
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Software Engineering Curriculum

Myroslava Stavnycha

Issue Report Resolution Time Prediction

Master’s Thesis (30 ECTS)

Supervisor(s): Dietmar Pfahl

Tartu 8/4/15

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract:

Prediction of the resolution time of an issue report has always been an important, but difficult,

task. The primary purpose of this study is to build a model that predicts the resolution time of

incoming issue reports based on past issue report data. Moreover, additional goals of the

research are to determine which existing approaches of resolution time prediction yield the

highest levels of accuracy, and which features of issue reports are essential for prediction. The

approach chosen for building an issue resolution time prediction model was to improve

currently existing models applying additional reports pre-processing. The project was designed

to analyse, combine, compare and improve different techniques of resolution time prediction.

This includes k-means clustering, k-nearest neighbor classification, Naïve Bayes classification,

decision trees, random forest and others, in order to achieve the best results with regards to

prediction accuracy. For conducting the current research, data was collected from a repository

of the Estonian company Fortumo OÜ. The data provided by Fortumo contained actual

resolution times of 2125 issues from 25 Apr 2011 till 1 Jan 2015 along with initial time

estimates made by Fortumo employees.

The data from the repository indicates that around 50% of the time estimates made by Fortumo

employees fall into the range of ±10% of the actual resolution time. In addition, 67% of experts’

estimates have absolute error ≤ 0.5 hour. Existing proposed approaches don’t increase the

predictive quality. On the contrary, proposed methods bring worse results. Random Forest and

Ordered Logistic Regression, as the best among the proposed models, still produced a

prediction quality 12-20% worse than the estimates of the experts. After improvement of the

best performing approaches, meta-information-based models yielded a better accuracy than

proposed models by up to 5%. However, text-based models produced a higher prediction

quality, approximately up to 20% better than estimates made by experts.

Keywords:

Machine learning, data mining, prediction, k-means, k-nearest neighbours, random forest,

ordered logistic regression, Naïve Bayes classifier, latent semantic analysis, issue report,

resolution time

3

Lühikokkuvõte:

Ennustus ajakulu kohta probleemi teatamise ja lahendamise juures on alati olnud tähtis kui

samas raske ülesanne. Peamine eesmärk selle töö juures on ehitada modell mis ennustab

eelnevate aruannete andmete põhjal probleemi lahendamiseks ja tulemuste saamiseks kuluvat

aega. Lisaks täiendavad eesmärgid uurimuse juures määravad millised meetodid on kõige

kõrgema usaldusväärsusega ning millised funktsioonid on olulised ennustuseks. Eesmärk miks

valiti probleemi lahendamise ajakulu modell oli edasi anrendada juba olemas olevaid modelle

lisades erinevaid lisasid. Projekt loodi analüseerimaks, kombineerimaks, võrdlemaks ja

edendamaks erinevaid tehnikaid probleemi lahendamise ennustamisel See sisaldab k-means

klastreid, k-nearest neighbor klassifikatsiooni, Naïve Bayes klassifikatsiooni, otsustus puid,

juhuslikku metsa ja teisi, parima tulemuse saamiseks. uurimuse läbiviimiseks koguti andmed

Eesti firmalt Fortumo OÜ. Fortumo andmed sisaldasid 2125 probleemi lahendamise aegasid

alates 25 aprillist 2011 aastal kuni esimese jaanuarini 2015 aastal. koos kommentaaridega

Fortumo töötajatelt.

Andmed näitasid et 50% ajakuludest mis Fortumo töötajad märkisid olid vahemikus ±10%

tegelikust ajakulust. Lisaks 67 % nendest omavad kindlat viga ≤ 0.5 tunni võrra. Olemasolevad

ettepanekud ei tõstnud probleemi lahendamise kvaliteeti. Vastupidiselt tõid hoopis halvemaid

tulemusi. Juhuslik mets ja tellitud logistiline regressioon olles parimad nimetatute hulgas

näitasid siiski kuni 12-20% halvemat tulemust kui ekspertide omad. Pärast parimate võimaluste

täiendamist, meta-informatsiooni modellid näitasid paremat sobivust kuni 5% võrra. Kuigi,

tekstil põhinevad medellid andsid kõrgema kvaliteeti, umbes 20% kõrgema kui ekspertidel.

Märksõnad:

Masina õpe, data mining, ennustus, k-means, k-nearest neighbours, juhuslik mets, tellitud

logistiline regressioon, Naïve Bayes klassifikatsioon, varjatud semantiline analüüs, probleemi

reporteerimine, lahendamise aeg.

4

Table of Contents

List of Abbreviations ... 6

1 Introduction .. 8

1.1 Problem Statement ... 9

1.2 Structure ... 10

2 Current Practice of RT Prediction in Fortumo ... 11

2.1 The Process of Estimating Issues in Fortumo .. 11

2.2 Calculating Prediction Quality in Fortumo .. 11

3 Related Work ... 15

3.1 Prediction Models .. 15

3.2 Feature Selection for Prediction Model ... 21

3.3 Removing Outliers for Improving Model Accuracy .. 23

4 Application of Recommended Models to Fortumo Data ... 27

4.1 Issue Report Description .. 27

Issue Reports Extraction and Selection.. 27

Issue Report Attributes Description ... 28

4.2 K-Nearest Neighbors ... 29

4.3 Naïve Bayes Classifier ... 32

4.4 C4.5 Decision Tree .. 32

4.5 Random Forest ... 33

4.6 Ordered Logistic Regression.. 33

4.7 Other Methods ... 34

4.8 Summary .. 34

5 Case Study Elements.. 36

5.1 Moving Window Concept .. 36

5

5.2 Meta-Information-Based Model .. 37

Feature Selection .. 38

Removing Mild Outliers .. 38

5.3 Text Based Model .. 38

Preprocessing Textual Data ... 39

Calculating the Distance Between Documents .. 40

Latent Semantic Analysis .. 40

Removing Mild Outliers .. 41

Improved Spherical K-means Clustering ... 41

6 Case Study Execution and Results ... 44

6.1 Enhancement of Accuracy of Meta-Information Based Model Prediction 44

Feature Selection .. 44

Model Application Results .. 49

6.2 Enhancement of Accuracy of Text-Based Model Prediction 52

6.3 Discussion .. 58

7 Conclusion ... 63

8 Bibliography .. 64

6

List of Abbreviations

AP Actual Prediction Accuracy

AE Absolute Error

AUC Area Under the Curve

BP Baseline Prediction Accuracy

CDT C/C++ development tools

COCOMO Constructive Cost Model

df Degrees of Freedom

GEF Graphical Editing Framework

IDF Inverse Document Frequency

IEEE Institute of Electrical and Electronics Engineers

IQ Inter-Quartile

JDT Java Development Tools

kNN K Nearest Neighbors

LSA Latent Semantic Analysis

MMRE Mean Magnitude of Relative Error

MRE Mean of Relative Error

NASA National Aeronautics and Space Administration

ORL Ordinal Logistic Regression

OS Operating System

PCA Principle Component Analysis

PDE Plug-in Development Environment

PM Project Manager

PRED Predictive Quality

Q Quartile

7

RE Relative Error

RF Random Forest

RT Resolution Time

SLIM Software Lifecycle Management

SLOC Source Lines of Code

SOM Self-Organizing Maps

SVD Singular Value Decomposition

TF Term Frequency

WRO Without Removing Outliers

α-kNN α-K Nearest Neighbors

8

1 Introduction

Nowadays, planning and scheduling is critical for companies of any size. We use planning in

order to know how much a product will cost, how much resources are needed, and when a

product will be delivered. Estimating and planning is an integral part of the software

development process. It is important for the overall success of a project, as it determines the

feasibility of said project. Business decisions, tactics, and actions like scheduling marketing

campaigns, demo presentations, releases, and advertisements rely on dates and deadlines that

are predicted. Plans help us know if a project is on track to deliver the functionality that user

expects. Thus, planning reduces risks and uncertainty.

The process of planning helps developers to better understand what should be built and which

tools to apply in order to achieve a higher performance. It is a process of searching for an

optimal solution between features and resources. Planning and estimates are used to support

decision-making. They help to understand whether a project should or should not be

implemented. However, planning is difficult and plans are often wrong. Teams often tend to

respond to this by either not doing planning at all or by putting so much efforts into planning

that there is no time left for actual work. Often, estimations are not valid or well-grounded.

Moreover, people can often be influenced by other people's opinion or other subjective factors

that can skew the estimation. In addition, developers tend to assign an optimistic estimate to a

feature. An optimistic estimate does not cover unexpected circumstances, additional

communication with colleagues, problems with tools, etc. Also, the amount of time necessary

to execute tests or some previous code improvement is often overlooked or not taken into

account, even though it is still required. Given a recurring task in a project, people often tend

to forget to check historical data in order to improve time prediction, but instead assign another

guess estimate for the resolution of that task even though a guess estimate has been previously

ascertained for a similar task. According to the data used in this thesis, which was provided by

Fortumo, only up to 20% of time estimates fall into the range of ±10% of an actual resolution

time. Thus, it is clearly visible that the accuracy can be improved.

Some models, such as COCOMO, SLIM and CheckPoint were developed in order to define

resolution time of a feature, resources and cost. They are mostly based on function point

analysis and integral features of a team. However, for highly accurate prediction one must

provide accurate input, which complicates the task.

9

However, development of a product is expensive and as a result project stakeholders put a lot

of pressure on both the project manager (PM) and developers’ team. This pressure affects the

project quality. Another issue that affects project quality is wrong or faulty estimation.

Developers follow these estimates and when they infer their inability to deliver before the final

deadline, begin to cut corners thus reducing the quality.

In order to reduce the discrepancy between the predicted and actual time, companies tend to

move to estimation of size i.e. story points. However, for business, this metric is not as simple

as time estimation.

Today, people possess huge amount of data, which they do not analyze or use for any purpose.

Previously several researchers have made contributions towards transforming existing data into

a decision-making support for predicting resolution time. These studies however, did not bring

robust enough results. The ones with acceptable accuracy rates often suffer from optimistic

bias and overfitting, and were eventually disproved by other researchers. In addition, they

employed different measures of calculating prediction accuracy and conducted their studies on

different data. Consequently, the results are not comparable. As a result, it is hard to find the

best recommended prediction model.

1.1 Problem Statement

The objective of this thesis is to compare existing studies using our own measure of prediction

accuracy. In addition, we aim to improve existing approaches and combine best practices in

order to outperform existing models and build a much more reliable model to streamline the

development process for all engineering teams, namely simplifying the planning process and

guaranteeing reliable estimation.

Furthermore, I will explore which level of accuracy can be derived from existing data.

For measuring prediction accuracy, different quality measures will be used, based on both

absolute and relative error.

Thus, the main set of research questions in this thesis is:

1. What is the current RT prediction accuracy at Fortumo?

2. What is the accuracy of proposed (existing) RT prediction models applied to Fortumo

data?

3. How can the best performing existing RT prediction models be improved?

10

4. What is the prediction accuracy of improved RT prediction models applied to Fortumo

data?

In addition, in this thesis we divide models of resolution time prediction into two categories:

1. Meta-information-based model (Type 1).

2. Text-based model (Type 2).

1.2 Structure

The current thesis is structured as follows:

Section 2 reviews the current process of resolution time prediction in Fortumo. In addition, it

defines measures for defining prediction accuracy and calculates the prediction accuracy of

experts’ estimates in Fortumo.

Section 3 presents a set of recommended techniques for estimating issue report handling

proposed in the literature.

Section 4 applies all recommended models to Fortumo data in order to compare their accuracy

using defined metrics. Moreover, the model, which gives the highest accuracy, is set as the

baseline model with which all improved approaches for predicting the resolution time proposed

in this thesis will be compared.

Section 5 presents a plan of researching additional approaches for estimation of the resolution

time of an issue report.

Section 6 describes the process of applying proposed techniques of resolution time prediction

on Fortumo data. It also presents the results using defined metrics for measuring accuracy of

the prediction. Moreover, an additional discussion about the results and future work is

presented in this section.

Section 7 concludes the thesis.

11

2 Current Practice of RT Prediction in Fortumo

In order to understand the current situation of prediction accuracy in Fortumo, we studied the

process of RT prediction at Fortumo and measured its accuracy. As a result, 67% of estimations

were correct within ±0.5 hour of the actual resolution time. In addition, half of predictions were

correct within ±10% of the actual resolution time.

2.1 The Process of Estimating Issues in Fortumo

Time estimation of incoming issues is done on a weekly basis during meetings. It involves the

opinion of the whole team of developers, who are in charge of the issue. Usually the procedure

follows Planning Poker rules, which is an agile software development practice [1].

2.2 Calculating Prediction Quality in Fortumo

In order to examine the actual situation and evaluate the accuracy of prediction done in Fortumo

by its employees, we analyzed existing data and calculated its predictive quality. Issue reports

extracted from Fortumo’s repository, contained such attributes as resolution_time and

time_estimate, measured in seconds which corresponded to time spent on the issue and initial

estimated time which represent theoretical time that issue should take.

We convert initial time prediction of the issue report to hours and then to our discrete scale,

which is defined in the following way:

1. [0; 0.5]

2. (0.5; 1]

3. (1; 3]

4. (3; 6]

5. (6; 11]

6. (11; 20]

7. (20; 40]

8. (40; +∞)

In this study, we assume that a given set of classes of RT gives enough information about RT

for practical work. The distribution of resulting RT classes is described in Figure 2.1.

12

Figure 2.1 Distribution of actual resolution time in Fortumo

Out of 2125 issues, there are 894 issues with RT estimates.

For issues with an RT estimate, the distribution of their estimate and actual RT is shown in

Figure 2.2.

Figure 2.2 Distribution of estimated RT and actual RT

13

Figure 2.2 depicts that experts tend to underestimate the resolution time of the issues since the

distribution of estimated RT is more skewed to the left than the distribution of actual RT.

In our study, we used 2 kinds of prediction accuracy measures:

1. Predictive Quality using Absolute Error (AE).

2. Predictive Quality using Relative Error (RE).

Absolute Error. Absolute error is defined as absolute difference between predicted value and

actual value:

𝐴𝐸 = 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝑎𝑐𝑡𝑢𝑎𝑙)

Seeing that the predicted resolution time is an interval value, the difference between actual RT

and the predicted interval of RT is defined as follows:

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑟𝑡𝑝, 𝑟𝑡𝑎) = {
0, 𝑖𝑓 𝑟𝑡𝑎 ∈ [𝑟𝑡𝑝𝑚𝑖𝑛

; 𝑟𝑡𝑝𝑚𝑎𝑥
]

min (|𝑟𝑡𝑝𝑚𝑖𝑛
− 𝑟𝑡𝑎| , |𝑟𝑡𝑝𝑚𝑎𝑥

− 𝑟𝑡𝑎|) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where rtp is the predicted interval of resolution time, rta is the actual resolution time in hours.

Relative Error. Relative Error is defined as the division of Absolute Error by the actual RT:

𝑅𝐸 =
𝐴𝐸

𝑟𝑡𝑎

Predictive Quality using Absolute Error. This approach of evaluating predictive quality is

calculated as a percentage of issues with Absolute Error <= X:

𝑃𝑟𝑒𝑑(𝑋) =
sum

𝑖
(𝐴𝐸(𝑑𝑖) ≤ 𝑋)

|𝐷|

Where X is an Absolute Error, D is the documents set, di ∈ D.

14

Predictive Quality using Relative Error. This way of estimating quality of prediction is

defined as a percentage of issues with Relative Error <= X:

𝑃𝑟𝑒𝑑(𝑋) =
sum

𝑖
(𝑅𝐸(𝑑𝑖) ≤ 𝑋)

|𝐷|

Where X is Relative Error, D is the document set, di ∈ D.

In this study, we consider only Pred(0.5h) and Pred(1h) as measures for assessing the model in

terms of absolute error since the mean RT of issue reports in Fortumo’s dataset is 4.8 hours

and median class of RT is (1; 3]. Thus, these metrics are sharp enough and depict substantial

information about model accuracy. Predictive Quality from Absolute Error is especially

valuable for issues with large resolution time. However, since we still have issues with large

resolution times, we use the Predictive Quality from Relative Error; namely Pred(10%) and

Pred(25%), as we consider those measures to be strict enough as well.

Using preceding formulas, the calculated Predictive Quality of estimations in Fortumo is

described in Table 2.1.

Pred(0.5h) Pred(1h) Pred(10%) Pred(25%)

0.668 0.727 0.501 0.578

Table 2.1 Predictive quality of time estimates in Fortumo

15

3 Related Work

In order to investigate existing models and their prediction accuracy, we accessed IEEE Xplore

Digital Library and ACM Digital Library, as trusted sources of high quality studies. The

development of RT prediction system for issue report is not a trivial problem and has been

studied for over 40 years. One of the earliest and most popular systems in this area is regression-

based COCOMO (COnstructive COst MOdel) [2], which is used for project effort and time

estimation, but not single issue reports estimation. COCOMO accumulates a broad set of

different project parameters. Its newer version COCOMO II has parameters divided into

categories: Software Scale Drivers, Software Cost Drivers Product, Personnel, Platform,

Project and Sizing Method (function points or SLOC) [3]. Researchers have tried for many

years to improve the prediction accuracy of COCOMO [4] [5] [6] [7] [8]. Unfortunately, C. F.

Kemerer in his study [9], showed that COCOMO failed to reflect the dependence of project

duration and effort consumption on the considered factors.

This section is divided into 3 parts:

1. Prediction models;

2. Feature selection for prediction models;

3. Removing issue report outliers for improving model accuracy.

3.1 Prediction Models

Thomas Zimmermann, researcher at Microsoft Research, has conducted a study in [10] on

JBoss dataset in order to predict fixing effort using the k-Nearest Neighbour Approach, because

it is easy and flexible in use. He performed his research on a set of bug reports, which is a

subset of issue reports. In order to construct a similarity measure, two attributes of bug reports,

description and title, were selected. Since text similarity measure is crucial for current research,

the authors of the paper used a text similarity measuring engine known as Lucene, a product of

Apache. The authors’ results indicated poor predictive quality using the kNN approach and the

description statistic of results is shown on Figure 3.1, where the difference between actual and

predicted time on average is 20h and only 30% lie within ±50% range of the actual effort.

16

Figure 3.1 kNN performance [10]

Another approach used by Zimmermann in [10] was the α-kNN method with k = ∞ and α from

0 to 1 with 0.1 step. Using this approach, the authors theorised that the lower the rate of α is,

the better accuracy we obtain (even up to 100% accuracy), which is shown in Figure 3.2.

Figure 3.2 α-kNN performance [10]

In [11], Uzma Raja suggested using clustering in order to analyze usefulness of textual data of

a bug report for predicting the RT. SAS Text Miner [12] was used for text preprocessing and

17

clustering. The results of a study showed the statistically significant difference in the means

and medians of the RTs between different clusters. As a result, Raja concludes that text-based

clustering can be useful for prediction the resolution time.

In [13], researchers from University of Zurich achieved high rates of accuracy of RT prediction

using decision tree model when categorizing issues into two groups: ‘Fast’ and ‘Slow’, which

stand along two sides of the distribution median. They used data from Eclipse, Mozilla and

Gnome projects and built their model using decision tree covering two cases, i.e., initial data

(reporter, date, nextRelease, hToLatFix) and post-submission data (assignee, platform, OS,

priority, severity, status, comments, milestone and others), where post-submission data is set

of entries of issue report which can be changed after the issue report has been submitted. The

results indicated higher accuracy after inclusion of post submission information. Common

significant predicators among all projects in case of considering post-submission data appeared

to be milestone, priority, assignee and reporter. While considering only initial data, date and

assignee had the most significant influence.

Project Precision

Eclipse JDK 0.635

Eclipse Platform 0.654

Mozilla Core 0.639

Mozilla Firefox 0.608

Gnome GStreamer 0.646

Gnome Evolution 0.628

Table 3.1 Decision tree model accuracy for model with initial data [13]

According to Table 3.1, 60-70% of incoming bug reports were correctly predicted. It improves

random classification by 10-20%.

Researchers from the George Mason University in [14] applied unsupervised learning of self-

organizing maps on NASA IV&V Facility Metrics Data Program repository data. The input to

the SOM algorithm was a dissimilarity matrix based on a set of issue attributes such as severity,

how_found, mode, problem_type. Using Mean Magnitude of Relative Error as a measurement

18

of accuracy, they obtained results with average MRE in the range of 7% - 23% of RT. The

maximum MRE is in the range of 23% - 83% of the actual RT. However, the dataset that covers

completely different development environments, was less suitable for the given model and

returned an average MRE in the range of 40% - 159% of RT, a maximum MRE ranging from

159% to 373%, which indicates poor model performance.

Lucas D. Panjer from University of Victoria based his study [15] on Eclipse BugZilla data,

where he compared five different modelling approaches: 0-R, 1-R, C4.5 Decision Tree, Naïve

Bayes Classifier and Logistic Regression.

Figure 3.3 Distribution of actual resolution times [15]

In Figure 3.3, the distribution of issue RT is depicted. Reports were divided into 7 clusters

according to their bug RT using equal-frequency binning algorithm. The biggest cluster

contains reports with bug RT less than 1.4 days.

First, 0-R and 1-R approaches were applied as the definition of baseline classification. While

the 0-R approach takes the mode of the distribution as predicted value, 1-R generates 1-level

decision tree for every attribute picking up the majority output class for every branch. It then

chooses the tree with minimum error to return predicted value. As a result, 0-R returned 29.1%

19

of correctly classified reports with kappa statistic 0. 0-R predicted all reports with < 1.4

resolution time correctly, since a value < 1.4 is the most likely outcome. 1-R correctly classified

31.0% of data with kappa statistic 0.0747. 1-R algorithm built a 1-level decision tree with

comments as its determinant attribute (Figure 3.4)

Figure 3.4 Decision tree [15]

The C4.5 decision tree algorithm correctly categorized 31.9% of issues with kappa statistic

0.0938. The top node of the C4.5 tree is always comments with followed assignee attribute.

The Naïve Bayes algorithm produces a higher result with 32.5% of correctly categorized data

with kappa statistic 0.1195.

Due to computational constraints for logistic regression, only 469 (0.42% of original dataset)

issues were taken into account. However, the given approach correctly defines bug RT for

34.9% of bugs and the kappa statistic is 0.1577.

Table 3.2 Algorithms results [15]

Logistic Regression applied on the same set of data, produced the best results reaching 34.9%

of issues correctly predicted.

20

Naïve-Bayes classifier was also studied in [16], using data of Eclipse JDT, Mozilla and Gnome

projects. However the output resolution time set was divided into two categories:

1. Fast and Slow, divided by a specified median.

2. Very Fast and Not Very Fast, divided by 1st quartile.

3. Not Very Slow and Very Slow, divided by 3rd quartile.

The input to the algorithm is a set of all issue attributes, as: date, severity, reporter, platform,

OS and so on.

Target Eclipse JDT Mozilla Gnome

 Precision Recall Precision Recall Precision Recall

Very fast 0.39 0.20 0.43 0.20 0.76 0.99

Not very

fast

0.77 0.90 0.77 0.91 1.00 0.89

Fast 0.57 0.64 0.61 0.65 0.62 0.67

Slow 0.58 0.51 0.62 0.58 0.64 0.59

Not very

slow

0.78 0.93 0.81 0.85 0.79 0.85

Very slow 0.49 0.21 0.47 0.41 0.41 0.23

Table 3.3 Results of Naïve-Bayes classifier [16]

Table 3.3 shows that for classes divided by the specified median, the precision of a prediction

varies between 57% - 64%. However, when the output set is divided by 1st or 3rd quartiles and

the output distribution becomes more skewed, the precision of the prediction accuracy of a

target subset with smaller volume becomes worse.

Random forest, as another supervised classifier, was applied to Mozilla and Eclipse datasets in

[17] by researchers from Queen’s University of Canada. Having the output resolution time set

divided into categories < 3 months, < 1 year and <3 years, the authors showed that the current

model can produce approximately 65% of correct issue classification. In addition, the creation

date and location of an issue has a strong impact on resolution time in contrast to issue priority

21

which doesn’t have any significant influence. As mentioned earlier, in [13], researchers proved

the correlation between ‘open date’ and RT of an issues.

3.2 Feature Selection for Prediction Model

In [18], researchers from Microsoft Research and Stanford University conducted a research

which revealed that reports reported by people with higher reputation are more likely to be

fixed earlier. The authors used datasets of Windows Vista and Windows 7 in their research and

found out the linear dependency between a bug’s RT and reporter’s reputation. The definition

of a reporter’s reputation was derived from the number of completed tasks, reported by this

person. In Figure 3.5, a clear, consistent, and monotonic increase in bug resolution likelihood

as the opener reputation increases, is described.

Figure 3.5 Percent of fixed Vista bugs vs. bug reporter’s reputation [18]

However, the concept above was disproved in [19], where the same method was applied to

another dataset and results revealed no correlation between the values contrasted in the table

above.

Additionally, in [19], the authors investigated which attributes of bug reports predict the

resolution time better using multivariate regression testing where the dependent variable is bug

RT and the independent variables are attributes of a report: bug severity, number of

attachments, and number of developers involved. They conducted the research using datasets

of Chrome, Mozilla and Eclipse. As a result, a low prediction quality of the model was received,

where multivariate goodness of fit, R2, was in a range of 30% - 49%, which means that there

22

is a need for more independent variables in order to construct a better prediction model to

predict bug report resolution time.

Figure 3.6 Multivariate regression testing results [19]

In [20], researchers proved a strong linear correlation between the number of participants and

resolution time, based on data pulled from 9 releases of Ubuntu, which is described in Figure

3.7.

Figure 3.7 Resolution time with respect to participants [20]

The calculated average correlation coefficient is 0.92, which indicates a strong dependence of

resolution time on the number of participants. The authors stated that the model, based on this

theory, produces high accuracy results:

MMRE PRED(0.25)

23

0.1 – 0.22 0.7 – 0.8

Table 3.4 Results of the model, based on number of participants

Where MMRE is Mean Magnitude of Relative Error among all Ubuntu Releases, and

PRED(0.25) is the percentage of issues with MMRE ≤ 0.25. However, the model built in [10]

which was based on a kNN approach, produces the same accuracy results and the other, based

on an α-kNN approach, slightly outperforms the former as it involves only initial data of the

issue report. Additionally, in [19], no significant correlation between the number of participants

and resolution time could be found.

In conclusion, all materials presented in this section serve as additional data about the influence

of different independent variables on the issue report RT. In this thesis such dependency is

analyzed for further feature selection for improving the accuracy of the prediction models.

3.3 Removing Outliers for Improving Model Accuracy

Ahmed Lamkanfi and Serge Demeyer from the University of Antwerp in their paper [21]

emphasize the fact that open source RT data is heavily skewed and includes non-realistic data

with RT less than a minute. Thus, such outliers may confuse data mining techniques and

produce distorted results. Consequently, the authors claim that removing outliers will have

positive impact and improve classifiers. The authors used data examined in [13] and compared

the results of [14] with the ones after removing outliers.

Table 3.5 Descriptive statistic of datasets resolution time [21]

24

As Mozilla developers explained in [21], issue report RT can take more than 100 days in cases

of insufficient information, incorrect description or specifying wrong component of the

software system. Unfiltered RT distributions of Eclipse and Mozilla data are presented in

Figure 3.8 and Figure 3.9.

Figure 3.8 Boxplots of RT in days of Eclipse projects [21]

Figure 3.9 Boxplots of RT in days of Mozilla projects [21]

25

The authors decided to eliminate only those suspicious reports with very low resolution time

and tended not to touch long-term reports. They proposed to set the RT threshold to half of the

lower quartile of the RT distribution in order to eliminate suspicious reports, thus, the threshold

is different for every project i.e. ½ * Q1.

The same experiment as in [13] was conducted again in order to see the impact of the removal

of outliers.

𝑏𝑢𝑔𝐶𝑙𝑎𝑠𝑠 = {
𝐹𝑎𝑠𝑡 ∶ 𝑓𝑖𝑥𝑡𝑖𝑚𝑒 ≤ 𝑚𝑒𝑑𝑖𝑎𝑛
𝑆𝑙𝑜𝑤 ∶ 𝑓𝑖𝑥𝑡𝑖𝑚𝑒 > 𝑚𝑒𝑑𝑖𝑎𝑛

The formula above was used to classify issue reports by their RT. In order to classify the

incoming bug, Naïve Bayes classifier was applied. Thus, the result before and after outlier

removal is presented in Table 3.6.

Table 3.6 Accuracy before and after removal of outliers [21]

K-Fold cross-validation was used to assess prediction accuracy. For projects like Eclipse GEF,

removal of outliers improves the accuracy rate for 0.069%. However, in case of Mozilla

Thunderbird, the removal of outliers deteriorated the results.

The same study was extended in [22], where researchers tried several thresholds for eliminating

outliers, including:

1. Half of the lower quartile: ½ * Q1.

2. Median of the lower quartile.

3. Half of the upper quartile: ½ * [Max – Q3].

4. Median of the upper quartile.

26

5. Mild outliers of the upper inner fence, were inner fence is defined as Q3 + 1.5 * IQ,

where IQ is inter-quartile.

6. Extreme outliers of the upper outer fence, where outer fence is defined as Q3 + 3*IQ,

where IQ is the inter-quartile.

Inner and outer fence are described in Figure 3.10.

Figure 3.10 Outliers boundaries [22]

The study showed that eliminating outliers using thresholds for filtering out mild outliers

produces the best results; classifying 71% of the issues correctly.

27

4 Application of Recommended Models to Fortumo Data

Since all suggested methods described in the previous section, were examined on different sets

of data and measured using different accuracy measures, it is impossible to compare their

performance.

In this section, we apply the suggested models from previous studies to Fortumo data in order

to make their results comparable. We also measure prediction accuracy using the quality

measures introduced in Section 2. Afterwards, we select the model with the highest prediction

accuracy as the baseline model for further research.

In [13], the authors claimed that post-submission data improves prediction accuracy.

Nevertheless, there is a measure of uncertainty in procuring a time estimate based on post-

submission data for an organizations. Factors such as a large number of comments, developers

involved in the project, and a huge volume of code that has been modified are more likely to

extend the resolution time of an issue and people don’t need any models to understand this

phenomenon.

In this project, we focus on the initial data of an issue in order to make a prediction, because

organizations need an RT estimate before resolution of the issue is completed.

Subsection 4.1 describes the data on which recommended models will be applied. Succeeding

subsections are dedicated to the models themselves including:

1. K-Nearest Neighbors.

2. Naïve Bayes Classifier.

3. C4.5 Decision Tree.

4. Random Forest.

5. Ordinal Logistic Regression.

4.1 Issue Report Description

This section describes the process of issue report extraction from a bug-tracking system and

the rules of their selection for this study. Moreover, it describes the content of an issue report

and all its attributes that were used in the research.

Issue Reports Extraction and Selection

The data for the current study was taken from the JIRA bug tracking system of Fortumo. The

data was extracted using an API provided by JIRA.

28

The selection of issue reports in this study was performed in the following order:

1. Separation of issues in English.

Previously, most issues were stored in Estonian. However, since two years ago, all the

issues of the company have been stored in English language. Thus, some initial

separation was applied and only the issues in English language were taken into account

for in the context of this study. For separation, an existing library for R “textcat” [23]

was used along with further manual double-checking of issues list.

2. Extracting issues with status “Closed”.

This study was conducted only on completed issues, in order to avoid cases with a

partially tracked resolution time.

3. Extracting issues with defined resolution time.

The RT of most issues in the bug tracking system of Fortumo is tracked using Toggl

[24]. These coverage of issues start mainly from the last 2 years.

Issue Report Attributes Description

In order to better understand the kind of data on which the following models would be applied,

this subsection provides all the necessary information required.

Every issue used for our study is structured in the following way:

Attribute Type Values

Title Text

Description Text

Reporter ENUM 70 different values

Project name ENUM 11 different values

Type ENUM Bug, Epic, Gw-issue,

Improvement, Incident,

Investigation, New Feature,

Project, Story, Sub-task ,

Task, Technical task

29

Priority ENUM Blocker, Critical, High,

Immediate, Low, Normal

Creation date Integer Continuous values

April 2011 – January 2015

Labels Array of strings 39 different values

Resolution Time Integer (seconds) Recorded amount of spent

time

Time Estimation Integer (seconds) Estimated amount of time,

required for the issue

Table 4.1 Issue attributes

The extracted data contains the Assignee attribute which is not very useful because it is not

static during an issue report lifecycle. In detail, first it takes a reporter of an issue as a value,

then the concerned developer, the reviewer, release manager, and finally, back to the reporter.

Consequently, assignees of the majority of closed issues are its reporters and as a result, it does

not produce any additional value for our model.

The Status attribute is always closed since it is one of our issue filtering conditions.

Consequently, this attributes doesn’t produce any additional value for our model as well.

Fortunately, Fortumo’s data possesses an attribute Resolution Time which describes an exact

amount of time spent on an issue. According to the internal management, all developers always

tracked the exact time they spent in completing the task.

The data was extracted in January 2015.

4.2 K-Nearest Neighbors

In order to repeat the approach described in [10], using the kNN modeling approach, we needed

to follow the rules of Apache Lucene Text Similarity Engine, which was used in the study.

Thus, the following sequence of steps was performed:

1. Since the authors of [10] used Lucene as text similarity engine [25], we simulate this

engine, executing the following steps:

a. Performing text preprocessing (details are presented in Section 5.3).

30

b. Building Document-Term matrix with weights TdIdf (details are presented in

Section 5.3).

c. Using Cosine Similarity as distance function for text.

2. For kNN algorithm: We applied kNN algorithm with k equals to 1, 3, 5, 9, separately

for issue description and issue title, using the cosine similarity measure [26].

3. For α-kNN algorithm: We applied α-kNN algorithm with α in 0.05, 0.1, 0.2, 0.3, 0.5

and 0.7 independently to issue description and issue title, using cosine similarity

measure.

4. We calculated the mean RT for k selected issue reports using description-based kNN.

5. We calculated the mean RT for k selected issue reports using title-based kNN.

6. We computed mean RT for values retrieved in 4) and 5) above.

7. We transformed the result to the discrete scale of classes of RT.

The results of simulating the original study [10], is described in Figure 4.1 and Figure 4.2 where

the choice of k (1, 3, 5 or 9) corresponds to that in the original paper.

Figure 4.1 kNN approach results

0.323 0.345 0.327 0.331

0.409 0.431 0.417 0.417

0

0.1

0.2

0.3

0.4

0.5

1 3 5 9

P
re

d
ic

ti
ve

 q
u

al
it

y

k

Predictive quality (relative)

Pred(10%) Pred(25%)

0.432 0.435 0.417 0.415

0.531 0.538 0.53 0.525

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 9

P
re

d
ic

ti
ve

 q
u

al
it

y

k

Predictive quality (absolute)

Pred(0.5h) Pred(1h)

31

Figure 4.2 α-kNN approach results

α Prediction rate

0.1 98.9%

0.3 72.9%

0.5 25.8%

0.7 8.4%

Table 4.2 α-kNN approach, prediction rate

The Prediction Rate is the percentage of issues which received a prediction.

It is worth mentioning that the cosine similarity measure returns values in range [0; 1]. When

α=0.1, some set of issues that do not receive any prediction. This occurs if the issue contains a

very small set of words which are rarely used.

In this study [10], varying of k for kNN did not show any significant difference. Similarly, α-

kNN in the same study shows the same tendency; the higher α, the higher the accuracy of

prediction. α-kNN with α=0.7 yields the best predictive quality however, accordingly to Table

4.2, only 8.4% of issue reports receive the prediction. In this thesis we assume that models with

α > 0.3 are useless for business purposes, since they don’t return RT estimate in more than 90%

of the cases.

0.296 0.302
0.377

0.42
0.374 0.387

0.463
0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.3 0.5 0.7

P
re

d
ic

ti
o

n
 q

u
al

it
y

α

Predictive quality (relative)

Pred(10%) Pred(25%)

0.344
0.409

0.53 0.585
0.452

0.52
0.632 0.677

0

0.2

0.4

0.6

0.8

0.1 0.3 0.5 0.7P
re

d
ic

ti
o

n
 q

iu
al

it
y

α

Predictive quality
(absolute)

Pred(0.5h) Pred(1h)

32

Incidentally, from applying both methods on Fortumo data one can infer that kNN and α-kNN

have an accuracy approximately 2.5 times and between 1.5-3.5 times higher than the original

study, respectively.

We conclude that kNN, where k=3, is the best option according to Figure 4.1 and Figure 4.2

since it delivers the highest prediction accuracy and is the most useful for business purposes.

4.3 Naïve Bayes Classifier

Applying the Naïve-Bayes classifier studied in [16], and applied on Fortumo data, produces

results which are described in Table 4.3. All the available attributes of the issue were passed as

inputs to the classifier, namely:

1. Reporter.

2. Date.

3. Type.

4. Priority.

5. Project Name.

6. Labels.

Labels of an issue report are assigned to all issue reports as a Boolean flag. According to the

table below, Naïve Bayes yields 12% of predictions with Relative Error of 10%.

Pred(0.5h) Pred(1h) Pred(10%) Pred(25%)

0.138 0.171 0.121 0.138

Table 4.3 Predictive Quality of Naive Bayes algorithm

4.4 C4.5 Decision Tree

The C4.5 algorithm [27], applied on the same set of issue attributes, produces better results

than Naïve Bayes because, as noted by other existing studies, C4.5 outperformed Naïve Bayes.

The results in Table 4.4 show that C4.5 produces 27% of predictions have a Relative Error in

the range of +=10% of the actual value and 50% of issue reports receive their prediction with

Absolute Error of less than 1 hour.

33

Pred(0.5h) Pred(1h) Pred(10%) Pred(25%)

0.460 0.566 0.378 0.439

Table 4.4 Predictive quality of the C4.5 algorithm

4.5 Random Forest

Random Forest [28], applied on the same set of Fortumo data following the idea described in

[17] (with number of trees – 100, number of variables, sampled as candidates for split =√𝑀,

where M is the number of issue report features), obtained betters results than C4.5. The results

are shown in Table 4.5.

Pred(0.5h) Pred(1h) Pred(10%) Pred(25%)

0.533 0.643 0.439 0.512

Table 4.5 Predictive quality of Random Forest

4.6 Ordered Logistic Regression

Since our dependent variable is ordinal, instead of Logistic Regression proposed in [15], we

used Ordered Logistic Regression [29] and applied it using the following attributes: Type,

Priority, Project Name, Reporter, Creation date and Labels. We obtained the results which

shows in Table 4.6.

Pred(0.5h) Pred (1h) Pred(10%) Pred(25%) Prediction

Rate

0.561 0.665 0.429 0.512 97%

Table 4.6 Predictive Quality of Ordered Logistic Regression

If some variable in a new incoming issue report occurs for the first time, then the model is

unable to make a prediction. This is why only 97% of all issue reports received an RT estimate.

34

4.7 Other Methods

We were not able to reproduce Self-Organizing Maps which have been studied in [14] since

the input to the method was not fully described in the paper.

Similarly, we were not able to reproduce clustering, described in [11], because of lack of

information about how the clustering is implemented in SAS Text Miner and which interactive

input Raja provided to SAS Text Miner during her research.

4.8 Summary

Thus, the research conducted on Fortumo’s data shows that meta-information about the issue

(Type, Priority, Project Name, Reporter, Created date, Labels) can bring about a higher

predictive quality than analyzing issue report title and description. However, in this thesis we

try to improve both types of models: text-based model and meta-information-based model.

Method Pred(0.5h) Pred(10%)

Best kNN (k=3) 0.435

AP: -35%

0.345

AP: -31%

Best α-kNN (α=0.3) 0.409

AP: -39%

0.302

AP: -48%

Naïve Bayes Classifier 0.138

AP: -79%

0.121

AP: -76%

C4.5 decision tree 0.460

AP: -31%

0.439

AP: -12%

Random Forest 0.533

AP: -20.2%

0.439

AP: -12.4%

Ordered Logistic

Regression

0.561

AP: -16%

0.429

AP -16%

Table 4.7 Proposed models summary results

Table 4.7 summarizes the results of the various models applied to Fortumo data with regards

to prediction quality, using one absolute and one relative quality measure. AP is the

35

abbreviation for ‘Actual Prediction Quality’ and is defined as the relative increase or decrease

of prediction quality when comparing the proposed models to the current expert-based

estimation practice at Fortumo.

According to Table 4.7, the accuracy of the proposed models is lower than the currents

accuracy of estimates in Fortumo. Consequently, one cannot perceives any benefit from using

it. The aim of this thesis is to improve the proposed model, so that its accuracy will be higher

than the current quality of RT predictions in Fortumo.

According to the Table 4.7, Random Forest [28], Ordered Logistic Regression [29] and kNN

yield the best results.

The proposed methods listed in Table 4.7 can be roughly categorized into two main classes:

1. Meta-information-based model (Naïve Bayes Classifier, OLR, RF, C4.5 decision tree).

2. Text-based model (kNN and α-kNN).

The next step in our research is to select the best-performing model of each category and

enhance their prediction quality using techniques described in Section 5.

Taking the best performing models in each category, we can define a baseline prediction

accuracy as shown in Table 4.8.

 Pred(0.5h) Pred(1h) Pred(10%) Pred(25%)

Meta

information

based model

0.561 0.665 0.439 0.512

Text based

model

0.435 0.538 0.345 0.431

Table 4.8 Baseline Prediction Accuracy

For the meta-information-based model category we chose Random Forest and Ordered Logistic

Regression, for the text-based model category we chose kNN with k=3 (as this choice of k

yielded the best performance).

36

5 Case Study Elements

It is possible to divide the proposed models described in the previous section, into 2 categories:

1. Models using issue report meta-information: creation date, reporter, type of the issue,

project, priority of the issue, etc.

2. Models using textual data: title and description.

We believe that it is possible to improve the accuracy of the recommended models.

Consequently, in our study, we try to enhance the input data of the model and in the case of

textual-based models, to improve the model itself.

One significant modification in our study from recommended models is applying the Moving

Window concept which involves only the last part of issue reports as input data to the model.

The motivation is described in the first part of this section. Then we describe the details of the

meta-information-based and text-based models, respectively.

Hence, this section consists of the following components:

1. Moving Window Concept.

2. Meta-Information-Based Model.

3. Text-Based Model.

5.1 Moving Window Concept

In order to make our model work better, we decided to examine how the distribution of actual

resolution times or distribution of actual RTs changes over time:

37

Figure 5.1 Distribution of actual resolution times over time

The figure above shows that the distribution of issues’ RTs does change over time. It might

happen along with changes in management, development process or other factors. Thus, in

order to achieve better prediction accuracy, we decided to involve only the most recent set of

issue reports to the prediction process. Namely, we involve 50 or 200 last issue reports.

5.2 Meta-Information-Based Model

According to the results presented in Section 4, Random Forest and Ordered Logistic

Regression had the best performances. Due to this fact, we will base our case study on these

classification approaches.

Firstly, following the ideas in other research studies that claimed that some features have a

different degree of influence on RT that others, we will perform feature selection for improving

input data to the model.

Secondly, as one of the recommended steps for improving the model described in Section 3.3,

eliminating outliers might increase the quality of estimates. Thus, we will eliminate mild

outliers in order to achieve better results.

Finally, we apply the Moving Window concept, which concerns involving only the most recent

set of the data as the model input in order to improve prediction quality.

38

As a result, the case study contains the following steps:

1. Perform feature selection.

2. Removal of mild outliers from the issues.

3. Involving the Moving window concept in defining model input.

Feature Selection

We will examine which features of issue reports have a direct influence on resolution time.

Depending on feature type, we perform the following set of tests on the feature and the

resolution time in order to evaluate their connection and select only the most important issue

report attributes as prediction model input:

1. Kruskal-Wallis test.

2. Chi-Square test.

3. Spearman correlation.

Removing Mild Outliers

According to [22] which was described in Section 3, removing mild outliers of the upper inner

fence namely Q3 + 1.5 * IQ where IQ is inter-quartile, brings about a higher predictive quality

in comparison with other kinds of outliers as well as with that of no outlier removal. Thus, we

will apply the aforementioned removal of outliers for our study.

5.3 Text Based Model

The authors of [10] proposed a model based on textual data of an issue report that applies kNN

and α-kNN on the data. The need to know k in advance is the essential shortcoming of this

modelling approach. However, the proposed workaround with using α was not successful since

the rise of prediction quality was accompanied with a decrease in the number of predictions. In

[11] it was proposed to use clustering for RT prediction. With kNN, it is a challenge to find an

empirical way to define k and so we decide to use spherical k-means, as one of the well-known

clustering techniques, instead of kNN in current thesis. K-means will construct the clusters

with all maximally related issue reports together and the number of these related issue reports

will no longer be a problem.

The fundamental concept of improving k-means in this thesis is dynamically defining an

optimal k on every step which produces clusters of the best quality. Silhouette index will

operate as a clustering quality measure. On each step, we find a possible range of optimal k,

39

perform the clustering and define the final best k using Silhouette Index as a measure for

calculating quality of a clustering.

Furthermore, we apply Latent Semantic Analysis (LSA) on textual data in order to create a

semantic space of higher quality and overcome problems of polysemy and synonymy.

As we do with meta-information-based models we will again use the Moving Window idea to

define model input.

Thus, the case study plan for text-based models contains the following steps:

1. Preprocessing textual data.

2. Applying Latent Semantic Analysis on textual data.

3. Selecting input data, using Moving Window concept.

4. Removing mild outliers from the issues.

5. Performing spherical k-means on data, while finding dynamically optimal k on each

step using Silhouette index.

Preprocessing Textual Data

Text preprocessing includes the following steps:

1. Lowercasing the text.

2. Removing numbers from text.

3. Removing all punctuation from text.

4. Removing excessive whitespaces.

5. Removing stop words.

6. Applying Porter Stemming [30].

7. Transform corpora to Document-Term Matrix.

8. Applying Latent Semantic Indexing.

In order to use text information in our study, we structure our documents in the form of vector-

space-based Term-Document Matrix. It is a common representation of document corpus, where

terms are rows and documents are columns. Moreover, we use the TF-IDF matrix

representation, which normalizes term frequency of every word using inverse document

frequency (IDF). As a result of term frequency normalization, the weight and importance of

commonly used terms throughout the document corpus is reduced, thus ensuring that document

comparison will be more influenced by more discriminative words that rarely occur [31].

40

Calculating the Distance Between Documents

Term frequency: This refers to the number of occurrences of a term in a document divided by

number of all words in a document:

𝑡𝑓(𝑡, 𝑑) =
𝑛𝑖

∑ 𝑛𝑘𝑘

Inverse document frequency (IDF): This reduces the weight of commonly used words in the

range of a particular set of documents. Every unique term in the current set of documents can

have only one IDF value which is calculated as the number of all documents divided by the

number of documents:

𝑖𝑑𝑓(𝑡, 𝐷) =
|𝐷|

|𝑑𝑖 ∋ 𝑡|

Where D is the document set, di is a document, t is term.

The TF-IDF value is calculated as:

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡, 𝐷)

TF-IDF is used for building Term-Document Matrix for our model.

Latent Semantic Analysis

Latent Sematic Analysis (LSA) is an automated mathematical technique which infers and

extracts latent patterns in relationships between words or concepts that are applied to corpus of

unstructured text. The LSA approach helps to overcome problems like synonymy and

polysemy in text since it assumes that words with similar meaning occur in similar contexts.

The LSA technique uses Singular Value Decomposition (SVD) or Principle Component

Analysis (PCA) in order to create a semantic space and reduce the dimensionality [32].

Dimensionality reduction exempts data from noise and thereby prepares better data for

similarity-based data mining techniques like clustering. In addition, the removal of noisy

dimensions helps to increase the importance of semantically significant data [31]. Hence, it is

one of the most commonly used techniques for building semantic space and for further studies

of the corpora.

In [33], LSA has been combined successfully with the Cosine similarity measure as a distance

measure between documents for fuzzy c-means clustering bringing a much higher quality of

clustering than in situations where LSA is not applied.

41

Additionally, LSA is not outperformed by other proposed methods for building semantic space

[34]. LSA was successfully used in [11] where resulting data was clustered producing clusters

with a significantly different mean.

Removing Mild Outliers

According to [22] which was described in Section 3, removing mild outliers of the upper inner

fence namely Q3 + 1.5 * IQ where IQ is inter-quartile, brings about a higher predictive quality

in comparison with other kinds of outliers as well as with that of no outlier removal. Thus, we

will apply the aforementioned removal of outliers in our case study.

Improved Spherical K-means Clustering

Since the title and description of an issue hold the majority of the issue information, we will

try to involve it in the predictive model following ideas of [10]. However, unlike [10] we will

cluster issues by its description and title using spherical k-means clustering with a dynamically

tuned k.

Clustering documents is an important problem in text mining. The aim of it is to assign an

appropriate label to each document and find the meaningful cluster centers. Clustering

documents is used in other areas of text mining such as text categorization and information

retrieval in which the labeled documents are needed.

K-means is one of the most popular unsupervised learning clustering algorithms. K-means

algorithm works fast, is able to cluster several types of data including images, texts and others,

and has a clear idea [31].

We decided to use k-means as an alternative to k-Nearest Neighbors used in [10] so we do not

need to know how many close issues may exist for an incoming issue.

In [35], it was shown that k-means outperforms fuzzy c-means clustering when the dataset is

big and realistically noisy.

However, as with other approaches, k-means has its own weaknesses. A major weakness is that

the user of the algorithm must define k, the number of clusters to which documents should be

separated. Since in our case, it is impossible to have k predefined because we never know how

many issue topics are actually covered in a given set of issue reports, we propose a method

which helps us overcome current vulnerability. It will consist of the following components:

42

1. Predict possible koptimal: For the first issue we set koptimal as the number of existing

projects in the dataset. Otherwise, we set koptimal as previous best k. Since the number of

existing projects in Fortumo dataset is 11, in this thesis we assume that this initial value

is sufficient enough for the first prediction. However, additional research should be

conducted in order to define the initial koptimal. Because of time constraints for this thesis,

we don’t perform such research.

2. Next, we define the range of optimal k as koptimal ±2. We assume that k must not be

critically different between two subsequent steps, so the margin ±2 should suffice to

find the best clustering and preserve reasonable speed of performance of an algorithm.

Additionally, this margin must be sufficient enough to reach the best k during small

amount of steps.

3. We perform the clustering for every k in a predefined range. Finally, we calculate the

quality of each clustering using Silhouette Index and select the best k.

Cosine Distance and Spherical K-means

Lucene Apache Text Similarity Engine [36] involved in [10] uses Cosine distance for text

clustering. We follow the same ideas, since [37] outlines a better performance of the cosine

similarity measure applied on large document corpus over the set of measures like

neighborhood similarity, shortest path, neighborhood with features, fail distance and voltage

based similarity measure. Additionally, another study [38] showed that classical k-means with

Euclidean distance yields poor results when spherical k-means usually outperforms it.

Let 𝑢⃗ and 𝑣 be vectors of same length of Term-Document Matrix which represents vectors of

terms. The cosine distance between vectors (an angle) is defined as follows [31]:

cos(𝑢⃗ , 𝑣) =
𝑢⃗ ∗ 𝑣

|𝑢⃗⃗ ⃗||𝑣|⃗⃗ ⃗
=

∑ 𝑢𝑖 ∗ 𝑣𝑖𝑖

√∑ 𝑢𝑖
2

𝑖 ∗ ∑ 𝑣𝑖
2

𝑖

Silhouette Index

Silhouette index is a measure often used for measuring cluster quality, which is defined in the

following way:

43

Let us consider a measure which calculates the average distance between the element and all

its neighbors in a cluster:

𝑎(𝑖) =
1

𝑛
(∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖, 𝑐𝑗)

𝑛

𝑗=1,𝑖≠𝑗

)

Where n is the number of elements in a cluster Ci and c ∈ Ci.

The distance between an element and another cluster is the smallest distance between

itself and all other elements of another cluster:

𝑑𝑖𝑠𝑡(𝑐, 𝐶𝑖) = min 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐, 𝑐𝑖𝑗)

Let us consider a measure to calculate the smallest distance between the element and all

other clusters:

𝑏(𝑖) = min 𝑑𝑖𝑠𝑡(𝑐𝑖, 𝐶𝑗)

Then the Silhouette Index of i cluster is defined as follows:

𝑆𝐼(𝐶𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)}

Overall Silhouette Index of the whole clustering will be:

𝑆𝐼 = 𝑎𝑣𝑔(𝑆𝐼(𝐶𝑖)) [39]

Cluster Predictor

Cluster predictor is defined as the median of the RTs of all issues contained in a cluster. Median

is used since the RT distribution is skewed.

44

6 Case Study Execution and Results

This section is dedicated to presenting and discussing the results of the approaches suggested

in Section 5 when applied to Fortumo’s data. Similar to Section 5, this section is divided into

2 parts:

1. Enhancement of Accuracy of Meta-Information-Based Model Prediction.

2. Enhancement of Accuracy of Text-Based Model Prediction.

We didn’t benefit with meta-information-based Random Forest and Ordered Logistic

|Regression. However, we received higher accuracy with enhanced text-based model, having

34% of improvement from baseline model and up to 20% from an actual prediction accuracy.

The description of issue reports have already been presented in the Section 4.1.

6.1 Enhancement of Accuracy of Meta-Information Based Model Prediction

In this section, according to the Section 5.2, we perform the described enhancement techniques

on Random Forest and Ordered Logistic Regression.

Firstly, following the ideas in other research studies that claimed that some features have a

different degree of influence on RT that others, we perform feature selection for improving

input data to the model.

Secondly, we will eliminate outliers in order to increase the quality of estimates.

Finally, we apply the Moving Window concept, which concerns involving only the most recent

set of the data as the model input in order to improve prediction quality.

Feature Selection

Using the Kruskal-Wallis Test, we examined the dependency of resolution time on such issue

report attributes of ordinal type like median RT of reporter, median RT of issue project, median

RT of issue type, median RT of issue priority, as shown in Table 6.1.

Attribute Kruskal-Wallis chi-

squared

p-value df

Median RT of

reporter

165.86 < 2.2e-16 7

45

Median RT of issues

in given project

231.25 <2.2e-16 5

Median RT of issues

of given type

65.14 4.041e-12 6

Median RT of issues

of given priority

3.05 0.384 3

Table 6.1 Kruskall-Wallis test between attributes and resolution time

Additionally, we applied the Spearman correlation on the set of issue attributes of continuous

type, as shown in Table 6.2.

Attribute Correlation

Number of issues of given priority 0.12

Number of issues of a given project -0.11

Number of issues of a given type 0.00

Number of issues of a given reporter 0.12

Date 0.145

Year 0.074

Table 6.2 Spearman correlations between attributes and resolution time

Attribute X-squared p-value df

Reporter 896.580 < 2.2e-16 483

Priority 31.399 0.643 35

Type 222.109 5.322e-16 77

Project Name 308.850 < 2.2e-16 70

Table 6.3 Chi-square test results between attributes and resolution time

46

According to the results shown in Table 6.1, Table 6.2 and Table 6.3, we exclude the attributes

Priority and Median RT of issue of a given priority from the model as resolution time does not

seem to depend on this data. In addition, all attributes mentioned in Table 6.2 would not be

included in the model due to the fact that there is no correlation between them and RT.

We also examined how the Kruskal-Wallis Test results and Spearman correlations change if

we calculate such issue report attributes as: Number of issues of given priority, Number of

issues of given type, Number of issues of given project, Number of issues of given reporter and

Median RT of given priority, Median RT of given type, Median RT of given project, Median RT

of given reporter using only the most recent 50 issues. According to the results described in

Table 6.4 and Table 6.5, the tendency remains unchanged.

Attribute Number of issues Kruskal-Wallis chi-

squared

P-value

Median RT of

given reporter

All issues 165.86 < 2.2e-16

50 97.885 < 2.2e-16

Median RT of

given type

All issues 65.14 4.041e-12

50 48.612 2.702e-08

Median RT of

given priority

All issues 3.05 0.384

50 5.466 0.362

Median RT of

given project

All issues 231.25 < 2.2e-16

50 164.195 < 2.2e-16

Table 6.4 Kruskal-Wallis test results between attributes (calculated with Moving Window)

and resolution time

Attribute Correlation

Number of issues of given priority 0.05

Number of issues of a given project -0.23

Number of issues of a given type -0.14

47

Number of issues of a given reporter 0.04

Table 6.5 Spearman correlation between attributes (calculated with Moving Window) and the

resolution time

Another attribute of an issue report is custom label. Every issue can have any number of labels,

which user creates by himself. Currently, in the repository, dataset has 39 defined labels:

Label Number of issues Kruskall-Wallis

chi-squared

P value

Gw-dev 8 3.358 0.067

Integrations 26 2.689 0.101

Front-end 13 0.016 0.899

Manual-work 257 54.626 1.458e-

13

Operations 1 0.937 0.333

Vc-calculations-errors 2 0.148 0.701

Integrations 4 2.959 0.085

Wutlar 1 0.516 0.473

Msgrooming20141208 10 0.898 0.343

Subsonic 1 1.620 0.203

Penny 1 2.453 0.117

Centili 2 1.982 0.156

NTH 1 2.906 0.088

100/30 1 2.249 0.134

Greece 1 2.249 0.134

M-stat 1 2.249 0.134

Inapp 1 1.620 0.203

48

Integrat 27 3.057 0.080

Telkom 1 0.515 0.473

Compliance 9 0.386 0.534

Dcb 1 1.620 0.203

Verse 2 1.982 0.159

penny 1 2.453 0.117

Purser 3 3e-04 0.986

Judge 1 1.620 0.203

Outofsprint 2 0.309 0.580

Spendinglimits 1 0.516 0.473

RZA 1 0.516 0.473

Spain 1 0.030 0.861

Timwe 1 0.516 0.473

timwe 1 0.304 0.861

Technicaldebt 9 0.466 0.496

Documentation 1 0.030 0.862

US 1 2.906 0.089

Disney 3 0.706 0.401

Indosat 1 0.516 0.473

Msgroomin20150105 5 2.519 0.113

Msgrooming20150119 1 0.516 0.473

Recalculate 3 1.485 0.223

Table 6.6 Kruskal-Wallis test results for custom label entries

 Number of issues Kruskal-Wallis chi-

squared

R value

49

No labels 1764 20.030 7.607e-06

Table 6.7 Kruskal-Wallis test results for issues without custom label entry

According to the Table 6.6 and Table 6.7, labels were not used on a large scale since the

majority of them were attached only to one issue. However, the label Manual Work which was

the most-often used label depicts an influence on issue RT. In addition, it is possible to say the

same about issues that are not labeled (see Table 6.7). Consequently, using the Manual Work

label or No Labels attribute might improve future model performance.

Model Application Results

Considering that we currently possess more knowledge about which attributes influence the

RT, we apply Random Forest to only significant ones.

Since Random Forest does not handle missing values which definitely occur in attributes such

as Average RT for reporter/type/project (when the first type reporter/type/project comes in),

we decided to just eliminate issues with missing attributes from the model. Such issues might

occur often in the beginning, but their amount decreases over time. Eventually, 2-3% of issue

reports did not receive prediction because of missing values.

Table 6.8 presents results of performing Random Forest. The results shown in Table 6.8

indicate that there is only a small improvement over the baseline performance, if all issue

reports are used for prediction. However, the improvement is too small to outperform the

current expert-based prediction quality at Fortumo.

N. of

issues

Pred(0.5h) Pred(1h) Pred(10%) Pred(25%) Prediction

Rate

Last 50 0.500

BP: -11.3%

AP: -25.1%

0.605

BP: -9%

AP: -16.8%

0.408

BP: -7%

AP: -18.6%

0.472

BP: -7.7%

AP: -18.3%

97%

Last 200 0.536

BP: -4.5%

AP: -19.8%

0.644

BP: -3.2%

AP: -11.4%

0.435

BP: -0.9%

AP: -13.1%

0.513

BP: -0.1%

AP: -11.3%

98%

50

All 0.575

BP: +2.5%

AP: -13.9%

0.668

BP: +0.4%

AP: -8.2%

0.453

BP: +3.2%

AP: -9.6%

0.538

BP: +5.1%

AP: -6.9%

97%

Table 6.8 Prediction quality of RF with feature selection

Table 6.9 shows the results of performing Ordered Logistic Regression on Fortumo data. BP

shows the relative improvement of prediction quality as compared to the baseline, and AP

shows the relative difference between the performance of the k-means approach as compared

to the currently used expert-based approach at Fortumo.

Unfortunately, in all cases the model yields worse results than the baseline prediction model.

N. of

issues

Pred(0.5h) Pred(1h) Pred(10%) Pred(25%) Prediction

rate

Last 50 0.436

BP: -22.3%

AP: -34.7%

0.525

BP: -21.0%

AP: -27.8%

0.357

BP: -18.8%

AP: -28.8%

0.406

BP: -20.7%

AP: -29.8%

69%

Last 200 0.490

BP: -12.6%

AP: -26.6%

0.598

BP: -10.1%

AP: -17.7%

0.392

BP: -10.8%

AP: -21.8%

0.462

BP: -9.8%

AP: -20.1%

91%

All 0.524

BP: -6.6%

AP: -21.5%

0.621

BP: -6.7%

AP: -14.6%

0.416

BP: -5.3%

AP: -17.0%

0.497

BP: -3%

AP: -14.1%

95%

Table 6.9 Prediction quality of OLR with feature selection

Such results can be caused by the fact that 50 or 200 last issue reports does not give enough

information for both Random Forest and Ordered Logistic Regression.

For logistic regression, both moving window and feature selection caused deterioration in the

quality of predictions.

51

Using the method suggested in [22] for eliminating upper mild outliers such as Q3 + 1.5IQ, we

performed this step for every prediction and received the results shown in Table 6.10 and Table

6.11.

N. of

issues

Pred (0.5h) Pred (1h) Pred (10%) Pred (25%) Prediction

rate

Last

50

0.500

BP: -10.8%

AP: -25.1%

WRO: 0

0.614

BP: -7.6%

AP: -15.5%

WRO: +1.5%

0.415

BP: -5.5%

AP: -17.2%

WRO: +1.7%

0.484

BP: -5.5%

AP: -16.3%

WRO: +2.5%

97%

Last

200

0.535

BP: -4.6%

AP: -19.9%

WRO: -0.2%

0.643

BP: -3.3%

AP: -11.6%

WRO: -0.2%

0.438

BP: -0.3%

AP: -12.6%

WRO: +0.7%

0.515

BP: -0.7%

AP: -10.8%

WRO: +0.4%

98%

All 0.572

BP: +2.0%

AP: -14.3%

WRO: -0.5%

0.666

BP: +0.1%

AP: -8.4%

WRO: -0.3%

0.449

BP: +2.3%

AP: -10.4%

WRO: -0.9%

0.535

BP: +4.5%

AP: -7.4%

WRO: -0.6%

97%

Table 6.10 Prediction quality of RF with feature selection and removal of outliers

N. of

issues

Pred (0.5h) Pred (1h) Pred (10%) Pred (25%) Prediction

rate

Last

50

0.460

BP: -18.0%

AP: -31.1%

WRO: +5.5%

0.566

BP: -14.9%

AP: -22.2%

WRO: + 7.8%

0.378

BP: -14.0%

AP: -24.6%

WRO: +5.9%

0.436

BP: -14.9%

AP: -24.6%

WRO: +7.4%

65%

Last

200

0.514

BP: -8.3%

AP: -23.0%

WRO: +4.9%

0.622

BP: -6.4%

AP: -14.4%

WRO: +4.0%

0.408

BP: -7.1%

AP: -18.6%

WRO: +4.1%

0.483

BP: -5.6%

AP: -16.4%

WRO: +4.5%

82%

All 0.579 0.676 0.457 0.541 86%

52

BP: +3.2%

AP: -13.3%

WRO: + 10.5%

BP: +1.7%

AP: -7.0%

WRO: +8.9%

BP: +4.1%

AP: -8.8%

WRO: +9.9%

BP: +5.7%

AP: -6.3%

WRO: +8.9%

Table 6.11 Prediction quality of OLR with feature selection and removal of outliers

In Table 6.10 and Table 6.11 WRO shows relative improvement of prediction quality as

compared to the same model without the removal of outliers.

Since Ordered Logistic Regression cannot make a prediction for an incoming issue report in

case some attribute value occurs for the first time, the percentage of issues, which receive a

prediction, decreases especially in the case of moving window with a lesser number of issue

reports.

According to results, described in Table 6.10 and Table 6.11, additional removal of outlies has

not caused any improvement in comparison with the same method, applied without it.

6.2 Enhancement of Accuracy of Text-Based Model Prediction

This section of research is dedicated exclusively to the prediction of RT based on issue title

and description. We ran spherical k-means after text preprocessing with k defined dynamically

based on the cluster quality measure described earlier.

In this thesis, due to time constraints, we do not study this approach without Moving Window,

i.e. with all previous data involved.

Predictive quality of current approach without the removal of outliers is described in Table

6.12. According to the results, models based on title and description produce approximately

same prediction accuracy. In addition, using a lesser number of issues for prediction improves

the results. In addition, Table 6.12 shows that the prediction accuracy of a given model is much

better than the baseline accuracy and slightly better than the accuracy of expert-based estimates

regarding relative error. However, it is slightly worse than the accuracy of expert estimates

regarding absolute error.

N. of

issues

involved

Data clustered Pred (0.5h) Pred (1h) Pred (10%) Pred (25%)

53

Last 50 Title 0.643

BP: +47.8%

AP: -3.7%

0.732

BP: +36.0%

AP: +0.6%

0.603

BP: +74.7%

AP:

+20.3%

0.656

BP: +52.2%

AP:

+13.5%

Last 200 0.637

BP: +46.3%

AP: -4.7%

0.722

BP: +34.2%

AP: -0.7%

0.589

BP: +70.8%

AP:

+17.6%

0.650

BP: +50.7%

AP:

+12.4%

Last 50 Description 0.615

BP: +41.4%

AP: -7.9%

0.703

BP: +30.6%

AP: -3.3%

0.558

BP: +61.8%

AP:

+11.4%

0.612

BP: +41.9%

AP: +5.8%

Last 200 0.606

BP: +39.3%

AP: -9.3%

0.708

BP: +31.7%

AP: -2.5%

0.556

BP: +61.2%

AP:

+11.0%

0.617

BP: +43.0%

AP: +6.7%

Table 6.12 Predictive quality of improved text-based model without removal of outliers

In Table 6.12, BP shows the relative improvement of prediction quality as compared to the

baseline, and AP shows the relative difference between the performance of the k-means

approach as compared to the currently used expert-based approach at Fortumo.

Table 6.13 describes the general distribution of an optimal number of clusters found for every

prediction. In general, title-based clustering generates more clusters than description-based

clustering. Also, the more issue reports are involved for clustering, the more clusters the model

generates.

N. of issues involved Data clustered Distribution of clusters number

54

Last 50 Title

Last 200

Last 50 Description

55

Last 200

Table 6.13 The distribution of number of clusters defined on every step

Table 6.14 depicts the distribution of clustering quality measured on every prediction step. In

general, the quality of title-based clustering exceeds that of description-based clustering.

According to Table 6.12 and Table 6.13, the better clustering quality we have, the higher the

prediction accuracy becomes. Thus, it might be the case that there is a correlation between the

quality of clustering and prediction accuracy.

Number of

issues

Data clustered Density of clusters validity

Last 50 Title

56

Last 200

Last 50 Description

Last 200

Table 6.14 Density of quality of clusters

57

According to Table 6.14, the more issue reports we involve to the model, the worse the quality

of clustering becomes. Thus, the model yields poor prediction accuracy. However, an average

number of issue reports in a single cluster for both cases is approximately 3-4.

In order to analyze how the removal of outliers influences the results, we conducted the same

experiment but with the removal of outliers. Table 6.15 described the results of this research.

Table 6.15 depicts that the prediction accuracy of this approach is much better than the baseline

accuracy. Moreover, it is slightly worse than current practice if to compare using absolute error,

but slightly better than current practice if to compare using relative error. Unfortunately, the

removal of outliers doesn’t improve the accuracy.

N. of

issues

involved

Data

clustered

Pred (0.5h) Pred (1h) Pred (10%) Pred (25%)

Last 50 Title 0.627

BP: +44.1%

AP: -6.2%

WRO: -2.5%

0.715

BP: +33.0%

AP: -1.6%

WRO: -2.3%

0.583

BP: +69.1%

AP: +16.4%

WRO: -3.3%

0.638

BP: +48.1%

AP: +10.4%

WRO: -2.7%

Last 200 0.620

BP: +42.5%

AP: -7.2%

WRO: -2.7%

0.716

BP: +33.1%

AP: -1.5%

WRO: -0.8%

0.573

BP: +66.0%

AP: +14.3%

WRO: -2.7%

0.642

BP: +48.9%

AP: +11%

WRO: -1.2%

Last 50 Description 0.605

BP: +39.1%

AP: -9.4%

WRO: -1.6%

0.697

BP: +29.6%

AP: -4.1%

WRO: -0.9%

0.544

BP: +57.6%

AP: +8.5%

WRO: -2.5%

0.603

BP: +39.9%

AP: +4.3%

WRO: -1.5%

Last 200 0.601

BP: +38.1%

AP: -10.1%

WRO: -0.8%

0.695

BP: +29.2%

AP: -4.4%

WRO: -1.8%

0.550

BP: +59.5%

AP: +9.8%

WRO: -1.1%

0.613

BP: +42.3%

AP: +6.1%

WRO: -0.6%

Table 6.15 Prediction quality of improved text-based model with removed outliers

58

A more detailed description of how the removal of outliers influences the prediction quality is

presented in Figure 6.1. As expected, removal of outliers caused a deterioration in the quality

of prediction for issues with large RT, since the necessary previous data for them was

eliminated from the input as outliers.

Figure 6.1 The change in percentage after removing outliers for every class of RT

6.3 Discussion

Based on the results presented in Sections 6.1 and 6.2, we saw that the improved text-based

model could achieve better prediction quality than the currently used expert-based practice at

Fortumo. This could not be achieved with the improved meta-information-based models (both

RF and OLR).

We examined the distributions of predicted RT of best meta-information-based model (OLR

without Moving Window and with removal of outliers, RF without Moving Window and

without removal of outliers) and text-based model (title-based clustering with 50 last issue

reports involved without the removal of outliers) in comparison with the distribution of actual

RT. This is described in Figure 6.2. According to the figure meta-information-based models

predict RT mostly to the (1; 3] interval, which is not close to the actual RT distribution. Also,

59

the distribution of prediction of the text-based model is much more similar to the actual RT

distribution.

Figure 6.2 Comparison of distributions of predicted RT of best models with the distribution

of actual RT

In contrast, the distribution of predicted RT by text-based model resembles the distribution of

actual RT (Figure 6.3). Since we noticed earlier (Section 2) that the expert-based RT

60

predictions at Fortumo are generally over-optimistic, i.e., systematically underestimate the

actual RT, we took a closer look at the differences between the distribution of RT predicted

with the text-based model as compared to the distribution of actual RT values.

61

Figure 6.3 Comparison of predicted RT distribution of text based model in comparison with

distribution of actual RT

According to Figure 6.3, the model still underestimates long-term issues (as well as experts)

but predicts the RTs of issue reports with short RT more accurately than experts. Having the

model, which has a prediction accuracy close to that of the experts’ estimates has some

advantages. One of these are that it is possible to replace experts with the model in case the

expert is absent since it may be the case that personnel changes and trained people are replaced

with new ones, the model might provide a decision-making support equivalent to experienced

employees. In addition, we observed that experts are over-optimistic when dealing with issue

reports having short RT – the model is more realistic. Thus, the model could help make expert-

predictions more realistic, if experts use the model in addition to their expertise.

It is worth mentioning however, that in this thesis none of the methods used in the literature

(and applied to Fortumo data – Section 4) could be improved to become better than the

currently used expert-based approach. We assume that this is a good field for further

investigation with regard future work.

In addition, Magne Jørgensen in his article [40] concludes that best software effort prediction

model doesn’t exist since the context and variables with the largest impact on the effort varies

62

between projects. Hence, the approach suggested in this study, should be tested on different

data in order to evaluate their performance in different contexts.

Although the meta-information-based model did not yield high prediction accuracy, I believe

that meta-information is still a carrier of important knowledge about an issue. With regards to

future work, other prediction models based on meta-information are considered. Moreover, the

combination of both types of models should be reviewed as well, since I believe that the

combination might bring better results. Furthermore, Magne Jørgensen in [40] claims that the

average of predictions from different sources are much more likely to be precise than a single

estimate.

Text-based models without Moving Window has not been studied as well. Given our positive

results with text-based models, we consider further improvement of these models another

promising area for future research.

Finally, it is worth considering which data people possess and involve into the process of

estimation of issue reports resolution time which has not been involved in the models in this

thesis. It implies involving more data from other sources, like: code repository, pull requests

data, projects documentations, projects notifications, etc.

63

7 Conclusion

In this thesis, we calculated the prediction quality of experts’ estimates with regards to issue

report resolution time based on data provided by Fortumo OÜ. In addition, we compared

different models proposed in existing studies with respect to the quality of predictions

concerning issue report resolution time, and found models with the highest accuracy of

predictions. Subsequently, we defined the prediction accuracy of the best suggested models as

the baseline accuracy.

We divided the succeeding study into two parts:

1) Enhancement of the accuracy of meta-information-based model.

2) Enhancement of the accuracy of text-based model.

Having Random Forest and Ordinal Logistic Regression as the best meta-information-based

models, we applied a set of different techniques on input data in order to improve their

prediction quality. However, we only achieved a tiny percentage of improvement.

We constructed a text-based model as an amalgamation of different existing approaches,

having text-based clustering as a key concept; and achieved a better prediction accuracy than

that of the experts’ estimates. Such results introduce the possibility to replace experts with the

model, should the need arise. Additionally, in our study, we conclude that there is a strong

correlation between the quality of clustering and the accuracy of resolution time prediction.

Furthermore, according to the distribution of experts’ estimates and predictions of the text-

based model, both approaches have similar tendency to underestimate long-term issues.

However, they the text-based model, studied in this thesis, predicts RTs of issue reports with

short RT more accurately than the experts. Such behavior implies the possibility of

supplementing the expert’s opinion. In addition, text-based models produced a higher

prediction quality, approximately up to 20% better than estimates made by experts regarding

relative error.

64

8 Bibliography

[1] B. Hartman, "An Introduction to Planning Poker | Agile Zone," DZone, 11 11 2009.

[Online]. Available: http://agile.dzone.com/articles/introduction-planning-poker.

[Accessed 6 6 2015].

[2] B. W. Boehm, Software Engineering Economics, Prentice Hall PTR Upper Saddle River,

NJ, USA, 1981.

[3] "COCOMO II - Constructive Cost Model," USC - Viterbi School of Engineering, 2014.

[Online]. Available: http://csse.usc.edu/tools/COCOMOII.php. [Accessed 2 5 2015].

[4] M. Madheswaran; D.Sivakumar, "Enhancement of Prediction Accuracy in COCOMO

Model for Software Projects Using Neural Network," in Computing, Communication and

Networking Technologies (ICCCNT), Hefei, 2014.

[5] Iman Attarzadeh; Amin Mehranzadeh; Ali Barati, "Proposing an Enhanced Artificial

Neural Network Prediction Model to Improve the Accuracy in Software Effort

Estimation," in Computational Intelligence, Communication Systems and Networks

(CICSyN), 2012 IEEE International Conference, Phuket, 2012.

[6] Ratnesh Litoriya; Narendra Sharma; Dr. Abhay Kothari, "The Effects of Data Mining

Techniques on Software Cost Estimation Effort using Agile COCOMO II," in

Engineering Management Conference, 2008. IEMC Europe 2008. IEEE International,

2012.

[7] Z. Dan, "Improving the Accuracy in Software Effort Estimation Using Artificial Neural

Network Model Based on Particle Swarm Optimization," in Service Operations and

Logistics, and Informatics (SOLI), 2013 IEEE International Conference, Dongguan,

2013.

[8] Iman Attarzadeh; Siew Hock Ow, "Improving Estimation Accuracy of the COCOMO II

Using an Adaptive Fuzzy Logic Model," in Fuzzy Systems (FUZZ), 2011 IEEE

International Conference, Taipei, 2011.

65

[9] C. F. Kemerer, "An Empirical Validation of Software Cost Estimation Models,"

Communications of the ACM , vol. 30, pp. 416-429, 1987.

[10] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, Andreas Zeller, "How Long Will

It Take to Fix This Bug," in Mining Software Repositories, 2007. ICSE Workshops MSR

'07, IEEE, Minneapolis, MN, 2007.

[11] U. Raja, "All complaints are not created equal: text analysis of open source software

defect reports," Empirical Software Engineering, 2012.

[12] "SAS Text Miner," SAS, [Online]. Available:

http://support.sas.com/software/products/txtminer/. [Accessed 1 6 2015].

[13] Emanuel Giger, Martin Pinzger, Harald Gall, "Predicting the fix time of bugs," in

Proceedings of the 2nd International Workshop on Recommendation Systems for

Software Engineering, 2010.

[14] Hui Zeng, David Rine, "Estimation of software defects fix effort using neural networks,"

in Computer Software and Applications Conference, 2004. COMPSAC 2004.

Proceedings of the 28th Annual International (Volume:2), 2004.

[15] Lucas D. Panjer, "Predicting Eclipse Bug Lifetimes," in Mining Software Repositories,

2007. ICSE Workshops MSR '07., Minneapolis, MN, 2007.

[16] W. Abdelmoez; Mohamed Kholief; Fayrouz M. Elsalmy, "Bug Fix-Time Prediction

Model Using Naïve Bayes Classifier," in Computer Theory and Applications (ICCTA),

2012 22nd International Conference, Alexandria, 2012.

[17] Lionel Marks; Ying Zou; Ahmed E. Hassan, "Studying the Fix-Time for Bugs in Large

Open Source Projects," in Proceedings of the 7th International Conference on Predictive

Models in Software Engineering, 2011.

[18] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, "Characterizing and predicting

which bugs get fixed: An empirical study of Microsoft Windows," in Software

Engineering (ICSE), 2012 34th International Conference, Zurich, 2010.

66

[19] Pamela Bhattacharya, Iulian Neamtiu, "Bug-fix Time Prediction Models: Can We Do

Better?," in Software Engineering (ICSE), 2013 35th International Conference, San

Francisco, CA, 2011.

[20] Prasanth Anbalagan; Mladen Vouk, "On Predicting the Time taken to Correct Bug

Reports in Open Source Projects," in Proceedings of IEEE International Conference on

Software Maintenance (ICSM 2009), 2009.

[21] Ahmed Lamkanfi, Serge Demeyer, "Filtering Bug Reports for Fix-Time Analysis," in

Software Maintenance and Reengineering (CSMR), 2012, IEEE, Szeged, 2012.

[22] W. AbdelMoez, Mohamed Kholief, Fayrouz M. Elsalmy, "Improving Bug Fix-Time

Prediction Model by Filtering Out Outliers," in Technological Advances in Electrical,

Electronics and Computer Engineering (TAEECE), 2013, International Conference,

IEEE, Konya, 2013.

[23] Kurt Hornik; Johannes Rauch; Christian Buchta; Ingo Feinerer, "Package ‘textcat’: N-

Gram Based Text Categorization," 2 6 2015. [Online]. Available: http://cran.r-

project.org/web/packages/textcat/textcat.pdf. [Accessed 7 6 2015].

[24] "Toggl - Free time tracking software & app," Toggl, [Online]. Available:

https://www.toggl.com/. [Accessed 7 6 2015].

[25] "Class Similarity," Apache Software Foundation, 2000-2010. [Online]. Available:

https://lucene.apache.org/. [Accessed 1 5 2015].

[26] "Cosine Similarity Calculator," Applied Software Design, 13 4 2012. [Online].

Available: http://www.appliedsoftwaredesign.com/archives/cosine-similarity-

calculator/. [Accessed 3 8 2015].

[27] J. R. Quinlan, C4.5: programs for machine learning, San Francisco, CA, USA: organ

Kaufmann Publishers Inc., 1993.

[28] Leo Breiman; Adele Cutler, "Random forests - classification description," Department of

Statistics, University of California, [Online]. Available:

67

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm. [Accessed 6 6

2015].

[29] M. J. Norušis, "Chapter 4: Ordinal Regression," in PASW Statistics 18.0 Advanced

Statistical Procedures Companion, 2010, p. 648.

[30] M. Porter, "The Porter Stemming Algorithm," 2006. [Online]. Available:

http://tartarus.org/martin/PorterStemmer/. [Accessed 4 4 2015].

[31] C. C. Aggarwal and C. Zhai, "A survey of text clustering algorithms," in Software

Engineering and Service Science (ICSESS), 2011 IEEE 2nd International Conference,

Beijing, 2012.

[32] "What is LSA?," University of Colorado Boulder, [Online]. Available:

http://lsa.colorado.edu/whatis.html. [Accessed 25 5 2015].

[33] Lailil Muflikhah; Baharum Baharudin, "Document Clustering using Concept Space and

Cosine Similarity Measurement," in Computer Technology and Development, 2009.

ICCTD '09. International Conference, Kota Kinabalu, 2009.

[34] A. Utsumi, "Evaluating the Performance of Nonnegative Matrix Factorization for

Constructing Semantic Spaces: Comparison to Latent Semantic Analysis," in Systems

Man and Cybernetics (SMC), 2010 IEEE International Conference, Istanbul, 2010.

[35] Rui Máximo Esteves; Chunming Rong, "Using Mahout for clustering Wikipedia’s latest

articles," in Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third

International Conference , Athens, 2011.

[36] "Lucene Apache Org," Apache, 2015. [Online]. Available: http://lucene.apache.org/.

[Accessed 25 3 2015].

[37] O. Gross, "Finding Non-Trivially Similar Documents from a Large Document Corpus,"

University of Tartu, Tartu, 2011.

68

[38] Strehl, Alexander; Ghosh, Joydeep; Mooney, Raymond;, "Impact of similarity measures

on web-page clustering," in In Workshop on Artificial Intelligence for Web Search (AAAI

2000), 2000.

[39] P. J. Rousseeuw, "Silhouettes: a raphical aid to the interpretation and validation of cluster

analysis," Journal of Computational and Applied Mathematics, vol. 20, no. 2, pp. 53-65,

1987.

[40] M. Jørgensen, "What We Do and Don’t Know about Software Development Effort

Estimation," Software, IEEE, vol. 31, no. 2, pp. 37 - 40, 2014.

69

Appendix

I. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Myroslava Stavnycha (date of birth: 10.07.1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of validity

of the copyright

of my thesis

 Issue Report Resolution Time Prediction,

supervised by Dietmar Pfahl,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 04.08.2015

