
UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Software Engineering Curriculum

Pätris Halapuu

Design and Realization of a Sensor-aware Task

List Handler for Adaptive Processes in

Cyber-Physical Environments

Masters Thesis (30 ECTS)

Supervisors:
Fabrizio Maria Maggi, PhD, University of Tartu

Andrea Marrella, PhD, Sapienza - Universitá di Roma
Massimo Mecella, PhD, Sapienza - Universitá di Roma

Tartu 2015

Design and Realization of a Sensor-aware Task

List Handler for Adaptive Processes in

Cyber-Physical Environments

Abstract:

Process Management Systems (PMSs) are more and more used to support highly
dynamic situations and cooperative processes. Some domains have great diversity
of environment variables that can change during the process and therefore affect
the workflow in a way that process can not be successfully carried out. Such can
be emergency management, health care and other domains involving in most cases
in-field actors. In those domains, the frequency and variety of unexpected changes
is really high compared to classical business domains that current Business Process
Management (BPM) solutions can handle. In 2011, a model and an initial proof-
of-concept prototype of SmartPM (Smart Process Management) was introduced in
Sapienza - Universitá di Roma that is able to automatically cope with unplanned
changes. The continuous screening of the real-world factors is suggested for such
domains. A cyber-physical system can be created to automate the screening via
physical-to-digital bridge. This bridge can be a set of tools consisting of sensors,
mobile devices and translation layer to extract and feed the real-world information to
the digital system. Challenge arises when transferring the information from sensors
to the system as the system works with discrete values, but the information gathered
by the sensors is continuous in most cases. To target this problem, a concrete solution
is proposed and implemented by the author. This thesis explains the architecture and
implementation of the sensor-aware task list handler and the web tool approach that
was created to solve the discretization challenge of the real-world values. It is also
explained how the adaptive PMS, SmartPM, was further developed and updated as
the contribution of this thesis.

Keywords:

Adaptive process management system, SmartPM, discretization of real-world objects,
cyber-physical system

i

Sensori-teadliku ülesannete juhtimise süsteemi

disain ja realisatsioon kohanduvatele protsessidele

küber-füüsilises keskkonnas

Lühikokkuvõte:

Protsesside juhtimise süsteemid leiavad aina enam kasutust toetamaks muutlike situat-
sioone ja koostööd nõudvaid protsesse. Mõned valdkonnad on väga muutlikud oma
keskkonna poolest, võides muutuda protsessi jooksul ja seega mõjutada töövoogu
moel, mil protsessiga pole enam võimalik jätkata. Sellistes valdkondades tegele-
vad näiteks hädaabi, päästekomandod, kiirabi ja teised. Taolised meeskonnad koos-
nevad üldjuhul vastavalt tegevuskohale opereerivatest osalejatest. Nendes valdkon-
dades on oodamatute sündmuste sagedus ja erinevus väga suur võrreldes tavapäraste
äriprotsessidega mida praegused äriprotsesside juhtimise lahendused hallata suudavad.
2011. aastal tutvustati Rooma Sapienza Ülikoolis esialgset SmartPM (Tark Protses-
side Juhtija) konseptsiooni tõestavat prototüüpi ja mudelit mis suudab automaatselt
kohanduda planeerimata muutustega. Pidev reaalmaailma muutujate jälgimine on
vajalik taolistes valdkondades. Küber-füüsilise süsteemi loomine aitab seda automa-
tiseerida, luues füüsilisest-digitaalseks silla. See sild võib olla tööriistade kogum mis
koosneb sensoritest, mobiilsetest seadmetest ja tõlkivast kihist et võtta reaalmaail-
mast informatsioon ja muuta see digitaalsele süsteemile mõistetavaks. Probleem tekib
sensoritelt tuleva informatsiooni tõlkimisel kuna digitaalne süsteem töötleb ainult
diskreetseid väärtuseid, aga sensoritelt tulev informatsioon on üldjuhul pidev. Selle
probleemi lahendamiseks pakkus autor välja ja implementeeris konkreetse lahenduse.
Käesolev töö tutvustab lähemalt sensori-teadliku ülesannete juhtijat ja veebi tööriista
(mis loodi lahendamaks reaalmaailma väärtuste diskretiseermise probleemi) arhitek-
tuuri ja implementatsiooni. Samuti seletatakse kuidas käesoleva töö tulemusena
täiendati ja uuendati kohanevat protsesside juhtimise süsteemi, SmartPMi.

Võtmesõnad:

Kohanduvate protsesside juhtimise süsteem, SmartPM, reaalmaailma objektide diskre-
tiseerimine, küber-füüsiline süsteem

ii

Contents

List of Figures v

Chapter 1: Introduction 1
1.1 Motivation . 1
1.2 Problem . 2
1.3 Objective . 2
1.4 Contributions . 3
1.5 Organization of Thesis . 3

Chapter 2: Background 5
2.1 SmartPM . 5

2.1.1 Communication protocol . 5
2.2 Cyber-physical environment . 8
2.3 Summary . 8

Chapter 3: SmartPM system 10
3.1 Structure . 10
3.2 Summary . 12

Chapter 4: Discretizing challange 13
4.1 Web tool . 13

4.1.1 Location web tool . 16
4.1.2 Arduino web tool . 17

4.2 Summary . 18

Chapter 5: Task list handler 19
5.1 Architecture . 19

5.1.1 Google Cloud Messaging handler 19
5.1.2 Task form generator . 20
5.1.3 Plugins manager . 22

5.2 Plugin approach . 23
5.2.1 GPS and microphone plugins description 24

iii

5.2.2 Arduino plugin description . 26
5.3 Arduino sensors . 27
5.4 Summary . 28

Chapter 6: User validation 29
6.1 Scenario . 29
6.2 Results . 32
6.3 Summary . 33

Chapter 7: Conclusions and future work 35
7.1 Conclusion . 35
7.2 Future work . 36

Bibliography 37

Appendix A: License 38

Appendix B: Setting up the system 39

Appendix C: Questionnaire and results 41

Appendix D: ANOVA test 42

iv

List of Figures

2.1 Communication protocol, uninterrupted task life cycle. 7

3.1 Designer view. 11

4.1 The designer tool - add data. 14
4.2 Location web tool. 16
4.3 Arduino web tool. 16

5.1 Registration view. 22
5.2 Task view, no task. 22
5.3 Task view, new task. 22
5.4 Task view, new task started. 22
5.5 Arduino sensors. 28

6.1 A train derailment situation; area and context of the intervention. [1] 30
6.2 Case study - main process. 31
6.3 Case study - adapted process part. [1] 32

v

1

Chapter 1

Introduction

Process Management Systems (PMSs) are more and more used in different domains
by many organizations and companies. Those systems in many cases have to support
highly dynamic situations and cooperative business processes. Domains like emer-
gency management and health care, for example, have a lot of variables which can
change, that are hard to predict and therefore in case of occurrence can prevent the
process from being successfully finished. An engine that can adapt processes dur-
ing run-time was proposed and a first version of it developed in 2011 by de Leoni
et al. [2] in Sapienza - Universitá di Roma. This breakthrough enables to manage
processes in changing environments that require adaptation. On the other hand,
cyber-physical systems have become more integrated and used in everyday life (e.g.
in smart houses, smart factories, personalized healthcare etc.) as sensors, microcon-
trollers, PCs, smartphones and other technologies are being in rapid development
and becoming more affordable. These developments have made it possible to create a
cyber-physical environment and build an adaptive process management system where
task handling can be automated using the information gathered by the sensors.

1.1 Motivation

Information and Communication Technologies (ICTs) are being integrated into our
everyday environment, making the cyber-physical systems becoming a reality. A
cyber-physical system (CPS) is a system of interconnected and collaborating com-
putational elements controlling physical components that provide real world entities
(e.g. people, machines, robots, agents, etc.) with a wide range of innovative applica-
tions and services [3]. That is especially driven by rapid developments in smartphones,
microcontrolles, sensors, wireless technologies etc. CPSs are designed to support and
facilitate collaboration among people and software services on complex tasks. On
the other side, the Business Process Management (BPM) discipline has gained an in-
creasing importance in describing complex correlations between distributed systems
and offers a powerful representation of collaborative activities [4].

1.2. PROBLEM 2

1.2 Problem

The current maturity of Process Management Systems (PMSs) can lead to the appli-
cation of process-oriented approaches in new challenging cyber-physical domains be-
yond business computing, such as personalized healthcare, emergency management,
factories of the future and home automation [5]. Such domains are characterized by
the presence of a CPS coordinating heterogeneous ICT components with a large va-
riety of architectures, sensors, actuators, computing and communication capabilities,
and involving real world entities that perform complex tasks in the “physical” real
world to achieve a common goal. In this context, a PMS is used to manage the life
cycle of the collaborative processes that coordinate the services offered by the CPS to
the real world entities. Moreover, to guarantee a better control over the interaction
that PMS has with the real world, it is required to continuously collect contextual
information from the specific cyber-physical domain it is employed in. The physical
world, however, is not entirely predictable. CPSs do not necessarily operate in a con-
trolled environment, and their collaborative processes must be robust to unexpected
conditions and adaptable to exceptions and external exogenous events [6].

1.3 Objective

When adapting a process in a cyber-physical domain, the role of the data perspective
becomes fundamental. Data, including information processed by process tasks as
well as contextual information, is the main driver for triggering process adaptation,
as focusing on the control flow perspective only would be insufficient. Therefore, the
screening of real-world objects performed by the physical sensors disseminated in the
real world (which play the role of main interfaces towards real-world information)
must be taken into consideration when planning, executing and adapting a process in
cyber-physical domains. This emphasizes the problem of how representing digitally
real-world objects, i.e., the problem of making the PMSs aware of the physical world,
which is typically continuous, through a physical-to-digital bridge that transforms the
knowledge extracted from real-world objects in its digital counterpart. This problem
is even more important in the case of SmartPM, which exploits automated AI-based
techniques to provide self-adaptation features. In fact, it is well known [7, 8] that
AI techniques work more efficiently only if they are able to “reason” on a discrete
knowledge of the world.

1.4. CONTRIBUTIONS 3

1.4 Contributions

Adaptive process management system called SmartPM was firstly prototyped in 2011
as proof-of-concept to demonstrate the real-time processes self-adaptiveness in do-
mains outside classical business processes. This thesis improves this work by updat-
ing the system to ensure proper communication and data exchange with real devices.
The author of this thesis developed the prototype from a simulation based applica-
tion to an actual tool able to work with in everyday processes and environments. The
platform was extended with Android application that follows a plug-in architecture.
Plug-in approach was considered and realized to increase the usability of the system
and make it dynamic for new automatic task types. Automatic task types are the
ones in the SmartPM system that get their information, data automatically filled
from a sensor or a service. The creation of the new plugins for Android application
was documented and explained. A server based middleware was created to solve the
communication issue between the SmartPM engine and Android task list handlers.
To create the cyber-physical environment, Intel Galileo and Arduino microcontrollers
were studied (Ardunio Uno rev3). A setup of different sensors was built with Ar-
duino and firmware created to communicate with Android task list handler over the
Bluetooth. Discretization challenge was faced when defining the domain theory for
automatic sensor data types and different solutions were studied. The problem was
targeted by creating a web tool solution that was integrated with the SmartPM do-
main theory building application.

1.5 Organization of Thesis

Chapter 2: introduces the concept of Smart Process Management system that was
initially developed in 2011. It explains the prototyped system and the communication
protocol that the system uses and has to be followed. In this chapter, a cyber-physical
environment concept is also explained.

Chapter 3: explains the updated structure and new layers of the SmartPM system
which represents one of the contributions of the thesis.

Chapter 4: targets the discretizing challenge in the SmartPM system. The author
proposes a concrete solution to solve the problem. After that, the implemented
solution is explained based on software layer that maps the continuous values to
discrete ones according to the defined rules. The web tool concept and structure are
explained which is used to create the discretization rules. The location and Arduino
web tools are explained in detail to demonstrate the concrete approach.

1.5. ORGANIZATION OF THESIS 4

Chapter 5: describes the task list handler Android application created for SmartPM.
It explains the structure of the Android application and the plugin approached re-
alized in the application. Three plugins are described more in detail. The arduino
setup to create the cyber-physical environment is also described in this chapter.

Chapter 6: presents an use case for the system. This chapter also explains the user
validation of the SmartPM task list handler, that was carried out based on the use
case. Results of the questionnaire, filled out by the users, are analyzed and discussed.

Chapter 7: concludes the thesis by discussing the technologies and techniques used
to achieve the goals of this thesis. Possible future works are brought out based on
the users feedback and authors opinion.

5

Chapter 2

Background

Process management systems have become more complex and advanced, being used in
large diversity of domains. Process adaptivity at run-time expands the horizon even
further, making it possible to use process management systems in vastly changing
situations. The concept of the SmartPM enables the process adaptation at run-time.
The monitoring of the environment is important in some domains where adaptive
process management can be used. To automate the information gathering from the
environment, different sensors and microcontrollers can be used, creating a cyber-
physical environment.

2.1 SmartPM

SmartPM is a self-adaptive PMS which combines several practices: process execution
monitoring; unanticipated exception detection (without requiring an explicit defini-
tion of exception handlers); and automated exception handling and resolution strate-
gies on the basis of well-established Artificial Intelligence (AI) techniques, including
the Situation Calculus [7], IndiGolog [9] and classical planning [8]. The adaptation
mechanisms provided by SmartPM allows to deviate at run-time from the execution
path prescribed by the original process without altering its process model, a fea-
ture that makes SmartPM particularly suitable for managing complex processes in
cyber-physical domains.

2.1.1 Communication protocol

SmartPM IndiGolog engine follows a certain communication protocol for notifying
actors and initiating tasks. A described order and logic must be followed to ensure a
proper work of the engine and development of a process. The protocol is explained in
detail to provide better understanding of the work- and taskflow of the whole system.
The message flow of the task is illustrated in Figure 2.1

When SmartPM engine creates a new task, it sends out an ”assign” message like:

”assign(actorName,[workitem(taskName,taskId,[taskInput],[expectedOutput])])”

2.1. SMARTPM 6

where ”assign” is a fixed keyword to notify that a new task is assigned; ”actorName”
is the name of the actor who has to carry out the task - it can contain only 1 element;
”workitem” is a fixed keyword to encapsule the task itself; ”taskName” is the name
of the task that is being initiated (i.e. ”go”, ”measure”, ”temperature” etc.) - it
can contain only 1 element; ”taskId” is the identification of the task to keep track
of them in the engine - it can contain only one element id_n where n is a natural
number; ”taskInput” is the set of the input arguments of the task - it can contain
0 or more elements; ”expectedOutput” is the expected result of the task - it can
contain 0 or more elements. When multiple elements are allowed, for example in case
of ”expectedOutput”, then the elements must be separated by comma.

After receiving the ”assign” message on the actors’ device and on starting the task,
the following message must be sent back to the engine:

”readyToStart(actorName,taskId,taskName)”

where ”readyToStart” is a fixed keyword for letting the engine know that the message
has been received and the actor is ready to start the task.

The engine then confirms that the task can be started and sends the start message:

”start(actorName,taskId,TaskName,[taskInput],[expectedOutput])”

where ”start” is a reserved keyword to acknowledge that the corresponding task is
being carried out by certain actor.

The task list handler application sends a finish message to the engine when the task
is finished:

”finishedTask(actorName,taskId,taskName,[results])”

where ”finishedTask” is a fixed keyword for notifying that the task is finished and
”results” is the actual result(s) of the task - it can contain 1 or more elements.

The engine then sends out a message to acknowledge the completion of the task:

”ackCompl(actorName,taskId,taskName)”

where ”ackCompl” is a reserved keyword to acknowledge the completion of the task.

As the final step of the uninterrupted message flow a release message is sent to
acknowledge that the actor is available for the next task:

release(actorName,[workitem(taskName,taskId,[taskInput],[expectedOutput])])

where ”release” is a fixed keyword for notifying that the actor is available for the next
task.

2.1. SMARTPM 7

Figure 2.1: Communication protocol, uninterrupted task life cycle.

At any point at run-time, an exogenous event can happen that will trigger the adap-
tation in the SmartPM engine. Adaptation will also be triggered when the result of a
task is not as expected. In those cases, the following adaptation message is sent out
by the engine:

adaptStart

which is also a reserved keyword in the domain to acknowledge the devices that a new
solution is being calculated. A new solution calculation is a process in the SmartPM
engine that is ran by the IndiGolog logical part that finds the shortest path to resolve
a situation. For example if the process expects some boolean value task result as
”true” but instead it is ”false”, then solution calculation returns the set of tasks that
help to resolve that inconsistency.

When the adaptation has been finished, a notification message is sent:

adaptFinish

which is also a reserved keyword to acknowledge that the adaptation process has been
finished.

2.2. CYBER-PHYSICAL ENVIRONMENT 8

2.2 Cyber-physical environment

In the last decade, the developments in technologies (mobile, microcontrolles, sensors,
wireless, etc.) have led to the point where cyber-physical systems are not fiction
anymore but affordable and part of the everyday life. Essential part of the cyber-
physical systems is the cyber-physical layer.

The cyber-physical layer consists mainly of two classes of physical components: sen-
sors (such as GPS receivers, RFID chips, 3D scanners, cameras, air quality sensors,
etc.) that collect data from the physical environment by monitoring real-world objects
and actuators (robotic arms, 3D printers, electric pistons, etc.), whose effects affect
the state of the physical environment. The cyber-physical layer is also in charge of
providing a physical-to-digital interface, which is used to transform raw data collected
by the sensors into machine-readable events, and to convert high-level commands sent
by the upper layers into raw instructions readable by the actuators. It is important
to underline that the cyber-physical layer does not provide any intelligent mechanism
neither to clean, analyse or correlate data, nor to compose high-level commands into
more complex ones; such tasks are in charge of the uppers layer. In the cyber-physical
layer, hardware components, firmware and low level software (mainly devoted to data
acquisition) are the main technological ingredients.

Several Do-It-Yourself (DIY) hardware projects have gained popularity during the
last decade. Some examples are Arduino1, Raspberry Pi2, Intel Galileo3. Using any
of those proven platforms it is possible to set up a cyber-physical environment. For
this thesis, different platforms were considered and Arduino was chosen as it is well
documented, has a large community, suitable specifications and has set standards for
a large variety of components and sensors.

2.3 Summary

The chapter starts by introducing the main concepts of SmartPM and then continues
to explain more in detail the communication protocol of the SmartPM engine. The
communication protocol is a crucial part of the whole system as the task list handler
logic and the server middleware are highly dependent on it. To have the full under-
standing of the task message sequence, the protocol must be understood. Another

1http://arduino.cc/en/Main/arduinoBoardUno
2http://www.raspberrypi.org/
3http://www.intel.com/content/www/us/en/do-it-yourself/galileo-maker-quark-board.

html

2.3. SUMMARY 9

section in this chapter introduced the cyber-physical environment definition. Follow-
ing that, it is briefly described the hardware solutions that can be used to create such
cyber-physical environments.

10

Chapter 3

SmartPM system

As one of the objective of this thesis, SmartPM system was re-designed and further
developed. Previously the system consisted of three parts - SmartPM engine, designer
application and domain simulator realized in Java Swing. As a contribution of this
thesis, the SmartPM engine and the designer application were updated and a web
server part and an Android task list handler with Arduino sensors were added.

3.1 Structure

SmartPM was updated and currently consists of four parts with different layers.

The kernel of the system is the SmartPM engine that deals with the taskflow logic
(coordinates the task flow, sends out task messages as introduced in previous chapter
and processes results, calculates the shortest path during run-time to recover the
normal process flow defined by the designer when adaptation is needed). The engine
is written in a logical programming language called IndiGolog, therefore it can only
do calculations in a defined domain. When a process is started, it sends out task
messages to the actors according to defined process model. In case of an unexpected
task result, the engine calculates the recovery plan (the shortest path to recover
the normal process flow defined by the designer). When the recovery plan is found,
the engine starts to send tasks to the corresponding actors. The engine is set up
and runs on an Ubuntu virtual machine and communicates with actors through a
defined port, in this case the port 5555 was used. Through that, a communication
channel is established with the web server using SSH reverse tunnel to send and receive
messages. The engine was updated to work more efficiently, reducing the number of
adaptation-related messages by unifying the message content. Such messages are
for example ”adaptStart” and ”adaptFinish”. Previously the engine sent out those
messages for every actor, for example six actors meant sending out six ”adaptStart”
messages. The updated engine sends ”adaptStart” and ”adaptFinish” message out
only once per occurrence, no matter how many actors, to avoid the communication
overhead with the web server. The web server middleware then handles the message
and forwards it to all the affected actors.

On top of the SmartPM engine is the graphical designer application (Figure 3.1)
where user can define the domain theory for the engine (actors, their capabilities,

3.1. STRUCTURE 11

Figure 3.1: Designer view.

data types and data values - e.g. location, temperature, battery level etc.), create the
processes and run it. The designer application was updated with a new feature - the
web tool feature. During the design time, the designer can invoke the online web tools
to have data listing generated for certain data type. Alternatively, the designer can
define the domain theory manually by typing the values to the designer application.
The designer application was also updated to upload the domain theory knowledge
file (also known as process schema) to the web server. The domain theory knowledge
file is generated by the designer application every time a process is started. The file
is in xsd format and contains the data types and values defined during the process
design time. Based on the domain theory knowledge file, the web server takes care of
sending correct messages to the task list handlers. This improvement helps to reduce
communication load between the engine and the web server as only minimal task
information messages (as described previously in the section 2.1.1 Communication
protocol) are sufficient for integrity.

A web server was added to the structure that enables the communication between task
list handlers and the SmartPM engine. To ensure lightweight and fast communication,
the Google Cloud Messaging (GCM) service is invoked in the web server scripts.
The main function of the web server is to be the middleware at runtime between
the SmartPM engine and actors devices. From the virtual machine that hosts the
SmartPM engine, SSH reverse tunnel is initiated on port 5555 to the web server.
The SmartPM engine sends messages to that port, then the web server parses those
messages into the right format for the task list handler, generates and stores the tasks
as XMLs. As a next step, a database lookup is made to get the GCM registration
ID and a GCM service request is made to send the task to the corresponding actors
device. It handles all the communication according to the protocol between the actors’
devices and the SmartPM engine. After the submission of the task, the web server

3.2. SUMMARY 12

again parses the message to the right format for the SmartPM engine and sends it to
port 5555. The web server also holds a set of tools for discretizing values used during
the design time, called the web tools.

The task list handler is an Android application for version 4.0 and greater. The task
list handler application registers an user as an actor to the web servers’ database
and then the device is ready to receive push notifications from the GCM service.
Push notifications contain information about the task for the relevant actor. On the
Android device, a form is generated according to the task and displayed to the user.
Forms can contain automatically and manually filled fields. In case of automatically
filled field, a sensor is being used for gathering data - either built-in (i.e. GPS,
gyroscope, microphone, etc.) or external (i.e. Arduino, Intel Galileo, Rawsberry Pi,
etc.). For example when a task requires the location of an actor, the GPS plugin
can be used to get the position of the device automatically from the built-in GPS
sensor. The coordinates are then converted at run-time by the task list handler from
continuous values (latitude and longitude) to discrete value (e.g. loc00). After the
task is finished, the result of the task is sent to the web server for processing. The
web server formats the result and forwards it to the SmartPM engine.

The Arduino microcontroller is used to gather different environmental data, for ex-
ample humidity level, temperature, VOC gas level, HCHO level etc. A bluetooth
board is added to the setup to enable wireless communication between the task list
handler and the Arduino board. The instructions of how to set up the whole system
can be found in the Appendix B.

3.2 Summary

This chapter makes an overview of the updated SmartPM system and discusses the
developments done as contribution of this thesis. Each part of the initial system is
brought out and the improvements relevant to the part are explained. As the last
part of this chapter, new additions to the system are introduced.

13

Chapter 4

Discretizing challange

The SmartPM engine is written in a logical programming language called IndiGolog.
For this reason, the domain in which the calculations are made must be defined and
values must be discrete. In real world, measurable values are continuous. Problem
arises when automating processes, therefore mapping from continuous to discrete
values must be done. To target this problem, a web tool approach is introduced and
realized.

4.1 Web tool

When designing a business process in SmartPM, the designer has to define the domain,
the types, and the values of data. The knowledge about the domain is essential for
the whole SmartPM system as based on that information the process is built and
calculations in the SmartPM engine are made. One possibility to define the domain
is to enter all the data manually. That might be time consuming and typing errors
can be made. For minimizing those problems, a web tool approach was used.

While defining the domain, the designer can choose to add and invoke different web
tools to make adding data types and values take less effort (Figure 4.1). When the
URL of the web tool is invoked in the designer application, a web page is opened with
the default browser. In the web tool, the designer can mark the real life continuous
values on a graphical element (i.e. map, slider, thermometer, etc.) and then change
the discrete values names if necessary. When ready, the designer can press a button
to create and store an XML of the defined rules. The URL of the generated XML is
then displayed. The designer can then copy the address of the rules and paste it to
the designer application. Let’s say an user wants to add location data of 10 times 10
grid to the system. That means manually he or she would have to type in 100 unique
data values to the location type in the designer application. As an alternative, the
designer can invoke the location web tool (Figure 4.2) and create 10 times 10 grid
with a few clicks. The location web tool then generates the data based on the areas
marked visually on the map. The web tool checks if the values are correct and then
returns an XML with the data. The designer application knows how to parse that
XML into suitable format and store it as domain information.

Each web tool must produce discretization rules - an XML with the main tag including

4.1. WEB TOOL 14

Figure 4.1: The designer tool - add data.

the keyword type for letting the designer application know during the parse time
about the new data type. The following tag lib is relevant for the Android application
to acknowledge the plugins’ name and URL. The following tags’ names must be
data value, that contains the mapping information of this data value. Also every
data value tag must have an attribute value defined - it marks the discrete value. The
mappingRule attributes are used for discretizing the real world values. The number of
mapping rules in a data value tag are dependant on the data dimensions and the task
list handler Android library that uses those rules to discretize the values - for example
the location data value has four rules that define one area (top left and bottom right
latitude and longitude values) but temperature data value has two rules to define one
temperature range (minimum and maximum values). These discretization rules are
used by the task list handler to translate the incoming sensor data from continuous
to discrete value. A sample structure of the rules XML is following:

1 <data_type>

2 <lib

3 name="plugIn name"

4 url="http://Android.Plugin.URL"/>

5 <data_value

6 mappingRule1=""

4.1. WEB TOOL 15

7 ...

8 mappingRulen=""

9 value="discreteValue"/>

10 <data_value ... />

11 ...

12 </data_type>

The designer application is able to parse new data types and values that are structured
in that way. Being guided by that, the new web tools that produce rules XMLs can
be created that are compatible with the SmartPM designer application. The URL of
the rules XML file is added to the data type field in the process schema. A sample
location type in the process schema is the following:

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

3 ...

4 <xs:simpleType name="location_type"

5 url="http://domain.com/rules.xml">

6 <xs:restriction base="xs:string">

7 <xs:enumeration value="discreteValue1"/>

8 ...

9 <xs:enumeration value="discreteValueN"/>

10 </xs:restriction>

11 </xs:simpleType>

12 </xs:schema>

The task XML creation script on the web server side takes the URL from the process
schema and adds it to the task field. When the URL is set, the Android task list
handler task form generator knows that this fields’ type is automatic and the dis-
cretization rules can be found from the pointed XML (explained more in detail in
chapter 5). Continuous sensor value is converted to discrete value on the Android
task list handler at run time using the same rules XML.

Currently, three web tools have been created to demonstrate the approach - a location
tool, a noise tool and an Arduino tool. The location tool and the Arduino tool are
explained more in detail as one of them has two dimensional data and the other one
has one dimensional data. The noise tool is similar to the Arduino tool, having one
dimensional data.

4.1. WEB TOOL 16

Figure 4.2: Location web tool. Figure 4.3: Arduino web tool.

4.1.1 Location web tool

The designer can take advantage of the location web tool whenever there is a process
that is dependant on the physical location that can be acquired with the GPS. Using
the location web tool, the designer can set discrete data values to the areas defined
by the GPS simply by clicking on the map in the location web tool (Figure 4.2). The
location web tool uses the Google Maps API and provides two different means to
divide the marked area: divide it into a grid or have it as a singleton. The number
of areas that the user can mark on the map is not limited. For marking the area,
the user has to mark the top left corner by clicking on the corresponding location
on the map and the bottom right corner (in that exact order) of the desired area
on the map. In case of making a grid, the user is asked for the number of rows and
columns that the marked area has to be divided into to create the grid. A table of
the marked areas values is dynamically generated at the bottom of the webpage to
show the results. The generated rules XML of the location web tool looks like:

1 <location_type>

2 <lib

3 name="GPS lib"

4 url="http://smartpm.cloudapp.net/SmartPM_libGPS.apk"/>

5 <data_value

6 topLat="41.894" topLon="12.498"

4.1. WEB TOOL 17

7 botLat="41.892" botLon="12.502" value="loc00"/>

8 <data_value ... />

9 ...

10 </location_type>

In case of location data, the sensor information is two dimensional - it has a latitude
and a longitude. To discretize the location value the users’ current location is com-
pared against the defined areas coordinates in the XML. Four comparisons must be
made to make sure that the users’ current location is in the defined area. The formula
to check that is the following:

1 (currentLatitude < topLat) && (currentLatitude > botLat) &&

2 (currentLongitude > topLon) && (currentLongitude < botLon)

This check is done in the Android task list handler against every data value or until
a match is found. When a match is found, the discrete value is returned.

4.1.2 Arduino web tool

The Arduino web tool is useful when the designer needs to define a process where
Arduino sensors are used. For example if the process requires environment tempera-
ture information, the designer can set the temperature ranges in the web tool simply
by moving the sliders on the slider bar and writing the desired discrete values to the
corresponding fields (Figure 4.3). The Arduino web tool has been generalized for
handling multiple different sensors data discretization rules generation in the same
tool. Most Arduino sensors provide one dimensional data, therefore those sensors
were considered for the tool. For visualizing the ranges of continuous values, a slide
bar was used. The Arduino web tool first asks for the sensor type the user wants to
create discretization rules for. After that, the number of sliders is asked to create the
number of different ranges the user needs. According to the inserted information the
slider bar is created. The user can then move the sliders and name the discrete values
in the dynamic table under the slider bar. The generated XML of the Arduino web
tool for temperature sensors looks like:

1 <temp_type>

2 <lib

3 name="arduino lib" keyword="temp"

4 url="http://smartpm.cloudapp.net/SmartPM_libHumid.apk"/>

5 <data_value

6 low="0" high="10" value="value1"/>

7 <data_value ... />

4.2. SUMMARY 18

8 ...

9 </temp_type>

An extra attribute is taken into use in the lib tag called keyword. It specifies which
Arduino sensor is used for the task list handler application. The keyword must be
exactly the same as the variable name given for this sensor by Arduino.

4.2 Summary

This chapter proposes a solution for the discretization challenge that is in cyber-
physical systems - how to map physical world continuous values to discrete com-
putable values for the logical engine. The proposed solution, called web tool, was
implemented for three different data types and described in detail in this chapter.

19

Chapter 5

Task list handler

The SmartPM task list handler is a mobile application for Android devices from
version 4.0. It is an essential tool for actors to exchange data with the SmartPM
engine - to receive tasks and send back results. The task list handler has a modular
architecture with a plugin approach - this is for automating data collection from
sensors for the tasks.

5.1 Architecture

The SmartPM task list handler application can be divided into three components -
Google Cloud Messaging handler; task form generator; plugins manager.

5.1.1 Google Cloud Messaging handler

The communication from the SmartPM engine to the task list handler is established
via Google Cloud Messaging (GCM) service. It sends lightweight push notifications
to the device to notify about a new task or the status of the process. To handle the
push notifications coming from the GCM service, a device must first be registered
with the actors’ name. For that, a simple form (Figure 5.1) is displayed to the user
when the application is ran for the first time. The actors name and the GCM reg.
id. strings of the devices are stored into the web server. When the user wants to
log out, again the GCM service is invoked and the user is removed from the web
server database. All the user names must be unique - this requirement comes from
the SmartPM engine. After logging in, the user is kept logged in on the device and is
directed to the task view (Figure 5.2). The Google Cloud Messaging handler parses
the incoming push notifications. When a push notification with new task is received,
then the task name and the status are updated accordingly (Figure 5.3). A button
to start the task is visualized at the bottom of the view. A task form is generated
after the task push notification is received and the actor has started the task with a
button click. The task push notification must have the following format:

1 taskName|Task name here;URL|http://smartpm.cloudapp.net/task.xml

where taskName is a fixed keyword for marking the task name and after the pipe sign
(|) is the defined task name. Semicolon separates variables. URL is a fixed variable

5.1. ARCHITECTURE 20

name for marking the URL of the task XML. http://smartpm.cloudapp.net/task.xml
is the URL of the task XML. The other messages that control the process - start,
pause, resume - are parsed by the server into the following format and sent via GCM
service to the devices:

1 taskName|start;

2 taskName|pause;

3 taskName|resume;

The start message implies that the SmartPM engine is ready to receive the result
of the task from the actor, therefore the stop button is enabled in the application
for submitting the results. The pause message notifies the actors that something has
caused the process adaptation and therefore are put on hold. That means that the
tasks are paused and results can not be sent out to the SmartPM engine until the
resume message is received or a new task has been assigned to the actor. stop and
resume messages are sent to all the actors simultaneously.

5.1.2 Task form generator

The task XML is then parsed from the defined URL and the form of the task is
generated. The task XML must have the following structure:

1 <xmlgui>

2 <form id="taskId" name="taskName"

3 actor="actorName" submitTo="serverResponseURL">

4 <field name="fieldId" label="fieldLabel"

5 type="fieldType" required="requiredBoolean"

6 options="fieldOptions" autoLib="pluginURL"

7 rules="discretizationRules"/>

8 <field ... />

9 ...

10 </form>

11 </xmlgui>

where:

• xmlgui tag marks the whole task XML to be parsed.

• form tag nests the whole form and includes attributes:

– id - stands for task id, its value is the same as the taskId sent out by the
SmartPM engine;

5.1. ARCHITECTURE 21

– name - stands for the task name, its value is the same as the taskName
sent out by the SmartPM engine;

– actorName - stands for the actor name who the task is assigned to, its
value is the same as the actorName sent out by the SmartPM engine;

– submitTo - stands for the URL address that the response must be sent
back to, its value is the URL of the PHP script that receives and parses
the response.

• field tag marks one field in the form of the task. All the described fields must be
present in every task. If the attribute has no value, then it is left as an empty
string. The field tag has seven different attributes that are necessary to define
a concrete field for the Android task list handler.

– name attribute stands for the name of the field that is identified by the
task form generator, therefore the value must be unique and never empty.

– label attribute stands for the label that is displayed to the user, its value
can be an empty string.

– type attribute stands for the field type. Five different field types have been
defined for the application. The value of the fieldType must be one of the
following:

∗ text - in that case, a textbox is created and displayed to be filled out;

∗ numeric - in that case again a textbox is created and displayed but
the user can only input numbers;

∗ choice - in that case a dropdown box is created and displayed to the
user;

∗ boolean - in that case a checkbox is created and displayed to the user;

∗ auto - in that case a label is created that displays the value of the
automatic field.

– required attribute defines if the field is required or not, requiredBoolean
value can be either Y for true or N for false.

– options attribute is a non-empty string only when type=”choice” - fieldOp-
tions is a string including the elements of the dropdown box. The elements
must be separated by the pipe sign (|).

– autoLib attribute stands for the plugin URL - pluginURL is a non-empty
string only if the type is auto - then the value is the URL where the

5.1. ARCHITECTURE 22

Figure 5.1: Registration view. Figure 5.2: Task view, no task.

Figure 5.3: Task view, new task. Figure 5.4: Task view, new task started.

application can download the plugin from to use the required sensor.

– rules attribute stands for the discretization rules for the plugin and is a
non-empty string only when the type is ”auto” - then the value is the URL
to the rules XML file.

Each field is parsed into an object according to the type type, for each type there is a
corresponding class with methods for dealing with the object. Figure 5.4 illustrates
the sample form displayed to the user.

5.1.3 Plugins manager

Plugins are managed mainly by one class. When field is automatic (auto) type, then
at runtime, the application checks if the plugin defined in the task XML (filename

5.2. PLUGIN APPROACH 23

value of attribute autoLib) already exists in the location getExternalStoragePublicDi-
rectory(Environment.DIRECTORY DOWNLOADS) + ”/SmartPM/”. If the file is
not in the directory, it is downloaded from the defined URL to that location on the
device. The class MyClass of the plugin is then loaded and a new instance is created.
The plugin approach is described more in detail in next section.

5.2 Plugin approach

Automating the data collection for the task can be done using different sensors. In
this thesis sensors are divided into two categories - built-in sensors of the Android
task list handler device (GPS, microphone, camera etc.) and external sensors that
are connected through the Arduino microcontroller (VOC gas sensors, temperature
sensor, humidity sensor, etc.). To allow using different kinds of sensors, a plugin
approach was realized.

The task list handler application loads plugins at runtime. Therefore, new plugins
can be created and added to the domain theory and workflow according to the need
without changing anything in the task list handler applications’ code. Plugins must
implement an interface called LibInterface, defined in the SmartPM task list handler
for Android. The most important method that a plugin must override is useMyLib
that can access the application context, update the corresponding TextView with the
collected data and passes the URL of the discretization rules XML file for parsing
and converting the values accordingly in the plugin.

1 public interface LibInterface {

2 public String useMyLib(Context context,

3 TextView mAutoLabel, String rules);

4 public String getName();

5 public String getType();

6 }

After starting the task, the form is being parsed by the application to display it to
the user. When the automatic field is being parsed, the application checks for the
plugin from the device storage and if it is not present, then it downloads it. A new
instance of the main class of the plugin - MyClass is created and the application
context, the label that is updated with automatic data and the discretization rules
URL are passed to that class object.

1 final DexClassLoader classloader =

2 new DexClassLoader(libPath + fileName,

3 tmpDir.getAbsolutePath(), null,

5.2. PLUGIN APPROACH 24

4 this.getClass().getClassLoader());

5 final Class<Object> classToLoad =

6 (Class<Object>) classloader.loadClass("ut.ee.SmartPM.lib.MyClass");

7 LibInterface obj = (LibInterface) classToLoad.newInstance();

8 obj.useMyLib(mContext, mAutoLabel, rules);

Class MyClass must be in the package ut.ee.SmartPM.lib. On the plugin side, the
rules XML URL is parsed and the rules objects are created. For example the tem-
perature rules class in the plugin is:

1 package ut.ee.SmartPM.lib;

2 public class RulesObject<Low, High, Name> {

3 private Low low;

4 private High high;

5 private Name n;

6 public RulesObject(Low low, High high, Name n){

7 this.low = low;

8 this.high = high;

9 this.n = n;

10 }

11 public Low getLow(){ return low; }

12 public High getHigh(){ return high; }

13 public Name getName(){ return n; }

14 public void setLow(Low low){ this.low = low; }

15 public void setHigh(High high){ this.high = high; }

16 public void setName(Name n){ this.n = n; }

17 }

After the rules objects are created, the plugin enables the sensor and the incoming
data is discretized by comparing the rules objects and the data provided by the sensor.
To elaborate it, GPS and microphone examples are explained.

5.2.1 GPS and microphone plugins description

Several plugins have been created for the task list handler to demonstrate the plugin
approach using sensors that are built-in the mobile devices. The GPS capability
of the mobile device allows for automatically filling out the current location of the
device. Using the microphone, it is possible to automatically get the current noise
level nearby the device. This section explains how these plugins work.

When a task requires the location of the actor, in the task XML, in the location field

5.2. PLUGIN APPROACH 25

it, is possible to mark it as an automatic field and give the URL of the GPS plugin.
An example automatic GPS field is:

1 <field

2 name="gps" label="GPS:" type="auto"

3 required="N" options=""

4 autoLib="http://smartpm.cloudapp.net/SmartPM_libGPS.apk"

5 rules="http://smartpm.cloudapp.net/blankgpsrules.xml"/>

The GPS plugin is then downloaded to the Download/SmartPM folder of the device
from the URL if the plugin is not already there. The typical plugin is relatively
lightweight, around 300KB in size. While the task is being carried out, the GPS
location field label is updated by the plugin. There are four classes in the GPS library
ParseXML, RulesObject, CurrentLocationListener, MyClass. ParseXML class parses
the rules from the rules XML file (that is defined in the task XML) and creates new
instances of RulesObject as explained in previous section. In this case, RulesObject
is a simple class that has getters and setters for the GPS rules (top and bottom
latitude and longitude values, discrete name value matching the location name in the
SmartPM designer). An example of rules XML is the following:

1 <location_type>

2 <lib

3 name="GPS lib"

4 url="http://smartpm.cloudapp.net/SmartPM_libGPS.apk"/>

5 <data_value

6 topLat="41.894" topLon="12.499"

7 botLat="41.884" botLon="12.517" value="rome"/>

8 </location_type>

CurrentLocationListener implements LocationListener, gets latitude and longitude
coordinates from the GPS sensor, matches the continuous values to discrete values
according to RulesObject and updates the TextView with the value. MyClass is
the most important class - it implements LibInterface, calls out ParseXML, starts
LocationManager and calls out CurrentLocationListener passing it the mapping rules.

The noise plugin works in a similar way like the GPS plugin. However instead of
CurrenLocationListener, it has a class DetectNoise. ParseXML works in the same
way, RulesObject is adapted according to the dimensions of the data getters and
setters for high, low and name values as pointed out in the previous section. Detect-
Noise class starts MediaRecorder and calculates the decibels of the input. MyClass
implements LibInterface, calls out ParseXML, calls out DetectNoise, maps the values
to the discretized value and updates the TextView with the value.

5.2. PLUGIN APPROACH 26

5.2.2 Arduino plugin description

Different readings from the environment can be gathered with different Arduino sen-
sors gas levels, temperature, humidity etc. For connecting Arduino with the Android
task list handler, Bluetooth is used. On the Arduino part, the Arduino Uno board,
the Bluetooth shield and sensors are connected. A Bluetooth connection is configured
and enabled and on successful connection, all the sensors data is being sent:

1 ...

2 void loop()

3 {

4 float humidity = TH02.ReadHumidity();

5 blueToothSerial.print("hum=");

6 blueToothSerial.println(humidity);

7

8 float temper = TH02.ReadTemperature();

9 blueToothSerial.print("temp=");

10 blueToothSerial.println(temper);

11

12 int hchoSensorValue=analogRead(A0);

13 float hchovol=(hchoSensorValue*4.95/1023)*10;

14 blueToothSerial.print("hcho=");

15 blueToothSerial.println(hchovol);

16 ...

17 }

18 ...

On the Android task list handler part, the plugin for communicating with Arduino
is based on the Bluetooth communication. Arduino is programmed to send all the
sensors data to the Bluetooth, therefore the filtering of the necessary sensor data
acquired by the task has to be done on the Android task list handler. The key-
value pairs of all the sensors data are stored and updated in the shared preferences1

of the task list handler application. This ensures that one task can simultaneously
automatically use different sensors data coming from Arduino. If there are more
than one automatic field in the same task that use the same Arduino plugin, then the
plugin checks if it is already in use and receiving data or not (as Bluetooth allows only
one socket at a time). If not, then the connection is established and data is received
and saved to the shared preferences. If the Arduino plugin is already in use (sensors
data is updated in the shared preferences), then the sensor data is read from the
shared preferences. The rules XML defines which sensor data is used by the keyword

1http://developer.android.com/reference/android/content/SharedPreferences.html

5.3. ARDUINO SENSORS 27

value. For example the following rules XML defines keyword=”temp” meaning that
these discretization rules apply to the Arduino temperature sensor data:

1 <temp_type>

2 <lib name="arduino lib" keyword="temp"

3 url="http://smartpm.cloudapp.net/SmartPM_libHumid.apk"/>

4 <data_value low="0" high="10" value="cold"/>

5 ...

6 </temp_type>

The task list handler Arduino plugin has three classes RulesObject, ParseXML and
MyClass. RulesObject and ParseXML have the same functionality as described pre-
viously for GPS and noise plugins. MyClass calls out ParseXML, checks if the plugin
is already being used, or not. If not, then configures and establishes the Bluetooth
connection, starts listening for the Bluetooth input stream. As a final step, MyClass
maps the continuous values to the discrete values and updates the corresponding
Textview field with the discretized values.

5.3 Arduino sensors

The sensor-aware cyber-physical environment is created by automating the environ-
mental data collection for tasks using the Arduino electronics platform. To create
the sensor-aware cyber-physical environment, the following setup was constructed:
Arduino Uno R3 board2, Seeed Studio Bluetooth shield V2.03, Grove HCHO sensor4,
Grove MQ2, MQ3 and MQ5 gas sensors5, Grove temperature and humidity sensor6.
Grove MQ9 gas sensor was considered also for the setup but due to the limited number
of analog pins that are used by the Grove sensors it was left out.

Grove HCHO sensor measures the volatile organic compound (VOC) gas concen-
tration in the air, for example toluene, benzene, methanal etc. Grove MQ2 sensor
measures combustible gas and smoke concentration in the air. Grove MQ3 sensor
measures alcohol vapour concentration in the air. Grove MQ5 sensor measures nat-
ural gas, town gas, liquified petroleum gas (also known as propane or butane), etc.
concentration in the air. Grove MQ9 sensor measures carbon monoxide, coal gas,
liquefied gas concentration in the air.

2http://arduino.cc/en/Main/arduinoBoardUno
3http://www.seeedstudio.com/wiki/Bluetooth_Shield_V2.0
4http://www.seeedstudio.com/wiki/Grove_-_HCHO_Sensor
5http://www.seeedstudio.com/wiki/Grove_-_Gas_Sensor
6http://www.seeedstudio.com/wiki/Grove_-_Tempture&Humidity_Sensor_

(High-Accuracy_&Mini)_v1.0

5.4. SUMMARY 28

Figure 5.5: Arduino sensors.

The described sensors setup is practical in many use cases when there might be fire
hazard, including gas leakages from buildings, vehicles, gas pipes etc. Some of the
sensors need pre-heating, according to data sheets up to 24h, to show the correct
values. During the system tests it came out that actually it takes up to 15 minutes
of pre-heating to already get accurate results. Pre-heating means having the sensor
working for some time with defined voltage for the calibration.

The described Arduino setup is relatively energy greedy, which means that for power-
ing it, the typical one 9V battery is not sufficient. The setup operates with 5V, using
averagely 550mA of power. To have the setup working non-stop for the full average
8h working day, the battery pack was reconsidered and remodeled into 8 pieces AA
battery pack that can provide this kind of power for non-stop for 10 hours, assuming
one 1.5V AA battery is around 2Ah.

5.4 Summary

This chapter describes the proposed task list handler for the SmartPM system and
the implementation of this mobile application for Android operating system. The
plugin approach is described alongside with other important features of the task list
handler. For demonstrating the approach, three implemented plugins are described
in detail. As automating tasks in cyber-physical environment requires hardware side
as well, an Arduino set is introduced.

29

Chapter 6

User validation

User validation was carried out to evaluate the usability of the SmartPM task list
handler. A scenario for six participants was created. After playing through the whole
scenario, users were asked to fill out the questionnaire which was based on the USE
questionnaire [10].

6.1 Scenario

As an application scenario, the emergency management domain was considered. Let
there be a team of six actors in a disaster location to assist potential victims. A
cyber-physical system at hand is composed of mobile devices, robots, wireless com-
munication technologies, Arduino sensor systems and process management system
SmartPM. A response plan is encoded as a process and executed by a process man-
agement system and task list handler deployed on mobile devices, helping to coor-
dinate the activities carried out by the team. The following case study involves an
improved disaster management inspired by the WORKPAD project1.

The disaster area is divided into a four times four grid-type map where a train has
come off the rails. The train is composed of a locomotive and two coaches (located
at loc33, loc32 and loc31 respectively). The situation is described in Figure 6.1(a).

The goal of the incident response plan is first to take air measurements to make sure
that there are no dangerous gases in the air. When the air measurements are done, the
team starts to evacuate people and take pictures of the disaster to evaluate possible
damages to the locomotive. The team consist of four human actors (act1, act2, act3,
act4) and two robots actors (rb1, rb2), all starting from the location loc00. All the
actors are equipped with Android mobile devices with task list handler installed and
configured. Each actor has specific capabilities - act1 is able to extinguish fire, take
pictures and measure gas levels in the environment with Arduino sensors; act2 has
also an Arduino sensors kit to measure the environment gas levels and can evacuate
people; act3 can evacuate people; act4 can fix robots; rb1 and rb2 are designed to
remove debris and provide fast wireless Internet connection. To carry out the response
plan, all actors must have Internet connection. Fast wireless Internet connection is
provided by a fixed beacon in the loc00. The dotted squares on Figure 6.1(a) represent

1http://www.dis.uniroma1.it/~workpad

6.1. SCENARIO 30

(a) Main process (b) Failed Go(loc00,loc33) (c) Recover act1 connectivity

(d) Successful Go(loc03,loc33) (e) Recover act2 connectivity (f) Final stage

Figure 6.1: A train derailment situation; area and context of the intervention. [1]

areas that are covered by the fast wireless Internet connection provided by the beacon.
The other squares have mobile Internet coverage, good enough to send and receive
simple messages for the task list handler, although due to low bandwidth there might
be some delay. To eliminate possible delay due to low connectivity, a robot is sent to
restore better Internet quality when needed. Each robot can move in the area, but has
to be always connected to the main network. This is guaranteed if the intersection
between the squares covered by the main network and the squares covered by the
robot connection is not empty.

Based on the given information, it is possible to define and configure a concrete
incident response plan for the scenario using the BPMN [11] modelling language as
shown in Figure 6.2.

The created process is composed of three sets of parallel branches. The first set is
composed of two parallel branches with tasks instructing actors to measure noise level
and the temperature. The second set is also composed of two parallel branches with
tasks instructing actors to take air quality measurements with the Arduino set. The

6.1. SCENARIO 31

Figure 6.2: Case study - main process.

third set is composed of three parallel branches with tasks asking to evacuate people
and take pictures to later assess the accident.

The environment is highly dynamic, therefore there is a wide range of exceptions
that can occur. Because of that, there is not a clear anticipated correlation between
a change in the context and a change in the process. For example when actor act1
is sent to the locomotives’ location loc33 but instead he or she reaches loc03. This
makes him or her located at a different position than the desired one and out of the
fast wireless Internet range (Figure 6.1(b)). As all participants need to be connected
to fast wireless Internet connection to execute the process, the PMS has to first find
a recovery procedure to provide act1 with fast wireless Internet connection, and then
find a way to re-align the process.

The SmartPM engine finds the following recovery solution - send one robot to loc03
(Figure 6.1(c)) in order to re-establish the Internet connection to actor act1, then
instruct the second robot to go to location loc23 in order to extend the network
range to cover the locomotive’s location loc33. Finally, actor act1 is asked to go
to location loc33 again (Figure 6.1(d)). The corresponding updated process part
that required adaptation is shown in Figure 6.3, with the encircled section being the
recovery (adaptation) procedure.

After the recovery procedure has been done, the original process is resumed to its
normal flow. For example actor act2 can be sent to location loc31. However, even
if act2 completes its task as expected (Figure 6.1(e)), a further exception is thrown.
In fact, act2 is out of the fast wireless Internet connectivity range and, again, the
SmartPM engine sends a task to the first robot to move to location loc20 in order
to re-establish fast wireless Internet connection to actor act2 (top of Figure 6.1(c)).
Now actor act2 can start evacuating people from loc31.

6.2. RESULTS 32

Figure 6.3: Case study - adapted process part. [1]

6.2 Results

Six people took part to the user validation. The domain was explained to the test
subjects and the equipment was handed out (Android devices with task list handler
installed, Arduino sets) to act out the scenario. The scenario simulation took place at
Tartu Toomemäe. Afterwards they were asked to fill out a questionnaire to evaluate
the task list handler. The questionnaire consisted of four topics - usefulness, ease of
use, ease of learning, satisfaction - with 19 statements in total with one extra field
to write any other suggestions and thoughts. The users were asked to evaluate the
statements on the seven-point Likert rating scale where one was ”totaly disagree”
and seven ”totaly agree”. The questionnaire and the results are in the Appendix C.

Overall, the users found that the task list handler ”is useful” scoring average 5.5
points out of 7, helping them to ”be more effective” scoring average 4.7. One user did
not agree with that point explaining that people in rescue teams are experienced and
do not need to be told what to do, it only slows them down to wait for an order. Based
on that feedback the author suggests to carry out further tests and user validations
to measure and compare team effectiveness with and without the SmartPM task list
handlers.

All the users found that the application was ”easy to use” scoring average 6.7 points.
The user friendliness was rated averagely six out of seven, where seven was ”Totally
agree” with the statement ”It is user friendly”. The lowest rating given by users in
section ”Ease of use” was 4 points, meaning that users think the task list handler

6.3. SUMMARY 33

”requires the fewest steps possible to accomplish what is needed” scoring average
6.7, ”using it is effortless” scoring average 6.3, ”it is flexible” scoring average 6.5 and
they ”could use it successfully every time” scoring average 6.0. Everybody rated the
statement ”I can use it without instructions” with 7.

The section ”Ease of learning” was the highest averagely rated section in the ques-
tionnaire. The users found that they ”quickly became skillful with it” scoring average
6.8, ”it was easy to learn to use it” scoring average 6.8, ”it was easy to remember
how to use it” scoring average 6.8 and they ”learnt to use it quickly” scoring average
7.0.

Last but not least, the user satisfaction was targeted with the questionnaire. The
results showed that the users are ”satisfied with the application” scoring average 6.0
as it ”works the way they want” scoring average 6.3 and they find it ”pleasant to use”
scoring average 6.5. This section also had high scores, having no points below 5.

All of the users had different roles in the simulation. To analyze users evaluation, the
ANOVA statistical test was done. Test results (Appendix D) show that there was a
statistically significant difference between users as determined by one-way ANOVA
(F(5,108)=4.359, p=0.001). Users who acted out the rb1 and rb2 gave similar scores
to the statements, having both 6.68 mean. Users who played act1 and act2 had to
operate with the Arduino set. Their ratings given to the statements were relatively
diverse, means being accordingly 6.47 and 5.79. That diversion of the mean score
might be due to having different experience with the Arduino set. Act3 and act4
did not have the Arduino set and their roles were different, yet their means differed
significantly being accordingly 6.42 and 5.74.

In conclusion, the users participating to the evaluation were satisfied with the task
list handler as they found it rather useful and easy to learn and use. Based on the
users’ comments there is still some room for improvements of the task list handler.
They pointed out that the user interface could be improved and other communication
methods with Arduino could be considered as establishing the connection with the
Arduino set was not always successful. Also they pointed out that an interactive map
could be added to the application.

6.3 Summary

A scenario, inspired by the WORKPAD project was created to test the system and
evaluate the task list handler. The scenario included a team of 6 different actors who
had to solve a train derailment situation. They had to measure different gas levels,
move to different locations, provide fast wireless Internet connection, take pictures

6.3. SUMMARY 34

and rescue people. 6 users played through the scenario and afterwards rated the task
list handler, filling out a questionnaire which was based on the USE questionnaire.
Base on their feedback, the task list handler is useful and users are satisfied with it
as it it easy to learn and use.

35

Chapter 7

Conclusions and future work

7.1 Conclusion

The goal of this thesis was to update and further develop the SmartPM system and
to add a task list handler mobile application to it. In the process, a discretization
problem was faced. A concrete solution to it was proposed and realized using the
web tool approach. A cyber-physical environment for automating the processes was
created, using an Arduino setup which was specially designed and built to fit the needs
of the use case. The Android task list handler was designed and created following
a plug-in architecture to enable different sensors access in the future. The task list
handler was then evaluated by users who played through a sample scenario and then
filled out a questionnaire. Users were satisfied with the application as they found the
task list handler useful and easy to use and learn.

A number of different technologies and and techniques were tackled throughout this
thesis, keeping in mind the good practices of software engineering [12] and develop-
ment [13] - iterative development, requirements management, component architec-
ture, visual modelling, quality verification, source control usage, etc. The main focus
was on the Android task list handler 1 which was written in Java. Plug-ins 2 3 4 to
extend the application and the SmartPM designer application 5 updates were also
realized in Java. Network and communication techniques were studied to create the
communication tunnel from the SmartPM engine to the task list handler. Reverse
SSH tunnel was considered as the best solution for the system at hand. The server
side 6 for hosting the web tools and communication handling was set-up to the Mi-
crosoft Azure cloud service, running on Ubuntu virtual machine. The server side was
written mainly in PHP, Javascript and HTML. For the communication, the Google
Cloud Messaging service was used to send task list handlers the push notifications.
The cyber-physical environment was created using Arduino hardware and Arduino
programming language 7. The created design and realization of a sensor-aware task

1https://github.com/p2tris/SmartPM
2https://github.com/p2tris/SmartPM_arduinoHumidLib
3https://github.com/p2tris/SmartPM_Noizelib
4https://github.com/p2tris/SmartPM_GPSlib
5https://github.com/p2tris/SmartPMsuite
6https://github.com/p2tris/SmartPM/tree/master/Server
7https://github.com/p2tris/SmartPM_arduinoHumidLib/tree/master/arduino

7.2. FUTURE WORK 36

list handler for adaptive processes in cyber-physical environments proved to be useful
and functional through a user evaluation.

7.2 Future work

It is advised to add some features to the application to make it more convenient
for the users. Considering location-critical domains, an interactive in-application
map could be a useful feature as pointed out by the users. Also tasks history is
considered as a nice-to-have feature for any kind of task list handler application.
The user interface can also be improved to give better user experience. Bluetooth
communication with Arduino is not very stable and energy efficient as it turned
out, therefore the author suggests to improve the created cyber-physical system and
investigate other alternatives.

The author also suggests some improvements for the SmartPM engine and the overall
systems’ architecture. The SmartPM engine is advised to be improved to handle
simultaneous tasks handling during the adaptation. The structure of the system is
also suggested to be reconsidered to improve the communication flow - SmartPM
designer and engine could be fully transferred to the same Ubuntu server where the
web tools and the GCM communication scripts are. It would lose the need for the
SSH reverse tunneling, making the system faster and more secure.

Overall, the created task list handler and the updated system is functional and proved
to be ready for using in real situations. Nevertheless it is advised to carry out more
thorough testing of the task list handler and the SmartPM system as a whole.

BIBLIOGRAPHY 37

Bibliography

[1] A. Marrella, M. Mecella, and S. Sardiña, “Smartpm: An adaptive process man-
agement system through situation calculus, indigolog, and classical planning,” in
Principles of Knowledge Representation and Reasoning: Proceedings of the Four-
teenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014,
2014.

[2] A. Marrella, M. Mecella, S. Sardina, and P. Tucceri, “Smartpm: Automated
adaptation of dynamic processes,” in 12th International Conference on Service
Oriented Computing (ICSOC 2014), 2014.

[3] E. A. Lee, “Cyber physical systems: Design challenges,” in Object Oriented
Real-Time Distributed Computing (ISORC), 2008 11th IEEE International Sym-
posium on, pp. 363–369, IEEE, 2008.

[4] M. Weske, Business process management: concepts, languages, architectures.
Springer, 2012.

[5] C. Di Ciccio, A. Marrella, and A. Russo, “Knowledge-intensive processes: Char-
acteristics, requirements and analysis of contemporary approaches,” Journal on
Data Semantics, pp. 1–29, 2014.

[6] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware Information
Systems - Challenges, Methods, Technologies. Springer, 2012.

[7] R. Reiter, Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, September 2001.

[8] D. Nau, M. Ghallab, and P. Traverso, Automated Planning: Theory & Practice.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004.

[9] G. De Giacomo, Y. Lespérance, H. Levesque, and S. Sardina, “Indigolog: A high-
level programming language for embedded reasoning agents,” in Multi-Agent
Programming, pp. 31–72, Springer US, 2009.

[10] A. M. Lund, “Measuring usability with the use questionnaire.” http://www.

stcsig.org/usability/newsletter/0110_measuring_with_use.html, 2001.

[11] T. Allweyer, BPMN 2.0: introduction to the standard for business process mod-
eling. BoD–Books on Demand, 2010.

[12] C. Jones, Software Engineering Best Practices. New York, NY, USA: McGraw-
Hill, Inc., 1 ed., 2010.

[13] S. McConnell, Code complete. Microsoft press, 2004.

38

Appendix A

License

Non-exclusive licence to reproduce thesis and make thesis public

I, Pätris Halapuu (date of birth: 31.07.1991),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

(a) reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until expiry
of the term of validity of the copyright, and

(b) make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term
of validity of the copyright, of my thesis

Design and Realization of a Sensor-aware Task List Handler for Adap-
tive Processes in Cyber-Physical Environments,

supervised by Massimo Mecella, Andrea Marrella, Fabrizio Maria Maggi

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 20.05.2015

39

Appendix B

Setting up the system

Several steps must be done to properly set up and use the SmartPM system. In this
section it is explained how to achieve that.

Prerequisites: Android version >4.0 device per actor; web server with public IP
address and SmartPM web server side system configured for actors management and
tasks creation and message handling; virtual machine with SmartPM engine and
designer set up, domain theory and workflow defined - domain theory and workflow
creation in the SmartPM designer is not tackled in this part; Arduino sensors system
wired and powered.

B.0.1 Setting up devices

1. Install the last version of Android task list handler

2. Make sure device is connected to the Internet

3. Start the application

4. Insert username for the device (must be equal to the actor name in designer)

5. On success, actor is ready for tasks

6. Make sure Bluetooth and GPS are enabled

B.0.2 Setting up Arduino

1. Connect all the sensors - White wire is not used by sensors (except Temperature-
Humidity sensor), Red is 5V, Black is GND, yellow is to Analog (A*) for com-
munication:

(a) Temperature-Humidity to the socket directly on the Bluetooth shield (as
uses 2 pins - A4 and A5 for working)

(b) HCHO to A0

(c) MQ-2 to A1

(d) MQ-3 to A2

40

(e) MQ-5 to A3

(f) MQ-9 does not fit but can be used if Temperature-Humidity sensor is
removed and MQ-9 connected to A4 (otherwise it will give result with
value around 380)

2. Gas sensors need preheating which means that they must work around 15 min-
utes before they start giving correct values

3. Connect the board to the suitable power source - laptop, tablet, battery pack
etc.

4. Arduino is ready for connection via Bluetooth

5. Depending on the Android device, pairing is popped up for the user or in the
context menu (where you get all the notifications by all the applications) or in
the current activity

6. Pairing code is 1234

B.0.3 Connecting Virtual Machine with web server for communication

1. Make sure the virtual machine is running and you have the Internet connection

2. Designer must not be running the scenario

3. Open Terminal

4. Create reverse SSH tunnel to the server on port 5555 (the one that is used by
IndiGolog engine for communication):

1 ssh -R 5555:localhost:5555 username@ipaddress

5. Socket must be established (server does not give error messages but is logged
in)

6. Run the process in designer - on success, actors start receiving the tasks

41

Appendix C

Questionnaire and results

Following is the questionnaire, based on the USE questionnaire, that was modified
and given to the users for the task list handler evaluation. Users were asked to rate
arguments on a scale from 1 to 7 where 1 was ”Totally disagree” and 7 ”Totally
agree”. The arguments are followed by the given results accordingly.

U1 U2 U3 U4 U5 U6
1. It helps me be more effective. 6 5 4 2 5 6
2. It is useful. 6 5 6 4 5 7
3. It does everything I would expect it to do. 6 5 5 4 5 6
4. It is easy to use. 7 6 7 6 7 7
5. It is user friendly. 7 5 6 6 7 5
6. It requires the fewest steps possible to accomplish what I want to do with it. 7 6 7 6 7 7
7. It is flexible. 7 5 6 7 7 7
8. Using it is effortless. 7 6 7 4 7 7
9. I can use it without written instructions. 7 7 7 7 7 7
10. I don’t notice any inconsistencies as I use it. 7 5 7 7 7 7
11. I can recover from mistakes quickly and easily. 6 6 7 6 7 7
12. I can use it successfully every time. 6 4 7 5 7 7
13. I learned to use it quickly. 7 7 7 7 7 7
14. I easily remember how to use it. 6 7 7 7 7 7
15. It is easy to learn to use it. 6 7 7 7 7 7
16. I quickly became skillful with it. 7 7 7 7 7 6
17. I am satisfied with it. 6 6 5 5 7 7
18. It works the way I want it to work. 6 6 6 6 7 7
19. It is pleasant to use. 6 7 7 6 7 6

Other remarks, opinion:
Add map, consider other Arduino connection ways than Bluetooth - unstable
Nice and simple
It could look nicer, but other than that it is good

Appendix D

ANOVA test

The results of a ANOVA statistical test

 Source of Sum of d.f. Mean F
 Variation Squares Squares

 between 17.44 5 3.488 4.359
 error 86.42 108 0.8002
 total 103.9 113

The probability of this result, assuming the null hypothesis, is 0.001

Act1: Number of items= 19
6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
7.00 7.00

Mean = 6.47
95% confidence interval for Mean: 6.067 thru 6.880
Standard Deviation = 0.513
Hi = 7.00 Low = 6.00
Median = 6.00
Average Absolute Deviation from Median = 0.474

Act2: Number of items= 19
4.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 6.00 6.00 6.00 6.00 6.00 6.00 7.00 7.00 7.00
7.00 7.00

Mean = 5.79
95% confidence interval for Mean: 5.383 thru 6.196
Standard Deviation = 0.918
Hi = 7.00 Low = 4.00
Median = 6.00
Average Absolute Deviation from Median = 0.737

Act3: Number of items= 19
4.00 5.00 5.00 6.00 6.00 6.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
7.00 7.00

Mean = 6.42
95% confidence interval for Mean: 6.014 thru 6.828
Standard Deviation = 0.902
Hi = 7.00 Low = 4.00
Median = 7.00
Average Absolute Deviation from Median = 0.579

Act4: Number of items= 19
2.00 4.00 4.00 4.00 5.00 5.00 6.00 6.00 6.00 6.00 6.00 6.00 7.00 7.00 7.00 7.00 7.00
7.00 7.00

Mean = 5.74
95% confidence interval for Mean: 5.330 thru 6.144
Standard Deviation = 1.41
Hi = 7.00 Low = 2.00
Median = 6.00
Average Absolute Deviation from Median = 1.00

Rb1: Number of items= 19
5.00 5.00 5.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
7.00 7.00

Mean = 6.68
95% confidence interval for Mean: 6.277 thru 7.091
Standard Deviation = 0.749
Hi = 7.00 Low = 5.00
Median = 7.00
Average Absolute Deviation from Median = 0.316

Rb2: Number of items= 19
5.00 6.00 6.00 6.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
7.00 7.00

Mean = 6.68
95% confidence interval for Mean: 6.277 thru 7.091
Standard Deviation = 0.582
Hi = 7.00 Low = 5.00
Median = 7.00
Average Absolute Deviation from Median = 0.316

