
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Software Engineering

Iurii Tverezovskyi

CloudML based dynamic deployment config-

uration for scaling enterprise applications in

the cloud

Master’s Thesis (30 ECTS)

Supervisor(s): Satish Narayana Srirama, Phd

Tartu 2015

ii

CloudML based dynamic deployment configuration for scaling enter-

prise applications in the cloud

Abstract:

In light of the popularity of cloud computing, it is really important to be free to change cloud

providers when needed. However, in most cases, system configuration relies on provider

services, such as load balancing or databases and this makes it much harder to change the

provider. This thesis describes a CloudML based solution that is capable of deploying

complex systems using different cloud providers with minimum changes including

embedded load balancers. This feature allows the creation of scalable configurations that

are independent from providers' load balancing services and allow any component of the

system to be scalable on demand. The proposed solution also has an integrated generic LP

(linear programming) model to control system scaling. We conducted a number of

experiments to show that the system could be used for deploying complex systems that

follow most popular workflows. The results of the experiments show that this system is

capable of scaling properly to support incoming workflow regardless of chosen workflow

or number of the system components.

Keywords:

Cloud computing, CloudML, load balancing

iii

CloudMLil põhinev dünaamiline paigalduskonfiguratsioon enterprise-

rakenduste skaleerimiseks pilves

Lühikokkuvõte:

Arvutustehnika populaarsuse seisukohalt on väga tähtis pilve tarnija muutmise võimalus.

Kuigi, enamikul juhtudest süsteemi konfiguratsioon sõltub tarnija teenusest. Näiteks

koormuse tasakaalustamisest või databaasidest, ning see teeb tarnija muutmise raskemaks.

See töö seletab CloudMLile põhinevaid lahendusi, mis on võimeline rakendama keerulisi

süsteeme kasutades erinevaid pilve tarnijaid. Selline võimalus lubab luua kaleeritavat kon-

figuratiooni mis on iseseisvad tarnija koormuse tasakaalustamise teenusest ning lubavad

igal osal süsteemis olla skaleeritav nõudlus. Pakutav lahendus omab ka integreeritudg-

eneerilist LP(lineaarne programeerimine) mudelit kontrollimaks süsteemi ketendamist.

Me tegime eksperimente läbi näitamaks kuidas süsteem võib olla kasutusel rakendamaks

keerulisi süsteeme mis on väga populaarsed. Tulemus näitas et süsteem on võimeline

skaleerima ja toetama sissetulevat töökorraldust hoolimata komponentide arvust.

Võtmesõnad:

Pilvearvutus, CloudML, koormuse tasakaalustamine

iv

Table of Contents

1 Introduction ... 1

1.1 Problem statement .. 2

1.2 Goals of the thesis .. 3

1.3 Organization of Thesis ... 4

2 Related work ... 5

2.1 Platform specific deployment tools .. 5

2.1.1 Google Cloud Deployment Manager ... 5

2.1.2 Amazon CloudFormation ... 6

2.2 Multi-platform deployment tools ... 7

2.2.1 Jclouds .. 7

2.2.2 Apache Brooklyn ... 8

2.3 Private and hybrid cloud management platforms ... 8

3 Background ... 10

3.1 CloudML .. 10

3.2 Load balancing models ... 13

4 Solution ... 16

4.1 CloudML extensions .. 16

4.2 Scalable component .. 17

4.2.1 Scaling up scalable component ... 18

4.2.2 Scaling down scalable component .. 20

4.3 CMLDep tool .. 21

5 Validation .. 25

5.1 Environment ... 25

5.2 Simulation tools .. 25

5.2 One component system deployment ... 27

5.2.1 Experiment configuration ... 27

5.2.2 Experiment ... 28

5.3 Parallel workflow ... 30

5.3.1 Experiment configuration .. 31

5.3.2 Experiment .. 33

5.4 Exclusive workflow .. 37

5.4.1 Experiment configuration .. 38

5.4.2 Experiment .. 38

5.5 Cost overhead ... 42

v

6 Conclusions ... 43

7 Future work ... 44

Bibliography .. 45

I. License ... 47

vi

List of Figures

Figure 1. CloudML Metamodel [15] ... 11

Figure 2. CloudML deployment process ... 13

Figure 3. Scaling up algorithm .. 18

Figure 4. Connection between VMs in initial configuration ... 19

Figure 5. Representation of the deployment mode after scaling up 19

Figure 6. Scaling down algorithm ... 20

Figure 7. Deployment time line using CMLDep .. 23

Figure 8. Auto scaling sequence diagram. .. 24

Figure 9. Experiment with one component initial configuration .. 27

Figure 10. One component deployment configuration in case of increased workload 28

Figure 11. Workload and system capacity during one component experiment 29

Figure 12. Number of instances of each time during one component experiment 29

Figure 13. Example of parallel workflow ... 30

Figure 14. Sequence diagram for Parallel workflow experiment.. 31

Figure 15. Initial deployment model from experiment with multiple scalable components

 ... 33

Figure 16. Scaled model with multiple scaling components ... 34

Figure 17. Workload and system capacity during parallel workflow experiment first

component ... 34

Figure 18. Number of instances of each time during parallel workflow experiment first

component ... 35

Figure 19. Workload and system capacity during parallel workflow experiment second

component ... 35

Figure 20. Number of instances of each time during parallel workflow experiment second

component ... 36

Figure 21. Workload and system capacity during parallel workflow experiment third

component ... 36

Figure 22. Number of instances of each time during parallel workflow experiment third

component ... 37

Figure 23. Example of exclusive workflow .. 38

Figure 24. Workload and system capacity during parallel workflow experiment first

component ... 39

Figure 25. Number of instances of each time during exclusive workflow experiment first

component ... 39

Figure 26. Workload and system capacity during parallel workflow experiment second

component ... 40

vii

Figure 27. Number of instances of each time during exclusive workflow experiment second

component ... 40

Figure 28. Workload and system capacity during parallel workflow experiment third

component ... 41

Figure 29. Number of instances of each time during exclusive workflow experiment third

component ... 41

viii

List of Tables

Table 1. CMLDep REST API ... 22

Table 2. EC2 instances performance with MediaWiki ... 28

Table 3. One component experimnets results ... 30

Table 4. EC2 instances performance with custom applications type of type mainApplication

 ... 32

Table 5. EC2 instances performance with custom applications type of type fibApp 32

Table 6. Prallel workflow experiment results ... 37

Table 7. Exclusive workflow experiment results .. 42

1 Introduction

For the past few years cloud solutions has been rapidly growing category, and it does not

seem like it will change anytime soon. Every year more and more companies will use the

advantage of cloud solutions. Gartner Research predicts that by the end of 2014, cloud so-

lutions will be a $150 billion industry. Many companies decided to move their IT infrastruc-

ture to cloud completely or at least partly [1]. Without a doubt, the main reason is a

possibility to decrease the cost of managing IT infrastructure. Another very important reason

is that by using cloud solutions companies can easily scale services to support new clients.

After all, companies that are using cloud solutions are more adaptable [2]. Every company

is trying to make their services fast, reliable and reachable for their clients and cloud solu-

tions propose to make this much easier task. Additionally cloud solutions can bring new

features for instance synchronization between all devices etc. Talking about cloud solutions

we can distinguish three main deployment models, depending on owner of computation re-

sources:

 Public cloud – is a model where computation resources available virtually for

anyone. The client can rent almost infinite amount of resources. The provider takes

care about infrastructure managing and usually take responsibility for managing

some level of SLA.

 Private cloud – is a model where the client owns all computation resources, which

are available in boundaries of the organization. The client has to manage whole in-

frastructure and is responsible for SLA by itself.

 Hybrid cloud – is a combination of public cloud and private cloud. Main advantages

are: client can store sensitive information in the private cloud with restricted access

and use public cloud for all other services.

Each deployment model usually can support any category of cloud computing service: PaaS

(Platform as a Service), SaaS (Software as Server) or IaaS (Infrastructure as a Service).

 Software as a Service (SaaS) is a model where the client has access to software and

resources that are hosted by the provider.

2

 Platform as a Service (PaaS) model provide frameworks and tools necessary for de-

velopment, management and provision of applications. Usually used for software

that has typical requirements and architecture. The provider handles all hardware

and most of software management.

 Infrastructure as a Service (IaaS) is a model where the client has access to computa-

tion resources without any limitation on software, but the drawback is that all soft-

ware management has to be handled by the client.

Cloud solutions whether they are PaaS, SaaS or IaaS have proved their reliability, cost

effectiveness and even more importantly elasticity. The notion of elasticity embodies the

ability of the infrastructure to scale up or down depending on the current workload. Scaling

allows for minimizing the cost of running the application and, importantly, the ability to

change the structure.

1.1 Problem statement

Scaling of enterprise size systems is a complicated task, especially if the system has any

legacy components [3]. To use all advantages of cloud software should be restructured and

divided into components to maximize overall productivity [4]. In this case, each component

can be represented as a single VM instance.

There are many tools that can help to transfer applications to cloud or to build one

from scratch using all advantages of the cloud infrastructure. Unfortunately, not everyone

can use those tools, for example, companies that are dealing with enterprise level software.

First of all, usually those companies have special requirements for security and control over

infrastructure and they are really big systems that are hard to modify [5]. Concerning secu-

rity and control it is hard for companies to rely on someone else to handle all infrastructure

because it is a lot of additional and unpredictable risk. That is why hybrid deployment model

is becoming more and more popular. Eventually to make the transfer to cloud faster the

company will have to cooperate with the provider to optimize software and infrastructure if

needed. However, the catch is, that this will make company dependable on this provider

because in case company will try to move to another provider it will have to do migration

process once again.

Talking about big enterprise software, it is hard not to mention the problem of legacy

systems. Parts of the system might be outdated, but it takes a lot of resources and time to

3

update them. This can make infrastructure management more complicated. Beside this de-

ployment to a hybrid cloud might require two different tools sets, one for public cloud and

one for private. This situation does not make deployment any easier and can create addi-

tional risks. With all of this considered, the deployment process becomes a not so trivial

task.

One of the main reason to move to the cloud is a possibility to scale the application

up and down. The scaling process requires an entity that will handle the traffic flow, which

have to be distributed between VMs. To accomplish this task in most cases load balancers

are used, they may use a different technique to control flow, but the general idea stays the

same – distributing traffic between few VMs. Surely, all cloud providers support load bal-

ancer but there are a couple of problems in the context of enterprise applications and vendor

lock-in. First of all each cloud provider requires us to set load balancer or define a rule to

create one in its environment. The second problem is that we need to set a rule for a load

balancer for each VM or system component. Moreover, this might create a problem that is

hard to solve when we are moving an application from one cloud provider to another.

1.2 Goals of the thesis

The goal is to find the possible solution for building vendor independent deployment models

that are optimized for scaling. The optimal solution should compensate for the main prob-

lems described before, which are:

 deployment of same configuration to different cloud providers with no or minimal

changes

 scaling capability of the deployment model

 integration with load balancing models

4

1.3 Organization of Thesis

This thesis is organized in this way:

Chapter 2 describes related solutions and techniques that are used now for deployment to

a cloud including proprietary solution and multi-cloud deployment tools.

Chapter 3 introduces set of tools and concepts that were used to achieve the goal of the

thesis.

Chapter 4 explains overall solution including all algorithms and reasons for architectural

decisions. This chapter also includes solution implementation overview.

Chapter 5 includes description and results of three experiments that we conducted in order

to evaluate the solution. The first experiment shows the possibility of using proposed solu-

tion for deploying real world software to the cloud. Second and third experiments display

deployment of the systems that are using parallel and exclusive workflow respectively.

Chapter 6 explains what was achieved as well as possible areas where presented deploy-

ment tool can be used.

5

2 Related work

This chapter presents existing solutions for deployment of software applications into the

cloud. First we will review platform specific tools and solutions from major cloud providers.

Such solutions [8] [9] provide better integrations with all services and could be more

efficient, however, deployed configurations cannot be migrated easily. To solve this prob-

lem multiple multi-platform deploying systems [10] [11] has been developed over last few

years. Furthermore, we will review techniques for deployment software into the cloud.

2.1 Platform specific deployment tools

It is obvious that all major players in cloud solutions industry propose their own tools de-

signed to make deployment to the cloud as easy as possible. The main advantage is ability

to benefit fully from all internal services and infrastructure.

2.1.1 Google Cloud Deployment Manager

Google Cloud Deployment Manger [8] is available for Google Cloud Platform users. Cloud

Deployment manager allows to declare, deploy and manage infrastructure using the concept

of templates. These templates are a JSON or YAML file that consist of descriptions for how

to deploy services to the cloud. Example of deployment configuration using YAML:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

resources:

- type: compute.v1.instance

 name: vm-my-first-deployment

 properties:

 zone: us-central1-b

 machineType: https://www.googleapis.com/...

 disks:

 - deviceName: boot

 type: PERSISTENT

 boot: true

 autoDelete: true

 initializeParams:

 diskName: disk-my-first-deployment

 sourceImage: https://www.googleapis.com/...

 networkInterfaces:

 - network: https://www.googleapis.com/...

 accessConfigs:

 - name: External NAT

 type: ONE_TO_ONE_NAT

 Each template contains a number of modules, where each module is a resource that has to

be deployed into single VM. There is a possibility to specify action after instance deploy-

ment like software installing, configuration, etc. This deployment mechanism allows to

6

modify deployed configuration by updating configuration file and executing the deployment

again.

2.1.2 Amazon CloudFormation

Amazon has a number of solutions dedicated for deployment software application, in com-

parison to Google, for example, AWS Elastic Beanstalk, AWS OpsWorks, AWS CloudFor-

mation [9]. AWS Elastic Beanstalk is a most basic solution designed for easy deployment.

However it lacks some configuration options. AWS Elastic Beanstalk is designed mostly

for the deployment of a single application and because of this there is no good way to con-

nect and manage multiple connected software components that are supposed to be deployed

in different VMs in the cloud. Next in the line is much more powerful AWS OpsWorks.

AWS OpsWorks uses Chef recipes for deployment monitoring and changing software con-

figuration. Example of such recipe:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

include_recipe 'deploy'

node[:deploy].each do |application, deploy|

 opsworks_deploy_dir do

 user deploy[:user]

 group deploy[:group]

 path deploy[:deploy_to]

 end

 opsworks_deploy do

 deploy_data deploy

 app application

 end

...

The main aadvantage of AWS OpsWorks is the notion of stacks and layers. The

stack is a set of EC2 instances, load balancers and DB instances that represent same software

component of the system. In other words stack in this context is an infrastructure needed to

support particular system component. Layers describe set of software that have to be in-

stalled to support system components. Nevertheless, considering the amount of control over

deployment process AWS CloudFormation is most obvious choice. This service allows to

use the same notion of stacks from AWS OpsWorks to describe service architecture and

resources but instead of creating Chef recipes it allows the use of the JSON format. Further-

more AWS OpsWorks makes it possible to use all services including AWS Elastic Beanstalk

and set any policies available for AWS infrastructure. For example scaling police:

"WebServerScaleUpPolicy": {

 "Type": "AWS::AutoScaling::ScalingPolicy",

 "Properties": {

7

 "AdjustmentType": "ChangeInCapacity",

 "AutoScalingGroupName": {

 "Ref": "WebServerGroup"

 },

 "Cooldown": "60",

 "ScalingAdjustment": "1"

 }

}

Single deployment file also includes infrastructure configuration, which makes it really easy

to keep configurations for software components and overall system.

 All those tools share the same problem - they are platform dependent and, therefore,

there is no easy way to switch cloud provider. More importantly for enterprise clients, there

is no clear way to use those tools in case of using hybrid cloud services.

2.2 Multi-platform deployment tools

In comparison to platform-specific deployment tools multi-platform deployment tools allow

the deployment of the configuration to a number of different cloud providers. Since in most

cases such tools are open source they do not have as strong support from providers as their

own tools, but can propose a solution of vendor lock problem.

2.2.1 Jclouds

Jclouds [10] is Java based open source library created to work with more than 30 different

cloud providers. Basically, jclouds is a wrapper that allows one to write configuration once

and then launch it using any supported provider, in this way the library can guarantee a high

level of portability. It is possible to describe system architecture using templates. Template

contains information about software, hardware, location and some additional options of each

resource in the system. Library allows to upload any binary files to created resource.

 Another possible option is Libcloud [11]. This python based library supports a

number of providers as well as third party extensions. There is a list of APIs to describe

system architecture “Compute”, “Object Storage”, “Load Balancer”, “DNS”. “Compute”

helps to create and manage virtual servers. “Object Storage” is responsible for communica-

tion with any storage object, for instance, Amazon S3, OpenStack Swift, etc. “Load Bal-

ancer” API provides unified access to load balancers in different platforms. And last but not

least is “DNS” API provides control over specific DNS options, in case if provide support

this.

8

2.2.2 Apache Brooklyn

Apache Brooklyn is power tool based on Jclouds for deploying and managing applications

in the cloud. It allows the storing of configurations in YAML file called blueprints. Such

blueprints contain both descriptions of hardware infrastructure such as VM configuration

and networking as well as a description of software setup. Example of such blueprint:

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

location: localhost

services:

- type: brooklyn.entity.webapp.ControlledDynamicWebAppCluster

 name: My Web

 brooklyn.config:

 wars.root: ...

 java.sysprops:

 brooklyn.example.db.url: >

 $brooklyn:...

- type: brooklyn.entity.database.mysql.MySqlNode

 id: db

 name: My DB

 brooklyn.config:

 creationScriptUrl: ...

Blueprints can be stored into local catalogs. After deployment Apache Brooklyn pro-

vides web based management and provision system, however, changes in architecture

require redeployment of the whole system and there is no good way to control scaling of the

system.

2.3 Private and hybrid cloud management platforms

Talking about deployment to cloud it would be wrong not to mention hybrid and private

cloud management platforms. There are a lot of cases when the company might need to have

their own private or hybrid clouds. Some of the reasons might be security requirements or

economic necessity. However not every company can build their own platform from scratch,

and best solution is this case to use publicly available or open source platforms. There are a

few main players in this market - some of them are OpenStack, VMware vCloud Suite, IBM

Cloud and OpenNebula. OpenStack and OpenNebula are open source projects and VMware

vCloud Suite and IBM Cloud are proprietary software.

 OpenStack [12] is supported by OpenStack Foundation and developers’ community.

OpenStack allows the control of all aspects of infrastructure networking, storage and of

9

course computing. OpenStack is an operating system created to manage a large pool of re-

sources. Using the dashboard or using API administrator can easily create and manage all

available resources, assign automatic tasks and monitor the current situation of the whole

cloud. It is also possible to use OpenStack to create a hybrid cloud in pair with, for example,

Amazon.

 OpenNebula [13] is a really similar project as in any other cloud management plat-

form it allows to create templates of VM’s and make them available for users similarly to

any public platform. OpenNebula has automatic auto scaling mechanism if this allowed by

the administrator.

 Another interesting project is VMware vCloud Suite [14], its main advantage is pro-

prietary VMWare virtualization technologies which are used to create new VMs for the

client. VMware has whole ecosystem capable to solve any problem with virtualization, but

this is a problem as well because most of technologies and tools are proprietary and will

work only in this ecosystem.

 It is easy to see that tools to create public or even hybrid cloud are available on the

market, but their focus on managing and supervising hardware infrastructure, networking

and not on software deployment. So the problem with dynamic deploying to the cloud is

still actual.

10

3 Background

This chapter gives an in-depth review of frameworks and technologies that were used to

create proposed solution. Firstly we will describe CloudML its advantages and disad-

vantages as well as internal structure and main functionality. After that we will show the

main idea behind LP (Linear Programing) load balancing model and also explain in depth

why this type of load balancing model has been used.

3.1 CloudML

CloudML [15] is a framework for deploying and provisioning application in the cloud.

CloudML is built on top of Apache jclouds and is used for actual deployment to the cloud.

Moreover, since Apache jclouds is a multi-cloud toolkit CloudML supports almost the same

number of providers [15]. Also, it allows simple system provision during deployment and

after for example querying VM instance status. Unfortunately the framework does not allow

monitoring VM instances, CPU load or number of incoming requests. CloudML allows to

describe system once and deploy it to any supported cloud platform without changes or with

minimal changes. For this purpose the framework contains a list of elements that help to

describe deployment model configuration.

11

Figure 1. CloudML Metamodel [15]

 Component – abstract parent class for ExternalComponent and InternalComponent

 InternalComponent – entity that represents service that will be created during de-

ployment and stores set of Resources, Ports and ExecutionPlatforms

 ExternalComponent – represents service that already exists outside of current model

 VM – represent VM instance configuration in model

 ExecutionPlatform – represent requirement that Component has regarding VM

 Relationship – represents binding between two components (Internal or External)

and has its own set of Resources.

CloudML allows to describe configuration model using JSON file or by writing configura-

tion using Java. For actual deployment CloudML framework uses CloudML Engine, which

proposes three deployment methods. Java API for the model described using Java, command

line interface for the model described by JSON and web sockets interface. Part of model

description using JSON:

"internalComponentInstances": [

 {

 "eClass": "net.cloudml.core:InternalComponentInstance",

12

 "name": "client--1",

 "type": "internalComponents[client]",

 "requiredPortInstances": [

 {

 "eClass": "net.cloudml.core:RequiredPortInstance",

 "name": "requiredPort-433795083",

 "type": "internalComponents[client]/requiredPorts[requiredPort]"

 }

],

 }

]

The main advantage of such method for presenting configuration is its simplicity in terms

of tools independency. On the other hand, there are a lot of disadvantages. It is really hard

to write the configuration for a large; there is not any type of validation of any kind and the

only way to check if the configuration is correct is to deploy it. Java configuration gives a

bit more tools in developers’ hands. First of all it provides at least simple type matching for

model validation. Secondly it is easier to read and understand configuration model. Part of

model description using Java:

InternalComponent wiki = new InternalComponent("wiki", platform);

wiki.getResources().add(wikiSoft);

wiki.getRequiredPorts().add(dbRequiredPort);

wiki.getProvidedPorts().add(defaultProvidedPort);

wiki.setRequiredExecutionPlatform(platform);

The downside of using Java is that it requires a fairly complicated process of setting up.

Regardless of chosen way of model description deployment process stays the same (see

Figure 2).

13

Start

Start all VM
instances from

model

Install Resources
connected to each

VM

Execute Resources
connected to
Relationships

Check and set
External

Components

End

Figure 2. CloudML deployment process

3.2 Load balancing models

A number of solutions for load balances have been proposed. Some models are trying to

predict workload depending on factors like workload trends during the work day, daily his-

tory of workload. Others react based on the current situation [16] [17] CPU usage, response

time. Such load balancing models require extensive monitoring mechanism. Unfortunately,

each provider has a proprietary monitoring system, for instance, Amazon has Amazon

CloudWatch [18]. Considering that we are aiming for multi-cloud deployment tool, we can

rely on platform specific monitoring platforms. Therefore to support described type of load

balancers and provide multi-cloud deployment capability, such system has to include mon-

itoring platform. However, in this case, monitoring platform would require additional re-

sources to support this monitoring platform and make the system overall less efficient and

cost effective.

14

 To address above problem we propose to use LP (Linear Programing) load balancing

model [19]. This model takes into account all major parameters such as the type of the in-

stance, cost, and performance capably, limit of the instances and as a result produces an

optimal configuration. Moreover to be as cost effective as possible this load balancing model

heavily uses the idea that most cloud providers charge for resources hourly. This means that

if the instance was started only for 1 minute will still would have to pay for one hour.

Therefore, since VM instance is already started, there is no reason to kill it, during the first

hour. This load balancing model has proved that such approach is very cost effective [19].

One of the key notions used to describe this LP based load balancers is time bag.

Time bag describes time instance life time e.g. if instance has been created at 2:21 PM and

currently its 2:55PM then VM is in 34 time bag, and if right now is 3:22PM VM is in 2nd

time bag.

The main principle that dictates system behavior is keeping in balance cost or termi-

nating instance and cost of keeping instance alive. The key in this process is calculating start

time and killing time of each instance. Time of VM life minus start time and killing time is

a period during which we actually use this VM. Considering all this, we need to add one

more state for VM – marked to be killed. The instance is marked to be killed if current

performance of Scalable Component is more than needed, which means that we don’t need

so many instances right now and some could be killed. However, since we already paid for

them we will keep them till the end of running hour. This approach has one more advantage,

in case if during this hour load on the server will increase we could get in a situation where

we actually need this instance. However, how to determine which one to mark to kill. In the

same paper have been developed evaluation technique. Key in there is to keep balance

between killing cost and retaining cost. Killing cost is an amount of money that we will lose

killing instance immediately and can be calculated using this formula:

𝐾𝐶 = (𝑇𝐵𝑚 − 𝑇𝐵𝑐) ∗ 𝐶𝑡

, where 𝑇𝐵𝑚 – maximum number of time bags, 𝑇𝐵𝑐 – current time bag of the instance and

𝐶𝑡 – cost per hour of instance of the type t. To calculate retaining cost we can use next

equation:

𝑅𝐶 = 𝑇𝐵𝑐 ∗ 𝐶𝑡

Retaining cost shows how much we already payed for VM instance.

15

16

4 Solution

This chapter describes proposed solution and its implementation. Initially, we will review

changes that have been made in CloudML to support needed functionality for load balanc-

ing. Changes in CloudML includes implementation of new components as well as algo-

rithms for scaling up and down. To support scaling and the possibility to change network

routing without changes in the configuration we used DNS rerouting. Last element de-

scribed in this solution is CMLDep. CMLDep is a simple REST based solution for deploy-

ing applications into the cloud, designed to support advanced load balancing.

4.1 CloudML extensions

Since the proposed solution is based on CloudML framework, first of all we need to identify

what changes have been made in the framework itself. To allow CloudML to perform

scaling more efficiently we extended it with the list of components described below:

 DirectCommand – is a component that allows to the execution of a command in

VM after it was created. The general problem of CloudML is that there are only

two ways to execute scripts in VM. First – add a resource that will be executed

when VM is created and Relationships Resources, which will be executed when

both VMs in a relationship are created. However, we need to mention that Rela-

tionships require connecting two instances using RequiredPort and ProvidedPort,

which is a huge overhead for just executing the script. Moreover, since there is no

straight forward way to execute script in VM when it is needed. DirectCommand

component solves this problem and it requires only two VMs (server and client)

and a command as well. However, the main advantage is that it can be added to the

model at any given time.

 LoadBalncerEntity – is a wrapper that contains Component, ComponentInstance,

VM and VMInstance of a LoadBalancer. This object can be created only by the

system.

 ScalableComponent – is a new component that allows one to create truly scalable

and flexible deployment models. The idea behind ScalableComponent is that it al-

lows to register any ExecuteInstance (VM and its software) as a ScalableCompo-

nent which can instantiate LoadBalncerEntity or new VMs. During scaling up the

component will automatically create LoadBalancer and connect instances of given

17

component to it. Also, if the given component had incoming connected from other

component using Relationship it will automatically reroute it to LoadBalancer.

List of terms that are used in this chapter:

 System component – is a set of software that should be installed in a single VM.

 Initial configuration – is a deployment configuration that represents fully viable

system where each model component represented by one VM and all necessary

connections between components are established.

 Scaling up scalable component – process of creating and adding a new instance

into the scalable component. May include initiating of the load balancer.

 Scaling down scalable component – is the process of removing VM instances from

the scalable component. It consists of two phases according to [19]. In phase 1 in-

stance or instance may be marked to be „killed “depending on the output of LP

model. In the second phase if there are no changes in LP model instance or set of

the instance will be terminated. In case if only one VM is left in scalable compo-

nent load balancer will be also removed.

4.2 Scalable component

Scaling is a key functionality for any cloud application. In proposed solution, each scaling

component has the ability to scale separately. To support such functionality in scalable com-

ponent two algorithms were implemented: scaling up and scaling down. For practical use

they were combined in a single function scale module. To change the configuration of a

particular scalable component function scale has to be called with a parameter that contains

the new desirable configuration. According to the new configuration scalable component is

able to determine by itself which instances have to be killed or created. A configuration

parameter is a simple array of integers that describes a number of VM of each type that

scalable component should contain. For example if incoming configuration is [1,0,0,2] and

types specified for this scalable components are [“M1.micro”, “M1.small”, “M3.medium”,

“M3.large“] then scalable component ideal configuration at this moment should be 1

instance of m1.micro, and 2 instance of “M1.large”.

18

4.2.1 Scaling up scalable component

Scaling up is relatively simple process displayed by Figure 2. where the biggest complica-

tion is keeping the connection between scalable components and inside scalable compo-

nents.

Start

Does load
balancer exists ?

Yes

New Vm should
be added ?

Yes

Create new VM
instance

Add VM to load
balancer

No
Create load

balancer

Add existing VM to
load balancer

Redirect all
incoming

connections to LB

No

End

Figure 3. Scaling up algorithm

Another part of the algorithm that is important is initializing load balancer. In initial

configuration all relationships connects VM directly as it is showed by Figure 3.

19

Figure 4. Connection between VMs in initial configuration

However if the scalable component contains more than one VM instance all incoming con-

nection should be rerouted to load balancer as it displayed in Figure 4.

Figure 5. Representation of the deployment mode after scaling up

To achieve this goal in proposed solution we are using DNS caching resolver Un-

bound1. In most cases, DNS name resolving is a simple process. Any OS has a list of trusted

DNS servers, and in the case when the system needs to resolve DNS name OS sends a

request to one of the DNS servers from the list and receives IP of desired server. In case if

Unbound is installed this process gets one additional step. Before to send a request to DNS

server system checks if Unbound has a rule for this DNS name and if so the system will use

IP that is specified in Unbound configuration file. Otherwise system behaves exactly the

same as default scenario. This technique allows us to control traffic flow by setting up rules

for DNS names resolving. For example, we need to move from the configuration represented

by Figure 4 to a configuration that is displayed by Figure 5. To make “VM 1” to send

requests to load balancer with IP 192.168.0.5 instead of “VM 2” with IP 192.168.0.2 we

need to add a rule to Unbound that is installed in “VM 1”. This rule will specify to resolve

DNS name “vm2.com” to IP of load balancer that is 192.168.0.5 instead of 192.168.0.3 that

1 http://www.unbound.net/

http://www.unbound.net/

20

would be resolved by actual server IP. An additional benefit of this solution is that because

Unbound is local resolver there is no need to do any changes in the network configuration

of all VMs.

Part of Unbound configuration with one rule:

1

2

3

server:

 local-zone: "example.com." transparent

 local-data: "example.com. IN A 192.168.1.1"

4.2.2 Scaling down scalable component

Scaling down is more complicated process compared to scaling up and it consists of two

phases see Figure 6.

Start

Receive new
configuration

Number of
instances more
then needed ?

Is there is
marked

instances?

Terminate instance Find instance with
loves killing cost

Mark instance to
be killed

No

No

Number of
instance more

then one ?

End

No

Change routing to
illuminate load

balancer

Remove load
balancer

Figure 6. Scaling down algorithm

21

Since we build system with the integrated LP model2 we are using all principles pro-

posed in it. In first phase component will find an instance that should be removed from the

model but instead of immediate action instance will be marked as instances „to be killed“.

This means that instance might be killed if it meets LP model requirements. If the instance

is actually terminated it will be automatically removed from the load balancer. Moreover, if

after termination of particular instance ScalableComponent will contain only one VM, load

balancer will also be killed and removed from the model and all connections will be

redirected to the only VM in that component. The reason to do this is too keep cost as low

as possible

4.3 CMLDep tool

CMLDep (CloudML Deployment tool) is a REST service that connects extended version of

CloudML and LP model into one system. As a base for CMLDep we used Spring Boot and

Maven 2 as a project management tool. Both CloudML and LP model have been included

as local maven dependencies. CMLDep was designed to support any kind of model that can

find optimal configuration of the system and not to be limited to current LP model2, however

it was optimized to work with it. See Table 1 to find all available in CMLDep API calls.

URL Method Parameters Purpose

/initial GET Deploy initial model

/initial/start PUT period Start automatic scaling of the system

/instance/up PUT type, component Start additional instance of specific

type in specific Scalable Component

/instance/down DELETE type, component Remove instance of specific type in

specific Scalable Component

/model GET Download current deployment con-

figuration

2 Load balancing models

22

/initial POST Model Upload initial configuration

Table 1. CMLDep REST API

There are few ways how to set up the initial configuration for CMLDep. First one is

to upload JSON based model using API interface, the second option is to write Java class in

CMLDep and deploy it with the software itself. Understandably first option is more

preferable and probably the main reason is that CMLDep can be deployed first and then

configuration model can be added later. As was mentioned before to create JSON based

model without any tools is not a trivial task the base way to address this issue is to create

Java class that describes the model and then export it as a JSON file.

Once CMLDep is deployed into the cloud it allows to control system deployment

process with API calls or can be managed automatically. To support automatic scaling LP

model have to calculate optimal configuration continuously or depend on some kind of

schedule. As was shown [19] calculating the optimal solution for the large system can take

a lot of time. To resolve this obstacle and to move closer to continuous calculation, by de-

fault, CMLDep calculates new configuration right after finishing previous calculation, How-

ever the period between calculations optimal solutions can be set manually using API.

CMLDep relies on LP model to calculate optimal configuration. In its turn, LP model re-

quires knowledge of load of each Scalable Component or using terminology from [19] in

each region. We used similar technique described in [19], to get a load from each Scalable-

Component - NGINX module HttpStubStatusModule, which allows us to request a number

of connections . To monitor this parameter CMLDep has a monitoring module that can ac-

cess the instance in deployment configurations and request load on each of them. This mon-

itoring module starts when auto scaling is started and runs in separate thread. It is easy to

notice that this algorithm of auto scaling creates one series that are demonstrated by Figure

7.

23

00:00 01:00

00:10

New optimal configuration 1 calculated

00:15

New optimal configuration 2 calculated

Time necessary to deploy configuration 1

Time necessary to
deploy configuration 2

Figure 7. Deployment time line using CMLDep

After optimal model has been calculated it takes some time to actually update the

current model. Moreover, during this period system will continue to calculate optimal con-

figuration, which will not include VMs that are not fully configured yet. To eliminate this

problem we included in the system configuration all VM’s that are in a progress of initiation.

In this way LP model will calculate new configuration taking into account all VM instances

that are deploying during new calculation. The actual deployment process described in Fig-

ure 8.

24

Admin CMLDep
CloudML

model

startAutoScaling

Cloud

loop

for each Scalable Component

getLoadBalancer()

loadBalancerIP()

getLoad()

LP
model

calculateOptimalConfiguratoin()

updateModel()

getCurentConfiguratoin()

getployNewConfiguratoin()

Figure 8. Auto scaling sequence diagram.

Another important part of CMLDep is logger module. Logger is responsible for keep-

ing a record of all log data during deployment of scaling. For example, after each model

update, logger module will record new configuration etc.

25

5 Validation

We conducted three experiments to show that proposed solution can be used in deployment

of a vast range of applications into the cloud. First experiment has in mind to show that

proposed solution can, in fact, deploy usual applications such as WikiPedia. MediaWiki set

up includes connection to database, however, whole system is one component architecture.

The next two experiments were designed to show ability of the proposed solution to deploy

systems that are built using workflows. We used systems that follow parallel and exclusive

workflows.

5.1 Environment

As a cloud provider we chose Amazon EC2 as it is one of the most popular and recognizable.

All instances were running Ubuntu 14.04 as an operating system. We used three types of

EC instances for all tests M1.small, M3.medium and M3.large, however system is not limed

by a number of different types of VMs that can be used. We used instances from two differ-

ent tiers since M3 tier does not provide small instances. M1.small and M3.medium have one

core CPU and M3.large has two cores, however M1 is the previous generation to M3 so

performance is different.

5.2 Simulation tools

To simulate load in all tests we used Tsung. Tsung is load testing tool and allows one to

simulate load with various rates request per second. To make the test as realistic as possible

we used archive of ClarkNet that contains logs from a real web server. However, a number

of request per second that we got from ClarkNet was not enough for all experiments. In

order to address this problem we scaled a number of requests per seconds. We used a number

of Python scripts to extract data from ClarckNet log, convert into a convenient format, scale

number of requests, automatically create Tsung configuration file etc. Tsung has additional

functionality that, unfortunately, is really poorly described. Tsung can request system infor-

mation such as CPU load, the amount of used RAM etc. using SNMP protocol [20]. SNMP

or Simple Network Management Protocol allows a remote client to request system infor-

mation over UDP. In our case Tsung already includes SNMP management module, how-

ever, client module has to be installed to each VM instance manually in order to conduct

measurements. Luckily, setting up and installing SNMP to client VM can be handled by

26

CloudML. For client side we picked Snmpd application [21]. Example of Tsung configura-

tion file:

<arrivalphase phase="1" duration="1" unit="second">

 <users interarrival="0.030303030303030304" unit="second"/>

</arrivalphase>

<arrivalphase phase="2" duration="1" unit="second">

 <users interarrival="0.04" unit="second"/>

</arrivalphase>

To include monitoring option config file has to be a bit modified, most basic example is

<monitoring>

 <monitor host="myserver" type="snmp"></monitor>

</monitoring>

It is worth mentioning that Tsung does not generate an exact number of request every

second. Nonetheless this can be ignored, since average is correct. At the end of each

simulation Tsung provides statistics with system average response time, total number re-

quests and CPU load because of enabled SNMP. For our experiment we needed different

load every second according to ClarkNet archive. The only way to achieve this was to create

new arrivalpase for each second of testing.

Considering that our LP model heavily relies on a maximum number of concurrent

requests per second for each VM instance type, we tried to measure this parameter as accu-

rately as possible. To do so we will consider CPU load and response time as main parame-

ters. Average CPU time has to be about 80% and average response time under 500ms [22].

To find how many request each type of VM can handle we conducted number of small

experiments using Tsung each for 2 minutes. In respect to MediaWiki and our custom ap-

plication generates different CPU load we made experiments for both of them for each in-

stance type. For MediaWiki setup we populated the database with logs from public available

Wikipedia. For testing MediaWiki we requested random page to simulate real workload.

Since we need to have information about workload in each scalable component for

LP model, in all experiments we used CMLDep logging functionality. Moreover we

gathered data about amount of instances in general. Considering the fact that to get workload

in each scalable component we need to make http request we used a 5 minute delay to avoid

creating additional workload. All the results presented in this work calculated taking into

account this information including all plots.

27

5.2 One component system deployment

In this experiment we used MediaWiki as a test application for deployment. The idea behind

this experiment was to show that scalable component can scale efficiently and doesn’t in-

fluence overall system performance. Another part of the experiment aimed to show that

CMLDep is capable of deploying and scaling single scalable component model which has

relationships with external services.

5.2.1 Experiment configuration

The only scalable component will be presented by MediaWiki itself, and MySQL DB pre-

sented as an external service installed into M3.medium EC2 instance see Figure 9.

Figure 9. Experiment with one component initial configuration

After bombarding initial configuration with requests generated by Tsung according

to workload log from ClarkNet we got modified configuration which is able to handle in-

creased workload see Figure 10.

28

Figure 10. One component deployment configuration in case of increased workload

Results of performance testing for this configuration for each type of instance can be found

in Table 2.

EC2 instance type Average number of

request per sec

Average CPU load Average response

time in sec

M1.small 15 ~73 % 0.3

M3.medium 31 ~82% 0.34

M3.large 63 ~78% 0.4

Table 2. EC2 instances performance with MediaWiki

5.2.2 Experiment

To validate results we used data from CMLDep logger and compared it with the load on

scalable component see Figure 11. In 78% of the time system was able to handle the

incoming workload.

29

Figure 11. Workload and system capacity during one component experiment

 Figure 12 shows the amount of instance of each time in each hour. It is easy to see

that system preferred M3.medium instances over M1.small and M3.large.

Figure 12. Number of instances of each time during one component experiment

As well we calculated how different average response time during the experiment was

to response time in initial configuration model. To do this we tested response in initial model

bombarding it with 15 requests per second which is maximum for instance type M1.small.

This result can be set as a “normal” response time of this system which is 0.42 seconds. The

30

difference in “normal” response time and average response time that we got during experi-

ment shows how much scaling process influence the overall performance of the system. For

this experiment average response time was 0.51 second ~ 21% slower than normal. Some

additional information can be found in Table 3.

Total number of requests 80212

Requests lost 5428

Successful requests ~ 93.2 %

Table 3. One component experimnets results

5.3 Parallel workflow

The goal of the second experiment is to show the possibility of building applications with

multiple scaling component that uses parallel workflow. Workflow is a sequence of action

or task completion of which will lead to completion3. Obviously, for this test we used the

system with three scalable components. An example of the model for this experiment pre-

sented by Figure 13. In parallel workflow tasks executing simultaneously, this means that

after completion Task 1 - Task 2 and Task 3 would start and run at same time.

Task 1

Task 2

Task 3

Figure 13. Example of parallel workflow

3 https://en.wikipedia.org/?title=Workflow

31

5.3.1 Experiment configuration

For this experiment we chose to build a custom application to simplify deployment config-

uration and have more control over each element of the system. All three applications were

developed using JavaScript and Express framework to support requested model. As HTTP

server, however, we used NGINX. There two different application, first one is mainAppli-

cation represented by Task 1 in Figure 13 and second application fibApp represents Task 2

and Task 3. The only responsibility of the mainApplication is to send a request to two

instance of fibApp using round robin. Moreover, fibApp is a simple app that calculate Fib-

onacci number. In the end mainApplication response on request only after both instances if

fibApp responded see Figure 14. In order to fulfill such functionality we used module

“async”, that allow to send asynchronous requests.

User mainApplicatoin fibApp1 fibApp2

sendRequest

sendRequest

SendRequest

sendJSONResponce

sendJSONResponse

sendCombineResponce

Figure 14. Sequence diagram for Parallel workflow experiment

The result of performance testing for both types of applications can be found in Table 4 and

Table 5.

EC2 instance type Average number of

request per sec

Average CPU load Average response

time in sec

M1.small 18 ~80% 0.35

M3.medium 40 ~82% 0.41

32

M3.large 84 ~79% 0.46

Table 4. EC2 instances performance with custom applications type of type mainApplica-

tion

EC2 instance type Average number of

request per sec

Average CPU load Average response

time in sec

M1.small 3 ~83% 0.49

M3.medium 7 ~76% 0.46

M3.large 15 ~83% 0.51

Table 5. EC2 instances performance with custom applications type of type fibApp

The goal of the experiment is to show deployment of a system that is designed using

parallel workflow but it is also important to test how deployment and auto scaling affect the

performance of the system. In order to perform such tests application in the system should

perform real tasks, to load CPU and memory. That is why fibApp is fairly CPU demanding

task of calculation Fibonacci number. As a response both applications answer with simple

JSON file that contains the result of calculation, IP address of VM that preformed calcula-

tion and timestamp. An example of the response from fibApp.

{

 "res": 5702887,

 "ip": "10.30.176.166",

 "time": "2015-06-24T22:27:03.482Z"

}

To avoid the possibility of caching result and skewing results of the test we added a

random parameter for both calculations that is taken from the predefined range. Since the

range is not too wide results of calculations bottom limit and the top limit is negligible.

33

5.3.2 Experiment

Figure 15 represents initial deployment configuration. In initial state all VM connected di-

rectly and each Scalable Component contains only one VM.

Figure 15. Initial deployment model from experiment with multiple scalable components

Scaling of this model is more complex then model from the previous experiment.

First of all we need to take into account that each scalable component will be scaled differ-

ently depending on workload since initial deployment consists of multiple components Fig-

ure 16. Considering this fact it is really important to be sure that all relationships between

scalable components and between VMs inside scalable components are correct during the

scaling process.

34

Figure 16. Scaled model with multiple scaling components

To validate results we used data from CMLDep logger module and compared it with

the load on each scalable component. For a first component with installed mainApplication

results can be found in Figure 17 and Figure 18.

Figure 17. Workload and system capacity during parallel workflow experiment first com-

ponent

35

Figure 18. Number of instances of each time during parallel workflow experiment first

component

For second and third components with installed fibApp can be found in Figure 19, Figure 20

and Figure 21, Figure 22 respectively. Since both instances of fibApp receives exactly same

workload results of the experiment are almost completely the same.

Figure 19. Workload and system capacity during parallel workflow experiment second

component

36

Figure 20. Number of instances of each time during parallel workflow experiment second

component

Figure 21. Workload and system capacity during parallel workflow experiment third com-

ponent

37

Figure 22. Number of instances of each time during parallel workflow experiment third

component

As we can see from the results the system was able to provide needed performance

power in 96% for the first component and 98% for the second and third experiment. As well

we calculated how much slower system has become similarly like in previous experiment.

Average response time for M1.small instance in the initial state was ~ 0.49 seconds and after

experiment average response time increased to ~0.54 seconds, which is 10% slower. Addi-

tional information from this experiment can be found in Table 6.

Total number of requests 40126

Requests lost 2426

Successful requests ~ 94.9 %

Table 6. Prallel workflow experiment results

5.4 Exclusive workflow

For this experiment we will use exclusive workflow described by Figure 23. In this type of

workflow will be executed one of two tasks either Task 2 or Task 3. We used the same

38

configuration from the previous experiment. Performance power for this experiment is the

same as for pervious experiment see Table 4 and Table 5.

Task 1

Task 2

Task 3

Figure 23. Example of exclusive workflow

5.4.1 Experiment configuration

Obviously to support such workflow we had to slightly modify an application that we used

in the previous experiment. Application fibApp does not need any changes, however main-

Application represented by Task 1 in Figure 23 has to be changed. Application should send

request only to one of two applications using round robin scheme.

5.4.2 Experiment

In this experiment we pursued similar goal as in previous experiment to show that deploy-

ment of this workflow is possible. We used same tools for monitoring results of Tsung mon-

itoring.

39

Figure 24. Workload and system capacity during parallel workflow experiment first com-

ponent

Figure 25. Number of instances of each time during exclusive workflow experiment first

component

40

Figure 26. Workload and system capacity during parallel workflow experiment second

component

Figure 27. Number of instances of each time during exclusive workflow experiment sec-

ond component

41

Figure 28. Workload and system capacity during parallel workflow experiment third com-

ponent

Figure 29. Number of instances of each time during exclusive workflow experiment third

component

Similarly to previous experiment it is easy to notice that the system was able to sup-

port the incoming workload in 96% for the first component and about 99% for the second

and third experiment. Moreover, again similar to previous experiment system become

42

slower with base response time for M1.small 0.49 seconds and 0.52 seconds after the exper-

iment about 6% slower. Additional information from this experiment can be found in Table

7.

Total number of requests 40126

Requests lost 1913

Successful requests ~ 95.2 %

Table 7. Exclusive workflow experiment results

5.5 Cost overhead

One of the main reasons why cloud grows so fast is because its cost efficient and it should

stay that way. The proposed solution, however, required some overhead as load balancers

which are regular VMs. However, actually it is not the case for example Amazon charges

$0.026 per hour for using Elastic Load Balancer which is exactly price of Amazon M1.small

instance.

43

6 Conclusions

The thesis presented a solution for deploying dynamically scalable systems in the cloud.

Moreover, the system is platform independent and can be easily redeployed to another cloud

provider with almost no effort. The main reason for this is that solution is built on top of

CloudML that uses jclouds, and this allows us to say that proposed system is truly platform

independent. The key component added in this system was a scalable component. Scalable

component makes designing deployment configuration for a complex system much easier.

And what is more important each scalable component is able to scale on its own, includes

own load balancer and all procedure to support scaling up and down without any changes

to configuration or additional commands from the administrator. Another advantage of the

solution is integrated LP model that is able to find best deployment configuration consider-

ing cost and performance. To achieve this goal and help support LP model in its full capacity

we fully integrated the notion of time bags. Part of the idea behind time bad is that we should

not kill instances before the end of the time that we already had paid for. This helps to keep

the cost of the system low. Another important part of the developed solutions is CMLDep

tool that allows to make deployment process as easy as possible.

 To prove that we have achieved all the goals we conducted three experiments. In all

experiments our solution has showed its ability to scale to support the incoming workload

more than 90% of the time. However, unfortunately experiments showed as well that system

becomes notably slower from 6% to 20% depending on the configuration. We showed that

system can be used in enterprise size system that consist of many components and uses

parallel or exclusive workflow.

44

7 Future work

Despite all described advantages proposed solution still can be improved in many ways. One

of the weakest points is the monitoring system. Right now there is no way to get information

about the performance of each particular VM in particular scalable components that is why

round robin has been used in load balancing. Monitoring CPU load and RAM would allow

us to use much more efficient algorithms inside each scalable component and would give

much deeper picture about the system in overall.

 Another area where improvement is needed is CMLDep tool. It has been designed

as simple as possible and that is one of the main reasons why it lacks some needed function-

ality such as some kind of dashboard for administrating the system or at least health monitor.

 Moreover, third main problem that can be fixed in the future is the process of creat-

ing deployment configuration. Despite all the effort it is still not really clear and easy and

the system should lean in the future towards approaches used in Apache Brooklyn.

45

Bibliography

[1] J. Erbes, Nezhad Motahari, H.R. S. Graupner, The Future of Enterprise IT in the Cloud,

Computer 2012 , pp 66 – 72

[2] IBM. Under cloud cover: How leaders are accelerating competitive differentiation. Oc-

tober 2013

[3] M.G. Avram, Advantages and Challenges of Adopting Cloud Computing from an En-

terprise Perspective, 7th International Conference Interdisciplinary in Engineering,

Volume 12, 2014, pp. 529–534

[4] S. N. Srirama, J. Viil: Migrating Scientific Workflows to the Cloud: Through Graph-

partitioning, Scheduling and Peer-to-Peer Data Sharing, 16th IEEE International

Conference on High Performance and Communications (HPCC 2014) workshops,

August 20-22, 2014, pp. 1137-1144. IEEE

[5] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi,. Cloud computing —

The business perspective, Decision Support Systems, vol. 51, pp. 176-189, 2011.

[6] Gonidis, F., Paraskakis, I., Simons, A.J.H.. A Development Framework Enabling the

Design of Service-Based Cloud Applications. In Workshop in the Third European Con-

ference on Service-Oriented and Cloud Computing. Manchester, UK.

[7] J. Guillen, J. Miranda, J. M. Murillo and C. Cana. Developing migratable multicloud

applications based on MDE and adaptation techniques, in the 2nd Nordic Symposium

on Cloud Computing & Internet Technologies, Oslo, 2013, pp. 30-37

[8] Google Cloud Deployment Manager. URL https://cloud.google.com/deployment-man-

ager

 [9] Amazon CloudFormation. URL http://aws.amazon.com/cloudformation

[10] Apache JClouds. URL https://jclouds.apache.org

[11] Apache Libcloud. URL https://libcloud.apache.org

[12] OpenStack. URL http://www.openstack.org

[13] OpenNebula. URL http://opennebula.org

[14] VMware vCloud Suite. URL http://www.vmware.com/products/vcloud-suite

[15] CloudML. URL http://cloudml.org/

https://cloud.google.com/deployment-manager
https://cloud.google.com/deployment-manager
http://aws.amazon.com/cloudformation
https://jclouds.apache.org/
https://libcloud.apache.org/
http://www.openstack.org/
http://opennebula.org/
http://www.vmware.com/products/vcloud-suite
http://cloudml.org/

46

[16] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “Auto-scaling techniques for

elastic applications in cloud environments,” Department of Computer Architecture and

Technology, University of Basque Country, Tech. Rep. EHU-KAT-IK- -09-12, 2012.

[17] M. Vasar, S. N. Srirama, and M. Dumas, “Framework for monitoring and testing web

application scalability on the cloud,” in Nordic Symp. on Cloud Computing & Internet

Technologies (NORDICLOUD). ACM, 2012, pp. 53–60.

[18] Amazon Cloud Watch. URL http://aws.amazon.com/cloudwatch/

[19] S. N. Srirama, A. Ostovar: Optimal Resource Provisioning for Scaling Enterprise Ap-

plications on the Cloud, The 6th IEEE International Conference on Cloud Computing

Technology and Science (CloudCom-2014), December 15-18, 2014, pp. 262-271.

IEEE.

[20] SNMP. URL https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

[21] Snmdp. URL https://wiki.archlinux.org/index.php/Snmpd

[22] Al-Haidari, F.; Sqalli, M.; Salah, K., "Impact of CPU Utilization Thresholds and Scal-

ing Size on Autoscaling Cloud Resources," Cloud Computing Technology and Sci-

ence (CloudCom), 2013 IEEE 5th International Conference on, vol.2, no., pp.256,

261, 2-5 Dec. 2013

http://aws.amazon.com/cloudwatch/
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
https://wiki.archlinux.org/index.php/Snmpd

47

I. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Iurii Tverezovskyi (date of birth: 03.05.1990),

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

CloudML based dynamic deployment configuration for scaling enterprise applications

in the cloud,

supervised by Satish Narayana Srirama, Phd,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 05.08.2015

