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A novel method for detecting SNV genotypes from personal genome

sequencing data

Abstract:

The genome variation studies are important for many areas like personal medicine,

evolutionary analysis or bacterial strain identi�cation. The single nucleotide variants

(SNVs) are the most thoroughly studied variations in the genome, associated with di�er-

ent traits and diseases. Genomic studies depend greatly on the ability of detecting the

allele variants of these variations present in personal genome. However, the methods used

for calling SNV genotypes from personal sequencing data are not very fast nor reliable.

The aim of this master's thesis was to develop a novel method for detecting SNV geno-

types fast and reliably with a new approach that allows omitting the often error-prone

step of read mapping used in the general variant calling pipelines.

A k-mer based approach was introduced in this study for detecting SNV genotypes.

A method was developed for using the unique k-mers covering the SNV locations for

di�erent allele variants to identify the genotypes of these SNVs. A program was created

for compiling a list of unique k-mers for the allele variants of given SNVs and the method

was tested using a program for detecting the genotype of these SNVs from the personal

genome sequencing data.

The method introduced in this study was tested on both simulated and real sequencing

data and the memory and time usage was measured. Some recommendations were made

for future work to reduce the time usage of the program as well as improving the detection

of SNV genotypes.

Keywords: bioinformatics, personal sequencing data, genome variations, SNV, k-mer
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Uudne meetod SNV genotüüpide määramiseks personaalse genoo-

mi sekveneerimisandmetest

Lühikokkuvõte:

Genoomi variatsioonide uuringud on olulised mitme erineva valdkonna jaoks nagu

näiteks personaalne meditsiin, evolutsiooniline analüüs või bakteritüvede tuvastamine.

SNV-d, üksiku nukleotiidi variandid, on kõige põhjalikumalt uuritud variatsioonid ge-

noomis ning seostatud mitmete tunnuste ja haigustega. Genoomiuuringud sõltuvad olu-

lisel määral genoomist antud variatsioonide alleeli variantide määramise võimekusest,

olemasolevad SNV genotüüpide määramise meetodid on aga võrdlemisi aeglased ja eba-

usaldusväärsed. Käesoleva magistritöö eesmärk on arendada välja uudne meetod SNV

genotüüpide määramiseks kiiresti ning usaldusväärselt, jättes vahele kõige vigaderohke-

ma etapi tavalisest SNV määramise töövoost.

Selles töös tutvustati uut, k-meeridel põhinevat lähenemist SNV genotüüpide määra-

miseks. Arendati välja meetod SNV asukohti katvate unikaalsete k-meeride kasutamiseks

antud SNV-de alleeli variantide leidmiseks. Töö käigus loodi programmid etteantud SNV-

de jaoks unikaalsete k-meeride leidmiseks ning personaalse genoomi sekveneerimisandme-

test genotüübi määramise metoodika testimiseks.

Tutvustatud meetodit testiti nii simuleeritud kui reaalsete sekveneerimisandmetega,

ühtlasi mõõdeti programmi aja- ja mälukasutust. Tulevaseks tööks toodi välja ka mõned

soovitused programmi ajakulu vähendamiseks ning sekveneerimisandmetest määratud

genotüüpide arvu suurendamiseks.

Võtmesõnad: bioinformaatika, personaalsed sekveneerimisandmed, genoomi variatsioo-

nid, SNV, k-meer
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Introduction

The many di�erent types of variations appearing in the DNA are the reason behind the

uniqueness of the genome of every individual. Some variations located in the genes may

have a great e�ect on the phenotype, causing di�erent traits, even some major diseases.

The genome variation studies have a great importance in many areas such as personal

medicine, evolutionary analysis, genetic diversity studies or bacterial strain identi�cation.

Many DNA variant detection pipelines have been developed over the past years for these

applications, however, there is still a shortage of fast and e�cient methods for detecting

genome variations reliably.

The aim of this master's thesis is to develop a novel method for variation identi�cation

from raw sequencing data without relying on the existing software generally used in

variant calling pipelines. The purpose is to use a completely novel approach to detect

the variations faster as well as more reliably. This is achieved by skipping the part of the

general pipeline that is the most error prone and dependent on the program arguments.

The �rst section of this work gives a brief overview about the human genome vari-

ations, DNA sequencing data and variant calling pipelines. The aims of this study are

brought out in the following section. The novel method developed for variant calling is

introduced in the third chapter together with a description of the implementation and

used data. The fourth section gives an overview of the results of this study. The time and

memory usage as well as some other technical aspects are discussed in the �fth section.

The conclusion is given in section six.
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1 Review of literature

1.1 Human genome variations

Human genome variations are the di�erences in the human DNA within or between

populations. No two human genomes are exactly identical and it is believed that the

genomes of two di�erent persons may di�er up to 0.5%. The genomes of people from

di�erent geographical regions tend to di�er more while the genomes of closely related

individuals are more similar. DNA variations are the changes that make a person's

genome unique and di�erent from the genome of any other person in the world.

There are many types of variations in human genome based on their length and their

cause as well as their impact on the person. The most studied variations are the SNVs

- single nucleotide variants, insertions - the addition of one or more nucleotides to the

genome, deletions - the removal of one or more nucleotides from the genome, Alu elements

- repetitive elements in the genome with about 300 base pairs (the pairs of complementary

nucleotides) in length. This work focuses on the former type of variants, SNVs. These

and other changes in the genome may appear as a result of di�erent mutations occurring

either during the division of a cell when DNA is copied or during the meiosis (a type of

cell division) in the gametes (sex cells) when parts of the chromosomes are exchanged.

The mutations from the latter can be passed down to generations of people. Most of the

known SNVs in human genome are very old and have appeared already thousand of years

ago. Although some of these variations are very rare, many of the SNVs can be quite

common, sometimes found even in about half of the population.

Most of the mutations occur outside of the genes, in the regions of the DNA that do

not code proteins. These mutations are usually neutral and do not have any impact on

the individual. However, the mutations in di�erent parts of the genes may have a great

e�ect on the functionality of the gene and can thus be harmful. The harmful mutations

are less likely to pass on to next generations as they can cause diseases, infertility and

other disadvantages that may prevent these individuals from producing o�spring. On the

other hand, the mutations that give some kind of advantage in the population are more

likely to pass on to next generations due to the natural selection.

Human genome variation studies have many di�erent applications in evolutionary

analysis, linkage and association studies and personal medicine, to name a few. For
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example, the SNV rs1154155 is known to increase the risk for narcolepsy about 1.7 times

[Hallmayer et al., 2009], the odds for alcohol dependence are about 1.35 times higher

for the G variant allele in rs7590720 SNV [Treutlein et al., 2015] and the risk for the

Alzheimer disease can be evaluated based on the genotypes of the SNVs rs429358 and

rs7412[Farrer et al., 1997]. Therefore genomic studies are greatly dependent on the ability

to detect these mutations in an individual as well as �nding new links between the diseases

and di�erent variations in human genome. This ability can help �nding new causes for

di�erent diseases as well as helping people that have a disease or a disposition for it due

to some genetic mutations.

1.2 DNA sequencing

A DNA molecule consists of two complementary strands containing four di�erent types of

nucleotides - Thymine (T), Adenine (A), Cytosine (C), and Guanine (G). DNA sequenc-

ing is the process of determining the order of the nucleotides in a DNA molecule, the

DNA sequence. The �rst breakthrough in DNA sequencing came with Sanger sequencing

technique in about 40 years ago. Nowadays, second generation sequencing is the most

common sequencing method due to its speed and low cost. This method divides the DNA

molecule into small fragments which are then sequenced in millions of parallel functions.

The resulting data consists of millions of sequencing reads - short sequenced regions of

the genome. The length of the reads is usually about 100 nucleotides. The genome is

sequenced with a high sequencing depth, reaching thirty to hundred-fold representation

of each nucleotide to decrease the e�ect of the sequencing errors to the genome. The

depth of coverage or the sequencing depth of the data is the average number of reads

covering a nucleotide in the genome.

The standard format for storing sequencing reads is the FASTQ format. FASTQ

format normally uses four lines per read containing the sequencing id and description,

the sequence of the read and quality values for the sequenced base pairs.

1.3 SNV calling pipelines

Most of the SNV calling pipelines map the sequencing reads to the reference genome, a

standard reference sequence used as a representative example of human genome. Human

genome is a diploid genome: there are two copies of each chromosome, one from the

7



mother and one from the father. The human reference genome is a haploid compilation

of DNA sequences of di�erent persons, which means that each chromosome is represented

only once and the sequence does not correspond to any actual individual.

The mapped sequencing reads are used to detect the di�erences between the reference

genome and the genome of the given individual to identify SNVs. If there were no

sequencing errors, then for a high depth of coverage, it would be rather easy to detect

the SNV genotype. If the nucleotide in the SNV location would be the same for all the

reads covering this location, lets say A for example, then the person would have this allele

variant in both of the chromosomes, i.e. the person would be a homozygote. If half of

the reads would have one and half another nucleotide in this position, for example A and

C, then the person would be a heterozygote which means that the allele variant would

be di�erent in the two chromosomes. Either way it would be easy to say which genotype

the individual has: AA, CC or AC. If the genotype cannot be detected, it is marked as

NN.

However, the sequencing reads contain errors and bias, and sequencing with a high

depth of coverage is expensive, which makes the task a lot harder in reality. Usually some

probabilistic methods are used to estimate the probability of each genotype. Bayes' the-

orem is often used to �nd the probability of a genotype being the true genotype given the

observed data. SNV calling methods di�er based on the algorithm for calculating the prior

probabilities of the genotypes and modelling the distribution of the observed data. Some

of the most used probabilistic methods for detecting SNV genotypes are implemented in

the SAMtools[Li, 2011] package and the Genome Analysis Toolkit[Depristo et al., 2011]

(GATK). In cases where the data does not correspond to the assumptions of the proba-

bilistic models, heuristic methods are preferred for detecting the SNV genotype. These

methods use di�erent heuristic factors like minimum allele counts or read quality cut-o�s

to determine the right genotype.

1.4 Overview of the read mappers

Although there is a great number of di�erent mappers[Fonseca et al., 2012], there are

some basic methods used for most of these tools. For example, some programs hash the

read sequences and scan through the reference sequence, which is e�cient in memory,

but can take a lot of time as the whole genome might have to be scanned. Another group
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of programs hash the genome instead of the reads and can be easily parallelized to run

with less time, but need a lot of memory to index the whole genome. Apart from these

and some other approaches, there is a newer group of aligners using Burrows-Wheeler

transform[Healy et al., 2003]. This approach is often preferred for read mapping as it is

quite fast as well as e�cient in memory usage.

Two main methods used for mapping the reads to the genome are both based on the

Burrows-Wheeler transform: BWA[Li, 2013] and Bowtie2[Langmead and Salzberg, 2015].

BWA, the Burrows-Wheeler Alignment method, uses the backward search with Burrows-

Wheeler Transform to align the reads against the reference genome. The backward search

uses the su�x array of the pre�x trie and is equivalent to the top-down traversal on the

pre�x trie itself, but without holding the whole trie in memory. BWA also allows mis-

matches and gaps, which is implemented using a bounded traversal and backtracking.

The memory usage can be reduced by only using two bits per nucleotide and not holding

the whole su�x array in memory as it can be reconstructed from only a part of it.

Bowtie indexes the reference genome based on the Burrows-Wheeler transform and

FM index. In addition to the usual exact-matching algorithm to search in a FM index,

this method uses backtracking to allow mismatches. Excessive backtracking is avoided

by another extension called double indexing.

Although both of these methods are quite fast and e�cient in memory compared to

the other mappers, they are still unable to map all the reads and have a considerable per-

centage of erroneous alignments. Also, the result is greatly dependent on the parameters

used when running the tools, which makes it hard to reproduce the same results. The

mapping process is quite error prone and time consuming, so are the pipelines used for

SNV calling. In this work a novel method is introduced and its applicability for calling

SNVs from raw personal sequencing data without the read alignment process is tested.
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2 The aims of the study

The main goal of this master's thesis was to develop a novel method for detecting SNV

genotypes from raw personal sequencing data fast and reliably. The method should be

independent from the read mapping tools that can give unreliable results which vary

greatly depending on the argument values.

The �rst aim of the study was to create a program for �nding unique k-mers, the

short DNA sequences with the length of k, to describe the SNV variations in the human

genome. A list of these k-mers and the corresponding SNVs could be formed using this

program.

The second aim of this work was to develop a tool for detecting SNV genotypes from

personal sequencing data of a given individual using the list of the unique k-mers. The

program should use a statistical framework to determine the right genotype of the SNV

based on the frequencies of these k-mers.
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3 Method and implementation

3.1 SNV data

Three di�erent datasets of SNVs were used in this study. First, 719 666 SNVs from

HumanOmniExpress chip were used for testing the program for �nding unique k-mers

and for determining the appropriate k-mer length. This set contains a great amount of

common single nucleotide variants that are often used in genome-wide association studies.

The second dataset used in this study contained the SNVs from the Homo sapiens

Short Variation set (GRCh38.p2) from Ensembl[Cunningham et al., 2015] Variation 79

database. About 55 million single nucleotide variants were drawn from the dataset con-

taining SNVs and indels. These SNVs were further �ltered, removing those that did not

contain the variant from reference genome, that were assigned to multiple locations or

that would have had more than one other SNV in a 25-mer. The latter were removed

to avoid creating k-mers with all possible combinations of the allele variants of di�erent

SNVs. Some locations were merged when they occurred in the dataset multiple times

with di�erent SNV id-s, but same allele variants. Those locations which occurred with

di�erent SNV id-s and also di�erent allele variants were removed. The �nal dataset had

about 40 million SNVs with two allele variants, these SNVs were used for compiling a list

of unique k-mers and testing the program for detecting SNV genotypes.

The third dataset contained the Estonian speci�c SNVs drawn from the variations of

57 individuals sequenced by Estonian Genome Centre. This data was used in addition

to the 40 million SNVs for creating a list of unique k-mers to reduce the e�ect of the

coexistence of di�erent SNVs to the results of genotyping. This dataset contained rare

Estonian speci�c SNVs that might not be present in the previous set of 40 million SNVs,

but could be relevant when studying the genomes of Estonian individuals.

3.2 Creating a list of SNVs with unique k-mers

For every SNV in the genome, exactly k sequential k-mers cover its location. For a SNV

with two possible allele variants, there are k pairs of k-mers so that both k-mers in the

pair start from the same position, but have a di�erent nucleotide at the location of the

SNV. As some SNVs have more than two allele variants marked, then for these variations

the sets of three or even four k-mers can be used. An example of a SNV with two possible
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allele variants (C and A) and the corresponding 8 8-mer pairs can be seen in Figure 1.

If a k-mer pair for a SNV is unique in the genome, i.e. neither of these k-mers occur

in more than one place in the genome, then it can be used to identify the genotype of

this SNV for an individual. More precisely, if a k-mer that is seen only in the location of

a SNV in the genome for one SNV allele variant, is found in the sequencing data in an

expected amount, it can be concluded that the person has this allele variant. Therefore,

the unique k-mers can be used to determine which allele variant the person has and if

the person is homozygote (the same variant in both chromosomes) or heterozygote (has

di�erent variants in chromosomes).

Figure 1: 8-mers covering a location of SNV with two possible variants C and A

The pipeline for �nding the unique k-mer pairs for SNVs contained the tools from the

GenomeTester4[Kaplinski et al., 2015] toolkit. First, the k-mer counting tool GListMaker

was used to build a list �le of all the k-mers present in the reference genome. The human

reference genome version GRCh38 was used in this study. GListMaker takes either the

sequencing reads in FASTQ format or longer sequences in the FASTA format, parses

the �les with a sliding window of a given length and counts all the k-mers with this

length present in the given �les by sorting the array of found k-mers and walking through

the array. The tool outputs a binary list �le with an array of k-mers stored as 64-bit

unsigned integers and their frequencies as 32-bit unsigned integers. As every nucleotide

is represented by two bits, the longest k-mer length allowed by this tool is 32. The list

�le contains only the smaller integer from this of a k-mer and its reverse complement

(the complementary sequence in the other strand of the DNA), therefore both the k-mer

and its reverse complement are present in the list �le only once, with the sum of their

frequencies.

In the next step, the k-mers covering the SNVs were found for every allele variant. The
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location of the SNV was used to get the surrounding region (the location of SNV itself

with k-1 bp from both sides) from the reference genome. The regions for other known

SNV variants were found by exchanging the nucleotide in the SNV location. Then the

GListQuery tool was used to divide the sequences into k-mers and �nd their frequencies

from the list �le created earlier using the GListMaker tool. Every k-mer (or its reverse

complement) is searched from the list �le using a binary search. From these results, only

those k-mers were drawn that did not have a frequency bigger than 1 in the list �le. The

unique k-mer pairs (i.e. the k-mers starting from the same location, but with di�erent

allele variants) were then found for the given SNVs. The pipeline for �nding these unique

k-mer pairs is also described in the �owchart in Figure 2.

Figure 2: Creating list of unique k-mers

The SNVs that had unique k-mer pairs were written to a �le containing the id of the

SNV, the location in the genome, known allele variants and a list of unique k-mer pairs.

For every SNV the �le also contained an integer that is a representation of how these

k-mers are located in relation to the SNV: if this number is converted to binary, then

for every k-mer pair that covers this SNV, 1 represents its presence (uniqueness), 0 its

absence (not unique in the genome). This information can be used for detecting the SNV

genotype of an individual.
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The pipeline can be further improved by changing the GListQuery argument of the

number of allowed mismatches to 1 when �nding the unique k-mers from the list �le. This

changes the conditions so that to be considered unique, the sum of the frequencies of the

given k-mer and all these k-mers that have 1 mismatch compared to it, can be at most

1. Using the k-mers found this way would make the results less a�ected by sequencing

errors and other SNVs.

3.3 Detecting SNV genotypes from personal sequencing data

3.3.1 Counting unique k-mers

The �rst step for detecting the SNV genotype from personal sequencing data is to get the

frequencies of the k-mers in the list of unique k-mer pairs found for this SNV. GListMaker

tool is used to create a binary list �le from the �les in FASTQ format given by the user

with the reads of a sequenced individual. GListCompare tool from the GenomeTester4

toolkit may be used to take an intersection of these k-mers and the unique k-mers found

for SNVs, to create a smaller list �le for faster k-mer searching. The frequencies are

drawn using the GListQuery tool and later used for detecting the genotype of the given

SNVs. A �owchart of the pipeline can be seen in Figure 3.

Figure 3: Using found unique k-mers for SNVs to detect the genotype in an individual

14



3.3.2 Statistical framework

The genotype is the combination of the allele variants of the two chromosomes. For

instance for a SNV with two possible allele variants C and A, the genotype in an individual

can be either CC, CA or AA. The method introduced in this work uses the frequencies

of the unique k-mer pairs and the information about how these k-mers are located for

detecting the SNV genotype. To identify the particular genotype for which the observed

frequencies could be seen, the expected value of the frequencies for every possible genotype

must be found. This section gives an overview of the notations and derived formulas for

calculating the expected value and variance of the frequencies of the k-mers for a certain

genotype.

Let Si, i ∈ 1, .., L where L is the read length in base pairs, be the number of reads

starting from a certain position so that it would cover i base pairs beginning from the

SNV location. To simplify, an example can be seen in Figure 4. Assuming that reads are

distributed randomly across the genome and they do not cluster, the number of times a

base is sequenced, i.e. the coverage, follows Poisson distribution. Therefore, Si ∼ Poi(λ)

where λ = C
L
and C represents the coverage. As C = N ·L

G
where N is the number of reads

sequenced and G is the length of the target genome in base pairs, then λ = N ·L/G
L

= N
G
.

As the target genome used in this study is the human genome, then G ≈ 3 · 109.

Figure 4: Reads (black) and k-mers (blue) covering a SNV location (red)

Let Kj, j ∈ 1, .., k be the value that shows if a k-mer pair is described as unique in

the genome:

Kj =

1, if jth k-mer pair is unique

0, otherwise.

Let Fj be the frequency of the jth k-mer, i.e. the number of times this k-mer was

seen in the sequencing data. The frequency of a k-mer can be found as a sum of the
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number of reads containing this k-mer: Fj = Sj + Sj+1 + ... + SL−(k−j). So, the sum of

the frequencies of all the k-mers covering a SNV for one allele variant would be:

F1+...+Fk = S1+2S2+...+(k−1)Sk−1+

L−2(k−1)︷ ︸︸ ︷
kSk + ...+ kSL−(k−1)+(k−1)SL−(k−2)+...+2SL−1+SL.

Let T be the sum of the frequencies of these k-mers that are marked as unique. It can

be seen that

T = K1F1 + ...+KkFk = K1S1 + (K1 +K2)S2 + ...+ (K1 + ...Kk−1)Sk−1+

+

L−2(k−1)︷ ︸︸ ︷
(K1 + ...+Kk)Sk + ...+ (K1 + ...+Kk)SL−(k−1)+(K2 + ...+Kk)SL−(k−2) + ...+KkSL.

The expected value of T is then

E(T ) = E(K1S1) + E[(K1 +K2)S2] + ...+ E[(K1 + ...Kk−1)Sk−1]+

+

L−2(k−1)︷ ︸︸ ︷
E[(K1 + ...+Kk)Sk] + ...+ E[(K1 + ...+Kk)SL−(k−1)] +

+ E[(K2 + ...+Kk)SL−(k−2)] + ...+ E[KkSL].

From here we get

E(T ) = K1E(S1) + (K1 +K2)E(S2) + ...+ (K1 + ...Kk−1)E(Sk−1)+

+

L−2(k−1)︷ ︸︸ ︷
(K1 + ...+Kk)E(Sk) + ...+ (K1 + ...+Kk)E(SL−(k−1))+

+ (K2 + ...+Kk)E(SL−(k−2)) + ...+KkE(SL).

Since Si ∼ Poi(λ), then E(Si) = λ, therefore

E(T ) = K1λ+ (K1 +K2)λ+ ...+ (K1 + ...Kk−1)λ+

+

L−2(k−1)︷ ︸︸ ︷
(K1 + ...+Kk)λ+ ...+ (K1 + ...+Kk)λ+(K2 + ...+Kk)λ] + ...+Kkλ.

After simplifying, the expected value can be found as following:

E(T ) = λ(L− k + 1)
k∑

i=1

Ki.

Since we assumed that Si, i ∈ 1, .., L are independent, then D(T ) can be found

similarly to E(T ):

D(T ) = D(K1S1) +D[(K1 +K2)S2] + ...+D[(K1 + ...Kk−1)Sk−1]+

+

L−2(k−1)︷ ︸︸ ︷
D[(K1 + ...+Kk)Sk] + ...+D[(K1 + ...+Kk)SL−(k−1)] +

+D[(K2 + ...+Kk)SL−(k−2)] + ...+D(KkSL),
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D(T ) = K2
1D(S1) + (K1 +K2)

2D(S2) + ...+ (K1 + ...Kk−1)
2D(Sk−1)+

+

L−2(k−1)︷ ︸︸ ︷
(K1 + ...+Kk)

2D(Sk) + ...+ (K1 + ...+Kk)
2D(SL−(k−1))+

+ (K2 + ...+Kk)
2D(SL−(k−2)) + ...+K2

kD(SL).

Since Si ∼ Poi(λ), then also D(Si) = λ, so

D(T ) = K2
1λ+ (K1 +K2)

2λ+ ...+ (K1 + ...Kk−1)
2λ+

+

L−2(k−1)︷ ︸︸ ︷
(K1 + ...+Kk)

2λ+ ...+ (K1 + ...+Kk)
2λ+(K2 + ...+Kk)

2λ] + ...+K2
kλ.

After simplifying, the variance can be found as

D(T ) = λ[
k−1∑
i=1

(
i∑

j=1

Kj)
2 + [L− 2(k − 1)](

i∑
j=1

Kj)
2 +

k∑
i=2

(
k∑

j=i

Kj)
2].

3.3.3 Detecting SNV genotype

Lets assume a SNV has two allele variants denoted by V1 and V2. A person can then have

either only one of these variants (i.e. is homozygote) or both of them (is heterozygote)

depending on if the variants are the same for both chromosomes. So, the genotype of

this SNV in a person can be either V1V1, V1V2 or V2V2. The method developed in this

study uses three competitive null hypothesis to test for each genotype if the observed

frequencies could be seen if this was the true genotype.

For the �rst case, the genotype V1V1, the sum of the frequencies of the k-mers for allele

variant V1 would be approximately from a normal distribution with the mean µ = E(TV1)

and the variance σ2 = D(TV1). In the second case the number of reads containing these

k-mers should be two times smaller for the allele variant V1, thus we should use 0.5λ

instead of λ, so the sum of the frequencies would be from the following distribution:

N(0.5µ, 0.5σ2). As there should be no reads containing k-mer for variant V1 in the third

case, then in this case TV1 ∼ N(0, 0). So, for these three cases, the sum of the frequencies

of the k-mers for variant V1 would be from the following distributions:

V1V1: TV1 ∼ N(µ, σ2)

V1V2: TV1 ∼ N(0.5µ, 0.5σ2)

V2V2: TV1 ∼ N(0, 0)

As the λ value is the same for both variants and also the same k-mers are used

(because uniqueness was determined for pairs of k-mers), then E(TV2) = E(TV1) = µ and
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D(TV2) = D(TV1) = σ2. The sum of the frequencies for the k-mers for variant V2 would

be thus from these distributions:

V1V1: TV2 ∼ N(0, 0)

V1V2: TV2 ∼ N(0.5µ, 0.5σ2)

V2V2: TV2 ∼ N(µ, σ2).

Now, the di�erence TV1 − TV2 would be for these three cases from the distributions

N(µ− 0, σ2+0), N(0.5µ− 0.5µ, 0.5σ+0.5σ) and N(0−µ, 0+σ2) respectively, therefore:

V1V1: TV1 − TV2 ∼ N(µ, σ2)

V1V2: TV1 − TV2 ∼ N(0, σ2)

V2V2: TV1 − TV2 ∼ N(−µ, σ2).

These di�erences can be calculated using the frequencies of the unique k-mers for

both allele variants. Then, for every genotype, Z-test can be used to determine if the

di�erence of the frequencies could be from this particular distribution. The value of the

test statistic can be computed for the three cases in the following way:

V1V1: Z =
TV1 − TV2 − µ

σ
∼ N(0, 1)

V1V2: Z =
TV1 − TV2

σ
∼ N(0, 1)

V2V2: Z =
TV1 − TV2 + µ

σ
∼ N(0, 1).

The corresponding p-values can be found using a z-table. As the null hypothesis is

that the seen observation (found di�erence) is from this certain normal distribution, then

if a p-value is bigger than the given signi�cance level for one of these three cases, it can

be assumed that the person has the variants of this particular case - either V1V1, V1V2 or

V2V2. In cases where none or multiple p-values are signi�cant, the genotype cannot be

detected using the given signi�cance level.

3.3.4 Implementation and source code

The programs for �nding unique k-mer pairs and for detecting the SNV genotypes from

sequencing data were implemented in Python (version 3.4). The source code is available

in the following github repository: https://github.com/fannydhelia/SNV-�nder.
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4 Results

4.1 Determination of optimal k-mer length

The �rst task in this study was to choose an appropriate k-mer length for detecting

SNV genotypes from personal genome sequencing data. For this, a small amount of the

common SNVs used in genome-wide association studies from HumanOmniExpress chip,

was used. For every SNV, all the unique k-mer pairs (or sets) were found for k-mer

lengths 16, 20, 24, 28 and 32 to evaluate the fraction of SNVs that could be detected

when using di�erent k-mer lengths. The maximum length value that could be used was

32 as the GListMaker, GListQuery and GListCompare tools from the GenomeTester4

toolkit used in this pipeline do not allow using longer k-mers. The unique k-mer pairs

were found based on the human reference genome.

Figure 5: Unique k-mer coverage for di�erent k-mer lengths (found with one mismatch).

The plots show the fraction of the SNVs with the given percentage of unique k-mer pairs.

Red indicates the SNVs that could not be detected, SNVs with unique k-mers are in the

green or yellow (if there were only a few unique k-mers) parts.
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These results already showed that values smaller or equal to 16 could not be used

as the k-mer length since 36% of the SNV-s had no unique 16-mer sets. For the other

lengths (20, 24, 28 and 32), the unique k-mers were also found using one mismatch, which

means that the k-mer was unique if the sum of the frequencies of the given k-mer itself

and all these k-mers that di�ered in only one nucleotide, would not be bigger than 1

(only one of them could be present in the genome). This was important for considering

the possible impact of other SNVs or sequencing errors to the uniqueness of the k-mers.

Figure 5 shows the results on the fraction of SNVs with or without unique k-mer pairs

for the given lengths using one mismatch.

It can be seen that when using the k-mer length 20, about 11% of the SNVs had

no unique k-mers and approximately 30% had only a few. For k=24, most of the SNVs

could be detected. As the memory usage increases with the k-mer length and using k-

mers longer than 24 base pairs would not give any signi�cant advantage according to

these results, the appropriate k-mer length for this method should be between 24 and

28 for human genome. The k-mer length chosen in this study for compiling the list of

unique k-mer pairs and testing the detection of SNV genotypes was 25.

4.2 Compilation of the list of unique k-mers for known variants

To create a list of the unique k-mer pairs for all known variants, the unique 25-mers

were found for the 40 million SNVs �ltered from the database of human shot variations.

Finding the unique k-mers based on the reference genome only, the situations where the

allele variants of other SNVs would create the same k-mers as an allele variant of the

given SNV, would be ignored. For this reason, the list �les with k-mer frequencies were

not created only from the reference sequence, but also using the sequences of the SNV

surrounding regions for the allele variants not present in the reference genome.

First, the k-mers with the allele variants not in the reference genome for the same 40

million SNVs were added to the list �le. Next, another list �le was created by adding

the sequences with the SNVs of the 57 individuals from Estonian Genome Centre to the

reference genome to also consider the variations speci�c to Estonians. Using population

speci�c unique k-mers could improve the results when detecting the genotypes. The

fractions of SNVs with di�erent number of unique k-mer pairs based on these lists can

be seen in Figure 6 and 7.
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Figure 6: Unique k-mer coverage found based on both the reference genome and the allele

variants of the 40 million SNVs. The plots show the fraction of the SNVs with the given

number of unique k-mer pairs. Red indicates the SNVs that could not be detected, SNVs

with unique k-mers are in the green or yellow parts.

Figure 7: Unique k-mer coverage found based on both the reference genome and the allele

variants of the SNVs from 57 Estonian individuals. The plots show the fraction of the

SNVs with the given number of unique k-mer pairs. Red indicates the SNVs that could

not be detected, SNVs with unique k-mers are in the green or yellow parts.
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The intersection of the unique k-mers found for these two datasets was used in this

study to compile a list of SNVs with unique k-mer pairs. The number of unique k-mer

pairs for the 40 million SNVs based on the intersection of the previous results can be seen

in Figure 8.

Figure 8: Unique k-mer coverage found based on both the reference genome and other

SNV allele variants. The results are found using the allele variants of the 40 million SNVs

as well as the allele variants of the SNVs of 57 Estonian individuals. The plots show the

fraction of the SNVs with the given number of unique k-mer pairs. Red indicates the

SNVs that could not be detected, SNVs with unique k-mers are in the green or yellow

parts.

It can be seen that about 88% of these 40 million SNVs had unique k-mer pairs. The

lists of unique k-mer pairs were compiled for these SNVs, the produced �le had about 35

million SNVs that were used for testing the program for detecting SNV genotypes. Quite

often the genotypes have to be detected for these SNVs that are more commonly used

in association studies or that are located in coding areas of the genes. For this reason,

it was also found that from the dataset of the 40 million SNVs, 95% of these that were

located in the coding regions had unique k-mers and could be therefore detected using

this method. From the HumanOmniExpress SNVs in this dataset, about 99% had unique

k-mer pairs.

22



4.3 Identifying SNV genotypes from sequencing data

The unique k-mer pairs for the 35 million SNVs were used for testing the detection of SNV

genotype from raw sequencing data. Three di�erent datasets were used for testing the

program for genotype identi�cation. Two of these datasets consisted of simulated reads

created from the reference genome with a depth of coverage of 30. One of these datasets

contained the sequences from the reference genome, the simulated reads of the other set

contained the allele variants of dbSNP variations that were not in the reference genome.

For testing the method on real sequencing reads, the data of a sequenced individual from

1000 Genome Project was used with a coverage of about 10.

The genotypes of about 80.5% of the 35 million SNVs with unique k-mers were de-

tected using the simulated data, for the real sequencing data, 78.2% of the SNVs were

identi�ed. For other SNVs the genotype could probably not be detected due to other

variations, sequencing errors and low coverage which violated the assumption that the

required k-mers are unique and present in the genome if the individual has the corre-

sponding SNV allele variant.

From the SNVs that were in the coding regions of the genome, the genotypes were

detected for about 83% from simulated data and 50% from the real sequencing data. The

result for HumanOmniExpress chip SNVs that are often used in genome-wide association

studies, was approximately 82% for both the simulated and real sequencing data.

The signi�cance level of 0.1 was used in this study. In the cases where the genotype

could not be detected, none or multiple p-values were bigger than the given signi�cance

level, thus the results vary depending on the signi�cance level chosen by the user. In

future, the e�ect of di�erent signi�cance values to the results on genotype detection

should be studied to �nd the optimal value for these statistical tests, also the detected

genotypes should be compared to the results from other SNV calling pipelines.
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5 Time and memory usage

5.1 Time and memory usage of the program for �nding unique

k-mer pairs

The time and peak memory usage was measured for the pipeline for �nding unique k-mers

for di�erent k-mer lengths to see the impact to the running time of the program as well as

to the amount of used memory. These measurements were made while �nding the unique

k-mer pairs for the HumanOmniExpress SNVs without using mismatches. The results do

not contain the time and memory used by the GListMaker tool for creating the list �les

from the reference genome sequence. No parallelization was used in the program. The

measured time and memory usage can be seen from Figure 8.

Figure 9: Time and memory usage for di�erent k-mer lengths

5.2 Time and memory usage of the program for detecting SNV

genotypes

The time and memory usage of the program for detecting SNV genotypes depends on

the coverage depth of the data and the number of sequencing errors. The step with the

biggest di�erences for these measures is creating the list �le from the sequencing data

with GListMaker. The amount of memory used for creating the list and the size of the

resulting list �le depend on the quantity of the sequencing errors in the data rather than

the coverage depth. Sequencing errors produce new k-mers that have to be stored in the

array, but a higher coverage depth only increases the frequencies of the k-mers already

present in the array. The time also increases with the amount of sequencing errors as
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sorting the array of k-mers takes more time for a bigger array.

For the simulated data with the coverage depth of about 30, the process of creating

the list �le with GListMaker and reducing its size with GListCompare took about 2.5

hours. This was measured by running the GListMaker tool with the default value of

the number of threads used, which was 8. The same process took an hour longer for

the real data although the coverage was smaller and there were fewer reads, because the

sequencing errors in the real data produced a lot of new k-mers with small frequencies

and the list �le created from this data was two times bigger than the one created from

simulated data. The amount of memory used by GListMaker was 214 GB for the real

sequencing data and 185 GB for simulated data which was also the peak memory usage

of the whole pipeline.

Finding the k-mer frequencies for unique k-mers with GListQuery took about 1.5

hours for both the simulated and real data. This value does not vary much for di�erent

datasets if the GListCompare tool is previously used to create a smaller list �le containing

only the k-mers that are later searched by GListQuery. However, the time of GListQuery

tool could be further reduced by allowing multiple parallel searches, which is not allowed

by this tool at this time.

The most time-consuming step was using the frequencies of the unique k-mers for

�nding the p-values and detecting the genotype of the SNVs. The time of this process

does not depend on the sequencing data, but on the number of SNVs to genotype, in this

work it was about 35 million. The measured time of this process for each dataset was

about 7 hours. The time of this step could be reduced by parallelizing and detecting the

genotype for multiple SNVs at the same time.

The total time of detecting the SNV genotypes from raw personal sequencing data is

about 11-12 hours. This time could be signi�cantly reduced in future by using multiple

threads for detecting the genotype based on the k-mer frequencies and changing the

GListQuery tool to search multiple query k-mers in parallel.
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6 Conclusion and future work

The aim of this thesis was to develop a novel method for detecting SNV genotypes from

raw personal genome sequencing data. A program was created for compiling a list of k-mer

pairs that are unique for the target genome for every given SNV. A statistical framework

was developed for using the lists of unique k-mer pairs to detect the genotypes of SNVs

and a program was created to ful�ll this task. Also, the appropriate k-mer length was

evaluated for human genome and the list of unique k-mer pairs were found for 35 million

SNVs that could be identi�ed from sequencing data using this method. The program

for detecting SNV genotypes was tested on both simulated and real data using the 35

million SNVs with unique k-mers. The genotypes of about 80% of these SNVs could be

determined.

The time usage of the program for detecting SNV genotypes was measured to be

about 11-12 hours. The time could be signi�cantly reduced by parallelizing the process

of genotype detection based on the k-mer frequencies, also by using more threads when

running GListMaker tool or improving the GListQuery tool to search multiple k-mers in

parallel.

The results of the program could be further tested for di�erent signi�cance level values

to determine the best value for detecting the genotype from sequencing data. In addition,

a comparison with other SNV calling pipelines could be made by measuring their time

and memory usage, the amount of SNVs detected and comparing the genotypes found

for these SNVs.
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