
Tartu 2015

UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Software Engineering

Mailis Toompuu

PaaS Cloud Service for Cost-Effective Harvesting, Processing and Linking of Unstructured

Open Government Data

Master’s thesis (30ECP)

Supervisor: Peep Küngas, PhD

2

PaaS Cloud Service for Cost-Effective Harvesting, Processing and Linking of Unstructured

Open Government Data

Abstract

The aim of this project is to develop a cloud platform service for transforming Open

Government Data to Linked Open Government Data.

This service receives log file, created by web crawler, with URLs (over 3000000) to some

open document as an input. It then opens the document, reads its content and with using "Open

source tools for Estonian natural language processing" (Estnltk), finds names of locations,

organizations and people. Using Psython library "RDFlib", these names are added to the Resource

Description Framework (RDF) graph, so that the names become linked to the URLs that refer to

the documents. In order to archive current state of accessed document, this service downloads all

processed documents. The service also enables monthly updates system of the already processed

documents in order to generate new RDF relations if some of the documents have changed.

Generated RDFs are publicly available and the service includes SPARQL endpoint for userss

(graphical user interface) and machines (web services) for cost-effective querying of linked

entities from the RDF files.

An important challenge of this service is to speed up its performance, because the

documents behind these 3+ million URLs may be large. To achieve that, parallel processes are run

where possible: using several virtual machines and all CPUs in a virtual machine. This is tested in

Google Compute Engine.

Keywords

semantic web, RDF, open government data, cloud service, cost-effective processing, named entity

extraction, named entity recognition, RDFlib, Estnltk, NERD, OWL, RDFs, FOAF, DC, Google

Compute Engine

3

Pilveteenus Eesti struktrueerimata avalike andmete kuluefektiivseks töötlemiseks,

linkimiseks ja päringute tegemiseks

Lühikokkuvõte

Selle projekti eesmärk on luua pilveteenus, mis võimaldaks struktueerimata avalike

andmete töötlemist, selleks, et luua semantiline andmete (veebis olevatest dokumentidest leitud

organisatsioonide, kohanimede ja isikunimede) ressursikirjeldusraamistiku - Resource Description

Framework (RDF) - graaf, mis on ka masinloetav.

Pilveteenus saab sisendiks veebiroomaja toodetud logifaili üle 3 miljoni reaga. Igal real on

veebiaadress avalikule dokumendile, mis avatakse, loetakse ning kasutades - tööriista eestikeelsest

tekstist nimeolemite leidmiseks- Estnltk-d, eraldatakse organisatsiooonide ja kohtade nimetused ja

inimeste nimed. Seejärel lisatakse leitud nimed/nimetused RDF graafi, kasutades olemasolevat

Pythoni teeki RDFlib. RDF graafis nimed/nimetused lingitakse nende veebiaadressidega, kus asub

seda nime/nimetust sisaldav avalik dokument. Dokumendid arhiveeritakse lugemise hetkel neis

olnud sisuga. Lisaks sisaldab teenus igakuist andmete ülekontrollimist, et tuvastada dokumentide

muutusi ja vajadusel värskendada RDF graafe. Genereeritud RDF graafe kasutatakse SPARQL

päringute tegemiseks, mida saavad teha kasutajad graafilise kasutajaliidese kaudu või masinad

veebiteenust kasutades.

Projekti oluline väljakutse on luua arhitektuur, mis töötleks andmeid võimalikult kiiresti,

sest sisendfail on suur (test-logifailis on üle 3 miljoni rea, kus igal real olev URL võib viidata

mahukale dokumendile). Selleks jooksutab teenus seal kus võimalik, protsesse paralleelselt,

kasutades Google’i virtuaalmasinaid (Google Compute Engine) ja iga virtuaalmasina kõiki

protsessoreid.

Võtmesõnad

semantiline veeb, RDF, avalikud valitsuse andmed, pilveteenus, kuluefektiivne töötlemine,

nimeüksuse tuvastamine, nimeolemite tuvastamine, RDFlib, Estnltk, NERD, OWL, RDFs, FOAF,

DC, Google Compute Engine

4

Contents

Abbreviations and Meanings of Words .. 6

1 Introduction ... 7

2 Background .. 9

2.1 Open Data And Open Government Data .. 9

2.2 Semantic Web Movement .. 9

2.3 Resource Description Framework (RDF) ... 10

2.4 Vocabularies and Ontologies .. 10

2.5 Sources for Linked Data ... 11

2.6 Extraction Tool Estnltk ... 11

2.7 Storing Linked Data.. 12

2.8 Integrating data: interlinking with other linked data and mapping vocabularies 12

2.9 Linked Data Use Cases ... 13

2.10 Google Cloud Platform ... 13

3 Related Work ... 14

3.1 DBpedia .. 14

3.2 Wordnet RDF ... 14

3.3 Yago.. 14

3.4 OpenCyc ... 15

3.5 Virtuoso Sponger .. 15

3.6 Freebase .. 15

3.7 The GeoNames Ontology ... 15

3.8 TWC LOGD ... 16

3.9 PoolParty .. 16

3.10 Metafacture ... 16

3.11 Some Widely Known Applications .. 16

3.12 Data Harvesting. File/document repositories. ... 17

4 Metadata Model ... 18

4.1 Using Metadata Model for Downloading Datasets .. 20

4.2 Using Metadata Model in Updating Process .. 20

4.3 Using Metadata Model for Browsing Datasets ... 21

5 RDF Data Model ... 22

5.1 Used Vocabularies/Ontologies ... 22

5.2 Example of RDF Graph for Organizations ... 24

5.3 Example of RDF Graph for Locations ... 25

5.4 Example of RDF Graph for People .. 26

5

5.5 Example of Triples in Locations Graph ... 27

6 Architecture ... 28

6.1 Programming Languages .. 28

6.2 Migrating Software to GCE .. 28

6.3 Requirements .. 32

6.3.1 Functional Requirements ... 33

6.3.2 Non-functional Requirements ... 35

6.4 Physical View ... 35

6.5 Development View ... 36

6.6 Logical View .. 38

6.7 Process View .. 41

6.7.1 Master Server Process View ... 41

6.7.2 Cloud of Workers .. 46

6.8 Use Cases .. 50

6.8.1 General Using Scenarios ... 50

6.8.2 Use Case Diagrams ... 50

6.8.3 Using SPARQL endpoint .. 52

6.8.4 Uploading Log File and Starting RDFizing Process ... 55

6.8.5 Browsing Datasets ... 56

6.8.6 Raw View of RDF files in a Browser ... 57

6.8.7 View of Statistics of Processes of Monthly Updates .. 57

6.8.8 View for Reading Errors ... 58

7 Evaluation .. 59

7.1 Input Data ... 59

7.2 Statistics and Performance .. 60

7.2.1 Machine types ... 60

7.2.2 Test Results of the Whole Service .. 60

7.2.3 Test Results of the Update Process ... 61

7.2.4 Performance Measures of SPARQL Endpoint ... 62

7.2.5 Fulfilment of Requirements .. 66

8 Conclusions and Future Work ... 67

9 References ... 68

6

Abbreviations and Meanings of Words

PaaS Platform as a Service

VM Virtual Machine

VMs Virtual Machines

master Virtual Machine named “master”

worker Virtual Machine named “worker”

million – UK English term for denoting number 1 000 000

RDFizing – process of generating RDF graphs from unstructured or structured data, databases

etc.

unresolved entity – an entity extracted from natural language, but it is not confirmed that this

entity actually exists

7

1 Introduction
Governmental institutions produce many documents that are freely accessible to everyone.

These documents assumingly contain names of people, organizations and locations. While

producing, reading or analysing these documents, it may be useful to be aware in what context and

where these names appear elsewhere. Linking the names to all data sources where the names

appear - in a machine-readable format - would substantially increase the quality, transparency,

accessibility and reliability of Open Government Data (OGD) [1].

The open data documents are in various formats like web pages, XML-, PDF-, plain text-,

Excel-files etc. These documents in most cases are written in natural language and are

unstructured or semi-structured. In case of semi-structured XML formats, the exact meaning of

XML nodes is unknown for consumer outside of an application. Semantic web movement has

evolved increasingly popular solution for linking data sources: Resource Description Framework

(RDF) [2] graphs that have machine-readable format. Additionally, RDF graphs can be integrated

with other RDF graphs without the specific API constraints on data. Semantic web and RDF

graphs are concisely introduced in chapter "Background".

This thesis is mainly focused on a strict solution of the RDFizing
1
 problem for Estonian

OGD and on achievement of its as high performance as possible. The problems of security and

authentication of users are out of the thesis scope, therefore they are not addressed here

Before linking names and datasets, the names should be extracted. Regarding the amount

of open data, linking names to their sources cannot be performed manually. Some well-known

semantic web applications and initiatives that extract entities from unstructured or/and semi-

structured data and face other challenges of semantic web (e.g. storage of large graphs and

effective querying of RDF graphs) are introduced in chapters "Background" and "Related Work".

Considering there is no yet system for linking data from unstructured documents in

Estonian, the aim of the thesis is to develop a cloud platform service for transforming Estonian

OGD into Estonian Linked OGD.

The input data of this service is a log file produced by a web crawler [3] having a certain

structure: every line of it contains URL to a file and some metadata. The log file used for testing

this service, contains over 3.1 million lines. The service parses these lines, validates URLs using

the metadata contained in a line and reads the document's contents at that URL. The range of the

document types that this system processes has textual contents, because it later uses entity

recognition tool (the open source tool for Estonian natural language processing (Estnltk) [4]), that

extracts names of people, organizations and locations. Other formats, e.g. images are ignored. The

process of this system is precisely described in the subchapter of chapter "Architecture".

After accessing the content of a document, the service uses Estnltk for extracting the

named entities. Extracted entities are then added to RDF graph using Python's library "RDFlib"

[5]. These and other technological decisions are reasoned in the subchapters of chapter

“Background”. The metadata model used in these RDF graphs is described in chapter "RDF Data

Model".

This service is supposed also to

 keep track on whether some document's content have changed after its last processing

(RDFizing);

1
 RDFizing – process of creating RDF graphs from non-RDF resources (e.g. unstructured and semistructured texts,

databases etc.)

8

 download the processed (RDFized) documents;

 enable browsing the datasets by document's metadata;

 call monthly updates of changed documents for updating RDF graphs,

therefore it is necessary to store metadata of documents and the time when a document was

accessed/RDFized, in a structured way. Reading and writing this metadata model should be fast in

order not to slow down the performance. This metadata is described in chapter "Metadata Model".

After the generation of RDF graphs is completed, the machines and also human users

should be able to query names and web addresses of the documents described in RDF graph by

using SPARQL endpoint. For human users the graphical user interface should be included into

service: for

 uploading log files;

 starting RDFizing process;

 browsing datasets;

 making (simulating in the development phase) monthly updates;

 SPARQL endpoint for querying RDF graphs;

 reading thrown errors (for developers).

In addition to the development of described service, another challenge is to elaborate an

architecture where this service generates RDF triples during a reasonable time, e.g. in 12-24 hours

(regarding the input log file with over 3.1 million URLs to documents). For achieving high

performance of this service, the program is adapted to cloud infrastructure. The cloud computing

service provider used in this project is Google Compute Engine (GCE) [6], but the software (after

changing the code parts related to GCE-specific API) can be migrated to other cloud service

provider as well. 4+1 architecture is described in chapter "Architecture".

9

2 Background
This chapter briefly introduces the semantic web movement, the RDF [2] model

technology and the reasons for the chosen technologies of the current project.

The freely accessible raw data documents in the Internet, like HTML pages, Excel sheets,

XML and other textual documents are unstructured or semi-structured. It is hard to analyse them

by machines. The ideas and technologies described in the following subchapters are supposed to

solve this problem.

2.1 Open Data And Open Government Data
When browsing for definitions of open data (OD) and government open data, it is stated

that open data is the data that is freely accessible and usable to everyone without any restrictions

[7]; open government data (OGD) is the OD that is published by governmental institutions.

Advocates of OGD stress that the publication of governmental data in open formats increases the

government’s transparency and liability. [8, point 1] reasons that „Transparency isn’t just about

access, it is also about sharing and reuse“. One can imagine the huge amount of the OD/OGD

and wonder how applications should utilize this in a constructive and valuable way: the OD/OGD

must be machine-readable and the data sets that are related to each other must be linked/linkable.

2.2 Semantic Web Movement
The main value of linked data stands in having an advantage of being integrated to other

open linked data and being machine-readable due to the semantic graph structure. W3C has

defined the Semantic Web (Web of Data) that “/.../ provides a common framework that allows

data to be shared and reused across application, enterprise, and community boundaries” [9].

Although the concept of Semantic Network is over 50 years old, the term Semantic Web was first

coined in 2001 [10, page 34–43] and the movement of a semantic web of data is relatively young:

in 2006, Tim Berners-Lee introduced 5-star rating system for data [11]. The lowest rating, as

shown in Table 1, is assigned to the open data of non-specified format, while the highest rating to

the data, which is additionally machine-readable and linked.

1 ★ Available on the web (whatever format) but with an open licence, to be Open Data

2
★★

Available as machine-readable structured data (e.g. excel instead of image scan of a

table)

3 ★★★ as (2) plus non-proprietary format (e.g. CSV instead of excel)

4
★★★★

All the above plus, Use open standards from W3C (RDF and SPARQL) to identify

things, so that people can point at your stuff

5 ★★★★★ All the above, plus: Link your data to other people’s data to provide context

Table 1: 5-star scheme for evaluating linked data usability. Based on the table at [11].

The idealistic vision of the semantic web movement is that all open data on the web

becomes a huge open database, a giant global graph. „It’s a linked information space in which data

is being enriched and added. [12]“ The resulting RDF files of this project meet these requirements:

RDF graphs are not proprietary and available from web, RDF graphs are machine-readable,

10

semantics of nodes and relations are described in widely known vocabularies and due to the nature

of RDF graphs, they are linkable to other RDF graphs.

2.3 Resource Description Framework (RDF)
In 1997, the W3C defined the first Resource Description Framework specification [12,

page 97]. It became a World Wide Web Consortium (W3C) recommendation by 1999 [12, page

97]. It is a directed graph-based data model. Its simple structure follows a semantic web standard,

so-called triple. Each triple consists of subject, predicate and object, where predicate is a link

between subject and object. The HTTP-based Uniform Resource Identifiers (URI) can uniquely

identify/name each part in a triple. URI may be just an opaque identifier, a hyperlink to the

resource of some entity, or a hyperlink to vocabulary of some metadata (e.g. a predicate’s certain

metadata is explained in a certain vocabulary). For objects, literals and blank nodes are also

allowed. In [13] a list is given of how things are described with RDF:

1. Triples that describe a resource with literals;

2. Triples that describe a resource by linking to other resources (e.g., triples stating the

resource’s creator, or its type);

3. Triples that describe a resource by linking from other resources (i.e., incoming links);

4. Triples describing related resources (e.g., the name and maybe affiliation of the

resource’s creator);

5. Triples describing the description itself (i.e., data about the data, such as its provenance,

date of collection, or licensing terms);

6. Triples about the broader data set of which this description is a part. [13]

Such a common data model enables machines to operate over all linked data sets.

The RDF metadata model in this project uses literals for extracted names and opaque URIs

to them. It uses real URIs as identities to the web resources (real locations of documents) and

URIs to vocabularies for describing nodes and relations.

For Python language, RDFlib [5] package exists for generating RDF graphs and this

service’s program also uses this package.

2.4 Vocabularies and Ontologies
The two terms often overlap in the articles of semantic web, but a W3C web page says that

“The trend is to use the word “ontology” for more complex, and possibly quite formal collection

of terms, whereas “vocabulary” is used when such a strict formalism is not necessarily used or

only in a very loose sense.” [14] Vocabularies are for defining and explaining concept of metadata

terms used in RDF. In some RDF model, URI of metadata term dereferences to the vocabulary,

where this particular term is explained. It is apparent that these vocabularies must be publicly

accessible. Since the semantic web movement is young, only a few vocabularies are stable: some

initiatives of creating of semantic web vocabularies have risen, some of them have fallen. As not a

rear example, a book about linked data [13], issued 4 years ago in 2011, provides a list of widely

used vocabularies, where the link to DOAP vocabulary, “http://trac.usefulinc.com/doap” has

currently new address, “http://usefulinc.com/ns/doap#“. When choosing some vocabulary, one

must consider whether it will be supported and maintained in the future. Therefore a RDF

publisher should choose a well-known vocabulary that is in widespread usage already. It increases

the probability that applications can understand it and can easily integrate other linked data.

Widely used vocabularies are for example 'Friend of a Friend' (FOAF) [15], „RDF Schema“

(RDFs) [16], „Dublin Core“ (DC) [17], „Semantically-Interlinked Online Communities“ (SIOC)

Core Ontology [18], „Web Ontology Language“ (OWL) [19].

11

This project uses „Named Entity Recognition and Disambiguation“ (NERD) [20] ontology

for unresolved extracted entities of names of people, organizations and locations. NERD has

classes for Person, Organization and Location. Inside Person class, this system uses FOAF for

describing full name, given name and family name.

When a RDF publisher does not find the vocabulary that exactly describes some metadata

concept, then it should create a new one. The appropriate vocabulary may exist, but it is not

always certain whether it will be supported in the future.

RDF publishers define their own vocabularies by combining DC and OWL.

Specifically, this system defines custom vocabulary NER and for describing its title,

dataset properties and description, uses ontologies OWL, RDF and DC. In NER ontology two data

type properties are described: “mentionedAtSite” and “lemma”. The first refers to a web source

and the second to possible lemmas of recognized entity. The amount of data type properties inside

a class may range from one to many. Lemmas are like alternatives of a name in this service.

NER defines and describes also two more types “locationName” and “orgName” for

ensuring that these are names of unresolved
2
 entities.

2.5 Sources for Linked Data
A lot of software is developed for converting data into RDF (see list at [21]). The source

data may be unstructured (natural language), semi-structured (e.g. data in XML or JSON formats),

or of special formats (iCalendar, Excel, Microformats), in relational databases. Applications (e.g.

Lodifier [22], KnowledgeStore [23], Snowball [24], Open Calais [25], OntosLDIW [26], DBpedia

Spotlight [27], this project), which extract entities and their relationships from the unstructured

data make use of the named entity recognition (NER) techniques.

Semi-structured data, like in XML and Json formats, can be transformed into RDF, where

several semantic transformation rules, that try to map e.g. XML schema to ontology structure, are

used in order to convert semi-structured data into RDF structure. Some converters ([28], [29],

[30]) use an approach that requires much effort from a developer: every different type of structure

needs its own set of transformation rules programmed. Others ([31]) have come up with the idea

of eliciting transformation rules automatically. DBpedia extracts the structured part of Wikipedia

by converting Wiki markup language [32] into RDF. The mapping of relational database to RDF

is described in detail in [33].

2.6 Extraction Tool Estnltk
Estnltk — Open Source Tools for Estonian Natural Language Processing.

Estnltk [http://tpetmanson.github.io/estnltk/index.html] is a core module of the system

described in this thesis. Estnltk is developed by A. Tkachenko [34] and T.Petmanson [35]. With

the help of Estnltk tool, the extraction of named entities of locations, organizations and people is

made from Estonian natural language texts. This project uses Pyhton packages’ ner [36], tokenize

[37] and morf [38] classes

 tokenize.Tokenizer();

 morf.PyVabamorfAnalyzer();

 ner.NerTagger().

The precision and recall of Estnltk work is presented in Table 2:

2
 Unresolved entity – extarcted entity from natural languuage, but it is not confirmed this entity (e.g. name of location)

actually exists.

12

Best results for CRFs Best results for MaxEnt

 Precision Recall Precision Recall

LOC 0.89 0.89 LOC 0.85 0.87

PER 0.89 0.89 PER 0.86 0.81

ORG 0.82 0.76 ORG 0.77 0.71

Table 2: Evaluation table of Estnltk, copied from [34, page 30]

2.7 Storing Linked Data
The linked data can be stored into RDF files (in several formats, like RDF/XML [39],

Turtle, N-Triples [40] etc, and in special linked data databases, called triplestores.

The RDF graph files are queried with SPARQL [41] language; there are libraries for this

in several programming languages, e.g. PHP [42], Python [43] etc. RDF files may grow very large

and SPARQL query performance will become low. In that case the publisher should create rules

for splitting large RDF into smaller fragments or store RDF graph triples into triple store.

Triple stores can be broadly classified into three types [44]: native triple stores, those that

are implemented for labelled directed graph as RDF; triple stores that are built on relational

database and NoSQL-based triple stores. Native and NoSQL databases are the best regarding the

performance (becomes critical in case of huge amount of triple entries), because in relational

databases SPARQL must be translated into SQL. The triple stores can process large (billions and

trillions of triples [45]) RDF files with high performance. Many triple store implementations exist,

from which widely known are e.g. Virtuoso [46], Oracle Spatial and Graph with Oracle Database

[47], AllegroGraph [48], Stardog [49].

The RDF graphs in this service are split into three types: for organizations, locations and

people, separately. As a result of processing over 3.1 million lines of log file, the RDF files reach

approximately 6 Mb in size. Querying these large files are at the limit of patience: it takes

approximately 15 seconds to get the SPARQL answer from such large files (although it also

depends on the bandwidth). Therefore in future, some other storage method apart storage into files

should be developed.

2.8 Integrating data: interlinking with other linked data and

mapping vocabularies
Linked data publishers may integrate their own vocabularies to other, more widely known

vocabularies in order to ensure machines can understand it. The more publishers’ data are self-

descriptive, the more easily consumers can integrate it with other Web data. OWL ontology and

RDFs vocabulary have special predicates for mapping vocabularies, like owl:equivalentClass,

rdfs:subClassOf, owl:equivalentProperty, rdfs:subPropertyOf.

For interlinking the same real world entity in other Web data, the publisher or consumer

should use predicate’s URI from OWL ontology:

http://www.w3.org/2002/07/owl#sameAs (sameAs) for stating that the URI aliases

refer to the same resource. Using sameAs is also known as a “data fusion” or “identity

resolution” [50]. For example, if one linked data triple contains some URI that refers to literal

“Estonia”, then in order to link it to DBpedia, a new triple should be added, in which the

predicate is http://www.w3.org/2002/07/owl#sameAs and object is

http://dbpedia.org/page/Estonia.

http://www.w3.org/2002/07/owl#sameAs
http://dbpedia.org/page/Estonia

13

This thesis uses existing ontologies/vocabularies and does not use mapping predicates to

other vocabularies, although in the NERD ontology, there is a list of ontologies which are mapped

to NERD classes. This thesis also defines a few datatype properties for being more precise and

letting consumer be aware that these RDF graphs are for linking extracted names with their source

URLs and that these names may have alternatives. These names are not resolved. It means that it

is not confirmed whether such a name really exists or is just a false positive result of Estnltk work.

These RDF graphs are not linked to DBpedia or Wikipedia, but anyone can link these graphs to

their own or any other necessary data.

2.9 Linked Data Use Cases
Linked data can be used in applications, web pages and search engines. It provides richer,

intelligent information space for data consumer: for example, when searching for some

organization, the linked data approach is able to provide links to opinions of people of this

organization or links about the location of this organization. Another simple example: some tourist

uses a smartphone an application of which delivers links to information about the current

geographical location of the tourist. Some cases of usage and user stories about several life events

are described in [51]. A long list of publicly accessible Linked Data infrastructures are given and

described in [52, page 25].

These RDF graphs that are the products of this service, described in this thesis, can be used

e.g. in applications to make them richer by providing links to the sources of names of people,

organizations and locations that are included in the applications.

2.10 Google Cloud Platform
For thesis cloud service provider the author selected Google Compute Engine [6].

For storing metadata files and generated errors there is a Google Cloud Storage [53] for

storing file’s objects, designed to store extremely large amounts of relatively static data [54].

There is another option for storing Big Data, BigQuery [55]. The data is saved there into

table and it uses a query language similar to SQL. Author considered selecting it in order to save

more free space at master virtual machine (see chapter “Architecture”); and in BigQuery

documentation [55] it is advertised as a low-cost and quick-access repository. However, it was

simpler to let user to upload log file directly into master server, then read and parse it locally for

posting URLs to worker servers, rather than communicating to BigQuery, primary intention of

which is storage of large datasets for easier data mining.

There are several options for creating disks in Google Compute Engine (GCE) that vary in

size of the volume, I/O speed and number of CPUs. For this project, the high-CPU disks and I/O

are important for processing big files. Larger volumes can achieve higher I/O levels [56]. It is

reasonable to use disks with maximum number of CPU (which is 8 in GCE during free trial

period). With the master VM (see chapters 6.4, 6.5) created with 1 CPU, 7 CPUs are left over for

worker VMs (see chapters 6.4, 6.5).

Author also tried Google’s HTTP load balancing [57] with health check service [58] of

virtual machine (VM) group. Load balancing is used for detecting the target (worker machine) that

has the lowest current CPU usage %. However, it did not work out, maybe because of its current

beta release.

Another option for parallel processing would be using Hadoop MapReduce, in which in the

map function would be the workers’ process (getting metadata, extracting entities, generating

RDF graph files) and in the reduce function would be aggregation of generated RDF graphs. This

option is yet unproven and is out of the scope of this project.

14

3 Related Work
In this chapter some linked data initiatives and applications, that make RDF graphs

(software module that extracts the knowledge from unstructured and semi-structured files, files of

special types or relational databases and maps to ontologies/vocabularies) are briefly described

according to their similarities/differences with the aims of the current project.

3.1 DBpedia
DBpedia [http://wiki.dbpedia.org/] is a semantic web initiative that is widely known and

interlinked (around 50 million RDF links to other datasets) It describes 38.3 million things [59]

(counted things in all languages) and altogether stores 3 billion RDF triples. It does not cover only

one topic, but spans multiple domains. It takes Wikipedia pages, finds semantically structured

(Wikipedia uses its own Wiki markup language [32] for metadata) parts of it and translates into

RDF. It declares mappings in 125 languages, no mapping is done in Estonian yet [60] [61]. The

DBpedia’s NER “DBpedia Spotlight” does not recognize Estonian locations, organizations and

names. While writing this, the link to DBpedia Extraction

Framework [wiki.dbpedia.org/Documentation] documentation does not work (it means author cannot

compare it with the current project). DBpedia has currently over 15 projects for maintaining this

crowd-sourced community effort, including descriptions of ontology, datasets statistics, how to

interlink its data, community support etc.

3.2 Wordnet RDF
WordNet [http://wordnet.princeton.edu/wordnet/] is a large lexical database in English

[62]. WordNet RDF [http://wordnet-rdf.princeton.edu/] is the RDF version of WordNet, created

by mapping the existing WordNet data into RDF. The data is structured according to the lemon

(The Lexicon Model for Ontologies) model [63]. In addition, links have been added from several

lexicon sources [63]. Estonian WordNet [64] also exists and uses semantic descriptions for

relations, but these are not in RDF graph format. The Estonian WordNet would be useful when

resolving entities to other words than names, so currently there is no use for this system/service.

3.3 Yago
YAGO (Yet Another Great Ontology) [http://www.mpi-inf.mpg.de/departments/databases-

and-information-systems/research/yago-naga/yago//], another cross-domain data RDFizer, derives

data from Wikipedia, WordNet and GeoNames [65]. Currently, YAGO has knowledge of more

than 10 million entities (like persons, organizations, cities, etc.) and contains more than 120

million facts about these entities [65]. It does not extract entities from Estonian neither offers

customization of extractor.

http://wiki.dbpedia.org/Documentation
http://wiki.dbpedia.org/Documentation
http://en.wikipedia.org/
http://wordnet.princeton.edu/
http://www.geonames.org/

15

3.4 OpenCyc
OpenCyc [http://www.cyc.com/platform/opencyc/] offers its carefully designed ontology

at no cost for research and can be used for rich domain modelling, semantic data integration, text

understanding, domain-specific expert systems and game AIs [66]. It is developed by CyCorp, that

states that OpenCyc is “the world’s largest and most complete general knowledge base and

commonsense reasoning engine” [66]. OpenCyc contains more than 500,000 Cyc terms [66]. The

publisher also states that the platform includes in other modules the natural language parsers and

CycL-to-English generation functions [66]. If developer wants to use it, he/she must request a free

licence beforehand. Platform is developed in Java. It does nothing about extracting from documents

written in Estonian.

3.5 Virtuoso Sponger
The Sponger provides a key platform for developers to generate quality data meshes from

unstructured or semi-structured data [67]. It calls its RDFizers „cartridges“. Virtuoso has a set of

prewritten domain-specific cartridges for e.g. Amazon, Digg, Flickr, Ebay, Technorati, RSS,

Atom and many more [68], that reads metadata from the formats under question. Virtuoso

Sponger RDFizer, given the URL to some document, starts from requesting RDF form (explicitly

via HTTP Accept Headers), and if RDF is returned nothing further happens [69]. It then tries to

find links to RDF documents, RDFa data, microformats, RSS and Atom feeds, web services.

When something is found, it adds results to RDF graph by mapping metadata to appropriate

vocabularies. Sponger also enables customizing of cartridges [70], but does not use any plain text

processing tools, far from extracting entities from Estonian.

3.6 Freebase
Freebase [http://www.freebase.com/] is also community-curated database and spans cross-

domain data, transforms Wikipedia into RDF-structured data and maps these to DBpedia. Most of

its data is added by community members. In Spring 2015 it went into read-only state in order to

develop new version of API [71]. It declares having over 48 million facts and it currently covers

the topics of music, books, media, people, film, TV, business, location, government, science, arts

and sports realms etc. There are links to Wikipedia pages in all given wikipage’s possible

languages in RDF data files, but its types are currently implemented only in English. It runs

publicly since 2007 and was initiated by the American software company Metaweb. In 2010 it was

acquired by Google [72], who currently maintains it and Google’s Knowledgebase is partly

powered with Freebase [73]. It does not extract entities from natural language.

3.7 The GeoNames Ontology
The GeoNames Ontology [http://www.geonames.org/ontology/documentation.html] makes

it possible to add geospatial semantic information to the Word Wide Web [74]. All over 8.3

million geonames toponyms now have a unique URL with a corresponding RDF web service [74].

Other services describe the relation between toponyms [74]. The Ontology for GeoNames is

available in OWL: http://www.geonames.org/ontology/ontology_v3.1.rdf, mappings [74].

GeoNames data is useful if hierarchical geospatial information is needed to integrate e.g. in

applications. It can be linked to this project’s location names, after the names are resolved or while

resolving.

16

3.8 TWC LOGD
 TWC LOGD [https://logd.tw.rpi.edu/home] projects translate government-related datasets

into RDF, linking them to the Web of Data and providing demos and tutorials on mashing up and

consuming linked government data [75]. It hosts 9,951,771,397 RDF triples. It has created 1,888

RDFized datasets originating from 119 sources and enhanced 1,686 RDFized datasets using 9,499

links to other LOD datasets [75]. TWC won 2nd prize at semantic web challenge [75]. Project

“csv2rdf4lod” RDFizes data from comma-separated-values (CSV). It does not extract entities

from natural language.

3.9 PoolParty
Poolparty [http://www.poolparty.biz/] is a proprietary application and sells services for

enterprises. They advertise in their home page that their service provides “precise text mining

algorithms based on semantic knowledge models. With PPX, large amounts of documents and

data records can be analysed in an automated fashion, extracting meaningful phrases, named

entities, categories, sentiment values or other metadata nearly instantaneously [76]”. It uses

Virtuoso software for storing. In its homepage is said that it imports Excel and RDF files, nothing

is said about extracting names from natural language.

3.10 Metafacture
Metafacture [https://github.com/culturegraph/metafacture-core/blob/master/README.md]

focuses mainly on semi-structured library data. It provides a versatile set of tools for reading,

writing and transforming data [77]. It can be used as stand-alone application and also its java

library is usable tool inside Eclipse environment as a Maven dependency. The library ontologies

are not useful in this project’s context. It differs technologically from this project by the

development language and by having no functionality for extracting from texts written in

Estonian.

3.11 Some Widely Known Applications
BBC [78] uses LOD to describe sports by relating events, discipline, athletes, etc. Similar

to this project, it is hosted in cloud. The BBC has an unusually large amount of high value audio,

video, images and text content spanning nearly 90 years [78]. Managing that content, managing

the information within it and making sure that it is available to people throughout the organisation

is a huge task [78]. The development of the linked data platform is a response to this demand [78].

This also ensures the usefulness of linked data: news files/information should be quickly

accessible and modifiable. It does not have functionality for extracting from texts written in

Estonian.

Europeana Linked Open Data [79] is an initiative for promoting more open data, also for

machine-readings, similar to current project. It also has a datasets repository, SPARQL endpoint,

REST API. It links together different data providers’ data and thereby enhances the presentation of

data to users. It does not have functionality for extracting from texts written in Estonian.

European Commission. Health and food safety [80] manages non-relational data using

semantic graphs data management technologies. It also have understood significance of semantic

web: „The main benefits of exposing data semantically are: (a) the capacity to link information;

(b) the automatic guaranteeing of the consistency of linked data.“ [81]

17

To sum up, there is no system for RDFizing entities from Estonian OGD. This thesis

describes this kind of system.

3.12 Data Harvesting. File/document repositories.
Many LOGD applications use CKAN [82] for storing and harvesting open datasets,

for cataloguing, searching and displaying data: Government of United Kingdom [83],

Europe’s Public data [84], Helsinki Region Infoshare online service [85], International Aid

Transparency Initiative [86]. While planning this project there was a intention to store

datasets also with CKAN application. But during reading CKAN documentation in

December 2014, it appeared, that documents cannot be stored remotely over URL, but only

locally (“we have simplified this to only allow local file uploads“ [87]). To avoid double

storage, author decided to download documents’ contents locally into a file system directory.

There is a buckets’ system in Google Cloud Storage for storing files and perform

authorized access to these from GCE virtual machines (VMs). The cloud of virtual machines

in this service save metadata of processed documents into certain structure using json format.

These json-formatted files are stored in GCE buckets. After RDFizing process is finished,

these json files are used as an information base for documents archivation. Archivation means

downloading these documents into master VM (master VM is like a ’manager’ of several

’worker’ VMs). Then these metadata-json-files are also downloaded into master’s local file

system in order to speed up browsing of archived datasets: these metadata-json-files enable

faceted search/browsing by filtering data based on its rich metadata (e.g. content type) and the

sequence of characters in the file name.

18

4 Metadata Model

In this chapter the metadata model of accessed documents is explained.

The metadata creation is driven by the functional requirements with identifiers "genMD",

"updateMD", "readMD", "updateRDF", "downD" and "readD" (see subchapter “Functional

Requirements” of chapter “Architecture”).

Document’s metadata and its accessing time is saved into json-formatted file. It is used in all parts

of the system as an auxiliary file. The structure of metadata is saved in a way that enables

downloading documents, browsing downloaded documents, performing monthly updates. During

every RDFizing process and during updating process, these metadata structures are used for

avoiding duplicate analysing of the same unchanged content.

It is first used when a document is opened at its URL and the document content together with its

metadata are read into memory stream. Its name is host name, extracted from the URL: metadata

of all documents from the same host are saved into the same json-formatted file. For example, two

files with URLs ‘http://www.example.ee/doc1.pdf’ and

‘http://www.example.ee/doc2.xsl’ are saved into same file with name

‘www.example.ee.json’. Firstly, the URL is used to extract a host name and the host name

is then used to check whether the json-file with this host name already exists. (A) IF THE JSON-

FORMATTED FILE DOES NOT EXIST YET, the information in memory stream is used to

create one. This file naming strategy enables fast finding of the right information. The created

json-formatted file contains two types of objects at first level: the basic URL (e.g.

‘http://www.example.ee/’) and the hash value of URL of document (e.g.

sha224(http://www.example.ee/doc1.pdf’)). The hash value strategy is used for two

reasons:

1. When a program opens json-formatted file, it wants to know whether this document at this

URL has already been used for RDFizing earlier. Comparing hash values is a fast way to

find it out.

2. The hash value is used as file name during the archival process: the documents are

downloaded into master VM file system after RDFizing process and naming file with its

actual URL may issue ‘too-long file-name’ error.

One json-formatted file can contain one or many such hashes, according to the number of different

documents used in RDFizing process from the same host.

These hashes are also keys to the metadata information of the document. This information

additionally contains the date that marks the date when this document was used in RDFizing

process.

An example of this json-formatted file is shown in Figure 1. Its name is

“metsakontor.ee.json”, extracted from URL “http://metsakontor.ee/”. It has

two types of first-level keys, marked with yellow background: “base_url” and hash of document

URL. Hash of URL is a key to the second level key (marked with green background) which is

hash of document’s content as it was at the time of RDfizing process.

19

Figure 1: Example of json-formatted metadata file named “metsakontor.ee.json”.

{

 "base_url": "metsakontor.ee",

 "3f697899213213baa36f53d0096eaaee63a9d51ad119809e5aea1a00": {

 "4a3ddc515218f2dbfdc0bb1039c4caabd7e6b168e905057b70f936b6": {

 "status": 200,

 "Content-Length": "2300",

 "Content-Encoding": "gzip",

 "sha224":

"4a3ddc515218f2dbfdc0bb1039c4caabd7e6b168e905057b70f936b6",

 "Vary": "Accept-Encoding,User-Agent",

 "X-Powered-By": "PHP/5.3.28",

 "file_url": "http://metsakontor.ee/?Kus_me_asume...&login",

 "Keep-Alive": "timeout=1, max=100",

 "Server": "Apache/2",

 "localFilename":

"3f697899213213baa36f53d0096eaaee63a9d51ad119809e5aea1a00",

 "Connection": "Keep-Alive",

 "Date": "Fri, 07 Aug 2015 12:35:08 GMT",

 "timeDir": "07_08_2015",

 "Content-Type": "text/html"

 }

 },

 "256855198c9694ef0553ba1f3821098ee90f6a30e2923287ee857d66": {

 "73cb7db500ad650624e9d1532fe7a8cf594163cbc3f1b71b94fbcbfa": {

 "status": 200,

 "Content-Length": "5245",

 "X-Powered-By": "PHP/5.3.28",

 "sha224":

"73cb7db500ad650624e9d1532fe7a8cf594163cbc3f1b71b94fbcbfa",

 "Vary": "Accept-Encoding,User-Agent",

 "Content-Encoding": "gzip",

 "file_url": "http://metsakontor.ee/?Metsakontor&print",

 "Keep-Alive": "timeout=1, max=100",

 "timeDir": "07_08_2015",

 "localFilename":

"256855198c9694ef0553ba1f3821098ee90f6a30e2923287ee857d66",

 "Connection": "Keep-Alive",

 "Date": "Fri, 07 Aug 2015 11:39:50 GMT",

 "Server": "Apache/2",

 "Content-Type": "text/html"

 }

 },

 <another hash of URL>{

 <another hash of content>

 ...

 }

}

20

When the document together with its metadata have been read into memory stream and

checked whether the json-file with this host name exists already and (B) IF THE JSON-

FORMATTED FILE FOR THIS HOST NAME EXISTS, the next step is finding out whether

the hash of document’s URL exists. (B1) If the hash of document’s URL does not exist, ‘new

part’, representing given document, is added into existing json-formatted file and the json-file is

updated in file storage. This ‘new part’ means that it has a

 first level key: hash of document URL;

o second level key: hash of document’s contents at the time it was opened and

read during RDFizing process;

and under second level’s key there is an information that contains key-

value pairs of

 document’s metadata (like content type etc),

 the date when it was accessed during RDFizing ,

 hash of file URL,

 hash of document’s content.

(B2) If the hash of document’s URL exists, the next step is to check whether the content of the

existing document have changed. (B2a) If the content of a existing document have not changed,

then the information and contents of this document is not used in RDFizing process. (B2b) If the

content of a existing document have changed, then the new hash of document’s content is

calculated and the RDFizing process continues with this changed content.

4.1 Using Metadata Model for Downloading Datasets
This json-file is used as information base during downloading process of documents. The

downloading process of documents starts, when the RDFizing process have finished. The json-

formatted files are stored in GCE Cloud Storage. The parts necessary for downloading are the

actual URL and the date which are saved under the mentined second-level key (hash of file

content). The document is downloaded from that URL and stored into master VM folder for

downloaded files, into subfolder with the name that is derived from that mentined date. For

example, if the date of RDFizing of this document was 15/05/2015 (in a format dd/mm/yyyy), the

name of a folder becomes 15_05_2015. The date information is used also before the downloading

of this document starts to avoid overwritting older documents that were downloaded earlier. The

program knows the date when RDFizing process started and downloads only these documents

which date in json-formatted file is ’smaller’ or equal to the current date.

The structure of file system of downloaded documents’ is as follows:

 <date>/<host name>/< local file name (hash of document’s URL)>

 <date>/<host name>/< another local file name>

 <date>/<another host name>/< yet another local file name>

 <another date>/<yet another host name>/< yet yet another local filename>

4.2 Using Metadata Model in Updating Process
These metadata json-formatted files are downloaded into master VM, after RDFizing

process and downloading process have finished. Updating process uses these json-formatted files

as knowledge base for

 getting URLs of documents

21

 comparing second-level keys (hash of document contents) to the current hash of

document’s content. If the conetnt hashes are different, it means that document’s

content have changed and it is necessary to start new RDFizing process in order to find

new named entitties and update RDF files. Next step in this case is (B2b) (explained at

the start of this chapter).

4.3 Using Metadata Model for Browsing Datasets
The information that is saved into these json-formatted metadata files are a knowledge

base for displaying downloaded datasets to users:

 it gets and displays the actual URLs of the documents (key-value pairs under the

second level key (hash of file content)),

 it displays also path to locally archived document (using date and local file name (hash

of document’s URL))

 it can filter and sort datasets by the document’s metadata: e.g. by content type,

accessing date and so on. Currently, in this service, the filtering of documents by their

content type is implemented.

Few examples of the downloaded documents’ local paths would be

 12_05_2015/arileht.delfi.ee/d5fbf9cf5907ebc8fa88ce8950fa6108e582da92c5ed462348b34d

3b

 12_05_2015/arileht.delfi.ee/d78992ca7da86f09cd0a264b464b26d39be0891441c2b1bd2aea

5838

That follows the structure

<date>/<host name>/<local file name (hash of document’s URL)>

22

5 RDF Data Model

In this chapter the structure of RDF graphs’ data model is explained.

5.1 Used Vocabularies/Ontologies
The vocabularies used in RDF graphs are RDF, NERD, FOAF, OWL, DC and NER. This

service uses RDF/XML format for RDF graphs.

Prefixes inside RDF files look as follows:

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ner="http://www.estner.ee/estnerd#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:nerd="http://nerd.eurecom.fr/ontology#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
>
</rdf:RDF>

 NERD [20]

This ontology represents recognised named entities. In this service’s RDF graphs are used

its classes

o nerd:Location

o nerd:Organization

o nerd:Person

 RDF

This ontology is always used in RDF graphs

 FOAF

FOAF is used in order to be more precise inside nerd:Person class. Its terms

foaf:gname is used for saving person’s given names

foaf:fname is used for saving person’s family name

foaf: name is used to save persons full name

Example of using FOAF inside NERD class Person:

 <nerd:Person rdf:about="http://nerd.eurecom.fr/ontology#katrin_paio">
 <ner:mentionedAtSite rdf:resource="http://online.le.ee/2014/02/"/>
 <foaf:givenName>Katrin</foaf:givenName>
 <foaf:familyName>Paio</foaf:familyName>
 <ner:lemma>katrin paio</ner:lemma>
 <foaf:name>Katrin Paio</foaf:name>
 </nerd:Person>

23

 OWL and NER

owl:Ontology is used for defining own custom ontology in order for being more precise.

Its namespace is ‘http://www.estner.ee/estnerd#’ (with prefix ner). It is used

inside NERD classes of Location and Organization for precisely defining that we deal with

the term name inside classes nerd:Organization or nerd:Location. These are

 ner:locationName and

with namespace http://www.estner.ee/estnerd#locationName

 ner:orgName.

With namespace http://www.estner.ee/estnerd#orgName

In this ner ontology are also properties that describe that some name has found from some web

site

 ner:mentionedAtSite

with namespace http://www.estner.ee/estnerd#mentionedAtSite

and another property

 ner:lemma for describing that certain recognized name entity has alternatives .

with namespace http://www.estner.ee/estnerd#lemma

The latter is necessary, because Estonian words may be written in over 14 cases. Two or

more formed words may have same shape, but different meaning and lemma. The property

for alternatives is also used for saving the same word in upper-case and lower-case for

simplifying work of SPARQL query.

This ner ontology inside RDF graph looks as follows (in RDF/XML format):

<owl:Ontology rdf:about="http://www.estner.ee/estnerd#">
 <dc:title>estNERD Ontology</dc:title>

<dc:description>Locations, organizations and persons extracted
from Estonian open data, using Estnltk — Open source tools for
Estonian natural language processing
[http://tpetmanson.github.io/estnltk/].</dc:description>

 </owl:Ontology>
<owl:DatatypeProperty rdf:about="http://www.estner.ee/estnerd#orgName">

<dc:description>Unresolved name of organization. Exctarcted using
Estnltk — Open source tools for Estonian natural language
processing.
[http://tpetmanson.github.io/estnltk/].</dc:description>

</ owl:DatatypeProperty >
<owl:DatatypeProperty rdf:about="http://www.estner.ee/estnerd#lemma">

<dc:description>Alternative for unresolved name; exctarcted using
Estnltk — Open source tools for Estonian natural language
processing.</dc:description>

</ owl:DatatypeProperty >
<owl:DatatypeProperty
rdf:about="http://www.estner.ee/estnerd#mentionedAtSite">

<dc:description>Web site, where unresolved name was found using
Estnltk — Open source tools for Estonian natural language
processing.</dc:description>

</ owl:DatatypeProperty >

http://www.estner.ee/estnerd#locationName
http://www.estner.ee/estnerd#orgName
http://www.estner.ee/estnerd#lemma

24

 DC

dc:description term is used for describing the ner ontology and its terms ‘lemma’,

‘mentionedAtSite’, ‘locationName’ and ‘orgName’.

[http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=elements#description]

dc:title term is used for writing title for ner ontology

[http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=elements#title]

5.2 Example of RDF Graph for Organizations
RDF graph file for organizations has name ORG.rdf. Here is an example of one

organization in this file:

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ner="http://www.estner.ee/estnerd#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:nerd="http://nerd.eurecom.fr/ontology#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
>
 <nerd:Organization
rdf:about="http://nerd.eurecom.fr/ontology#megastarile">
 <ner:orgName>Megastarile</ner:orgName>
 <ner:lemma>megastarile</ner:lemma>
 <ner:lemma>Megastar</ner:lemma>
 <ner:lemma>Megastarile</ner:lemma>
 <ner:lemma>Megastari</ner:lemma>
 <ner:mentionedAtSite
rdf:resource="http://www.megastar.ee/privaatsus"/>
 </nerd:Organization>
<owl:Ontology rdf:about="http://www.estner.ee/estnerd#">
 <dc:title>estNERD Ontology</dc:title>

<dc:description>Locations, organizations and persons extracted from
Estonian open data, using Estnltk — Open source tools for Estonian
natural language processing
[http://tpetmanson.github.io/estnltk/].</dc:description>

 </owl:Ontology>
<owl:DatatypeProperty rdf:about="http://www.estner.ee/estnerd#orgName">

<dc:description>Unresolved name of organization. Exctarcted using
Estnltk — Open source tools for Estonian natural language
processing.
[http://tpetmanson.github.io/estnltk/].</dc:description>

</ owl:DatatypeProperty >
<owl:DatatypeProperty rdf:about="http://www.estner.ee/estnerd#lemma">
 <dc:description>Alternative for unresolved name; exctarcted using
Estnltk — Open source tools for Estonian natural language
processing.</dc:description>
</ owl:DatatypeProperty >
<owl:DatatypeProperty
rdf:about="http://www.estner.ee/estnerd#mentionedAtSite">

25

<dc:description>Web site, where unresolved name was found using
Estnltk — Open source tools for Estonian natural language
processing.</dc:description>

</ owl:DatatypeProperty >
</rdf:RDF>

5.3 Example of RDF Graph for Locations
RDF graph file for locations has name LOC.rdf. Here is an example of one location in this file:

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ner="http://www.estner.ee/estnerd#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:nerd="http://nerd.eurecom.fr/ontology#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
>
 <nerd:Location rdf:about="http://nerd.eurecom.fr/ontology#võru">
 <ner:mentionedAtSite
rdf:resource="http://www.rantell.ee/2012/11/"/>
 <ner:lemma>Võru</ner:lemma>
 <ner:locationName>Võru</ner:locationName>
 <ner:lemma>võru</ner:lemma>
 <ner:mentionedAtSite rdf:resource="http://www.rantell.ee/2012/"/>
 <ner:mentionedAtSite
rdf:resource="http://www.rantell.ee/author/admin/feed/"/>
 </nerd:Location>
<owl:Ontology rdf:about="http://www.estner.ee/estnerd#">
 <dc:title>estNERD Ontology</dc:title>
 <dc:description>Locations, organizations and persons extracted from
Estonian open data, using Estnltk — Open source tools for Estonian
natural language processing
[http://tpetmanson.github.io/estnltk/].</dc:description>
 </owl:Ontology>
<owl:DatatypeProperty
rdf:about="http://www.estner.ee/estnerd#locationName">
 <dc:description>Unresolved name of location. Exctarcted using
Estnltk — Open source tools for Estonian natural language processing
[http://tpetmanson.github.io/estnltk/].</dc:description>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="http://www.estner.ee/estnerd#lemma">
 <dc:description>Alternative for unresolved name; exctarcted using
Estnltk — Open source tools for Estonian natural language
processing.</dc:description>
</owl:DatatypeProperty >
<owl:DatatypeProperty
rdf:about="http://www.estner.ee/estnerd#mentionedAtSite">

26

 <dc:description>Web site, where unresolved name was found using
Estnltk — Open source tools for Estonian natural language
processing.</dc:description>
</owl:DatatypeProperty >
</rdf:RDF>

5.4 Example of RDF Graph for People
RDF graph file for people has name PER.rdf. Here is an example of one person in this file:

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ner="http://www.estner.ee/estnerd#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:nerd="http://nerd.eurecom.fr/ontology#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
>
 <nerd:Person rdf:about="http://nerd.eurecom.fr/ontology#katrin_paio">
 <ner:mentionedAtSite rdf:resource="http://online.le.ee/2014/02/"/>
 <foaf:givenName>Katrin</foaf:givenName>
 <foaf:familyName>Paio</foaf:familyName>
 <ner:lemma>katrin paio</ner:lemma>
 <foaf:name>Katrin Paio</foaf:name>
 </nerd:Person>
<owl:Ontology rdf:about="http://www.estner.ee/estnerd#">
 <dc:title>estNERD Ontology</dc:title>
 <dc:description>Locations, organizations and persons extracted from
Estonian open data, using 'Estnltk — Open source tools for Estonian
natural language processing'
[http://tpetmanson.github.io/estnltk/].</dc:description>
 </owl:Ontology>
<owl:DatatypeProperty rdf:about="http://www.estner.ee/estnerd#lemma">
 <dc:description>Alternative for unresolved name; exctarcted using
Estnltk — Open source tools for Estonian natural language
processing.</dc:description>
</ owl:DatatypeProperty >
<owl:DatatypeProperty
rdf:about="http://www.estner.ee/estnerd#mentionedAtSite">
 <dc:description>Web site, where unresolved name was found using
Estnltk — Open source tools for Estonian natural language
processing.</dc:description>
</ owl:DatatypeProperty >
</rdf:RDF>

27

5.5 Example of Triples in Locations Graph
Here for giving another viewpoint the triples of a location graph are shown in Table 3:

N

r
Subject Predicate Object

1
http://www.estn

er.ee/estnerd#

http://www.w3.org/1

999/02/22-rdf-

syntax-ns#type

http://www.w3.org/2002/07/owl#Ont

ology

2
http://www.estn

er.ee/estnerd#

http://purl.org/dc/

elements/1.1/descri

ption

"Locations, organizations and persons extracted

from Estonian open data, using Estnltk Open

source tools for Estonian natural language

processing' [http://tpetmanson.github.io/estnltk/]."

3
http://www.estn

er.ee/estnerd#

http://purl.org/dc/

elements/1.1/title

"estNERD Ontology"

4

http://nerd.eur

ecom.fr/ontolog

y#sillamäe

http://www.w3.org/1

999/02/22-rdf-

syntax-ns#type

http://nerd.eurecom.fr/ontology#L

ocation

5

http://nerd.eur

ecom.fr/ontolog

y#sillamäe

http://www.estner.e

e/estnerd#mentioned

AtSite

http://www.christiansen.ee/as-

bct-labis-edukalt-integreeritud-

juhtimissusteemi-valisauditid

6

http://nerd.eur

ecom.fr/ontolog

y#sillamäe

http://www.estner.e

e/estnerd#locationN

ame

"Sillamäe"

7

http://nerd.eur

ecom.fr/ontolog

y#sillamäe

http://www.estner.e

e/estnerd#lemma

"sillamäe"

8

http://nerd.eur

ecom.fr/ontolog

y#sillamäe

http://www.estner.e

e/estnerd#lemma

"Sillamäe"

9

http://www.estn

er.ee/estnerd#l

ocationName

http://www.w3.org/1

999/02/22-rdf-

syntax-ns#type

http://www.w3.org/2002/07/owl#Dat

atypeProperty

1

0

http://www.estn

er.ee/estnerd#l

ocationName

http://purl.org/dc/

elements/1.1/descri

ption

"Unresolved name of location. Exctarcted using

Estnltk — Open source tools for Estonian natural

language processing

[http://tpetmanson.github.io/estnltk/]."

1

1

http://www.estn

er.ee/estnerd#l

emma

http://www.w3.org/1

999/02/22-rdf-

syntax-ns#type

http://www.w3.org/2002/07/owl#Dat

atypeProperty

1

2

http://www.estn

er.ee/estnerd#l

emma

http://purl.org/dc/

elements/1.1/descri

ption

"Alternative for unresolved name; exctarcted

using Estnltk — Open source tools for Estonian

natural language processing."

1

3

http://www.estn

er.ee/estnerd#m

entionedAtSite

http://purl.org/d

c/elements/1.1/de

scription

"Web site, where unresolved name was found

using Estnltk — Open source tools for Estonian

natural language processing."

Table 3: Triples of the Data Model of a Location RDF graph.

http://www.estner.ee/estnerd
http://www.estner.ee/estnerd
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2002/07/owl#Ontology
http://www.w3.org/2002/07/owl#Ontology
http://www.estner.ee/estnerd
http://www.estner.ee/estnerd
http://purl.org/dc/elements/1.1/description
http://purl.org/dc/elements/1.1/description
http://purl.org/dc/elements/1.1/description
http://www.estner.ee/estnerd
http://www.estner.ee/estnerd
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/title
http://nerd.eurecom.fr/ontology#sillamäe
http://nerd.eurecom.fr/ontology#sillamäe
http://nerd.eurecom.fr/ontology#sillamäe
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://nerd.eurecom.fr/ontology#Location
http://nerd.eurecom.fr/ontology#Location
http://nerd.eurecom.fr/ontology#sillamäe
http://nerd.eurecom.fr/ontology#sillamäe
http://nerd.eurecom.fr/ontology#sillamäe
http://www.estner.ee/estnerd#mentionedAtSite
http://www.estner.ee/estnerd#mentionedAtSite
http://www.estner.ee/estnerd#mentionedAtSite
http://www.christiansen.ee/as-bct-labis-edukalt-integreeritud-juhtimissusteemi-valisauditid
http://www.christiansen.ee/as-bct-labis-edukalt-integreeritud-juhtimissusteemi-valisauditid
http://www.christiansen.ee/as-bct-labis-edukalt-integreeritud-juhtimissusteemi-valisauditid
http://nerd.eurecom.fr/ontology#sillamäe
http://nerd.eurecom.fr/ontology#sillamäe
http://nerd.eurecom.fr/ontology#sillamäe
http://www.estner.ee/estnerd#locationName
http://www.estner.ee/estnerd#locationName
http://www.estner.ee/estnerd#locationName
http://nerd.eurecom.fr/ontology#sillamäe
http://nerd.eurecom.fr/ontology#sillamäe
http://nerd.eurecom.fr/ontology#sillamäe
http://www.estner.ee/estnerd#lemma
http://www.estner.ee/estnerd#lemma
http://nerd.eurecom.fr/ontology#sillamäe
http://nerd.eurecom.fr/ontology#sillamäe
http://nerd.eurecom.fr/ontology#sillamäe
http://www.estner.ee/estnerd#lemma
http://www.estner.ee/estnerd#lemma
http://www.estner.ee/estnerd#locationName
http://www.estner.ee/estnerd#locationName
http://www.estner.ee/estnerd#locationName
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2002/07/owl#DatatypeProperty
http://www.w3.org/2002/07/owl#DatatypeProperty
http://www.estner.ee/estnerd#locationName
http://www.estner.ee/estnerd#locationName
http://www.estner.ee/estnerd#locationName
http://purl.org/dc/elements/1.1/description
http://purl.org/dc/elements/1.1/description
http://purl.org/dc/elements/1.1/description
http://www.estner.ee/estnerd#lemma
http://www.estner.ee/estnerd#lemma
http://www.estner.ee/estnerd#lemma
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2002/07/owl#DatatypeProperty
http://www.w3.org/2002/07/owl#DatatypeProperty
http://www.estner.ee/estnerd#lemma
http://www.estner.ee/estnerd#lemma
http://www.estner.ee/estnerd#lemma
http://purl.org/dc/elements/1.1/description
http://purl.org/dc/elements/1.1/description
http://purl.org/dc/elements/1.1/description
http://www.estner.ee/estnerd#mentionedAtSite
http://www.estner.ee/estnerd#mentionedAtSite
http://www.estner.ee/estnerd#mentionedAtSite
http://purl.org/dc/elements/1.1/description
http://purl.org/dc/elements/1.1/description
http://purl.org/dc/elements/1.1/description

28

6 Architecture

In the first subchapter the selected programming languages are reasoned. In the second

subchapter the functional and non-functional requirements are presented.

In the next subchapters the presented architecture follows 4+1 architecture guidelines of

[88] in a broad way: it includes

• physical view of components in a cloud and how they communicate;

• development view shows what software part is in which physical component and

what messages they send;

• in logical view no class relationships are shown, because in this service data flows

sequentially like in pipeline and in parallel CPUs and worker VMs. This data flow

is shown instead;

• process view shows what decision points are made in this data flow;

• potential use case scenarios of what kind of problems this system should solve.

 In selecting these diagram types for each view, the transparency [89] of the system is born

in mind. For complementary information, textual explanations are added to the diagrams.

As described in subchapters 6.4 and 6.5, the system mainly consists of two parts: master

and group (cloud) of workers. The architecture is tested in the Google Compute Engine [6]

environment and uses Google Compute Engine (GCE) API tools [90] for creating master server

and virtual machines in the cloud of worker instances (see Figure 2).

This architecture does not include solutions for security and authentication of users, this

topic is out of the thesis’ scope, the focus is on developing the architecture and software for

strictly solving RDFizing problem for Estonian OGD and achieving it with the service

performance as high as possible.

6.1 Programming Languages
Python language versions 2.7 and 3.4 are both used. Python 2.7 is used in communicating

with Google Cloud API [90], because it does not support newer versions. Python 3.4 is chosen for

programming all other parts, because there is a simple python package „RDFlib“[5] for creating,

parsing, serializing and querying RDF graphs. There is a multiprocessing package in Python,

which is a simple tool for creating pool of processes. This pool is used in worker VMs (see

subchapter 6.4) for forking URLs (from the incoming list of URLs) into several processes. Using

multiple processes in parallel helps to speed up the performance. Next important reason is that

Estnltk [4] is also developed in Python.

PHP is another used language, because it is simple to handle POST and GET requests; also

to call Python modules.

6.2 Migrating Software to GCE
The installation of the required packages and dependences is described in Appendix A:

Installation. Also, installation guidelines into master is at

29

https://github.com/Mailis/EstNer/tree/master/cloud/master/readme.md. And installation into

worker is described in https://github.com/Mailis/EstNer/tree/master/cloud/worker/readme.md.

Documentation is at https://github.com/Mailis/EstNer/tree/master/cloud/readme.md.

Setting project up in GCE, is described in https://cloud.google.com/compute/docs/projects.

Then create 2 instances of VMs: 1
st
 for master and 2

nd
 for worker. The instances should be

high-CPU (GCE notation) with as many CPUs as possible. Use large persistent disk, because the

larger the disk, the faster the I/O operations, in order to speed up the performance.

To enable networking, allow HTTP and HTTPS traffics for both instance types.

Enable permissions for both instance types as follows:

User info - Enabled

Compute - Read Write

Storage - Full

Task queue - Disabled

BigQuery -Disabled

Cloud SQL -Disabled

Cloud Datastore - Enabled

Cloud Logging API - Full

Cloud Monitoring API - Disabled

Cloud Platform - Enabled

Bigtable Data - Disabled

Bigtable Admin - Disabled

Example of creating master instance, using REST [91]
{

 "kind": "compute#instance",

 "id": "16567739923284107723",

 "creationTimestamp": "2015-07-31T15:38:36.696-07:00",

 "zone": "https://www.googleapis.com/compute/v1/projects/estn-

1006/zones/europe-west1-b",

 "status": "RUNNING",

 "name": "master",

 "description": "",

 "tags": {

 "items": [

 "http-server",

 "https-server"

],

 "fingerprint": "6smc4R4d39I="

 },

 "machineType": "https://www.googleapis.com/compute/v1/projects/estn-

1006/zones/europe-west1-b/machineTypes/n1-standard-1",

 "canIpForward": true,

 "networkInterfaces": [

 {

 "network": "https://www.googleapis.com/compute/v1/projects/estn-

1006/global/networks/default",

 "networkIP": "10.240.121.245",

 "name": "nic0",

 "accessConfigs": [

 {

 "kind": "compute#accessConfig",

 "type": "ONE_TO_ONE_NAT",

https://github.com/Mailis/EstNer/tree/master/cloud/master/readme.md
https://github.com/Mailis/EstNer/tree/master/cloud/worker/readme.md
https://github.com/Mailis/EstNer/tree/master/cloud/readme.md
https://cloud.google.com/compute/docs/projects

30

 "name": "External NAT",

 "natIP": "104.155.42.131"

 }

]

 }

],

 "disks": [

 {

 "kind": "compute#attachedDisk",

 "index": 0,

 "type": "PERSISTENT",

 "mode": "READ_WRITE",

 "source": "https://www.googleapis.com/compute/v1/projects/estn-

1006/zones/europe-west1-b/disks/master",

 "deviceName": "master",

 "boot": true,

 "autoDelete": true,

 "licenses": [

 "https://www.googleapis.com/compute/v1/projects/ubuntu-os-

cloud/global/licenses/ubuntu-1504-vivid"

],

 "interface": "SCSI"

 }

],

 "metadata": {

 "kind": "compute#metadata",

 "fingerprint": "4S8uYwkS5dM="

 },

 "serviceAccounts": [

 {

 "email": "662266012403-compute@developer.gserviceaccount.com",

 "scopes": [

 "https://www.googleapis.com/auth/cloud-platform",

 "https://www.googleapis.com/auth/compute",

 "https://www.googleapis.com/auth/datastore",

 "https://www.googleapis.com/auth/devstorage.full_control",

 "https://www.googleapis.com/auth/logging.admin",

 "https://www.googleapis.com/auth/userinfo.email"

]

 }

],

 "selfLink": "https://www.googleapis.com/compute/v1/projects/estn-

1006/zones/europe-west1-b/instances/master",

 "scheduling": {

 "onHostMaintenance": "MIGRATE",

 "automaticRestart": true,

 "preemptible": false

 },

 "cpuPlatform": "Intel Sandy Bridge"

}

Example of creating worker instance, using REST [91]
{

 "kind": "compute#instance",

 "id": "14911290095909708907",

 "creationTimestamp": "2015-08-06T06:59:19.766-07:00",

 "zone": "https://www.googleapis.com/compute/v1/projects/estn-

1006/zones/europe-west1-b",

31

 "status": "RUNNING",

 "name": "worker1",

 "description": "",

 "tags": {

 "items": [

 "http-server",

 "https-server"

],

 "fingerprint": "6smc4R4d39I="

 },

 "machineType": "https://www.googleapis.com/compute/v1/projects/estn-

1006/zones/europe-west1-b/machineTypes/n1-highcpu-2",

 "canIpForward": true,

 "networkInterfaces": [

 {

 "network": "https://www.googleapis.com/compute/v1/projects/estn-

1006/global/networks/default",

 "networkIP": "10.240.124.124",

 "name": "nic0",

 "accessConfigs": [

 {

 "kind": "compute#accessConfig",

 "type": "ONE_TO_ONE_NAT",

 "name": "External NAT",

 "natIP": "104.155.76.242"

 }

]

 }

],

 "disks": [

 {

 "kind": "compute#attachedDisk",

 "index": 0,

 "type": "PERSISTENT",

 "mode": "READ_WRITE",

 "source": "https://www.googleapis.com/compute/v1/projects/estn-

1006/zones/europe-west1-b/disks/worker1",

 "deviceName": "worker1",

 "boot": true,

 "autoDelete": true,

 "licenses": [

 "https://www.googleapis.com/compute/v1/projects/ubuntu-os-

cloud/global/licenses/ubuntu-1504-vivid"

],

 "interface": "SCSI"

 }

],

 "metadata": {

 "kind": "compute#metadata",

 "fingerprint": "4S8uYwkS5dM="

 },

 "serviceAccounts": [

 {

 "email": "662266012403-compute@developer.gserviceaccount.com",

 "scopes": [

 "https://www.googleapis.com/auth/cloud-platform",

 "https://www.googleapis.com/auth/compute",

 "https://www.googleapis.com/auth/datastore",

32

 "https://www.googleapis.com/auth/devstorage.full_control",

 "https://www.googleapis.com/auth/logging.admin",

 "https://www.googleapis.com/auth/userinfo.email"

]

 }

],

 "selfLink": "https://www.googleapis.com/compute/v1/projects/estn-

1006/zones/europe-west1-b/instances/worker1",

 "scheduling": {

 "onHostMaintenance": "MIGRATE",

 "automaticRestart": true,

 "preemptible": false

 },

 "cpuPlatform": "Intel Sandy Bridge"

}

If instances are created, open the SSH’s command prompts of these instances and follow

installation guidelines. Before uploading software into instances, change the project name

“estn-1006“ of variable PROJECT_ID = "estn-1006" to your project’s name. This must

be changed in two files:

 in master server it is

upload_logfile/commonVariables.py and

 in worker server it is

storage/commonvariables.py.

When installation is ready, create snapshots of these instances. Then it is possible to delete

VMs and create quickly from snapshots again. When creating master VM, put the name

“master” to it. If you want to use other name for master, change the variable

MASTERINSTANCE_NAME = “master” name in both,

 in the master VM
upload_logfile/commonVariables.py

 and in the worker VM

storage/commonvariables.py.

Also, if you use other GCE zone than “europe-west1-b”, change the variable value

DEFAULT_ZONE = 'europe-west1-b' in these same files.

Open GCE Cloud Storage [53] browser (using GCE console for developers) and create

new bucket with name “datadownload_jsons” (for storing metadata json-formatted files)

and another with name “generated_files” (for storing errors). If you want to use other

names for buckets, change the respective names in these files

(in master server it is

 upload_logfile/commonVariables.py

and in worker server it is

 storage/commonvariables.py).

Demo version is at address during August, 2015: http://104.155.42.131/ .

6.3 Requirements
In this chapter the functional and nonfunctional requirements are described.

http://104.155.42.131/

33

6.3.1Functional Requirements

In Table 4, functional requirements are shown. Basic requirements are upLOG, genRDF,

updateRDF, downD, readRDFm, readRDFh and readD. Requirements related to metadata (see

chapter 4, “Metadata Model”) are derived from basic requirements, because these (updateRDF,

downD and readD, readRDFm) are not possible to fulfil without metadata ones. Requirements

for developers (readE, genE) are important from developers point of view, mainly for testing

purposes during development cycles. “States before act” are prerequisites. These prerequisites are

fulfilled in other requirements’ “state after act”, except in upLOG. Related states are depicted

with the same background colour in this Table 4.

Short overview of requirements (id of requirement is in bold, see Table 4):

upLOG

Human user can upload log file using graphical user interface (GUI).

genRDF

Generating RDF files: human user can push a button, using GUI, to start RDFizing

process.

updateRDF

System should start monthly updates on a datetime that is programmed by developer. The

starter is master VM.

downD

Download analyzed-RDFized documents. It starts automatically after RDFizing process is

finished.

readD

Human can read and browse downloaded documents (aka datasets).

readRDFm

Machine can query RDF files and receive response using SPARQL endpoint webservices.

readRDFh

Humans can also query RDF files and receive response, using GUI for SPARQL endpoint.

genMD

Generating metadata derives from requirements updateRDF , downD, readD.

updateMD

Updating metadata derives from requirement updateRDF.

readMD

Reading metadata derives from requirement readD, updateRDF , downD, readD.

readE

Developer of this system should be aware of the thrown errors in order to make better

software.

genE

For debugging and testing of software, developer must see thrown errors, errors must be

stored. This derives from requirement readE.

34

id Act actor(s) state before act state after act

upLOG

upload log

file

human user new log file is not

uploaded

new logfile is uploaded

genRDF generate

RDF graph

nodes from

log file, save

them into

rdf-files

human user

(act starter),

master VM,

worker VMs,

GCE Storage

log file is uploaded;

graphs from this log file

are not created or need to

update;

RDF graphs in master

VM may or may not exist

RDF graph nodes are created

and saved into RDF-files
LOC.rdf. ORG.rdf,

PER.rdf

 in master VM,

metadata in GCE Storage are

created or updated;

metadata are downloaded to

master VM

updateRDF update RDF

graphs and

datasets

archive

master VM

(act starter),

worker VMs,

GCE Storage

metadata in GCE Storage

must exist; RDF graphs in

master VM may or may

not exist

RDF graphs are updated in

master VM; metadata in

GCE Storage are updated;

metadata are downloaded to

master VM

documents in archive are

updated and downloaded

 into master VM

downD download

documents
master server

(act starter),

GCE Storage

metadata in GCE Storage

must exist; documents

may or may not exist in

master VM

documents in archive are

downloaded

 into master VM

readD read

documents
human user

(act starter),

master VM

documents are

downloaded

 into master VM;

metadata are downloaded

to master VM

documents can be browsed,

displayed and read

readRDFm read RDF

graphs
machine

(act starter),

master VM

RDF graph nodes are

created and saved into

RDF-files
LOC.rdf. ORG.rdf,

PER.rdf

 in master VM; SPARQL

endpoint webservices

exist;

valid query sentence is

sent using POST method

query (using POST method)

to web service received,

response of web service is

delivered

readRDFh read RDF

graphs
human user

(act starter),

master VM

RDF graph nodes are

created and saved into
RDF-files

LOC.rdf. ORG.rdf,

PER.rdf

 in master VM; SPARQL

endpoint GUI exists

graph is read

genMD generate

metadata

worker VMs genRDF or updateRDF

 has started

metadata is read and stored

in certain structure; metadata

in GCE Storage exist;

updateMD update

metadata

worker VMs metadata in GCE Storage

must exist;

metadata in GCE Storage are

updated; metadata in GCE

Storage exist;

readMD read

metadata

worker VMs,

master VM

metadata are downloaded

to master VM

metadata is read

35

id Act actor(s) state before act state after act

genE generate

error and

store it

master VM,

worker VMs

error is thrown inside

system

error is stored

readE read

generated

errors

system

developer

(author)

error is stored error is read

Table 4: Functional requirements.

6.3.2Non-functional Requirements
System must finish working during reasonable time elapse (~during 24 hours), regarding log file

consists of approximately 3.1 million lines and every line contains an URL to the document.

6.4 Physical View
The components of physical view are featured in Figure 2 and consist of master server, which

sends URLs to the cloud of workers (virtual machine instances). Master server gets log file from

client and stores it into its own file system. In Figure 2 it is shown that Ubuntu 14 is required, but

this is also tested on Ubuntu 15.

.

Figure 2: Physical components diagram

HTTP

client/Internet

Cloud Service Provider: GCE

Physical server: Apache2

Operating System: Ubuntu 14.04

Application

with user interface

Cloud Storage

Bucket: metadata *.json files

Bucket: thrown error *.txt files

BiqQuery

DataSet: logfiles

 Logile(2)-logfile (n-1)

Big Table: logfile (n)

Big Table: logfile (1)

HTTPS/HTTP

HTTPS/HTTP

Cloud of workers

Physical server: Apache2, VM(1)

Operating System: Ubuntu 14.04

 Application for processes

 VM(2)-VM(n-1)

Physical server: Apache2, VM(n)

Operating System: Ubuntu 14.04

 Application for processes

 HTTP

master VM

36

6.5 Development View
General development view is diagrammed in Figure 3. In Figure 4 a more precise diagram of

components of GCE and their interlinks are shown. More close textual explanation for master and

worker then follows.

 Figure 3: development components diagram.

 Figure 4: GET and POST requests in Google Compute Engine.

Master Server

Application

UI

Manager for list

of workers

Worker in cloud of VMs

Application for parallel

processes

Internet:

OGD documents

Internet:

/OGD

documents

/client
VM

authent./storage

37

In GCE it is possible to create VMs from snapshot programmatically. It is reasonable to

create master and worker virtual machines (VMs) from GCE snapshot, especially when using

many VMs. Because of the limited free trial period this is not currently developed for this service,

it uses just 4 worker VMs. Author installed software onto 2 GCE disks, separately for master and

workers, then made 2 snapshots, separately for master and workers, where all necessary software

was present. Then created virtual machines from snapshots manually, 1 for master and from

another snapshot 4 ones for workers. Eventually there were 4 worker VMs and one master VM.

In the master VM resides the software for

 communicating with client;

 POSTing tasks to worker VMs;

 GETting RDF graph files from worker VMs;

 communicating with GCE Cloud Storage;

 downloading OGD from Internet (other than Excel and PDF formats).

In worker VMs resides the software for

 reading POSTs from master VM;

 generating RDF graph files;

 communicating with GCE Cloud Storage;

 downloading OGD from Internet (Excel and PDF formats).

The master VM acts like a manager that sends tasks to worker VMs. It sends list of tasks

to VMs, every worker VM gets different list, until all lines in log file are read. Worker VMs

generate RDF files and download Excel and PDF files from Internet (these can be read only from

local file storage). Worker VMs generate errors and metadata objects into GCE Cloud Storage (in

Buckets). When worker VMs are finished, master collects generated data (RDF files and

downloaded documents in Excel and PDF formats) from VMs. Finally VMs can be terminated

either manually or from program in the manager (latter is not implemented in this service). After

that the master uses structure of metadata files in json format (in GCE saved into Cloud Storage

bucket) as a knowledge base and downloads the new documents’ content files into its local file

storage. It also downloads these json-formatted metadata files in order to enable smooth browsing

of datasets. Errors that are thrown during program work (in worker VMs) are saved also into GCE

Cloud Storage.

The cron job
3
 task scheduler for monthly updates starts in master server and starts

RDFizing process in worker VMs.

There is also a web application for human users, who can observe downloaded datasets and

RDF graph files, in master VM.

In the worker VMs, the list of tasks is forked into as many parallel processes as available

in this VM, equal to the number of CPUs in the current worker VM. The generation of RDF graph

files happens separately in every VM. When tasks are executed and there is no more incoming

tasks, the VM finishes its work. The next step is taken by the master server and it collects RDF

graphs from all VMs and aggregates/merges them based on the graph type (org., loc. or per) into

its local file system into certain folder. . It also downloads Excel and PDF files from worker VMs

to another certain folder (datadownload/downloaded_files/<dd_mm_yyyy>) of its

file system.

3
 Cron job – Linux/Unix command for creating/editing, listing and removing cron jobs is crontab.

38

6.6 Logical View
The master server and VMs are created in GCE. The logfile is uploaded into master server

file system; the metadata of documents and errors are stored into Google Cloud Storage [53].

Packages' Diagrams

The package diagram is depicted in two figures. There are high level interrelations shown

in the Figure 5 (blurred box inside dashed line means that it is another option for large log files

storage) and master-worker interrelation in the Figures 6-7. There are listed Python modules, PHP

files and directories which reside in each package. Dashed line denotes a term “uses”, where at the

beginning of a line is a user and at the end of an arrow is module(s) or directory/file, that the user

uses.

Figure 5: : Packages at high level and their interrelations.

39

 owlyQuery2.py

SPARQL

endpoint/

GUI

css/

js/

index.php

 web services

structures/

Master VM

uses

uses

updates/

GUI

index.php

simulate_update.php

css/

datasets/

errors/

js/

logfiles/

index.php

rdf_files/

nav.php

GUI

cron job for monthly updates

ORG.rdf

LOC.rdf

PER.rdf

Rdf_files

/

 index.php connector.py

Worker VM

GUI

 errors/

generated_files/errors

/

statistics/

processed_l

ogfiles

statistics/

updates

Figure 6: Packages diagram for master-worker level (master VM).

upload_logfile/

GUI

 index.php
listUploadedFiles.php
getNumberOfLines.php
displayStatistics.php
fileNames.php
upload_logfile.php
sendToAuth.php

fileNames.php

delete_files.php

confirmedDelete.php

auth.py

sendMonthlyUpdateTasks.py

commonVariables.py

amountOfTriples.py

authenticate_gce.py#GCE

APi

downloadDocs.py

downloadErrors.py

downloadJsons.py

download_rdf_files.py

getworkers.py #GCE API

importRemoteFiles.py

postToWorker.py

post_update_downloads.py

validationFuncs.py

40

Figure 7: Packages diagram for master-worker level. (worker VM).

Master VM

Worker VM

commonvariables.p

y

deleteObj.py

getObj.py

insertErrorObj.py

insertObj.py

listObj.py

updateObj.py

storage/#GCE API

delete_rdf_files.php

index.php

download_files_from_log.py

init_rdf.py

read_eksel.py

read_html.py

read_json.py

read_pdf.py

read_plaintext.py

read_xml.py

connector.py

fileparser.py

getEntities.py

Estnltk

Google_api_

python_clien

t

 postToWorker.py

41

6.7 Process View
In the process view in Figures 8, 9, 11a and 11b the most crucial decision points of the

process flow are shown. In Figures 8 and 9 the process in the master server and in Figures 11a-11b

the process of a single worker VM in the workers’ VMs cloud are shown.

6.7.1Master Server Process View
The process starts, when human user pushes button in web app, or when “cron job” (task

scheduler for making monthly updates; also a functionality is implemented for simulating monthly

manual updates (by pushing button)) - the master server sends task for updating RDF files.

6.7.1.1 Reading Log File, Validating and Sending Data

Process in Figure 8

Client in http://<master-IP>/upload_logfile

Client is a human user with computer (C). C uses GUI in web app for uploading log file

and then C sees it in the table of log files. Next to the log file name there is a button for starting

RDFizing this log file (see also Figure 16). C pushes button. Log file’s path in the file system is

sent to auth.py.

There is a program in the master server that reads lines of input data (a logfile). It filters

out image and video files as these don't contain texts

The program asks (through API [92]) the list of virtual machines including their IP

addresses. The program then uses POST method for sending accepted URLs to the cloud of

workers. It collects some predefined number of URLs into a list and sends different lists to every

virtual machine (worker.)

auth.py

auth.py receives log file’s path.

Before reading it, it authenticates itself against GCE and then gets list of worker VMs. If

workers’ list is not empty, it reads log file line by line. It reads the info in a log file row. There are

URL to document and host-URL (author elsewhere calls it ‘basic URL’) and certain characters P

and X. It filters out (ignores) the URLs, where certain column contains “X” or “P” (see chapter

7.1, (4)). “P” means that URL refers to the file named “http://.../robots.txt”. It also decides

whether to send hostname-URL (see chapter 7.1 (5)) or file-URL (see chapter 7.1 (3)) to a worker

VM. “X” means aggressive JavaScript of a document. It then checks if document at the URL is

textual by content type; if the content type is no-type or image/video/audio/css/js etc. then the

URL is ignored. The program asks (through API [92]) the list of virtual machines including their

IP addresses and gets to know how many CPU each has. It doubles this number of CPU and fills

list in that size with valid URLs for sending this list to the particular worker. It collects this

predefined number of URLs into a list and sends different lists to every virtual machine (worker.)

The program uses POST method for sending accepted URLs to the cloud of workers.

It waits until all workers have finished its work and downloads generated RDF graph files

into master VM’s local file system. It then downloads PDF and Excel files from workers. Then it

downloads generated json-formatted metadata files and error files from GCE Cloud Storage.

42

Figure 8: Process in the master VM if it is started by a human user; continues in figure

11a, in worker VM.

43

6.7.1.2 Evoking Monthly Updates
In master server, there is a cron job (task scheduler), that runs a file that is responsible for

checking whether the data have changed and then updates RDF files. The diagram is shown in

Figure 9. The same takes place when a human user pushes button for simulating updates (browser

view of this is in Figure 19).

Process in Figure 9

sendMonthlyUpdateTasks.py

is the same as auth.py, but it reads URLs from master VM local storage, from the folder of

json-formatted metadata files. It additionally does an initial detecting of changes of documents at

URLs. For that it opens document at URL and then reads it, then calculates its hash value and

compares with the value in metadata file.

6.7.1.3 Downloading Documents
After workers have finished their work, the master downloads (GET request) and

aggregates the generated RDF files from each worker into its file system.

Based on the information that is saved into metadata (the structure of it, and how it

supports datasets downloading, is explained in chapter 4), the master also downloads the files into

its local file storage. In case of HTML pages, it only downloads the textual content, without

including media files and link content. It also downloads json-formatted metadata files and error

files from GCE Storage.

6.7.1.4 Querying RDF Files (SPARQL Endpoint)
User (person) can use graphical SPARQL endpoint (browser view of it is in Figure 15) to

query these RDF files, against web page, location, person names or organization. There are also

web services for querying these RDF files (for machines). The web service takes in SPARQL

query sentence as POST parameter "sparql" value and sends the response either json format or in

RDF/XML format.

6.7.1.5 Getting Datasets
The term “datasets” refers here to the downloaded documents. According to the saved

metadata, the downloaded files can be displayed, using GUI, by downloading date, content type

and document's URL (browser view of it is in Figure 17).

6.7.1.6 Logging of Statistics
The time spent on generating RDF files and on downloading documents is measured and

saved into statistics directory in the master server file system (browser view of it is in Figure 16

and 19).

6.7.1.7 Logging of Errors
While reading the log file, metadata, downloading documents, several errors may rise.

These errors are continuously saved into errors repository, where a separate error file is created for

each step. In each file, at each line the time, line number, error type and the name of the method,

where the error happened, is recorded (browser view of it is in Figure 20).

44

Figure 9 Process in the master server if the cron job started monthly update process

45

6.7.1.8 SPARQL endpoint
In Figure 10 the process of SPARQL web services is shown for both, json and RDF/XML

formats.

Figure 10: Process for SPARQL services.

There is also a Python file owlyQuery2.py that receives task and query sentence from file located

in the same parent folder SPARQLendpoint/index.php. owlyQuery2.py uses Python

package RDFlib for quering RDF graph files.

46

6.7.2Cloud of Workers
Every virtual machine (VM) in the cloud of workers has exactly the same software.

Process in a single VM starts, when the list of URLs with other relevant data is received. The

diagram is split into two figures.

Figure 11a: 1st half of a process in worker server in the cloud of VMs (human started)

47

Figure11b: 2nd half of process in worker server in the cloud of VMs

In Figure 11a, the main tasks are validating incoming data, opening document at certain URL,

getting its metadata (see chapter 4, “MetaData Model”), validating metadata (see “MetaData

Model”), storing metadata (see “MetaData Model”) into GCE Cloud Storage, and sending to the

fileparser (figure 11b), where document contents are distributed by their content type into different

parsers. Parser ignores texts that include XML-invalid and RDFlib URI-invalid characters (see ch.

6.7.2.3 “Parsing Documents”). Then process continues with using Estnltk packages and extracting

named entities. Then the entities are inserted into RDF graph.

The process view of a “cron job”-started process is the same in the worker server.

48

6.7.2.1 Validating the Incoming Data
Every VM gets different input data, then makes a choice whether to use initial URL or

redirected URL. It takes the last redirected URL if redirection took place. Then the program

validates content type. The document at given URL is accepted, if its content type refers to textual

content. Images, videos, font-files, script files like css and js etc. are ignored. Welcomed file types

are

• Excel;

• json;

• plain text;

• HTML;

• PDF;

• XML.

There is a pool of processes (which size equals to the size of current VM instance's number

of CPUs) in every VM, and accepted URLs are spread into these processes, different URL into

each process. So the processes work separately and in parallel.

6.7.2.2 Saving Metadata
Next step is checking whether this document is already processed, based on the document's

metadata. Saving and using metadata is exactly described in chapter 4, “Metadata Model”. If there

is no metadata for this document or the content has changed, new metadata is saved or is updated

into json-formatted structure and posted to the repository. After that, the process of parsing the

document's text starts; after parsing, the extracting named entities for locations, persons and

organizations starts.

6.7.2.3 Parsing Documents
There is a difference in parsing Excel, PDF content and other content types. Using Python

language, Excel and PDF documents should be downloaded before program can start parsing it.

This is why the master server, after VMs have finished, downloads Excel and PDF documents

from VMs, in addition to downloading RDF files. During parsing, the strange non-ASCII letters

are filtered out. Also texts that include XML-invalid characters [93, chapter 2.2] and the control

characters invalid for URI [94] are ignored. It is done by comparing the list of these invalid

character and all characters inside the text. This is mainly because RDF graphs are saved into

format RDF/XML and result in invalid RDF graph files. Unfortunately, it slows down the

performance. Although the treatment of poorly defined document encoding remains beyond of this

system’s scope, this service tries to convert some characters (the converting happens before

ignoring texts with invalid characters for XML and URI), following characters are replaced:

"Ãµ" replaced with "õ"

"Ã•" replaced with "Õ"

"Ã^Õ" replaced with "Õ"

"Ã¼" replaced with "ü"

"Ã^Ü" replaced with "Ü"

"Ãœ" replaced with "Ü"

"Ã¤" replaced with "ä"

"Ã„" replaced with "Ä"

etc.

A character that cannot belong to a name, is replaced by a space, e.g. “<numeric

value>” and characters

49

„¦“, „;“, „:“, „(“, „)“, „?“, „!“, „,“, „|“, „&“, „@“, „˙“, „˚“, „ˇ“, „^“, „ˆ“, „/“, „\\“,

„{“, „}“, „[“, „]“, „¬“, „_“, „~“, „#“, „%“, „<“, „>“, „=“, „+“, „*“, „˝“, „"“, „¨“, „»“, „`“.

Also, in case of HTMLand XML documents, the text between markers “<” and “>” is

skipped. These are HTML/XML tags and may be JavaScript programs.

Unfortunately, these replacement operations also slow down the performance.

6.7.2.4 Extracting Named Entities, Serializing RDF
Graphs

For extracting named entities for people’s names, organizations and locations, Estnltk is

used. During development of this system it appeared, that it does not always recognize names of

organizations, with included strings 'kogu', 'selts', 'ansambel', 'keskus', 'ühendus', 'ühing', 'mtü',

'oü', 'as', 'klubi', 'asutus', 'keskus', 'fond' in the entity’s text. Then this program’s part itself changes

entity’s label to „ORG“. The same goes for a string that reference to locations: 'vabarii',

'maakond'. After entities are extracted, there are 3 global lists (accessible for all processes in

current VM) for every entity type (locations, organizations and people). There is also a global

predefined numeric amount, how large the list can be. This is for decreasing the number of times,

when RDF graph files are opened, updated and closed. If the list length exceeds this amount, the

content in this list is sent to the next task for merging entities to the respective graph file, either

LOC.rdf, PER.rdf or ORG.rdf.

6.7.2.5 Generating RDF Files
After that all entities are added to the respective graph: locations' names to the locations'

graph, person's names into peoples' graph and organizations' names into organizations' graph.

These graphs are then serialized into respective ”<workerVMname>.rdf“ files, which are

saved into three directories LOC, ORG and PER. Every worker VM saves this RDF file into its

own file system. The master knows, when the jobs in VM are ready (all URLs have been sent),

and downloads all RDF files into its (Master's) local file system and aggregates them into the

compound of three files ”LOC.rdf“, ”ORG.rdf“ and ”PER.rdf“.

6.7.2.6 Logging of Errors
At every program step several errors may rise while reading documents, parsing, extracting

entities, serializing graphs etc. These errors are continuously saved into errors repository-GCE

Cloud Storage-, where a separate error file is created for each step. In each file, at each line the

time, line number, error type and method name, where the error happened, is recorded.

50

6.8 Use Cases
Resulting RDF/XML files are LOC.rdf for locations, ORG.rdf for organizations, PER.rdf

for persons’ names, recognized in Estonian Open Data. Every recognized entity includes predicate

„mentionedAt“ that links to the open document.

6.8.1General Using Scenarios
One example how the data can be useful, is to consume these files for search engine: one

can search for people, organizations and locations and will be provided with links to the

documents of those mentioned at. Also, vice versa is possible: by inserting web address of

document - the recognized organizations, locations and people at this address will be delivered.

This approach is currently implemented in this project’s SPARQL endpoint.

These RDF/XML files can also be integrated with other linked data. For example resolving

recognized entities with actually existing entities in DBpedia. Although DBpedia’s link in English

http://dbpedia.org/resource/Estonia is semantically many times richer than http://dbpedia.org/

resource /Eesti. One solution could be first extracting Estonian Wikipedia Vikipeedia into RDF

and then resolve recognized entities.

These RDF/XML may also be integrated into applications: wherever an entity in RDF file

is encountered in an application, the web addresses that include this entity may be listed. This way

the user of the application is provided with more rich information on this entity: the user can

obtain more information following the provided links. This system checks the processed data sets

every month: when something has changed, then it stores the new version of the document to the

repository. User can then read these stored documents: it is especially helpful when the user

cannot find certain entity from the document under its provided link.

6.8.2Use Case Diagrams
There are several use cases (Figures 12-13) that can start the process of RDF generation: firstly

when a human uses web application in intention to generate RDF files for extracted named

entities; secondly when a “cron job” (Figure 13) in Apache2 server (in master VM) starts process

at certain moment monthly. Another type of use case is for human user, who can also select the

log file for processing and use web application for querying RDF graph. There is also a web

service use case, for machines, for querying RDF graphs (Figure 14).

http://dbpedia.org/resource/Estonia
http://dbpedia.org/page/Eesti
http://dbpedia.org/page/Eesti

51

Figure 12: Use cases for human user.

Figure 13: Use case for „cron job“.

Figure 14: Use case for machines.

Master server

Select and post log

file

Query RDF

graphs

Browse datasets (contents

of downloaded documents)

Start a process of

monthly updates

Use web service to

query RDF graphs

Application UI in master

Application web service in master

Simulate

monthly

updates

52

6.8.3Using SPARQL endpoint

In Figure 15 the SPARQL endpoint is shown together with the constructed query help

boxes developed particularly for this system. This figure shows query result for organization

“Bmw”.

There are 3 columns for human user case:

In the left the user can select whether he/she wants to query people names, locations or

organizations at a certain web page. In the middle column the user can select all three entity types

or one of them and the compulsory field is the web page. In the rightmost column there is a

SPARQL query sentence displayed.

Under the third column there are two red buttons representing web service for machines,

for sending post request for getting response either in json or RDF/XML format. The json

webservice is at the address http://<master’s-ip-address>/SPARQLendpoint/structures/json and

the for RDF/XML webservice http:// <master’s-ip-address>/SPARQLendpoint/structures/xml.

The POST parameter 'sparql' should contain SPARQL query sentence “SELECT …

WHERE …”. In case organization “Bmw” was queried, it is
SELECT DISTINCT *

WHERE

{

{{?obj ner:orgName "Bmw"} UNION {?obj ner:lemma "Bmw"}} .

?obj ner:mentionedAtSite ?webpage

}

ORDER BY ?webpage

This searches over organization names and organization “lemmas”(explained in

chapter 4.2.2).

Figure 15 SPARQL endpoint GUI

In Figure 15, under the two gray boxes in the left, the HTML-result is shown: the list of links,

where “Bmw” was found:

53

http://online.le.ee/category/mis-juhtus-2/feed/

http://www.audiofookus.ee/paigaldus_/raadiod/

http://www.bmwlammutus.ee/

http://www.bmwlammutus.ee/_eng

http://www.bmwlammutus.ee/_est

http://www.bmwlammutus.ee/ettevottest

Here is the webservice’s response when making POST request to json format:

{"head": {"vars": ["webpage", "obj"]}, "results": {"bindings":

[{"webpage": {"type": "uri", "value":

"http://online.le.ee/category/mis-juhtus-2/feed/"}, "obj":

{"type": "uri", "value":

"http://www.estnernet.ee/nerdatanet/organizations#bmw"}},

{"webpage": {"type": "uri", "value":

"http://www.audiofookus.ee/paigaldus_/raadiod/"}, "obj": {"type":

"uri", "value":

"http://www.estnernet.ee/nerdatanet/organizations#bmw"}},

{"webpage": {"type": "uri", "value":

"http://www.bmwlammutus.ee/"}, "obj": {"type": "uri", "value":

"http://www.estnernet.ee/nerdatanet/organizations#bmw"}},

{"webpage": {"type": "uri", "value":

"http://www.bmwlammutus.ee/_eng"}, "obj": {"type": "uri",

"value":

"http://www.estnernet.ee/nerdatanet/organizations#bmw"}},

{"webpage": {"type": "uri", "value":

"http://www.bmwlammutus.ee/_est"}, "obj": {"type": "uri",

"value":

"http://www.estnernet.ee/nerdatanet/organizations#bmw"}},

{"webpage": {"type": "uri", "value":

"http://www.bmwlammutus.ee/ettevottest"}, "obj": {"type": "uri",

"value":

"http://www.estnernet.ee/nerdatanet/organizations#bmw"}}]}}

54

And here is the webservice’s response when making POST request to RDF/XML format:

<sparql:sparql>

 <sparql:head>

 <sparql:variable name="webpage"/>

 <sparql:variable name="obj"/>

 </sparql:head>

 <sparql:results>

 <sparql:result>

 <sparql:binding name="webpage">

 <sparql:uri>

 http://online.le.ee/category/mis-juhtus-

2/feed/

 </sparql:uri>

 </sparql:binding>

 <sparql:binding name="obj">

 <sparql:uri>

 http://www.estnernet.ee/nerdatanet/organizations#bmw

 </sparql:uri>

 </sparql:binding>

 </sparql:result>

 <sparql:result>

 <sparql:binding name="webpage">

 <sparql:uri>

 http://www.audiofookus.ee/paigaldus_/raadiod/

 </sparql:uri>

 </sparql:binding>

 <sparql:binding name="obj">

 <sparql:uri>

 http://www.estnernet.ee/nerdatanet/organizations#bmw

 </sparql:uri>

 </sparql:binding>

 </sparql:result>

 ...

 <sparql:results>

<sparql:sparql>

55

6.8.4Uploading Log File and Starting RDFizing Process
In Figure 16 is shown the browser of view of use cases where human user can upload logfile, start

the RDFizing process, delete all generated files (this functionality is useful during development

phase) and see statistics of processed log files.

Figure 16: Upload log file and start RDFizing process.

56

6.8.5 Browsing Datasets
Metadata model is used for faceted search/filtering for enabling more intelligent browsing of

archived datasets. At current moment, searching datsets by

 the sequence of characters in a host name;

 content type;

 alphabetically paging

are implemented.

In Figure 17 is shown the moment after user have pushed the content-type button

application/pdf .

Figure 17: Browsing of datasets: content type „application/pdf“ is searched.

57

6.8.6 Raw View of RDF files in a Browser
In Figure 18 is shown the browser view of a page of the RDF files.

Figure 18: Browser page of RDF files.

6.8.7 View of Statistics of Processes of Monthly Updates
In Figure 19 is shown the table of monthly updates. Additionally, user can simulate this

update-process manually.

Figure 19: Browser view of simulating monthly updates and statistics of performed updates.

58

6.8.8 View for Reading Errors
In Figure 20 is presented the browser view of several errors.

Figure 20: Browser view of generated errors.

59

7 Evaluation

In this chapter the structure and essence of input data are introduced. Then, in the next

subchapter, the measured results of the performance tests and fulfilment of requirements are given.

7.1 Input Data
Author got the input data file from her supervisor. It is a log file with over 3 107 956 lines

in it with the size of ~1 GB (886 7552 KB). This log file is a result of a web crawler program and

its structure is explained in [95] and [96].

An example of a row in a log file; the columns are separated by white spaces:
2014-05-08T21:35:57.220Z 1 58 dns:www.autolaige.ee P

http://www.autolaige.ee/ text/dns #048 20140508213556681+234

sha1:C2LVXEPH6TEQROI4UA62E5U35432MVJO - content-size:58

Every line in the log file is divided into columns; the following list is a log file row

structure description:

 (0) timestamp

 (1) status code

 (2) size of the downloaded document in bytes

 (3) URL of downloaded file (document, in chapter 6.7.1.1 it is (4))

 (4) R - Redirect

o E - Embed

o X - Speculative embed (aggressive/Javascript link extraction)

o L - Link

o P - Prerequisite (like for DNS or robots.txt before another URI)

 (5) basic url, reference (in chapter chapter 6.7.1.1 it is (1))

 (6) content type of basic url, column (5)

 (7) the id of the worker thread that downloaded this document

 (8) timespan+download_time, difference to column (0)

 (9) sha1

 (10) -

 (11) content-size

Necessary columns for this service are

 (3)URL of downloaded file (document)

 (4)
o R - denotes whether URL was redirected or not

o reject lines that in this column include X or P

 (5) basic url

 (6) content type

60

7.2 Statistics and Performance
The author made several tests in Google Compute Engine environment for measuring performance

of a whole service and the performance of the updating process. Also the sizes of RDF graph files

as a product of this service and amount of downloads are presented. In the first subchapter the

virtual machine features used in these tests are given.

7.2.1Machine types
This service used master VM with 1 CPU, 3 worker VMs with 2 CPU in each and one worker VM

with 1 CPU. The performance measures are based on following virtual machine features:

name: master

machineType (GCE notation): n1-standard-1 (1 vCPU, 3.75 GB memory)
disk size: 1000 GB
Estimated performance:

Operation Type Read Write

Sustained random IOPS limit 300 1,500

Sustained throughput limit

(MB/s)

120 90

names: worker1, worker2, worker3

machineType (GCE notation): n1-highcpu-2 (2 vCPUs, 1.8 GB memory)
disk size: 2800 GB
Estimated performance:

Operation Type Read Write

Sustained random IOPS limit 840 4,200

Sustained throughput limit

(MB/s)

180 120

name: worker4

machineType (GCE notation): n1-standard-1 (1 vCPU, 3.75 GB memory)
disk size: 840 GB
Estimated performance:

Operation Type Read Write

Sustained random IOPS limit 252 1,260

Sustained throughput limit

(MB/s)

100.8 75.6

7.2.2Test Results of the Whole Service
These results include reading log file, sending valid URLs to workers, RDFizing process in

workers, collecting RDF graph files from workers, downloading Excel and PDF files from

workers, downloading json-formatted metdata files from GCE Storage, downloading Error files

from GCE Storage. The test results are presented in Table 5.

61

Test started: 2015-08-11 03:12

Generating RDF files:

 Time spent: 8.5 hours

 Size of

 ORG.rdf: 7816 KB ~ 7.6 MB

PER.rdf: 5440 KB ~ 5.3 MB

LOC.rdf: 1568 KB ~ 1.5 MB

 total : 14824 KB ~ 14.5 MB

Number of triples in:

 ORG.rdf: 112 555

PER.rdf: 88 199

LOC.rdf: 23 444

 total : 224 198

Importing-aggregating RDF files:

time spent (h:m:s.mm): 0:09:00.799224

Downloading Excel and PDF files from worker VMs,

json-formatted metadata files and error files from GCE Cloud Storage:

Time spent (h:m:s.mm): 1:17:53.424858

Number of downloaded datasets: 4405

Number of json-formatted datasets: 295

7.2.3Test Results of the Update Process
This test was ran after the previous , described in chapter 7.2.3 finished, on the same day.

The timespans are small because of little nr of changes.

Generating RDF files during the update process:

Start: 12/08/2015 09:32:47

Time spent (h:m:s.mm): 1:10:16.916986

Nr of changes: 129

Downloading of RDFs:

Start: 12/08/2015 10:43:04

Time spent (h:m:s.mm): 0:0:00.0

Downloading of Excel and PDF files:

Start: 12/08/2015 10:43:04

Time spent (h:m:s.mm): 0:00:00.196519

Downloading of errors and metadata files:

Start: 12/08/2015 10:43:04

Time spent (h:m:s.mm): 0:00:55.049540

62

7.2.4Performance Measures of SPARQL Endpoint
 It would be better, when the response to the query were faster, but it also depends on the client’s

bandwidth. The results include displaying response on web page. The results show, that time spent

on receiving response, depends on RDF graph.

Tests for every SARQL endpoint functionality:

organization „Bmw“
SELECT DISTINCT *

WHERE

{

{{?obj ner:locationName "Bmw"} UNION {?obj ner:lemma "Bmw"}} .

?obj ner:mentionedAtSite ?webpage

}

ORDER BY ?webpage

The query took 14 seconds.

Person Angelica Udeküll

SELECT DISTINCT *

WHERE

{

{{?obj foaf:givenName ?gname} UNION {?obj ner:lemma ?gname}} .

{{?obj foaf:familyName "Udeküll"} UNION {?obj ner:lemma

"Udeküll"}} .

?obj ner:mentionedAtSite ?webpage

}

ORDER BY ?webpage

The query took 14 seconds.

Person Angelica
SELECT DISTINCT *

WHERE

{

{{?obj foaf:givenName "Angelica"} UNION {?obj ner:lemma

"Angelica"}} .

{{?obj foaf:familyName ?fname} UNION {?obj ner:lemma ?fname}} .

?obj ner:mentionedAtSite ?webpage

}

ORDER BY ?fname ?webpage

The query took 17 seconds.

Person Udeküll
SELECT DISTINCT *

WHERE

{

{{?obj foaf:givenName ?gname} UNION {?obj ner:lemma ?gname}} .

63

{{?obj foaf:familyName "Udeküll"} UNION {?obj ner:lemma

"Udeküll"}} .

?obj ner:mentionedAtSite ?webpage

}

ORDER BY ?gname ?webpage

The query took 20 seconds.

Location Sillamäe

SELECT DISTINCT *

WHERE

{

{{?obj ner:locationName "Sillamäe"} UNION {?obj ner:lemma

"Sillamäe"}} .

?obj ner:mentionedAtSite ?webpage

}

ORDER BY ?webpage

The query took 2 seconds.

All organizations

SELECT DISTINCT *

WHERE

{

?obj ner:orgName ?name .

?obj ner:mentionedAtSite ?webpage

}

ORDER BY ?name ?webpage

The query took 30 seconds.

All people

SELECT DISTINCT *

WHERE

{

?obj foaf:familyName ?fname .

?obj foaf:givenName ?gname .

?obj ner:mentionedAtSite ?webpage

}

ORDER BY ?fname ?gname ?webpage

The query took 24 seconds.

All locations

SELECT DISTINCT *

64

WHERE

{

?obj ner:locationName ?name .

?obj ner:mentionedAtSite ?webpage

}

ORDER BY ?name ?webpage

The query took 7 seconds.

Query locations on web document “http://www.wws.ee/service/cruise/essentials/”

SELECT ?name

WHERE

{

?obj ner:mentionedAtSite

<http://www.wws.ee/service/cruise/essentials/> .

?obj ner:locationName ?name .

}

The query took 3 seconds.

Query people on web document “http://online.le.ee/”

SELECT ?gname ?fname

WHERE

{

?obj foaf:givenName ?gname .

?obj foaf:familyName ?fname .

?obj ner:mentionedAtSite <http://online.le.ee/>

}

The query took 6 seconds.

Query organizations on web document “http://online.le.ee/”

SELECT ?name

WHERE

{

?obj ner:mentionedAtSite <http://online.le.ee/> .

?obj ner:orgName ?name .

}

The query took 12 seconds.

Query all names on web document http://online.le.ee/
SELECT ?name

WHERE

{

?obj ner:mentionedAtSite <http://online.le.ee/> .

?obj ner:orgName ?name .

http://online.le.ee/

65

}

SELECT ?name

WHERE

{

?obj ner:mentionedAtSite <http://online.le.ee/> .

?obj ner:locationName ?name .

}

SELECT ?gname ?fname

WHERE

{

?obj foaf:givenName ?gname .

?obj foaf:familyName ?fname .

?obj ner:mentionedAtSite <http://online.le.ee/>

}

The query took 30 seconds.

Query organizations and locations on web document “http://online.le.ee/”

SELECT ?name

WHERE

{

?obj ner:mentionedAtSite <http://online.le.ee/> .

?obj ner:orgName ?name .

}

SELECT ?name

WHERE

{

?obj ner:mentionedAtSite <http://online.le.ee/> .

?obj ner:locationName ?name .

}

The query took 12 seconds.

Query locations and people on web document “http://online.le.ee/”

SELECT ?gname ?fname

WHERE

{

?obj foaf:givenName ?gname .

?obj foaf:familyName ?fname .

?obj ner:mentionedAtSite <http://online.le.ee/>

}

SELECT ?name

WHERE

{

?obj ner:mentionedAtSite <http://online.le.ee/> .

?obj ner:locationName ?name .

}

66

The query took 18 seconds.

7.2.5Fulfilment of Requirements
In this chapter the fulfilment of settled requirements are brought in Table 6.

id result achieved? comment

upIN yes Implemented file uploading into local (master) file system,

currently uploading to BigQuery is manual

genMD yes Metadata stored in Cloud STorage bucket

updateMD yes -

readMD yes -

genRDF yes RDF files are stored in master file system

updateRDF yes -

readRDFm yes -

readRDFh yes Reading is implemented in SPARQL endpoint GUI and

webservice

downD yes Currently downloads to maste server file system, may

consider other storage option

readD yes Datasets are sortable due to the matadata model

genE yes Errors are stored into GCE Cloud Storage bucket

readE yes -

Table 6: Fulfilment of requirements.

67

8 Conclusions and Future Work
Eventually the development resulted in a cloud service that reads the log file and manages

sending jobs to workers, where the process of reading OGD documents, extracting entities and

generating RDF graphs takes place. The service can perform monthly updates. This cloud service

was tested in Google Compute Engine environment.

Author is quite satisfied with the performance test results: using 7 CPUs in the cloud of

workers it took approximately 9.5 hours to process 3 107 956 lines of a log file. It could be even

better when more CPUs in the workers’ cloud is applied, but then a balance must be found

between the cost and performance requirements. The Google Compute enables using only a few

CPUs (8) during the free trial period (2 months) setting constraints for the project’s performance.

The resulting value of this system processes are 3 RDF files for organizations, locations

and people. The graphs can be used in SPARQL endpoint by human users (graphical UI) or by

machines (web services that result in json or RDF/XML format). The RDF graphs are linkable to

other RDF graphs and data in order to increase the quality, transparency, accessibility and

reliability of Estonian Open Government Data.

In future this system should be tested without POST and GET requests, but using worker

servers as if they were a part of LAN. It may reduce the processing time of the whole system.

There is a Python package developed for such kind of data transfer: “Pyro” [97].

It would be also interesting what the performance measures would be when adapting this

system into MapReduce technology.

Furthermore, there are much more entities in OGD documents than people, organizations,

locations. These may be also extracted into RDF graphs in future.

As time goes on, the RDF graph files grow larger and a special system for storage and

more time-effective query architecture becomes necessary.

The software is available at GitHub https://github.com/Mailis/EstNer/tree/master/cloud.

https://github.com/Mailis/EstNer/tree/master/cloud

68

9 References

[1] Open Government Data. [http://opengovernmentdata.org/]. (Accessed in December, 2014.)

[2] W3C. RDF. [http://www.w3.org/RDF/]. (Accessed in December, 2014).

[3] ScienceDaily. Web crawler. [http://www.sciencedaily.com/terms/web_crawler.htm].

(Accessed in December, 2014).

[4] T.Petmanson, A.Tkachenko. [https://github.com/estnltk/estnltk]. (Accessed in December,

2014).

[5] GitHub. RDFLib. [https://github.com/RDFLib/rdflib]. (Accessed in January, 2015.)

[6] Google. Google Cloud Platform. Compute Engine. [https://cloud.google.com/compute/].

(Accessed in March, 2015.)

[7] Open Data HandBook. What is Open Data? [http://opendatahandbook.org/guide/en/what-is-

open-data/]. (Accessed in July, 2015).

[8] Open Government Data. Why Open Government Data?

[http://opengovernmentdata.org/#sthash.gkPL2Geh.dpuf]. (Accessed in July, 2015).

[9]W3C. Semantic Web. [http://www.w3.org/2001/sw/]. (Accessed in June, 2015.)

[10] T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific America, 2001.

[11] T. Berners-Lee. [http://www.w3.org/DesignIssues/LinkedData.html] 2006. (Accessed in

October, 2014).

[12] N. Shadbolt, W. Hall, T. Berners-Lee. The Semantic Web Revisited. IEEE Intelligent

Systems. [http://eprints.soton.ac.uk/262614/1/Semantic_Web_Revisted.pdf]. (Accessed in June,

2015.)

[13] T.Heath, C.Bizer. Linked Data: Evolving the Web into a Global Data Space.

[http://linkeddatabook.com/editions/1.0/#htoc40]. (Accessed in February, 2015.)

[14] W3C. Ontologies. [http://www.w3.org/standards/semanticweb/ontology]. (Accessed in June,

2015.)

[15] FOAF Vocabulary Specification 0.99. [http://xmlns.com/foaf/spec]. (Accessed in November,

2014.)

[16] W3C. RDF Schema 1.1. [http://www.w3.org/TR/rdf-schema/]. (Accessed in January, 2015.)

69

[17] Dublin Core. DCMI Metadata Terms. [http://dublincore.org/documents/2012/06/14/dcmi-

terms/?v=elements#description]. (Accessed in November, 2014.)

[18] SIOC Core Ontology Specification. [http://rdfs.org/sioc/spec/]. (Accessed in June, 2015.)

[19] W3C. OWL Web Ontology Language Reference. [http://www.w3.org/TR/owl-ref/] .

(Accessed in November, 2014.)

[20] Nerd. Ontology. [http://nerd.eurecom.fr/ontology]. (Accessed in July, 2014).

[21] W3C. Category: RDF Generator.

[http://www.w3.org/2001/sw/wiki/Category:RDF_Generator]. (Accessed in June, 2015.)

[22] Karlsruher Institut für Technologie. LODifier. [http://www.aifb.kit.edu/web/LODifier].

(Accessed in June, 2015.)

[23] Fondazione Bruno Kessler, Data & Knowledge Management. The KnowledgeStore Project.

[https://knowledgestore.fbk.eu/index.html]. (Accessed in June, 2015.)

[24] E.Agichtein, L.Gravano. Snowball: extracting relations from large plain-text collections.

Department of Computer Science, Columbia University.

[http://www.cs.columbia.edu/~gravano/Papers/2000/dl00.pdf]. (Accessed in June, 2015).

[25] Thomson Reuters. Open Calais. [http://new.opencalais.com/].(Accessed in June, 2015.)

 [26] Ontos. OntosLDIW. [http://www.ontos.com/]. (Accessed in June, 2015.)

[27] DBpedia. DBpedia Spotlight. [http://wiki.dbpedia.org/projects/dbpedia-spotlight]. (Accessed

in June, 2015.)

[28] M.H. Butler, J. Gilbert, A. Seaborne, K. Smathers. Data conversion, extraction and record

linkage using XML and RDF tools in Project SIMILE. Digital Media Systems Laboratory, 2004.

[http://www.hpl.hp.com/techreports/2004/HPL-2004-147.pdf]. (Accessed in June, 2015.)

[29] W3C. ConverterToRdf. [http://www.w3.org/wiki/ConverterToRdf]. (Accessed in June,

2015.)

[30] C. Lange. Krextor – An Extensible XML→RDF Extraction Framework

. Heraklion, Greece, May 31, 2009. [http://ceur-ws.org/Vol-449/ShortPaper2.pdf]. (Accessed in

June, 2015.)

[31] J.Tscherrig, P.Cudr´e-Mauroux, E.Mugellini, O.A.Khaled, M.Sokhn. SemantiConverter: A

Flexible Framework to Convert Semi-Structured Data into RDF. University of Fribourg,

Switzerland. [http://exascale.info/papers/Json2RDFSConverter.pdf]. (Accessed in June, 2015.)

[32] Wikimedia Foundation, Inc. Wiki markup. [https://en.wikipedia.org/wiki/Wiki_markup].

(Accessed in June, 2015.)

[33] W3C. A Direct Mapping of Relational Data to RDF. [http://www.w3.org/TR/rdb-direct-

mapping/]. (Accessed in June, 2015.)

70

[34] A. Tkachenko. Named Entity Recognition for the Estonian Language. Master thesis.Tartu

2010.

[35] T. Petmanson. Estnltk — Open source tools for Estonian natural language processing .

[http://tpetmanson.github.io/estnltk/index.html]. (Accessed in December, 2014).

[36] Estnltk. Named entity recognition. [http://tpetmanson.github.io/estnltk/tutorials/ner.html].

(Accessed in November, 2014).

[37] Estnltk. Paragraph, sentence and word tokenization.

[http://tpetmanson.github.io/estnltk/tutorials/tokenization.html]. (Accessed in November, 2014).

[38] Estnltk. Morphological analysis.

[http://tpetmanson.github.io/estnltk/tutorials/morf_analysis.html]. (Accessed in November, 2014).

[39] W3C. RDF/XML Syntax Specification (Revised). [http://www.w3.org/TR/REC-rdf-syntax/].

(Accessed in January, 2015.)

[40] W3C. 3. N-Triples. [http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples].

(Accessed in January, 2015.)

[41] W3C. SPARQL Query Language for RDF. [http://www.w3.org/TR/rdf-sparql-query/].

(Accessed in December, 2014.)

[42] EASY RDF. A PHP library designed to make it easy to consume and produce RDF.

[http://www.easyrdf.org/]. (Accessed in June, 2015.)

[43] GitHub. RDFLib. [https://github.com/RDFLib/rdflib]. (Accessed in January, 2015.)

[44] J.Sequeda. Introduction to: Triplestores. Dataversity, 2013.

[http://www.dataversity.net/introduction-to-triplestores/].

[45] W3C. LargeTripleStores. [http://www.w3.org/wiki/LargeTripleStores]. (Accessed in June,

2015.)

[46] Linking Open Government Data. Installing and Managing Virtuoso SPARQL Endpoint.

[https://logd.tw.rpi.edu/tutorial/installing_using_virtuoso_sparql_endpoint]. (Accessed in June,

2015.)

[47] Oracle Spatial and Graph: Benchmarking a Trillion Edges RDF Graph. Oracle White Paper,

2014.

[http://download.oracle.com/otndocs/tech/semantic_web/pdf/OracleSpatialGraph_RDFgraph_1_tr

illion_Benchmark.pdf]. (Accessed in June, 2015.)

[48] Franz Inc. AllegroGraph. [http://franz.com/agraph/allegrograph/]. (Accessed in June, 2015.)

[49] Complexible Inc. Stardog. [http://stardog.com/]. (Accessed in June, 2015.)

[50] T.Heath, C.Bizer. Linked Data: Evolving the Web into a Global Data Space.

[http://linkeddatabook.com/editions/1.0/#htoc87]. (Accessed in February, 2015.)

71

[51] W3C. Linked Data Platform Use Cases and Requirements, 2014. [http://www.w3.org/TR/ldp-

ucr/]. (Accessed in July, 2015).

[52] European Commission. Linked Study on business models for Linked Open Government Data,

2013. [http://ec.europa.eu/isa/documents/study-on-business-models-open-government_en.pdf/].

(Accessed in July, 2015).

[53] Google Cloud Platform. Cloud Storage. [https://cloud.google.com/storage/]. (Accessed in

March, 2015.)

[54] Google Cloud Platform. Frequently Asked Questions.

[https://cloud.google.com/compute/docs/faq#disks]. (Accessed in March, 2015.)

[55] Google Cloud Platform. Google BigQuery. [https://cloud.google.com/bigquery/]. (Accessed

in March, 2015.)

[56] Google Compute Engine. Persistent Disks.

[https://cloud.google.com/compute/docs/disks/persistent-disks#pdperformance] . (Accessed in

March, 2015.)

[57] Google Compute Engine. HTTP/HTTPS Load Balancing.

[https://cloud.google.com/compute/docs/load-balancing/http/]. (Accessed in March, 2015.)

[58] Google Compute Engine. Load Balancing Health Checks.

[https://cloud.google.com/compute/docs/load-balancing/health-check]. (Accessed in March,

2015.)

[59] DBpedia. About. [http://wiki.dbpedia.org/about] (Accessed in June, 2015.)

[60] DBpedia. Mapping et. DBpedia Estonian needs your help!

[http://mappings.dbpedia.org/index.php/Mapping_et]. (Accessed in July, 2015.)

[61] DBpedia. Mapping Statistics for et. [httphttp://mappings.dbpedia.org/server/statistics/et/].

(Accessed in July, 2015.)

[62] The Trustees of Princeton University. WordNet. [http://wordnet.princeton.edu/wordnet/].

(Accessed in April, 2015.)

[63] The Trustees of Princeton University. WordNet RDF. [http://wordnet-rdf.princeton.edu/].

(Accessed in April, 2015.)

[64] Research Group of Computational Linguistics, University of Tartu. Teksaurus.

[http://www.cl.ut.ee/ressursid/teksaurus/]. (Accessed in June, 2014).

[65] Max Planck Institute for Informatics. YAGO: A High-Quality Knowledge Base.

[http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-

naga/yago/]. (Accessed in July, 2015.)

[66] Cycorp. OpenCyc. [http://www.cyc.com/platform/opencyc/]. (Accessed in July, 2015.)

72

[67] Openlink Software. Virtuoso Programmer's Guide - RDF Middleware ("Sponger").

[http://virtuoso.openlinksw.com/whitepapers/sponger%20cartridge%20programmers%20guide%2

0rdf%20middleware.html#mozTocId114]. (Accessed in April, 2015.)

[68] GitHub. openlink/Virtuoso-RDFIzer-Mapper-Scripts. Readme.

[https://github.com/openlink/Virtuoso-RDFIzer-Mapper-Scripts]. (Accessed in April, 2015.)

[69] Openlink Software. Virtuoso Programmer's Guide - RDF Middleware ("Sponger").

[http://virtuoso.openlinksw.com/whitepapers/sponger%20cartridge%20programmers%20guide%2

0rdf%20middleware.html#mozTocId119]. (Accessed in April, 2015.)

[70] Openlink Software. Virtuoso Programmer's Guide - RDF Middleware ("Sponger").

[http://virtuoso.openlinksw.com/whitepapers/Virtuoso%20Sponger.html]. (Accessed in April,

2015.)

[71] Freebase. [https://plus.google.com/109936836907132434202/posts/3aYFVNf92A1].

(Accessed in April, 2015.)

[72] Google Official Blog. Deeper understanding with Metaweb.

[http://googleblog.blogspot.com/2010/07/deeper-understanding-with-metaweb.html]. (Accessed in

April, 2015.)

[73] Google Official Blog. Introducing the Knowledge Graph: things, not strings.

[http://googleblog.blogspot.com/2010/07/deeper-understanding-with-metaweb.html]. (Accessed in

April, 2015.)

 [74] GeoNames . The GeoNames Ontology.

[http://www.geonames.org/ontology/documentation.html]. (Accessed in July, 2015.)

[75] TWC LOGD. Linking Open Government Data. [https://logd.tw.rpi.edu/home]. (Accessed in

April, 2015.)

[76] Poolparty. PoolParty Extractor. [http://www.poolparty.biz/portfolio-item/poolparty-

extractor/]. (Accessed in July, 2015.)

[77] Github. Metafacture-core. [https://github.com/culturegraph/metafacture-

core/blob/master/README.md]. (Accessed in May, 2015.)

[78] BBC. [http://www.bbc.com/]. (Accessed in May, 2015.)

[79] Europeana Labs. Europeana Linked Open Data. [http://labs.europeana.eu/api/linked-open-

data/introduction/]. (Accessed in March, 2015.)

[80] European Commission. Health an food safety. [http://ec.europa.eu/dgs/health_food-

safety/index_en.htm]. (Accessed in April, 2015.)

[81] Health and Food Safety. DG Health and Food Safety Data.

[http://ec.europa.eu/dgs/health_food-safety/information_systems/index_en.htm]. (Accessed in

May, 2014).

73

[82] CKAN. [http://ckan.org/]. (Accessed in December, 2014.)

[83] UK Government. data.gov.uk. [http://data.gov.uk/]. (Accessed in November, 2014.)

[84] publicdata.eu. Search Europe’s Public Data. [http://publicdata.eu/]. (Accessed in May, 2015.)

[85] Helsinki Region Infoshare online service. [http://www.hri.fi/en/]. (Accessed in November,

2014.)

[86] International Aid Transparency Initiative. [http://iatiregistry.org/]. (Accessed in May, 2015.)

[87] CKANv2.2. FileStore and file uploads. [http://docs.ckan.org/en/ckan-

2.2/filestore.html#setup-file-uploads]. (Accessed in December, 2014.)

[88] P.Kruchten. The 4+1 View Model of Architecture. IEEE Software, Volume 12, Number 6,

pp. 42-50. 1995.

[89] StackExchange. Mapping between 4+1 architectural view model & UML.

[http://programmers.stackexchange.com/questions/233257/mapping-between-41-architectural-

view-model-uml]. (Accessed in January, 2015.)

[90] Google Cloud Platform. Compute Engine. API Reference.

[https://cloud.google.com/compute/] (Accessed in March, 2015.)

[91] Google Cloud Platform. Compute Engine. Using the Python Client Library.

[https://cloud.google.com/compute/docs/tutorials/python-guide]. (Accessed in March, 2015.)

[92] Google Compute Engine. API Reference.

[https://cloud.google.com/compute/docs/reference/latest/?hl=en_US]. (Accessed in February,

2014).

[93] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). 2.2 Characters.

[http://www.w3.org/TR/REC-xml/#NT-Char]. (Accessed in August, 2015.)

[94] RDFlib. RDF terms in rdflib. URIRefs.

[http://rdflib.readthedocs.org/en/latest/rdf_terms.html#urirefs]. (Accessed in August, 2015.)

[95] Crawler. Analysis of jobs. [http://crawler.archive.org/articles/user_manual/analysis.html].

(Accessed in May, 2015.)

[96] Crawler. Discovery path.

[http://crawler.archive.org/articles/user_manual/glossary.html#discoverypath]. (Accessed in

December, 2014.)

74

Resümee

Siin magistritöös kirjeldatakse pilveteenust, mille eesmärk on muuta struktureerimata

avalikud dokumendid seotud graafiks, mille andmeid on võimalik pärida ja töödelda lisaks

inimesele ka masinatel. Selleks toodab pilvesüsteem RDF graafid, mis on semantiliselt hästi

kirjeldatud, mille semantika on avalikult loetav/kättesaadav ontoloogiates ja sematilistes

sõnavarades. Pilve infrastruktuuri jaoks töötati välja süsteem, mis kasutab nn. meister-

virtuaalmasinat ja töölis-virtuaalmasinate pilve. Seda testiti Googli Compute Engine keskkonnas.

Meister-viruaalmasin loeb ridu, mida on üle 3,1 miljoni, logifailist ja saadab sealt igalt realt leitud

URLid töölis-virtuaalmasinatele. Töölis-serverid loevad dokumentide sisu ja eraldavad neist isiku

nimed ning organisatsiooni ja koha nimetused. Need nimed seotakse selle veebilehega RDF

graafides, mida saab SPARQL pärimiskeele abil küsitleda/otsingut teostada. SPARQL päringuks

arendati nii graafiline kasutajaliides kui veebiteenused masinatele lugemiseks formaatides json ja

RDF/XML.

RDF kolmikuid tuli kokku 224 198 tükki, neist organisatsioonide nimetuste komikuid

112 555, kohanimetuste omi 23 444 ja isikunimede kolmikuid 88 199.

Üks oluline väljakutse lisaks pilveteenuse enda arendamisele oli see, et suures logifailist

leitud suuremahuliste/vähemmahuliste töötlemine toimuks võimalikult kiiresti. Tulemuseks tuli, et

umbes 3,1 miljoni rea töötlemine võttis 7 CPUga tööliste pilves aega ligikaudu 9,5 tundi.

SPARQL päringule vastuse ootamine kestab 2-30 sekundit, sõltuvalt RDF graafi faili suurusest ja

sellest, kui täpne-üldine päringu lause saadeti.

Saadud RDF graafe saab kasutada linkimiseks andmetega mujal ja integreerida teiste RDF

graafidega.

75

Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks tegemiseks

Mina ___________________Mailis Toompuu______________________

 (autori nimi)

(sünnikuupäev: ____________12.12.1972__________________________)

annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose

_______PaaS Cloud Service for Cost-Effective Harvesting, Processing and Linking of

Unstructured Open Government Data ___,

 (lõputöö pealkiri)

mille juhendaja on _________Peep Küngas__________________________,

 (juhendaja nimi)

reprodutseerimiseks säilitamise ja üldsusele kättesaadavaks tegemise eesmärgil, sealhulgas

digitaalarhiivi DSpace-is lisamise eesmärgil kuni autoriõiguse kehtivuse tähtaja lõppemiseni;

üldsusele kättesaadavaks tegemiseks Tartu Ülikooli veebikeskkonna kaudu, sealhulgas

digitaalarhiivi DSpace´i kaudu kuni autoriõiguse kehtivuse tähtaja lõppemiseni.

olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile.

kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega isikuandmete

kaitse seadusest tulenevaid õigusi.

Tartus, 21.05.2015

	Abstract
	Keywords
	Lühikokkuvõte
	Võtmesõnad
	Contents
	Abbreviations and Meanings of Words
	1 Introduction
	2 Background
	2.1 Open Data And Open Government Data
	2.2 Semantic Web Movement
	2.3 Resource Description Framework (RDF)
	2.4 Vocabularies and Ontologies
	2.5 Sources for Linked Data
	2.6 Extraction Tool Estnltk
	2.7 Storing Linked Data
	2.8 Integrating data: interlinking with other linked data and mapping vocabularies
	2.9 Linked Data Use Cases
	2.10 Google Cloud Platform

	3 Related Work
	3.1 DBpedia
	3.2 Wordnet RDF
	3.3 Yago
	3.4 OpenCyc
	3.5 Virtuoso Sponger
	3.6 Freebase
	3.7 The GeoNames Ontology
	3.8 TWC LOGD
	3.9 PoolParty
	3.10 Metafacture
	3.11 Some Widely Known Applications
	3.12 Data Harvesting. File/document repositories.

	4 Metadata Model
	4.1 Using Metadata Model for Downloading Datasets
	4.2 Using Metadata Model in Updating Process
	4.3 Using Metadata Model for Browsing Datasets

	5 RDF Data Model
	5.1 Used Vocabularies/Ontologies
	5.2 Example of RDF Graph for Organizations
	5.3 Example of RDF Graph for Locations
	5.4 Example of RDF Graph for People
	5.5 Example of Triples in Locations Graph

	6 Architecture
	6.1 Programming Languages
	6.2 Migrating Software to GCE
	6.3 Requirements
	6.3.1 Functional Requirements
	6.3.2 Non-functional Requirements

	6.4 Physical View
	6.5 Development View
	6.6 Logical View
	6.7 Process View
	6.7.1 Master Server Process View
	6.7.1.1 Reading Log File, Validating and Sending Data
	6.7.1.2 Evoking Monthly Updates
	6.7.1.3 Downloading Documents
	6.7.1.4 Querying RDF Files (SPARQL Endpoint)
	6.7.1.5 Getting Datasets
	6.7.1.6 Logging of Statistics
	6.7.1.7 Logging of Errors
	6.7.1.8 SPARQL endpoint

	6.7.2 Cloud of Workers
	6.7.2.1 Validating the Incoming Data
	6.7.2.2 Saving Metadata
	6.7.2.3 Parsing Documents
	6.7.2.4 Extracting Named Entities, Serializing RDF Graphs
	6.7.2.5 Generating RDF Files
	6.7.2.6 Logging of Errors

	6.8 Use Cases
	6.8.1 General Using Scenarios
	6.8.2 Use Case Diagrams
	6.8.3 Using SPARQL endpoint
	6.8.4 Uploading Log File and Starting RDFizing Process
	6.8.5 Browsing Datasets
	6.8.6 Raw View of RDF files in a Browser
	6.8.7 View of Statistics of Processes of Monthly Updates
	6.8.8 View for Reading Errors

	7 Evaluation
	7.1 Input Data
	7.2 Statistics and Performance
	7.2.1 Machine types
	7.2.2 Test Results of the Whole Service
	7.2.3 Test Results of the Update Process
	7.2.4 Performance Measures of SPARQL Endpoint
	7.2.5 Fulfilment of Requirements

	8 Conclusions and Future Work
	9 References
	Resümee

