor and the

Python shell. Other visual elements must be manually added from the View menu. Such initial

lack of visual feature clutter seems to be a reasonable approach considering Thonny’s end users,

most of whom lack prior experience with IDEs and could thus be discouraged and confused by

numerous interface elements that they do not comprehend. Instead, such approach allows gradually

introducing new views and features as students gain more confidence in their abilities to use

Thonny.

16

The fact that all visual components of Thonny are displayed in one window contrasts with IDLE,

where each Python file is opened in a separate window instance and the Python shell is also in a

different window. Although some users might prefer IDLE’s solution, switching between windows

can be inconvenient and stressful, especially if multiple files are open simultaneously. Having

everything in one window allows the user to keep the focus on one visual space.

Thonny prevailingly uses what can be considered common graphical user interface design patterns

which even novice programmers should already be familiar with based on their prior experiences

with computers. For example, students have likely encountered user interfaces with a scrollable

text area and an interactable menu bar when using Notepad or some other common text editor,

while the concept of switching between tabs to switch contexts should be familiar from a modern

web browser such as Chrome. The purpose of the Shell view might initially be unclear to students

but should quickly become apparent during the initial lectures and practice sessions. Therefore,

the fact that students can instantly utilize their previous knowledge of working with other content

creation tools was considered a positive usability factor.

Providing a debugger accessible to novice programmers has been claimed by its creators to be one

of the main reasons behind developing Thonny [17]. Visualization tools have been shown to

positively contribute to students’ understanding of complex algorithms and data structures [3, 12]

and can therefore be considered a useful learning tool. Although the debugging mode interface

seemed accessible in the expert opinion, the usability analysis of these features was considered

inconclusive as correctly using these tools depends on the user’s comprehension of the program

execution flow [10, 15]. Therefore, conclusively evaluating the usability of Thonny’s debugging

tools seems to necessitate user testing on a representative group of end users. Thus, the decision

was made to leave the possible usability improvements of Thonny’s debugging tools out of the

scope of the development project as more accurate analysis data would first be required.

The usability analysis revealed that Thonny did not provide sufficient assistance for convenient

text navigation. There was also no functionality which would allow searching for a specific

substring within the text, which can be considered a major usability deficiency as such a feature is

17

available in nearly every text editor and IDE. Another feature that was unavailable in Thonny but

seems to be common in other IDEs, including IDLE, is the ability to view a quick visual outline

of the current program structure, such as its methods or classes declarations, and interacting with

the elements of the outline to instantly move to the corresponding location within the source code.

The lack of such features could make it needlessly difficult to write complex programs or to

understand the implementation details of an unfamiliar Python module [13]. Thus, users had to

spend time and energy on manually navigating the text or locating an occurrence of a substring,

which could greatly distract from the programming process [13], and therefore the lack of these

possibilities can be considered to have adversely affected the usability of Thonny.

Similarly, Thonny lacked tools which would assist the user with performing multiple related code

changes, such as replacing one or more occurrences of a substring with another, or to intelligently

rename an identifier so the change is propagated everywhere the identifier is referenced. Such

features facilitate code management and refactoring which would otherwise have to be done

manually, which can be tedious and time-consuming [13]. Other examples of features aimed to

eliminate repetitive tasks that are often present in IDEs but were lacking in Thonny include

assistance when typing identifiers and being able to add or remove comment characters at the

beginning of multiple consecutive lines. Although such tools are not strictly necessary, they make

it convenient to trigger code changes, thus increasing the users’ comfort level with the IDE as well

as allowing for more experimentation possibilities and encouraging creativity [13].

Final Project Scope

Based on Thonny’s usability analysis and preliminary research into its technical implementation,

the final project scope was established by Annamaa and the author of the current thesis. The scope

consisted of a list of new features that were expected to improve Thonny’s usability, especially in

the areas of text modification and navigation. A variety of factors were taken into account when

deciding on whether to include a possible improvement, such as its effect on usability, predicted

frequency of use by students, the feature’s presence in IDLE, and technical implementation

difficulty. The best effort was made to put together the scope so that its completion would

18

significantly improve some aspects of Thonny’s usability while realistically fitting within the

project’s time schedule.

The finalized project scope consisted of the following items:

1. Find & Replace window

2. Autocomplete functionality

3. Outline view

4. Identifier name refactoring support

5. Block comment toggle support

In the next chapter, all of these features are described in more detail in their respective subchapter.

19

Development and Deliverables

The following chapter gives an overview of the deliverables of the development project, including

the design considerations and implementation details of each of the added features. The entirety

of the development was performed by the author of the current thesis. Aivar Annamaa as the owner

and main developer of Thonny approved the design decisions and provided development advice.

The source code modifications performed during the development phase can be viewed from the

BitBucket commit history interface [20].

Development Principles

Before beginning development, a list of development principles was put together to act as guiding

priorities when making design and implementation decisions. Strong effort was made throughout

the design, development and testing phases to adhere to these principles in order to ensure the

quality of the developed product:

1. Stability: under no circumstances can using the new features cause Thonny to irrecoverably

crash or users to lose their unsaved work. To ensure this, Thonny was extensively tested on

all supported operating systems after the development was completed and any found defects

were fixed. This was followed by a full regression test after the completion of the

implementation phase which passed without any issues.

2. Modularity: the new features must not be tightly coupled to each other and to the existing

Thonny platform in their implementation. This allows future improvements of the features to

be performed in isolation with a low risk of defects or stability issues in other modules, or for

an implementation to be swapped out completely for a more preferable one. This proved to be

difficult due to the large number of platform code modifications that were required. It was

finally accomplished to a satisfactory extent as each of the new features was implemented in

a separate Python module, with relatively loose coupling to the main Thonny platform.

Furthermore, it is possible for each of the new features to completely disable them from

Thonny configuration files on an individual basis.

3. Integration: the new features must look and feel as natural parts of the Thonny program to

end users as well as to future Thonny contributors. This was considered to be successfully

20

accomplished for all aspects of the added features, from graphical implementation to coding

style, all of which follow the standards established by the previously existing code.

4. Documentation: to facilitate future code modifications by other developers, sufficient

documentation of the delivered code would be needed, from relevant code comments to usage

guides if needed. The choice was made to create a list of test suites to provide both

requirements information as well as testing assistance. These test suites can be found in

Appendix A of this thesis.

5. Installability: after the completion of the development project, installing and launching

Thonny must be as simple as it was previously. This was accomplished fully with no additional

setup steps introduced. All included third party libraries are bundled by default with the

Thonny release version.

Find & Replace Window

The Find & Replace window is a modular pop-up window that is displayed on top of the Editor

area and which allows users to search for specific text strings inside the contents of the currently

active Editor, and to replace one or more of the occurrences of the found string with another string.

Implementation Overview

The Find & Replace window was implemented as a single top-level window containing various

interactable text fields and buttons. While the window is active, all other Thonny elements are

disabled, except for the Editor scrollbars which can be used to scroll the Editor’s contents up and

down to allow user navigation. The Find & Replace window can be activated by selecting the Find

& Replace menu item from the Edit menu, or by pressing Ctrl+F key combination. The window

can be hidden by clicking the close icon in the upper right corner of the pop-up window or by

pressing the Esc key.

21

Figure 2. Find & Replace window. Occurrences of the searched string “text” are highlighted.

When user triggers the searching action, the search is begun from the current position of the text

cursor, or from the position of the last found occurrence in the case of a repeating search. If the

next found occurrence is on a line that is not currently visible to the user, the Editor area is

automatically scrolled to such a position that the line containing the currently active occurrence is

visible. Furthermore, the last found occurrence is highlighted to the user by having a clearly

distinguishable text style, as can be seen on the above screenshot. All other occurrences of the

searched string other than the active selection are highlighted using a different foreground colour.

If the string that the user searched for is not present in the current Editor’s contents, error text will

be displayed to inform the user.

Each of the buttons performs a different action, chosen to mirror the functionality of the analogous

find window of IDLE. The individual buttons are dynamically enabled and disabled based on the

current state data. For example, if no text has been entered on the Find text field, all of the buttons

are disabled, which is signaled to the user by graying out the button text and not responding to

clicks.

22

Predicted Usability Improvements

The possibility of locating a string inside the Editor’s contents should greatly improve the users’

ability to quickly navigate code, especially in the case of large files. This can be expected to be

especially useful if the code is not generated by the user and thus the user is not familiar with code

structure, for example in the case of group projects. The ability to perform quick replacements of

a specific string should facilitate performing code refactoring, for example replacing a inadequate

variable name with a more informative one, while also helping to reduce the number of oversights

and typing mistakes which might occur if these operations were performed manually.

It should also be noted that in some form, the functionality to find a specific substring in text or

replacing it with another string seems to exist in very many if not nearly all widely used text

editors, instant messaging programs and web browsers. It is reasonable to expect that most students

are familiar with a common text editor such as Notepad or a web browser such as Chrome by the

time they enter the introductory programming course, and have used the functionality of locating

a piece of text, usually available via the Ctrl+F shortcut. The option to use this familiar feature is

very likely to provide a sense of familiarity for a novice user and make them feel more comfortable

when using Thonny.

Suggested Future Work

It could increase the amount of relevant information received by the user if the total number of

occurrences when performing a search was also displayed. Currently, an error text appears within

the Find & Replace window if the string that is searched for cannot be found. If the searched string,

however, is found, the same window area could instead be used to display the total number of

occurrences and the current occurrence’s number. For example, if the user is currently at the 20th

occurrence of the searched string and the Editor’s text contains 34 occurrences of the string, the

displayed text could be something similar to “20 of 34”.

It might also improve the Find & Replace window’s usability if additional search options were

available. For example, many text editors provide an option of matching only the whole word,

which usually means that the searched string is matched only when it is not surrounded by word

23

characters on either side. Another useful feature could be the possibility to also search for a regex

expression instead of just a string literal. These additional options should be analyzed and the ones

found useful added, while keeping in mind that having too many options and interface elements

could be confusing to the intended end user of Thonny.

Finally, some users might find it useful if there was a configurable setting to remember all of the

search settings when the Find & Replace window is re-opened, rather than just the contents of the

Find text field.

Autocomplete Functionality

The Autocomplete functionality allows quickly triggering a keyword or identifier completion

based on the inserted partial string.

Implementation Overview

The decision was made to utilize the autocompletion functionality of the Jedi library [21]. Based

on the initial research and testing it became apparent that Jedi would be relatively simple to

integrate and seems to provide the all of the required backend functionality without adversely

affecting the performance of Thonny. Therefore, given the complexity of independently creating

an autocomplete library which is able to create the accurate list of suggestions based on the current

code context and is able to parse Python files with incorrect syntax, integrating Jedi was deemed

the most efficient choice.

From the user’s point of view, autocompletion is triggered by placing the text cursor at the end of

the partial string and choosing the Autocomplete menu item from the Edit menu or pressing

Ctrl+Space. It was decided during the design phase that autocomplete feature is triggered only

when the user explicitly requests it, rather than having an automatic popup which is present in

some other IDEs but can be confusing for novice users.

24

Figure 3. Autocomplete suggestions box containing possible completions of “self.”.

The result of triggering the autocompletion functionality depends on the number of possible

suggestions found by Jedi:

 If no suggestions matching the current partial string are found, no actions will take place.

 If only one matching suggestion is found, it is inserted automatically.

 If multiple suggestions are found, a list of them is displayed in the Autocompletion

suggestions overlay, as can be seen on the screenshot above. The overlay will be situated so

that the suggestions are directly aligned below the partial string. The displayed list of

suggestions is limited to 10, but user can scroll through the list using the arrow keys or the

mouse wheel. Selection is made by pressing the Enter key or double-clicking on a suggestion.

The user can also exit without choosing any suggestions by pressing the Esc key or clicking

outside the overlay area.

25

Predicted Usability Improvement

Autocompletion provides a quick and convenient mechanism for eliminating the repetitive and

error-prone task of typing out the full name of long identifiers. Thus it should allow the user to

keep their concentration on higher-level abstraction considerations instead, especially in the cases

where the exact spelling of an identifier must be looked up from an external source. Having a

convenient autocompletion feature might also help to eliminate a habit acquired by some students

of using short non-descriptive variable names such as “a” and “b”, which is very likely caused by

such names being faster to type.

Another possible benefit of the autocompletion feature is that by frequently using the autocomplete

functionality, the students become familiar with the list of members in Python standard library

modules, which could encourage their creativity as they would then seek more information

regarding methods with names that look useful for them for the task at hand. Furthermore, frequent

exposure to the list of identifiers in Python’s standard libraries might help them to acquire certain

common identifier naming practices or to understand the importance of using precise and

descriptive identifiers.

Outline View

Outline view is a user interface element contained within the Views pane that provides a visual

overview of the currently active source code’s structure by listing all the syntactically correct

method and class definitions along with the corresponding line number. Each item can contain

sub-items, for example a class node may also list methods declared within that class. Double-

clicking on any node instantly moves the Editor’s viewport position so that the corresponding line

becomes visible.

Implementation Overview

Outline view is implemented as a child element of the Views pane that can be activated and

deactivated by selecting the Show outline menu item from the View menu. It is not possible to

activate the Outline view if no Editors are currently open as the menu item itself will be disabled.

26

Figure 4. Outline view containing the class and method structure of the “ui_utils.py” module.

When the Outline view is activated, it registers as a listener to both the currently active Editor as

well as to the Editors Notebook. The current Editor’s contents are then parsed to create a

representation of its class and methods structure. It was decided that currently it is sufficient to use

a simple regex which parses the Python module line by line, extracts all class and method nodes

and places them in the correct position in the structure tree based on the indentation level of the

line. Each time the Editor’s contents change, it notifies all active listeners, including the Outline

view, which then re-parses the entire file. The following regex is used to extract data from lines

containing class and function declarations:

[]*(def|class){1}[]+[\w]+

Although such solution is quick and has the advantage of being able to parse syntactically incorrect

Python files as no actual abstract syntax tree is created, it admittedly has some severe

27

shortcomings. For example, in the case of the following lines, node for the function “test” would

be added to the Outline view, although it is not an actual function definition but a syntactically

valid string literal in Python:

"""
def test():

"""

These risks were analyzed and currently found to be acceptable.

The Editors Notebook tab change events are also listened to. Upon receiving a notification that the

active tab has been switched, it unsubscribes from the previously active Editor and subscribes to

the new one, then immediately parses the active Editor’s contents and repopulates the display.

When the Outline view is deactivated, it unregisters itself from both the active Editor and the

Editors Notebook.

Predicted Usability Improvement

As the Outline view contains the list of all classes and methods in the currently active file, users

are able to conveniently look up an identifier, which could otherwise be a time-consuming task,

especially in the case of larger files. Furthermore, this feature improves usability by reducing the

time that the user has to manually navigate in code, as users can now just double-click on a node

name to move to a specific location. Outline view can also be helpful when working with

unfamiliar modules as it provides a concise introductory overview of the program structure before

the implementation is examined in more detail [14].

Suggested Future Work

The main concern with the current implementation is that fully parsing the Editor’s contents after

each code modification creates considerable and unnecessary overhead. Improving this logic could

not be accomplished within the available timeline, but a future priority should be improving the

implementation of the parsing logic so that only the modified lines are reparsed and the display is

only updated when needed.

28

The appearance of the Outline view could also be improved so that more information is stored and

displayed for each node. For example, method nodes could also contain information about the

method’s argument list, which would allow the user to look up a method’s signature and order of

arguments without having to navigate to the declaration. As horizontal space on the Views pane is

limited, there would be no room for any new columns and therefore it would probably be

reasonable to show this information as a tooltip when the user holds the mouse cursor over a node.

Identifier Refactoring Support

Identifier refactoring support is a feature that allows renaming Python identifiers so that the

renaming action is intelligently propagated everywhere within the Python project where the

identifier is references.

Implementation Overview

Based on the initial code analysis and research, it was estimated that the required effort for

developing a module that provides full support for the backend logic of parsing all project files

and resolving all identifier references is not viable within the available timeline. Therefore, the

possibility of integrating a 3rd party library that provides this functionality was explored instead.

After extensive research, the decision was made to integrate the Rope library [22]. As a complete

refactoring library, Rope offers full code comprehension support and its API allowed convenient

integration with Thonny.

From the user’s point of view, identifier rename is triggered by positioning the text cursor within

or adjacent to the identifier and selecting Rename identifier from the Edit menu. The user is then

prompted to save all currently open files. Following this, a dialog window appears querying the

user for a valid Python identifier until one is entered. The following regex is used to verify the

name’s validity and is based on information from Python’s official reference [23]:

^[^\d\W]\w*\Z

After a valid new name has been entered, Rope internally performs the refactoring analysis and

returns a preview list of change objects. At this point, the changes have not been performed yet.

29

Thonny parses this list to create a list of files that would be affected by the change, which is then

displayed to the user. If the user confirms the changes, the renaming is performed by Rope. Thonny

then reloads all the affected Editor tabs to ensure that their contents are up to date.

The user is offered several possibilities to cancel the renaming process. In addition, several error

conditions are tested against throughout the process and if any errors occur, the whole flow is

exited from as it is vitally important to ensure that either the renaming process is completed fully

or it is cancelled without performing any changes.

Predicted Usability Improvement

Identifier rename is more likely to be used near the end of the introductory programming course

when students are already working on more complex programs such as group projects. Due to

Python’s dynamic name resolution system, users cannot always rely on compilation errors and

would need to track down and manually change all references to an identifier in all of the files in

a project if they decide to rename an identifier. This can be a stressful and time-consuming job,

especially if several identifiers in possibly overlapping scopes share the same name. Using an

intelligent refactoring engine to assist with this task can in some circumstances greatly improve

usability by reducing the required time and effort. For example, it allows users to update identifiers

as the program develops and the purpose of an identifier no longer corresponds to its initial name.

Suggested Future Work

A helpful feature that could be added is a way to undo the performed changes in all of the affected

files immediately after performing the changes. To provide such an option, the relevant data must

be available for Thonny. Possible solutions include creating a single file containing information or

‘diffs’ about all the actually performed changes, or creating a backup of all the affected files which

could be restored.

30

Block Comment Toggle

Block comment toggle allows quickly commenting out a block of code by adding two comment

symbols at the beginning of the source code lines, or uncommenting a block of code by removing

up to two comment symbols from the beginning of the source code lines.

Implementation Overview

The user can add two comment symbols to the selected lines by clicking the Comment in item in

the Edit menu or via the Ctrl+3 key combination. Up to two comment symbols can be removed

via the Comment out item in the Edit menu or by pressing Ctrl+4. For both actions, the list of

affected lines is first internally created. If no lines have been selected by the user, then only the

line that currently contains the text cursor is added to the list. However, if the user has selected a

number of lines, then all of the lines contained within the selected area will be affected.

Commenting out a block of code is a straightforward task of adding two comment characters to

the beginning of all of the affected lines, regardless of how many comment characters are already

present in the beginning of the line. Commenting in a block of code is somewhat more complex

as the line might begin with only one comment character or even none at all, but only comment

characters must be deleted. Therefore, first an algorithm determines how many comment

characters the line begins with, and then two, one or none of them are deleted as necessary.

Predicted Usability Improvement

Commenting out a block of code seems to be an operation that many developers find themselves

performing frequently, for example to provide an alternative implementation to a block of code

but not erasing the previous one just in case. Having functions available in the IDE which help to

do and undo this operation is convenient, quick and helps to avoid manual errors. Thus, the ability

to toggle comments on a block of code seems to be present in most modern IDEs, including IDLE.

31

Future Thonny Development Suggestions

The following chapter lists some suggestions by the author of the current thesis to further improve

Thonny usability or better it in some other way with future developments. The suggestions are

based on the performed usability analysis as well as practical development experience with

Thonny.

Currently one of the main obstacles to allowing any interested developers to contribute to Thonny

seems to be that in order to add a new feature, the existing Thonny platform needs to be modified

to add the necessary support. This was also the case during the development project described in

the current thesis. As a result of the current design, all improvements must be partly implemented

or at least extensively reviewed and tested by the main developers of Thonny to ensure program

stability. The fact that platform and features are relatively tightly coupled also complicates

simultaneous development by multiple developers and might create subtle defects after a new

feature is added or when platform implementation itself is refactored. Thus, reviewing every new

feature requires increasingly extensive effort from the main developers, which will likely not

viable in the long term.

One of the possible solutions to this problem is providing a platform API which third party plugins

can use to receive all the information they need and to send information about required changes to

the platform. Designing and implementing such API is admittedly a complicated task, but provides

the necessary isolation to allow anyone to create their own plugins for Thonny, which can then be

simply disabled if they prove to contain defects. For example, coming up with new ideas for

plugins and implementing them could be used as a possible way to receive extra credit in a

programming course, with the plugins that have proved to be both useful and stable being added

to Thonny’s standard releases, thus over time improving the program.

Another concern that should be addressed is the current lack of control over enabled features. As

previously discussed, it seems reasonable to initially show students a simple and minimalist

interface, with new features gradually enabled throughout the course. However, Thonny currently

lacks a mechanism to conveniently provide this option to users. Implementing such mechanism

requires an accessible interface where students could configure the current list of available

32

features. For example, features could be organized into predetermined packages which users can

switch between, with each successive level enabling additional and more advanced tools. Initially,

students would use the “Beginner” setting, containing only the absolutely necessary features.

When appropriate, they would switch to the “Advanced” feature package, which enables some

additional tools, and so on. A separate option should be available to the more knowledgeable

students to have full control over the list of enabled features as they wish.

In addition to the main concerns outlined above, various other end user features could improve

Thonny's usability for novice programming students. Examples of such features or platform

improvements include:

 Syntax correctness analysis, with the code segments containing incorrect syntax highlighted,

underlined or otherwise marked;

 User help on Thonny’s features, such as a knowledge center or a help window which can be

accessed online or from within the program. Another tutorial media that has been proven to

be successful are tutorial videos [9] which, for example, could be created by students for extra

course credit and uploaded to YouTube;

 Configurable user interface settings, e.g. syntax coloring rules or audio feedback;

 Displaying the line number values on the side of the Editor. Code examination revealed that

this feature has actually been partially implemented but could not be enabled by users.

Finally, it should be mentioned that at the time of writing this thesis, plans are in place to provide

the novice computer science students the opportunity to fully execute one or more of the test suites

described in Appendix A of this thesis and report their findings for extra credit in a class. As a part

of this exercise they are also encouraged to independently explore the new features and provide

feedback regarding their usability and utility. Their feedback will be analyzed, any found defects

fixed by the author of the current thesis and improvement suggestions forwarded to the main

developers of Thonny.

33

Conclusion

The current thesis presented an overview of a software development project that was completed to

improve the usability of Thonny, a Python IDE for novice programmers. As a preparatory step, a

literature study in the fields of usability and computer science education was performed. Based on

the results, a number of relevant quality components of the usability of a beginners’ IDE were

established. These criteria were then used as the basis of an expert review on the usability of

Thonny, which revealed several shortcomings, most significantly in the areas of code navigation,

program structure comprehension and batch change execution.

Some of the most significant Thonny’s usability deficiencies were then addressed with the

subsequent development project, which introduced a number of new platform features. An

overview of each of the new features was presented in the thesis, including details on its

implementation, information on the resulting usability improvement and suggestions for future

enhancements. As a result of the development project, a number of Thonny’s usability issues were

corrected and Thonny should now be easier to use by novice programmers, hopefully leading to a

more productive learning process.

Despite Thonny’s generally high level of quality and a wide range of features which make it

suitable for programming education, there is still considerable room for various improvements

which would further increase its pedagogical value. A list of suggestions is presented as the last

section of the thesis. The primary proposal is designing and implementing a platform API for

extensions, which would allow conveniently integrating plugins developed by any interested party.

Additionally, a novice-friendly interface should be implemented to allow users to configure the

list of enabled features and plugins. Such approach should greatly contribute to Thonny’s future

developments and long term support.

34

References

[1] Nielsen, Jakob. "Usability 101: Introduction to Usability". 2012. Available at:

http://www.nngroup.com/articles/usability-101-introduction-to-usability/ (last accessed

09.05.2015).

[2] Bevan, Nigel. "Usability." Encyclopedia of Database Systems. Springer US, 2009.

3247-3251. Available at: http://www.nigelbevan.com/papers/whatis92.pdf (last

accessed 09.05.2015).

[3] Pears, Arnold, et al. "A survey of literature on the teaching of introductory

programming." ACM SIGCSE Bulletin 39.4 (2007): 204-223. Available at:

http://www.seas.upenn.edu/~eas285/Readings/Pears_SurveyTeachingIntroProgrammin

g.pdf (last accessed 09.05.2015).

[4] Robins, Anthony, Janet Rountree, and Nathan Rountree. "Learning and teaching

programming: A review and discussion." Computer Science Education 13.2 (2003):

137-172. Available at: http://130.216.33.163/courses/compsci747s2c/lectures/robins-

learning-cse-03.pdf (last accessed 09.05.2015).

[5] Jenkins, Tony. "Teaching programming – A journey from teacher to motivator." 2nd

Annual LTSN-ICS Conference. 2001. Available at:

http://www.cs.kent.ac.uk/people/staff/saf/dc/portfolios/tony/doc/other/motivation.pdf

(last accessed 09.05.2015).

[6] Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. "A study of the

difficulties of novice programmers." ACM SIGCSE Bulletin. Vol. 37. No. 3. ACM,

2005. Available at:

https://student.brighton.ac.uk/mod_docs/cmis/past%20papers/ci_modules/level%20_2/

2006_07/ci215_cs2_2006.pdf (last accessed 09.05.2015).

[7] Dillon, Edward, Monica Anderson-Herzog, and Marcus Brown. "Teaching Students to

Program Using Visual Environments: Impetus for a Faulty Mental Model?" 2014.

Available at: http://shodor.org/media/content/jocse/volume5/issue1/Dillon_2014.pdf

(last accessed 09.05.2015).

http://www.nngroup.com/articles/usability-101-introduction-to-usability/
http://www.nigelbevan.com/papers/whatis92.pdf
http://www.seas.upenn.edu/~eas285/Readings/Pears_SurveyTeachingIntroProgramming.pdf
http://www.seas.upenn.edu/~eas285/Readings/Pears_SurveyTeachingIntroProgramming.pdf
http://130.216.33.163/courses/compsci747s2c/lectures/robins-learning-cse-03.pdf
http://130.216.33.163/courses/compsci747s2c/lectures/robins-learning-cse-03.pdf
http://www.cs.kent.ac.uk/people/staff/saf/dc/portfolios/tony/doc/other/motivation.pdf
https://student.brighton.ac.uk/mod_docs/cmis/past%20papers/ci_modules/level%20_2/2006_07/ci215_cs2_2006.pdf
https://student.brighton.ac.uk/mod_docs/cmis/past%20papers/ci_modules/level%20_2/2006_07/ci215_cs2_2006.pdf
http://shodor.org/media/content/jocse/volume5/issue1/Dillon_2014.pdf

35

[8] Holvikivi, Jaana. "Conditions for successful learning of programming skills." Key

Competencies in the Knowledge Society. Springer Berlin Heidelberg, 2010. 155-164.

Available at: https://hal.inria.fr/hal-01054703/document (last accessed 09.05.2015).

[9] Bennedsen, Jens, and Michael E. Caspersen. "Revealing the programming process."

ACM SIGCSE Bulletin. Vol. 37. No. 1. ACM, 2005. Available at: http://users-

cs.au.dk/mec/publications/conference/09--sigcse2005.pdf (last accessed 09.05.2015).

[10] Pane, John, and Brad Myers. "Usability issues in the design of novice programming

systems." 1996. Available at:

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1818&context=isr (last accessed

09.05.2015).

[11] Ardito, Carmelo, et al. "Usability of e-learning tools." Proceedings of the working

conference on Advanced visual interfaces. ACM, 2004. Available at:

http://tesi.fabio.web.cs.unibo.it/twiki/pub/Tesi/DocumentiRitenutiUtili/p80-ardito.pdf

(last accessed 09.05.2015).

[12] Dyke, Gregory. "Which aspects of novice programmers' usage of an IDE predict

learning outcomes." Proceedings of the 42nd ACM technical symposium on Computer

science education. ACM, 2011. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.7498&rep=rep1&type=p

df (last accessed 09.05.2015).

[13] Squires, David, and Jenny Preece. "Predicting quality in educational software:

Evaluating for learning, usability and the synergy between them." Interacting with

computers 11.5 (1999): 467-483. Available at:

http://www.irit.fr/recherches/ICS/projects/twintide/upload/446.pdf (last accessed

09.05.2015).

[14] Chen, Zhixiong, and Delia Marx. "Experiences with Eclipse IDE in programming

courses." Journal of Computing Sciences in Colleges 21.2 (2005): 104-112. Available

at: http://faculty.mercy.edu/facultyfiles/zchen1/papers/chenide.pdf (last accessed

09.05.2015).

[15] Reis, Charles, and Robert Cartwright. "Taming a professional IDE for the classroom."

ACM SIGCSE Bulletin. Vol. 36. No. 1. ACM, 2004. Available at:

http://www.drjava.org/papers/taming-ide-for-classroom.pdf (last accessed 09.05.2015).

https://hal.inria.fr/hal-01054703/document
http://users-cs.au.dk/mec/publications/conference/09--sigcse2005.pdf
http://users-cs.au.dk/mec/publications/conference/09--sigcse2005.pdf
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1818&context=isr
http://tesi.fabio.web.cs.unibo.it/twiki/pub/Tesi/DocumentiRitenutiUtili/p80-ardito.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.7498&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.7498&rep=rep1&type=pdf
http://www.irit.fr/recherches/ICS/projects/twintide/upload/446.pdf
http://faculty.mercy.edu/facultyfiles/zchen1/papers/chenide.pdf
http://www.drjava.org/papers/taming-ide-for-classroom.pdf

36

[16] Budiu, Raluca. "Memory Recognition and Recall in User Interfaces". 2014. Available

at: http://www.nngroup.com/articles/recognition-and-recall/ (last accessed 09.05.2015).

[17] Annamaa, Aivar. "Thonny, a Python IDE for Learning Programming." Unpublished.

2014.

[18] Python Software Foundation. “IDLE”. 2015. Available at:

https://docs.python.org/3/library/idle.html (last accessed 09.05.2015).

[19] Thonny. Available at: https://bitbucket.org/plas/thonny (last accessed 09.05.2015).

[20] Thonny commits. Available at https://bitbucket.org/plas/thonny/commits/all (last

accessed 09.05.2015).

[21] Jedi contributors. “Jedi - an awesome autocompletion/static analysis library for

Python”. Available at: http://jedi.jedidjah.ch/en/latest/ (last accessed 09.05.2015).

[22] Rope contributors. “Rope, a python refactoring library ...“.

Available at: http://rope.sourceforge.net/ (last accessed 09.05.2015).

[23] Python Software Foundation. “Lexical Analysis”. 2015. Available at:

https://docs.python.org/3/reference/lexical_analysis.html (last accessed 09.05.2015).

http://www.nngroup.com/articles/recognition-and-recall/
https://docs.python.org/3/library/idle.html
https://bitbucket.org/plas/thonny
https://bitbucket.org/plas/thonny/commits/all
http://jedi.jedidjah.ch/en/latest/
http://rope.sourceforge.net/
https://docs.python.org/3/reference/lexical_analysis.html

37

Appendix A: Test Suites

The current thesis defines test suites as concise yet precise step-by-step instructions, with each step

consisting of an action to be performed and its expected results. The expected program state before

each step depends on the successful completion of the previous step and thus the steps must be

performed exactly as described and sequentially in the listed order. Reproducing all of the listed

steps and verifying the expected results covers all functional requirements and provides

comprehensive test cases for regression testing. Failure of any of the individual test cases signals

the failure of the test suite as a whole.

The test suites in this appendix are mainly intended for informational purposes for parties

interested in the level of quality validation that was performed as part of the development project,

as well as for future Thonny developers whose developments might affect the features added as

part of this project. By following the described steps, any developers will be able to verify that

their changes did not cause regression defects. Furthermore, the preciseness of the descriptions

allows the test suites to be used as a basis for creating test scripts for automated testing, if this

validation step is added to Thonny in the future.

The test suites will also be migrated to an online content sharing environment, facilitating future

amendments and modifications as needed. Although the BitBucket environment does provide a

wiki, the lack of certain markdown options makes it unsuited to host the test suites in their current

format. At the time of writing the thesis, the decision for selecting the suitable environment has

not yet been made.

38

Table of Contents

Guide to Test Suites .. 38

Glossary .. 39

Styles ... 39

Find & Replace Window .. 40

Glossary .. 40

Testing Steps ... 41

Autocomplete .. 46

Glossary .. 46

Testing Steps ... 47

Outline View ... 52

Glossary .. 52

Testing Steps ... 52

Identifier Refactoring Support .. 56

Glossary .. 56

Testing Steps ... 57

Block Comment Toggle .. 64

Testing Steps ... 64

Guide to Test Suites

In order to make the test suites more concise and easier to follow, certain terminology is

consistently used throughout the test suites. This chapter will list and explain some of the terms

that might not be instantly understandable to a reader. Additionally, this chapter will also describe

the fonts and styles consistently used for denoting particular types of textual references.

Thonny’s user interface elements are listed and explained in the chapter “Thonny’s Graphical User

Interface” of the thesis.

39

Glossary

Table 1 provides of some of the common terms used throughout the test suites. The introduction

to each test suites chapter will also contain its own glossary for terms used only in that chapter.

Table 1. Test suites glossary.

Term Description

text cursor The flashing vertical line indicating where text will be entered.

check mark The tick icon ✓ that precedes menu items when they are in the enabled state.

test file Some of the test suites have the tester use a prepared Python file. Each test

suite which uses one or more test files will provide a link where the file can

be downloaded prior to beginning the test.

marked line Test files contain significant lines which have been clearly marked with a

unique identifier in the comments following the line.

Styles

Table 2 presents an overview of the text styles used throughout the test suites.

Table 2. Text suites styles.

Content type Description Example

Code listing Courier New font on grey background. window = Window()

Interface elements

and paths

Black bolded font.

Successive path elements are separated by

the > character.

Click Replace.

File > Save

URLs Blue underlined font. www.example.com

Key combinations Green bolded font.

If several keys need to be pressed

simultaneously, the keys are separated by

the + character.

Alt+C

Marked line Red bolded font. Navigate to the marked line

LINE 1.

http://www.example.com/

40

Find & Replace Window

The test suite will use one test file, which has been prepared and must be downloaded by the tester.

During the testing, a variety of actions related to searching and replacing will be performed.

Testing will also verify the correctness of the graphical layout.

Glossary

Table 3 lists the terms used throughout the test suite.

Table 3. Find & Replace window glossary.

Term Description

enabled /

disabled buttons

Buttons can be in either enabled or disabled state. When enabled, buttons

can be clicked to perform an action and have black text. Disabled buttons

cannot be clicked and have grey text.

focused When performing a search operation, one occurrence of the searched string

is focused in the Editor area. When repeating the search, focus will move to

the next occurrence of the string.

The focused string can be visually distinguished by using a font with red

background and white foreground.

highlighted When performing a search operation, all occurrences of the searched string

(except for the focused occurrence) are highlighted in the Editor area.

The highlighted strings can be visually distinguished by using a font with

blue foreground.

Interface Elements

Table 4 describes the interface elements of the Find & Replace dialog window.

Table 4. Find & Replace window interface elements.

Interface

Element

Description

Find button Performs a new search for the string in the Find text field.

41

Replace button Replaces the currently active found occurrence with the string in the Replace

with text field.

Replace &

Find button

Replaces the currently active found occurrence and performs a new search.

Replace All
button

Replaces all found occurrences of the string in the Find text field with the

string in the Replace with text field.

Up and Down

radiobuttons

Mutually exclusive. Determine the search direction.

Find text field Allows the user to enter the string to be searched for.

Replace with
text field

Allows the user to enter the string to replace the found string. If the Replace

with string is empty, the found string will be simply deleted.

Match case
checkbox

If checked, only strings which are case sensitively equal to the string in the

Find text field will be considered matched.

Testing Steps

Table 5 lists the testing steps in the order that they must be performed.

Table 5. Find & Replace window testing steps.

Step # Actions Expected result

1 Download the test file from:

https://bitbucket.org/plas/thonny/ra

w/default/thonny/tests/find_replace_

test.py

Open it with Thonny.

File > Open… > Select file > Open

The file contents open in the Editor.

https://bitbucket.org/plas/thonny/raw/default/thonny/tests/find_replace_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/find_replace_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/find_replace_test.py

42

2 Open the Edit menu and select Find. The Find & Replace window appears.

Verify that initially the window is located on

top of the Editor area but can be moved around

by holding down the left mouse button and

dragging it from the title bar.

Do not type anything yet, but verify that the

text cursor is active in the Find text field.

All of the buttons (Find, Replace,

Replace+Find and Replace All) are disabled

since there is nothing in the Find text field.

3 Enter any text in the Find text field. Verify that Find and Replace All buttons

become enabled.

4 Delete all of the text that you entered

in the Find text field.

All of the buttons (Find, Replace,

Replace+Find and Replace All) are again

disabled since there is nothing in the Find text

field.

5 Attempt to click on several locations

within the main Thonny window but

outside the Find & Replace

window, including on the Thonny

window’s close (X) button, menu

buttons, etc.

Verify that nothing happens - clicking on any

of the Thonny elements except the Find &

Replace window must be disabled.

6 Place the mouse cursor within the

Editor area but outside the Find &

Replace window. Using the mouse

wheel, attempt to scroll the Editor

contents.

Using the mouse wheel to scroll the Editor

contents up or down must work as normally.

7 Click the close (X) button of the

Find & Replace window.

The Find & Replace window closes.

All of the elements of the Thonny main

window are re-enabled.

8 Ensure that the text cursor is at the

start (before the very first character)

of the Editor contents.

Press Ctrl+F.

The Find & Replace window appears.

43

9 Insert “time” in the Find text field.

Ensure that the Down radio button is

checked.

Press Enter to perform the search.

The marked line LINE 1 is visible in the Editor

area.

The text string time within the marked line is

focused.

Use the mouse wheel to scroll through the

Editor area and verify that no other text strings

are focused, and the only highlighted text

string is time on the marked line LINE 2.

Verify that the Replace and Replace+Find

buttons are enabled.

10 Click Find to repeat the search. The contents of the Editor area are

automatically moved so that the marked line

LINE 2 is visible.

The substring time within the marked line is

focused.

Use the mouse wheel to scroll through the

Editor area contents and verify that no other

text strings are focused, and the only

highlighted substring is on the marked line

LINE 1.

11 Click Find to repeat the search. The contents of the Editor area are

automatically moved so that the marked line

LINE 1 is visible and its substring time is

focused.

12 Press Esc to close the Find &

Replace window.

The Find & Replace window closes.

Verify that the substring time on the marked

lines LINE 1 and LINE 2 are no longer

focused and highlighted, respectively.

13 Insert the text cursor at the start

(before the very first character) of

the Editor contents.

Press Ctrl+F to open the Find &

Replace window.

Verify that time, which was the last string

searched for, is still on the Find text field.

Also verify that the Find and Replace All

buttons are enabled.

44

14 Delete the previous string from the

Find text field and insert the string

“base64”.

Check the Up radio button.

Check the Case sensitivity

checkbox.

Click Find.

The contents of the Editor area are

automatically moved so that LINE 3 is visible

and that the text string sys is focused.

15 Click Find to repeat the search. The contents of the Editor area are

automatically moved so that LINE 4 is visible

and that the text string base64 is focused.

16 Delete the previous string from the

Find text field and insert the string

“aa”.

Click Find.

The text “The inserted string can’t be found”

appears underneath the Replace with text

field.

The viewport of the Editor area is not moved.

Use the mouse wheel to scroll through the

Editor area contents and verify that no text

string are focused or highlighted.

The Replace and Replace+Find buttons must

now be disabled.

17 Delete the previous string from the

Find text field and insert the string

“a”.

Click Find.

The error text “The inserted string can’t be

found” disappears from underneath the

Replace with text field.

18 Delete the previous string from the

Find text field and insert the string

“banner”.

Check the Case sensitive check box.

Click Find.

The text “The inserted string can’t be found”

again appears underneath the Replace with

text field.

19 Close and then reopen the Find &

Replace window.

The string “The inserted can’t be found” is not

present underneath the Replace with text field.

45

20

Delete the previous string from the

Find text field and insert the string

“import sys”.

Click Find.

The contents of the Editor area are

automatically moved so that LINE 5 is visible

and its substring import sys is focused.

21 Insert the string “from sys import *”

in the Replace with text field.

Click Replace.

The substring import sys is removed from

LINE 5 and it now contains

from sys import * instead.

Use the mouse wheel to scroll through the

Editor area contents and verify that no text

string are focused or highlighted, including the

modified line.

The Replace and Replace+Find buttons must

now be disabled.

22 Insert the string “bestmatch” in the

Find text field.

Click Find.

The text string bestmatch on the line LINE 6

is focused.

23 Click Replace & Find. Verify that the substring bestmatch is

removed from LINE 6 and it now contains

best_match instead.

The text string bestmatch on LINE 7 is now

focused.

24 Insert the string “best_match” in the

Replace with text field.

Click Replace & Find.

Verify that the substring bestmatch is

removed from LINE 7 and it now contains

best_match instead.

The text “The inserted string can’t be found”

appears underneath the Replace with text

field.

25 Insert the string “sys.” in the Find

text field.

Insert an empty string (nothing, not

even any spaces) in the Replace

with text field.

Click Replace All.

Use the mouse wheel to scroll through the

Editor area and verify that the substring sys.

is not present on LINE 8 and it now contains

just stdout.flush()

46

Autocomplete

The test suite will use one test file, which has been prepared and must be downloaded by the tester.

During the testing, different autocompletion actions will be attempted (e.g. no suggestions found

for currently unfinished string, one suggestion found, several suggestions found, and so on). The

correctness of the graphical layout will also be verified. It will also be verified that following into

imports and other complex syntax comprehension tasks are done correctly.

Glossary

Table 6 lists the terms used throughout the test suite.

Table 6. Autocomplete glossary.

Term Description

suggestion A single suggested completion for the current autocomplete action.

suggestions list The list of suggestions contained within the autocomplete box.

autocomplete

box

A rectangle-shaped overlay appearing on top of the Editor area and

containing the suggestions list. Only appears if more than one suggestions

are available.

See chapter “Autocomplete Functionality” of the thesis for a screenshot of

the autocomplete box.

| Text representation of the position of the text cursor. It is displayed in red

bold font for better visibility.

47

Testing Steps

Table 7 lists the testing steps in the order that they must be performed.

Table 7. Autocomplete testing steps.

Step # Actions Expected result

1 Download the test file from:

https://bitbucket.org/plas/thonny/ra

w/default/thonny/tests/autocomplete

_test.py

Open it with Thonny.

File > Open… > Select file > Open

The file contents open in the Editor.

2 Find the marked line LINE 1 and

insert the text cursor at the end of the

line. Make you sure leave a space

before the preceding character and

the text cursor:

import |

Select Autocomplete from the Edit

menu.

The Autocomplete box opens under the

current line, containing module names that can

be imported.

The module names are in alphabetic order.

The very first module name is in focus, which

can be determined by it being underlined and

having a different background colour than the

other options.

3 Position the mouse cursor within the

Autocomplete box.

Use the mouse wheel to scroll up and

down.

The list of suggestions must intuitively change

according to the wheel scroll direction in

alphabetically ascending order.

Verify that when you have scrolled to the top

of the list, attempting to scroll even further up

does not cause any errors. Similarly, attempt to

scroll further down when you are at the bottom

and verify that no errors occur.

The focused suggestion must not change as you

are scrolling, meaning that if you scroll further

down where the focused name is no longer

visible, none of the visible suggestions appear

to be focused. As you scroll back up, the first

suggestions must still be in focus.

https://bitbucket.org/plas/thonny/raw/default/thonny/tests/autocomplete_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/autocomplete_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/autocomplete_test.py

48

As you are scrolling through the list of

suggestions, verify that they are in alphabetical

order and that names starting with uppercase

and lowercase letters are present.

4 Using the mouse wheel, scroll the

suggestions list to such a position

where the focused suggestion is not

visible.

Press the down arrow key.

The suggestions list is automatically moved to

the position where the new focused suggestion

is visible.

The new focused item is one position below the

previously focused one.

5 Press up and down arrow keys. Verify that pressing the up arrow focuses the

item directly above the previously focused one.

Similarly, pressing the down arrow focuses the

item directly below the previously focused one.

When the new focused item is not visible, the

suggestions list is automatically moved so that

the new focused item is visible to the user.

Verify that when the focused item is the very

first item in the suggestions list, pressing the up

arrow key does nothing and does not cause any

errors. Similarly, pressing the down arrow key

when the focused item is the very last item in

the suggestions list must simply do nothing and

not cause any errors.

6 Perform a single left-click on the

focused item in the suggestions list.

Verify that nothing happens.

7 Perform a single left-click on an item

in the suggestions list that is not the

currently focused item.

The item that you clicked on must now become

the focused item.

8 Left-click in the Editor area, outside

of the Autocomplete box.

The Autocomplete box closes, allowing the

user to continue using the Editor.

The Editor contents are not modified as no

suggestions were chosen by the user.

49

9 Find the marked line LINE 2 and

insert the text cursor at the end of the

line:

import p|

Press Ctrl + Spacebar.

The Autocomplete box opens under the current

line, containing module names that can be

imported. All suggestions must begin with

either lowercase or uppercase “p”.

The position of the Autocomplete box must be

such that the first letters of the suggestions are

directly below the “p” character.

10 Press Esc. The Autocomplete box closes, allowing the

user to continue using the Editor.

The Editor contents are not modified as no

suggestions were chosen by the user.

11 Find the marked line LINE 3 and

insert the text cursor at the end of the

line:

sys.|

Activate Autocomplete.

NB! As both Autocomplete

activation methods have been tested,

starting with this step, Autocomplete

can be activated either via the Menu

or via the key combination, as

preferred by the tester.

The Autocomplete box opens under the current

line, containing members of the sys module

that are available to the user.

For reference, these should include

api_version, argv and base_exec_prefix.

12 Click on the File menu item. The Autocomplete box disappears.

The Editor contents are not modified as no

suggestions were chosen by the user.

The File menu is opened as usually.

13 Find the marked line LINE 4 and

insert the text cursor at the end of the

line:

getfilesys|

Activate Autocomplete.

Verify that nothing happens.

No suggestions must be available to the user

because they must access the

getfilesystemencoding member of the sys

package as sys.getfilesystemencoding

due to the import syntax used.

50

14 Find LINE 5 and insert the text

cursor at the end of the line:

os.path.|

Activate Autocomplete.

Verify that nothing happens.

No suggestions must be available to the user

because they must access the path member of

the os module as path and not as os.path due

to the import syntax used.

15 Find LINE 6 and insert the text

cursor at the end of the line:

path.|

Activate Autocomplete.

The Autocomplete box opens under the current

line, containing members of the os.path

submodule that are available to the user.

16 Double-click on the dirname

suggestion.

Autocomplete box disappears.

The string dirname must be appended to the

line so that it is now:

path.dirname

17 Find LINE 7 and insert the text

cursor at the end of the line:

re.|

Activate Autocomplete.

Verify that nothing happens.

No suggestions must be available to the user

because they must access the members of the

re module directly by their name and not via

the re reference due to the import syntax used.

18 Find LINE 8 and insert the text

cursor at the end of the line:

compi|

Activate Autocomplete.

Autocomplete box is not displayed. Instead,

the string le is added directly to the line as it

was the only suggestion. The line must now be:

compile

Note that compile is a member of the re

package but must be referenced directly,

without the re module reference, due to the

import syntax used.

19 Find LINE 9 and insert the text

cursor at the end of the line:

testob|

Activate Autocomplete.

Verify that nothing happens.

No suggestions must be available to the user

because even though testobject is correctly

declared in this file, the variable declaration

happens after the current line.

51

20 Find LINE 10 and insert the cursor

at the end of the line:

testo|

Activate Autocomplete.

Autocomplete box is not displayed. Instead,

the string bject is added directly to the line as

it was the only suggestion. The line must now

be:

testobject

21 Find LINE 11 and insert the text

cursor at the end of the line:

testobject.|

Activate Autocomplete.

The Autocomplete box opens under the current

line, containing all the correctly defined

members of the TestClass instance:

instanceMethod, staticMethod and

variable.

Verify that the Autocomplete box is correctly

sized and is not longer than it needs to be for

containing the three items.

52

Outline View

The test suite will use one test file, which has been prepared and must be downloaded by the tester.

Testing will verify that the Outline view display has the correct graphical layout and that it

corresponds to the actual file structure. Tests also confirm that the Outline view is automatically

updated as new items are added and previous ones removed.

Glossary

Table 8 lists the terms used throughout the test suite.

Table 8. Outline view glossary.

Term Description

node Outline view item representing the start of a class or method definition.

child node An indented node representing a nested class or method definition.

expand Nodes can be expanded by clicking on the adjacent + icon. When expanded,

all the children of the node are displayed.

collapse Nodes can be collapsed by clicking on the adjacent – icon. When collapsed,

the children of the node are hidden.

Testing Steps

Table 9 lists the testing steps in the order that they must be performed.

Table 9. Outline view testing steps.

Step # Actions Expected result

1 Download the test file from:

https://bitbucket.org/plas/thonny/ra

w/default/thonny/tests/outline_view

_test.py

Open it with Thonny.

File > Open… > Select file > Open

The file contents open in the Editor.

https://bitbucket.org/plas/thonny/raw/default/thonny/tests/outline_view_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/outline_view_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/outline_view_test.py

53

2 If the Views pane contains any

views, such as the Variables view

or the Object Info view, disable

them from the View menu.

Active views can be recognized by

the preceding check mark in the

View menu.

Views pane disappears.

3 Enable the Outline view from the

View menu.

View > Show outline

Views pane appears, Outline view is the only

item contained in it.

Verify that the check mark is present in front

of the Show outline item in View menu.

4 Enable Variables view. Views pane stays visible and the Variables

view is added to it. Both Outline and

Variables views are now visible.

5 Disable the Outline view. Views pane stays visible and the Outline view

is removed from it. Only Variables view is

now visible.

Verify that the check mark is not present in

front of the Show outline item in View menu.

6 Enable the Outline view. Views pane stays visible and the Outline view

is added to it. Both Outline and Variables

views are now visible.

7 Disable Variables view. Views pane stays visible and the Variables

view is removed from it. Only Outline view is

now visible.

8 Verify that the Outline view

contents correspond to the file

structure. Do not yet expand any of

the nodes.

Expected structure:

+ AdditionClass

+ SubtractionClass

Both of these nodes have the expand icon next

to them.

54

9 Expand the AdditionClass node. The AdditionClass node expands, revealing

the perform_addition child node, which itself

can be expanded.

The expand icon next to AdditionClass node

changes to the collapse icon.

The expected structure at this point:

- AdditionClass

 + perform_addition

+ SubtractionClass

10 Expand the perform_addition

node.

The perform_addition node expands,

revealing the add child node, which cannot be

expanded.

The expand icon next to perform_addition

node changes to a collapse icon.

The expected structure at this point:

- AdditionClass

 - perform_addition

 add

+ SubtractionClass

11 Double-click on the

SubtractionClass node.

The Editor is automatically scrolled to a

position where the user can see the line
class SubtractionClass:

12 Double-click on the AdditionClass

node.

The Editor is automatically scrolled to a

position where the user can see the line
class AdditionClass:

13 Double-click on the header line

Item (type @ line)

Nothing happens.

Note: this step is needed for regression testing

as it used to cause an error message popup.

14 Find the line

class AdditionClass: in the

Editor. Change it by replacing

AdditionClass with Test.

The line must now be:
class Test:

In the Outline view, the AdditionClass node

name is changed to Test.

55

15 Find the line def subtract(x, y):

in the Editor.

Change it by replacing def with

deff.

Line must now be:
deff subtract(x, y)

Expand the SubtractionClass and

perform_subtraction nodes. Verify that the

subtract node is not present in the Outline

view.

16 Find the line def add(x, y): in the

Editor.

Comment out the line by inserting

the # symbol as the first character.

Line must now be:
#def add(x, y):

Expand the AdditionClass and

perform_addition nodes. Verify that the add

node is not present.

17 Comment in the same line by

removing the # symbol.

Line must now be:
def add(x, y):

Expand the AdditionClass and

perform_addition nodes. Verify that the add

node is re-added to its correct location as a

child of perform_addition node.

18 Disable the Outline view. Views pane disappears.

Verify that the check mark is not present in

front of the Show outline item in View menu.

56

Identifier Refactoring Support

The test suite will use two test files, which have been prepared and must be downloaded by the

tester. One of these files, called the target file, will import various variables, methods and classes

from the other file, called the source file. During the testing, the imported identifiers will be

renamed. Then it will be verified that the renaming is correctly performed in both files. All known

and foreseen error cases and edge cases will also be tested.

Glossary

Table 10 lists the terms used throughout the test suite.

Table 10. Identifier refactoring support glossary.

Term Description

test folder The folder containing the two test files used in this test suite.

source file /

source file tab

This file contains the various identifiers that are imported by the target file.

target file /

target file tab

This file imports various identifiers from the source file.

57

Testing Steps

Table 11 lists the testing steps in the order that they must be performed.

Table 11. Identifier refactoring support testing steps.

Step # Actions Expected result

1 Create a new folder anywhere on the

hard drive which will be used to

contain nothing but the test files.

Download the test files from:

https://bitbucket.org/plas/thonny/ra

w/default/thonny/tests/source_refact

or_rename_test.py

https://bitbucket.org/plas/thonny/ra

w/default/thonny/tests/target_refact

or_rename_test.py

NB! Save them both in the test

folder.

Open both of the downloaded files

with Thonny.

File > Open… > Select file > Open

If there are any other open tabs

except for those containing the test

files, close them.

Thonny contains exactly two tabs, each

containing one of the test files.

2 Activate the source file tab and insert

a new empty line somewhere in the

file contents.

The tab name must now be followed by an

asterisk, indicating that file contents have been

modified since the file was last saved:

source_refactor_rename_test.py *

3 On line marked as LINE S1, place

the text cursor anywhere within the

Calculator identifier.

Select Rename identifier from the

Edit menu.

Save Files Before Rename window appears,

requesting user to confirm that they want to

save files before they can proceed. The window

must contain two buttons: Yes and No.

https://bitbucket.org/plas/thonny/raw/default/thonny/tests/source_refactor_rename_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/source_refactor_rename_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/source_refactor_rename_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/target_refactor_rename_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/target_refactor_rename_test.py
https://bitbucket.org/plas/thonny/raw/default/thonny/tests/target_refactor_rename_test.py

58

4 Click No. The refactoring process will be canceled:

The Save Files Before Rename window must

disappear and no further dialog windows or

errors will be displayed.

All other Thonny elements will be enabled

again, allowing the user to continue using the

program.

5 Open a new Editors Notebook tab.

File > New

A new tab is created, with <untitled> as its

name.

6 Activate the source file tab.

On line LINE S1, place the text

cursor within the Calculator

identifier.

Select Rename identifier from the

Edit menu.

Click Yes to save modified files.

Save As window appears, requesting user to

choose the location and filename of the new

Editors Notebook tab’s contents.

The <untitled> tab will be activated - this

allows the user to see which tab they are saving

in the case there are more than one new tabs.

7 Click Cancel to cancel saving the

<untitled> tab to a file.

The refactoring process will be canceled:

The Save As window must disappear.

The Rename failed error popup must appear,

informing the user that there are unsaved tabs

and refactoring process cannot continue. The

only available button is OK.

8 Click OK. The Rename failed error popup must

disappear and no further dialog windows or

errors will be displayed.

All other Thonny elements will be enabled

again, allowing the user to continue using the

program.

59

9 Activate the source file tab.

On line LINE S1, place the text

cursor within the Calculator

identifier.

Select Rename identifier from the

Edit menu.

Click Yes to save modified files.

In the Save As window, navigate to

the test folder and select it, so the file

would be saved there.

Enter

“newfile_refactor_rename_test.py”

as the filename and click Save.

Verify that the test folder now contains an

additional file named

“newfile_refactor_rename_test.py”.

The tab name of the previously untitled tab

must now be

newfile_refactor_rename_test.py.

The Rename window appears, requesting user

to choose the new name for the identifier. It

must contain the New name text field as well

as OK and Cancel buttons.

10 Click Cancel. The refactoring process will be canceled:

The Rename window must disappear and no

further dialog windows or errors will be

displayed.

All other Thonny elements will be enabled

again, allowing the user to continue using the

program.

11 Activate the source file tab.

On line LINE S1, place the text

cursor within the class keyword.

Select Rename identifier from the

Edit menu.

Since at this point none of the tabs contain

unsaved changes, showing the Save Files

Before Rename window must be skipped and

the Rename window is displayed instead.

60

12 Enter “newname” in the New name

text field and click OK.

The refactoring process will be canceled

because the text cursor was not placed within

an identifier.

The Rename window must disappear.

The Rename failed error popup must appear,

informing the user that an error was

encountered and listing a few possible reasons.

The only available button is OK.

13 Click OK. The Rename failed error popup must

disappear and no further dialog windows or

errors will be displayed.

All other Thonny elements will be enabled

again, allowing the user to continue using the

program.

14 Activate the source file tab.

On line LINE S2, place the text

cursor within the sumtogether

identifier.

Select Rename identifier from the

Edit menu.

In the Rename window, enter

“sumtogether” in the New name text

field and click OK.

The refactoring process will be canceled

because the new identifier entered by the user

is exactly the same as the existing name.

The Rename window must disappear.

The Rename failed error popup must appear,

informing the user that no identifiers would be

affected by the change. The only available

button is OK.

15 Click OK. The Rename failed error popup must

disappear and no further dialog windows or

errors will be displayed.

All other Thonny elements will be enabled

again, allowing the user to continue using the

program.

61

16 On line LINE2, place the text cursor

within the sumtogether identifier.

Select Rename identifier from the

Edit menu.

In the Rename window, enter

“1sum1” in the New name text field

and click OK.

User must re-enter the identifier because the

one entered now is not a valid Python

identifier.

The Rename window must disappear.

The Incorrent identifier error popup must

appear, informing the user that the name was

not a correct Python identifier.

17 Click OK. The Incorrent identifier error popup must

disappear and the Rename window appear

again, allowing the user to enter a valid name.

18 In the Rename window, enter " " (a

single space) in the New name text

field and click OK.

User must re-enter the identifier because the

one entered now is not a valid Python

identifier.

The Rename window must disappear.

The Incorrent identifier error popup must

appear, informing the user that the name was

not a correct Python identifier.

19 Click OK to close the Incorrect

identifier popup.

In the Rename window, enter

“(add)” in the New name text field

and click OK.

User must re-enter the identifier because the

one entered now is not a valid Python

identifier.

The Rename window must disappear.

The Incorrent identifier error popup must

appear, informing the user that the name was

not a correct Python identifier.

20 Click OK to close the Incorrect

identifier popup.

In the Rename window, enter “add”

in the New name text field and click

OK.

The entered name is a valid Python identifier

so the refactoring flow must proceed normally:

The Confirm changes dialog window must

appear. It must inform user that the following

files will be modified during refactoring:

 source_refactor_rename_test.py

 target_refactor_rename_test.py

The window must contain the Yes and No

buttons, allowing user to proceed with

refactoring or to cancel it, respectively.

62

21 Click No. The refactoring process will be canceled:

The Confirm changes window must disappear

and no further dialog windows or errors will be

displayed.

All other Thonny elements will be enabled

again, allowing the user to continue using the

program.

22 Activate the source tab.

Enable the Outline view, if it was

not enabled already:

View > Show outline

Views pane is visible and now contains the

Outline view.

23 On line LINE S2, place the text

cursor within the sumtogether

identifier.

Select Rename identifier from the

Edit menu.

In the Rename window, enter “add”

in the New name text field and click

OK.

In the Confirm changes window,

click Yes.

Verify that the Outline view now contains the

add method node instead of sumtogether.

Verify that the refactored method has been

renamed to add in the following places:

 Source file: line LINE S2.

 Target file: line LINE T3.

24 Activate the source tab.

On line LINE S1, place the text

cursor within the Calculator

identifier.

Select Rename identifier from the

Edit menu.

In the Rename window, enter

“Totalizer” in the New name text

field and click OK.

In the Confirm changes window,

click Yes.

Verify that the Outline view contains the

Totalizer class node.

Verify that the Calculator class has been

renamed to Totalizer in the following

places:

 Source file: line LINE S1

 Target file: lines LINE T1 and LINE T2

63

25 Activate the target tab.

On line LINE T1, place the text

cursor within the
source_rename_factor_test
identifier.

Select Rename identifier from the

Edit menu.

In the Rename window, enter

“base_rename_factor_test” in the

New name text field and click OK.

In the Confirm changes window,

click Yes.

Verify that the source tab header has been

renamed to base_rename_factor_test.py.

Verify that the refactored module has been

renamed to base_rename_factor_test in the

target file on line LINE T1.

Using any file browser available on your

operating system, navigate to your test folder

and verify that it no longer contains file named

“source_rename_factor_test.py” and contains

a file named “base_rename_factor_test.py”

instead.

64

Block Comment Toggle

The test suite will use one test file, which will be created by the tester. Performing the tests will

verify that enabling and disabling block comment toggle works correctly in all anticipated

situations.

Testing Steps

Table 12 lists the testing steps in the order that they must be performed.

Table 12. Block comment toggle testing steps.

Step # Actions Expected result

1 Open or create a file with at least 5

lines of text.

Perform a single left-click within the

Editor area to position the text cursor

on a line. Add any characters to the

line so it is not empty.

Remember the line contents, from

now on referred to as <data>.

The file contents open in the Editor.

2 Choose the Comment in command

from the Edit menu.

Two hashes (“#” characters) are added to the

beginning of the line.

Line starts with: ##<data>

3 Keeping the text cursor on the same

line, choose the Comment in

command again.

Two more hashes are added to the beginning of

the line.

Line starts with: ####<data>

4 Keeping the text cursor on the same

line, choose the Comment out

command from the Edit menu.

Two hashes are removed from the beginning of

the line.

Line starts with: ##<data>

65

5 Keeping the text cursor on the same

line, choose the Comment out

command again.

Two more hashes are removed from the

beginning of the line.

Line contents <data> must now be exactly

equal to that observed at step 1.

6 By holding the left mouse button

down within the Editor area, select

multiple lines and press Ctrl+3.

Two hashes are added to the beginning of all of

the selected lines.

7 Keep the same line selection and

press Ctrl+4.

Two hashes are removed from the beginning of

all of the selected lines.

8 Modify a line so it starts with 3

consecutive hashes: ###

Press Ctrl+4.

Two hashes are removed from the beginning of

the line. The line now starts with one hash.

9 Modify a line containing <data> so

it starts with one hash, followed by a

symbol other than a hash.

For example: #a<data>.

Press Ctrl+4.

The single hash is removed from the beginning

of the line.

Using the given example, the line is now:
a<data>

10 Modify a line so it starts with a

character other than a hash, followed

by a hash.

For example: a#<data>

Press Ctrl+4.

The line must remain unchanged.

Using the given example, the line is still:
a#<data>

66

Appendix B: License

Non-exclusive licence to reproduce thesis and make thesis public

I, Taavi Ilp (date of birth: 23.02.1983),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

“Improving the Usability of the Thonny Integrated Development Environment”,

supervised by Aivar Annamaa.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 09.05.2015

