

UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Software Engineering

Sander Valvas

Requirements Elicitation from BPMN Models

Master's Thesis (30 EAP)

Supervisor: Fredrik P. Milani

TARTU 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Tartu University Library

https://core.ac.uk/display/83597414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Requirements Elicitation from BPMN Models

Abstract

When building a software system, it is crucial to understand the actual needs and the

interfering constraints that apply in the surrounding environment. Elicitation of requirements

is all about learning the environment and discovering the needs of users and other

stakeholders. One of the primary sources for requirement elicitation is the system (processes,

organization, environment and legacy systems) currently being used. The system is often

captured in the form of graphical models, which are an important source of information for

requirements elicitation. BPMN models are gaining popularity and are frequently used to

model systems. Despite the fact that they are a valuable source of knowledge, they are rarely

used as a source for eliciting requirements. One reason for this is the lack of concrete and

comprehensive guidelines that would assist a systematic requirements elicitation from such

models. This thesis presents a method for eliciting functional requirements from BPMN

models. The method covers all components of a requirement and gives guidelines where in

the BPMN model the information about the components can be found. It also provides a set of

questions to be asked from domain experts to make sure that the requirement specification is

complete, consistent, bounded and on the required level of granularity. The method was

applied on a case study and it was proved that the method is applicable and provides a

structured approach to eliciting requirements. The method elicited more requirements than the

method previously used by the case organization, and the elicited requirements were also of

better quality. The method took considerably less time to apply, it gave better control over the

elicitation process, it was easier to evaluate the needed effort, and it enabled to better plan the

process. The structured approach makes it easier to delegate work, and there are less

situations where something might be overlooked.

Keywords: Requirements Elicitation, Requirements Discovery, Requirements Derivation,

Business Process Modeling, BPMN.

3

Nõuete tuvastamine BPMN mudelitest

Lühikokkuvõte

Tarkvarasüsteemi loomiseks on väga oluline mõista, millised on tegelikud vajadused ja nende

rahuldamist takistavad piirangud. Nõuete tuvastamise käigus õpitakse tundma ümbritsevat

keskkonda ja tehakse kindlaks kasutajate ning teiste osapoolte vajadused. Üheks peamiseks

kohaks, kust nõudeid leida, on hetkel kasutatavad süsteemid (protsessid, organisatsioon,

keskkond ja kasutatavad infosüsteemid). Kasutusel olevaid protsesse kujutatakse tihti

graafiliselt mudelitena ja need mudelid kujutavad endast väga olulist informatsiooniallikat

nõuete tuvastamisel. BPMN mudelid on saanud väga populaarseks ja neid kasutatakse tihti

süsteemide kirjeldamiseks, kuid vaatamata sellele, et nad on väärtuslikud teadmiste allikad,

kasutatakse neid nõuete tuvastamisel siiski harva. Üheks selliseks põhjuseks on asjaolu, et

puuduvad konkreetsed ja põhjalikud juhised, mis aitavad süstemaatiliselt mudelist nõudeid

tuvastada. Selles töös esitletakse meetodit funktsionaalsete nõuete tuvastamiseks BPMN

mudelitest. Meetod läbib süsteemselt kõiki nõude komponente ja annab juhised, kuidas

BPMN mudelist komponendi kohta informatsiooni leida ning annab lisaks kogumi küsimusi,

mida valdkonna spetsialistidele esitada, et nõue oleks põhjalik, järjepidev, piiritletud ja

nõutava detailsusega. Loodud meetodit rakendati ka juhtumiuuringu käigus ja tõestati, et uus

meetod on rakendatav ning on struktureeritud lähenemine nõuete tuvastamiseks. Meetod

tuvastas rohkem nõudeid kui meetod, mis oli algselt kasutusel juhtumi organisatsiooni poolt

ja tuvastatud nõuded olid ka parema kvaliteediga. Meetodi rakendamine võttis

märkimisväärselt vähem aega, tuvastamise protsess oli hästi kontrollitav, see võimaldas

täpsemalt hinnata tuvastamisele kuluvat aega ja seeläbi on meetodit kasutades lihtsam

protsessi planeerida ja ülesandeid delegeerida.

Märksõnad: Nõuete tuvastamine, nõuete avastamine, äriprotsesside modelleerimine, BPMN.

4

Table of Contents

1. Introduction .. 5

2. Conceptual Foundation .. 8

2.1 Requirement... 8

2.2 Business Process Model and Notation ... 10

2.3 Mapping a Requirement to BPMN .. 12

3. Requirements Elicitation Method (REM) .. 15

3.1 Introduction to REM .. 15

3.2 Description of the Method ... 17

3.3 Method Summary .. 25

4. Case Study .. 29

4.1 Case Study Design ... 29

4.2 Case Study Execution .. 31

4.3 Results ... 34

4.4 Threats to Validity ... 38

5. Related Work .. 39

5.1 Eliciting Requirements from Business Process Models .. 39

5.2 Eliciting Requirements from Use Cases and Scenarios ... 40

5.3 Eliciting Requirements from UML Diagrams ... 41

5.4 Eliciting Requirements from Goal Models .. 41

5.5 Models as a Useful Artifact in the RE Process .. 42

6. Conclusions and Future Work .. 43

References .. 44

Appendix 1 Case Study Design .. 48

License ... 55

5

1. Introduction

“The single hardest part of building a software system is deciding precisely what to build” [1].

A software system aims at resolving a problem or satisfying a need. Its effectiveness is highly

dependent on how well it can resolve or address the need it was designed to satisfy. In order

to provide the best solution, it is crucial to understand the actual needs and the interfering

constraints that apply in the surrounding environment. These issues are addressed within the

field of Requirement Engineering (RE) [2].

Uncovering and extracting the information needed for building a software solution, is one of

the initial tasks of Requirements Elicitation [3],[4]. Elicitation of requirements is concerned

with learning the environment and discovering the needs of users and other stakeholders such

as customers. One of the primary sources for elicitation of requirements is the system

(processes, organization, environment and legacy systems) currently being used [1]. Although

a large extent of this information lies with the stakeholders, it is often captured in written

form, such as manuals, policies, standards, and graphical models. [5] These documents are

therefore important sources of information for requirements elicitation. Graphical

representations like models and diagrams in particular, are gaining more and more popularity

when it comes to describing current systems.

Such models and diagrams facilitate communication between stakeholders, help to better

understand the domain, provide input for solution designs and documentation of systems [6].

There are many modeling notations created for specific purposes and they are used to

represent either static phenomena (e.g things and their properties) or dynamic phenomena (e.g

events and processes) or both [6]. In an organization, managers need to coordinate the efforts

of workers, and therefore behavioral aspects, such as processes or workflows, are often

modeled. For this purpose, business process models (BPMs) are used. These models are also

valuable sources of information for requirements elicitation. In fact, these models are not only

used to understand the environment [7] but are increasingly becoming an important part of the

requirements specification process [8].

There are many methods to model business processes [9]. Most of them were created before

the bloom of information technology and are therefore more business oriented, aiming at

improving decision-making. With the advent of information technology, software developers

sought to understand the environment for better solution designs. In this quest, business

process models proved to be helpful. However, the notations and levels of abstraction used

6

were not of a satisfactory level of detail for system design. To remedy this, notations more

suited for software engineering were developed (e.g the Unified Modeling Language). These

were later extended to cover the needs of business process modeling as well. Unfortunately,

business oriented modelers did not start using the same notation. This might be due to the

notational languages being overly complex and not aligned with the main focus of business

processes [10]. The challenge to make the process notations more intuitive, understandable

and usable by a broader range of stakeholders, has always been and still remains there for the

RE community. As such, it is becoming increasingly more important to satisfy a delicate

balance between formal (analyzable) and informal (often high-level and intuitive) artifacts

that invites the many stakeholders to participate in the process of eliciting requirements

[11],[4]. It is predicted that the future of software engineering and RE in particular, is likely

drifting towards the minimization of the gap between the business and the technical side

[12],[11]. It seems that the business analysts must start providing models that are more useful

for technical use and vice versa.

Today Business Process Model and Notation (BPMN)1, is gaining popularity among business

analysts and technical developers [13]. This is because BPMN is aimed at creating a notation

that is easy to understand by both business users and software developers, but is powerful

enough to support the development of systems from business process design to process

implementation [14]. BPMN as a notation language covers over 100 symbols and can be very

complex when needed. However, it is scalable and only a handful of intuitive symbols is

enough to start modeling business processes [13]. As such, BPMN models are increasingly

becoming an important source of information for software requirements elicitation.

Although BPMN models are widely used and gaining popularity by the business side, they are

rarely on the level required for requirements elicitation. So despite the fact that process

models are a valuable source of knowledge for software projects, they are rarely used as a

source or common artifact for discussing requirements. One reason for this is the lack of

concrete and comprehensive guidelines, methods or other tools created to systematically

analyze and improve the BPMN models so that they would be normalized, complete,

consistent, bounded and on the necessary level of granularity for requirements elicitation.

1 Created by an international, open membership, not-for-profit computer industry standards consortium Object

Management Group [23]

7

In the light of this context, the goal of the thesis is to create a systematic method for eliciting

high quality requirements from BPMN models. More specifically a method that elicits

requirement specifications that are:

 complete (include all the data needed for a requirement);

 consistent (with no internal contradictions);

 bounded (include relevant data for the software engineering project);

 and on the required level of granularity for a specific project.

The rest of the thesis is structured as follows: Chapter 2 introduces the conceptual foundation

of the method. Chapter 3 describes the proposed method. Chapter 4 presents a case study and

its results, and Chapter 5 discusses related work. The thesis is concluded in Chapter 6 with

conclusions and a description of future work.

8

2. Conceptual Foundation

To elicit requirements from BPMN models, the conceptual foundations of the proposed

method of requirement elicitation from BPMN models must be set. Firstly, it is important to

define what a requirement is and what the components of a requirement are. Secondly, it is

necessary to discuss BPMN and the elements it is made of. Thirdly, it is necessary to map

BPMN elements with the components of a requirement. These three issues are presented and

discussed in the following sections of this chapter.

2.1 Requirement

Many definitions and attempts to decompose the essence of a requirement have been made

[15]. A simplified approach is to state that a requirement is a description of what a product

must do and how it should do it [5], but this statement is too generic for evaluating whether

the BPMN model has got the knowledge required to elicit requirements.

In order to understand what a requirement consists of, it should be decomposed into more

detailed components. There are many domain analysis methods and ontology based methods

focusing on RE which suggest ways to decompose the requirement into a set of components.

Domain Theory for Requirements Engineering [16] decomposes requirements into

components. This decomposition is considered as complete [17] and is widely accepted in the

field of RE [18]. Furthermore, Domain Theory is not domain dependent and is specifically

useful for requirements elicitation and specification [17]. As such, we define the components

of a requirement, based on this theory.

Figure 1 Meta-schema of knowledge types for domain modeling [16]

Domain Theory for Requirements Engineering [16] is an attempt to give structure to the

knowledge needed for requirements engineering. It is created based on cognitive science and

9

the human use of analogical reasoning. The theory provides a structure of knowledge types

(see Figure 1) present in RE and suggests domain knowledge to be represented in two types

of generic models: Object System Models (OSM) and Information System Models (ISM).

OSM describes the essential transaction of the application in terms of a set of cooperating

objects and their behavior. ISM contains processes that report on and provide information

about an OSM.

Knowledge types that form the primitive components of a requirement are Object, State

Transition, Goal State, Activity, Event and Stative Condition. An Object can be of type Key,

Structure or Agent. A Key Object is the subject matter of the essential system transaction and

therefore undergoes state change. Structure Objects are passive objects and environmental

conditions, which would not normally appear in data models (e.g a warehouse, a library, air

corridors in air traffic control, etc). Structure Objects model approximations to the real world

entities, which must be persistent, have spatial properties and express containment or

possession of Key Objects (e.g a library contains books). They can be internal (e.g a

warehouse, a shelf) or external (e.g at the supplier’s, at the customer’s). An agent carries out

Activities, which may then create Events initiating State Transitions. Agents can be

categorized as human or automated agents (e.g a computer system). Objects have properties

that define their characteristics, which constrain their behavior. Properties can be of type

physical, financial or conceptual.

A State Transition changes the state of an Object by transferring its membership between

Structure Objects to achieve a desired Goal State (e.g a book is borrowed and moves from the

library to the borrower). States can be primary or secondary. Primary states record the

containment or possession of Objects in structures. Secondary states belong to Objects

independent of structures, and describe states such as being reserved or scheduled.

Goal States describe a future, required state, which the system should satisfy, maintain or

sometimes avoid. Goals can be specified by either describing the state, which the object

system must achieve, or by describing algorithms and processes, which must be carried out.

Also, sometimes a goal can be the production of some information, which is satisfied by

activities in the ISM.

Activities are processes, which normally run to completion resulting in a state change. They

are carried out by actors, trigger the state changes and cause Events. An Event is a single

point in time when something happens and can be of type domain or time. Events initiate

State Transitions. Stative Conditions are preconditions and post conditions to State

10

Transitions. Relationships add further structure information to OSMs and show the

relationships between the components described above. They can be of type cardinality,

temporal or scale.

Domain Theory for Requirements Engineering and especially the meta-schema of knowledge

types for domain modeling gives a complete enough list of components needed for RE. The

theory provides a systematic method of examining where the BPMN model contains the

information needed and what information can be found. The Domain theory also provides a

procedure for applying the theory on requirements elicitation. The procedure suggests the

following steps: identifying any sub-systems in the application, establishing the purpose of

the sub-systems, describing the activities that the agents carry out, and integrating them into a

generic system model for the application.

2.2 Business Process Model and Notation

BPMN is an initiative that provides a modeling notation for people who design and manage

business processes [14]. A business process is a collection of related, structured activities or

tasks that produce a specific service or product for a particular customer [19].

Figure 2 Ingredients of a business process [13]

Dumas, Rosa, Mendling and Reijers [13] split the business process into elementary

components as seen in Figure 2. Events correspond to things that happen atomically, meaning

that they have no duration. An event may trigger the execution of a series of activities. An

activity is a major task that must take place in order to fulfill an operation contract [20].

Decision Points are points in time when a decision is made that affects the way the process is

executed. An actor is a human actor, organization or software system acting on behalf of

11

human actors or organizations that take part in the process. An actor can be the one that

carries out the activities or the one that benefits from the output of the process (such as a

customer). Objects are things that are needed to carry out the activities (e.g tools, information)

or things that are created, changed or disposed during the activity (e.g a cake, a book, a

report). Objects can be physical (e.g materials, paper documents) or immaterial (e.g electronic

records). A process results in an outcome. Ideally, an outcome should deliver a value to the

actors involved in the process (such as a customer), but this is not always the case and a

process can also lead to negative outcomes.

Business process models can visualize business processes. As discussed in the introduction,

BPMN is becoming a mainstream process modeling notation. BPMN is a notation language

that provides possibilities to define business processes that can be applied in an execution

language (BPM Systems WS-BPEL 2.0). As such, with BPMN, processes can have fairly

complex process semantics [14] while being intuitive to business users. It is a notation that

aims to bridge the gap between business users and technical experts [13].

BPMN supports the concepts that are applicable to business processes but not high-level

modeling like organizational modeling, data and information modeling, strategy modeling and

business rules modeling. Although it is possible to show the flow of data and the association

of data artifacts to activities, it is not a data flow language.

In BPMN there are five basic categories of elements. These are Flow Objects, Data,

Connecting Objects, Swim Lanes and Artifacts. Flow objects consist of Events, Activities and

Gateways (a gateway is the equivalent of a decision point). Data is represented by Data

Objects and Data Stores. Data Objects show what data is required or produced (data inputs

and outputs) during an Activity. Data Stores represent data that is preserved beyond the scope

of the process. Connections between Activities and Data Stores represent data retrieval or data

update. Data elements represent the information part of the object component described in the

business process ontology. Connecting Objects make up a Sequence Flow that shows the

order the Activities are performed in. A Message Flow shows the flow of messages between 2

separate participants. Associations associate data and text artifacts with flow elements. Swim

Lanes represent participants (actors) in the process. There are two levels of Swim Lanes:

Pools can consist of Lanes that are sub-partitions of Pools (e.g the sales department as the

Pool and a sales person as a Lane). Artifacts consist of Text Annotations or Groups. Text

Annotations allow to add notes that describe the process, or they can be used to give

12

instructions to the tasks or processes. Groups organize the tasks or processes that have some

kind of significance in the overall model.

All of the described elements of BPMN have a standardized design and must be similar in all

BPMN models. Figure 3 shows one way how the core elements of the model could look.

Figure 3 Core set of BPMN elements [21]

The core elements can be supplemented with different additional markers that specify a

specific attribute or behavior of the element. For instance, a marker representing a letter inside

an Event circle or an Activity box means that the element is involved in either sending or

receiving a message. The full set of elements can be found and studied in detail in the

documentation of the notation [14]. Additionally it is possible to add additional attributes to

the core elements and this can further enrich their meaning. Furthermore it is possible to add

custom elements to satisfy a specific need, but such extensions are not included in standard

BPMN.

2.3 Mapping a Requirement to BPMN

Once a requirement and BPMN are decomposed into components, it is possible to compare

and analyze whether the component in one domain has got corresponding counterparts in the

other, at what level of detail and whether the level of detail is sufficient for requirements

elicitation.

Table 1 shows the mapping of the components of a requirement to their counterparts in

BPMN. The first column of the table lists the components of the requirement. The second

column gives a definition of the requirement’s component in order to better grasp its essence.

The third column provides the corresponding element(s) of BPMN. In the fourth column, a

brief comment is made on the given matching.

13

Table 1 Mapping of Requirement and BPMN Components

Requirement Definition BPMN Analysis

Key Object A Key Object is

an object that

goes through a

state change

Data (Data Objects,

Data Store, Data

output, Data input) or

Artifact (Text

Annotation)

Information about a Key Object in

BPMN can be found in Data elements

or in Text Annotations added to the

model. Data elements give

information about the Key Object. A

knowledge base can be built up by

examining the Data elements more

closely. Also additional information

about the Key Object can be found in

Text Annotations.

Structure

Object

A Structure

Object

represents

passive objects

and

environmental

facts

Data (Data Objects,

Data Store, Data

output, Data input) or

Artifact (Text

Annotation)

A Structure Object is basically a

certain type of property of a Key

Object and the information in BPMN

can be found in the same form as in

case of Key Objects, thus from Data

elements or Text Annotations.

Agent Object An Agent

carries out

Activities

Pool, Lane In order to determine who is

performing an Activity, it must be

examined, which Pool or Lane the

Activity belongs to.

Object

Property

Objects have

properties that

define the

characteristics

that constrain

their behavior

Data (Data Objects,

Data Store, Data

output, Data input) or

Artifact (Text

Annotation)

Key, Structure and Agent Objects

have properties that play a crucial role

in requirements definitions. They

define Stative Conditions under which

the process can proceed. Information

about object properties can be found

in Data elements or Text Annotations.

Goal State Goal States

describe a

future, required

state, which the

system should

satisfy,

maintain or

sometimes

avoid.

Data (Data Objects,

Data Store, Data

output, Data input) or

Artifact (Text

Annotation)

A Goal State is a set of Key Object

properties and its relationship to

Structure Objects when the process

has reached a positive outcome. Since

the information about the Key and

Structure Objects is found in Data

elements and Text Annotations, the

Goal State is also described in the

model the same way.

Activity Activities are

processes which

normally run to

completion

resulting in a

state change

Task, Activity,

Transaction

Presented clearly as Tasks, Activities

or Transactions in the model.

Event An Event is a

moment in time

that may trigger

the execution of

a series of

Event Presented clearly as Events.

14

Activities.

Stative

Condition

Stative

Conditions are

preconditions

and post

conditions to

State

Transitions

Data (Data Objects,

Data Store, Data

output, Data input) or

Artifact (Text

Annotation), in

description of the

outgoing node of a

Gateway.

Stative Conditions consist of Object

Properties and therefore can be found

in the Data elements and Text

Annotations of a preceding Event or

an Activity element. Also, if the

preceding element is a Gateway, some

of the conditions are described as

descriptions of the outgoing node of a

Gateway.

Relationship Relationships

show the

relationship

between

components

Connecting objects Presented clearly as Sequence Flows,

Message Flows, Associations or Data

Associations.

Information

System Model

Contains

processes,

which report on

and provide

information

about an Object

System Model.

Data Object, Data

Store, Message

Flows, message

Events, send task,

receive task.

ISM is presented by a number of

components and is represented as a

Data element or as Message Flows.

The table shows that every component of a requirement has a corresponding counterpart in

BPMN. Oftentimes, the one component of a requirement will have its matching counterpart in

several BPMN elements. As such, a complete set of data for requirements must be gathered

from multiple elements. This is, in particular, applicable when the components involved have

to do with static phenomena such as Objects, Object Properties and Goals.

In conclusion, BPMN models have all the required elements needed to represent all

components of a requirement. Nevertheless, it should be born in mind that BPMN models will

describe business processes at varying levels of granularity. Furthermore, BPMN models

usually have no information about non-functional requirements [22]. There might be some

reference to performance related requirements [23] or other information about non-functional

requirements in associated annotated text artifacts [24], but this is not a systematic way to

specify the non-functional requirements in BPMN.

15

3. Requirements Elicitation Method (REM)

In this chapter, a method for eliciting requirements from business process models is

described. The method approaches a process model systematically to enable requirements

elicitation that is complete, consistent, non-contradictory, relevant and on the required level of

granularity. The chapter is structured as follows: Section 3.1 introduces the method and

discusses the prerequisites and structure. Section 3.2 describes the proposed method. Section

3.3 presents a compact template of the method.

3.1 Introduction to REM

The input of the method is any set of business process models that are captured using a

notational language that largely uses the same or similar elements as those used by BPMN. If

the business process is modeled with elements that do not have a corresponding match in

BPMN, the elicitation of requirements will suffer. Furthermore, as many models require

domain specific knowledge in order to be well understood, access to domain experts is

necessary. If domain experts are not involved, it will be next to impossible to elicit

requirements, as this method is based on questions that will bring clarity about the actual

needs of stakeholders. If either of these two prerequisites is not met, problems might arise.

The Activities of the models are the focal point of the method. Every Activity in the model is

thoroughly investigated by applying a series of actions that help to elicit the requirements.

The chosen model is examined and discussed by following the logical sequence of Activity

elements in the model. In the case of splits (parallel or exclusive) in the process models, it is

recommended to follow one branch to the end of the process and then follow the other branch

until it joins the path already covered or until the end of its own path.

On every Activity element in the model, steps as illustrated in Figure 4, are applied.

Figure 4 Illustration of the method steps

1. Relevancy to the system under construction (SUC) is identified. The SUC is the

system-to-be, which the requirements are elicited for.

2. The goal of the Activity is determined.

3. The actor performing the Activity is elicited.

16

4. The trigger of the Activity is elicited.

5. The operational steps contained in the Activity are elicited.

6. The alternative paths, by which the purpose of the Activity can be achieved, are

explored.

7. The failure conditions and management of failures is elicited.

The method provides a set of questions to be asked the domain experts. These questions

ensure that the information needed to complete a requirement is elicited. In addition, the

method clarifies which BPMN elements contain the implicit information needed to specify a

requirement. In practice, the information is derived primarily through workshops but also via

interviews, introspection and observation. In fact, prior to the workshops, an examination of

the model by the analyst is recommended. During the examination, specification templates are

filled in with preliminary data. The data is gathered by following the method without applying

the questions, but examining the BPMN elements suggested by the method. This prior

examination helps to get acquainted with the domain, prepares the specifications and saves

time during the workshops.

For each relevant Activity of the model, a requirement specification is created. A requirement

specification template (see Table 2 Requirement Specification Template) is filled in with

information gathered during the application of the method. In some cases, it might be possible

to represent several Activities in the same specification template. This is usually the case

when the model is highly detailed. In order to determine if several Activities would benefit

from being managed together as one requirement, the following questions (inspired by

Cockburn [25]) can act as a guide:

 Are the consecutive Activities carried out by one person, in one place, and at one

time?

 Is a break between the Activities not possible/reasonable?

If both questions get positive answers, it makes sense to manage the Activities together as one

requirement. If Activities are performed by the same actor, in the same location and the

Activities follow each other immediately without a break, they form one logical Activity and

should be taken as one.

The requirement elicitation and documentation of the functional requirements is approached

in accordance with the level of granularity that has been agreed upon prior to starting the

work. The level of granularity in regards to the requirement specifications is obviously

17

dependent on the project or the phase it is in. However, these questions are assumed to have

been clarified together with the domain experts before the elicitation process commences.

3.2 Description of the Method

The output of the method is a set of requirement specifications. The requirement specification

template (see Table 2 Requirement Specification Template) contains all the information

necessary for a requirement to be complete. Its design was inspired by Cockburn [25] and

Luis, Vara, Sánchez and Pastor [26]. A completed specification template covers all relevant

components for a complete requirement.

Table 2 Requirement Specification Template

Component Description

ID:

Business Process (optional):

Activity:

Goal:

Actor:

Trigger:

Steps of Activity (positive scenario)

Operational steps:

Step 1: ……………….

Step 2: ……………….

Step 3: ……………….

…

Alternative paths:

 In case 1: ……………..

 In case 2: ……………..

 In case 3: ……………..

 …

Failure conditions and management

(optional):

Fields of the requirement specification explained:

 “ID” - a unique ID for the requirement specification. The ID can be used as a

reference e.g in other specifications or correspondence.

 “Business Process” - the name of the process (sub process) model in focus. This field

will be necessary when there is more than one process model.

18

 “Activity” - the name of the Activity that is being subjected to requirement elicitation.

 “Goal” - the expected outcome of the Activity.

 “Actor” - the name of the actor that performs the Activity.

 “Trigger” - when the actor of the Activity should start the Activity.

 “Steps of Activity” is divided into:

o “Operational steps” - the most preferable path to successfully finishing the

Activity.

o “Alternative paths” - situations where the preferable path cannot be used, but

where alternative paths exist.

 “Failure conditions and handling” - situations where the Activity cannot start or must

be interrupted and what actions must or can be executed additionally. The Failure

conditions and handling part of the template is optional to fill in, as it takes a lot of

effort to elicit and it might not bring considerable value to the project (especially in

case of smaller projects).

As stated before, all relevant components of a complete requirement are covered by the

Specification Template. In Table 3 Mapping of the Requirement Components to the

Specification Template, each component of a requirement (by Domain Theory of RE) is

mapped to a field in the Specification Template and the connection is discussed.

Table 3 Mapping of the Requirement Components to the Specification Template

Requirement Specification field Comments

Key Object and its

Properties

Goal, Steps of the

Activity, Failure

conditions and

handling

Information about a Key Object in the template

can be found in the Goal field, as an Activity

always does something to the Key Object of the

process. Since the Steps of the Activity form the

Goal, Step fields of the template describe the

formulation of the Key Object during the

Activity in more detail. The Steps can also

describe intermediate states of the Key Object.

Failure conditions and handling describe states

that are not allowed or that the Key Object

should have in order to handle the failure.

Structure Object and

its Properties

Goal, Steps of the

Activity, Failure

conditions and

handling

The same applies as to the Key Object, as the

Structure Object can be part of the Goal and it

forms during the Activities. A certain state can

also be a cause of failure and can affect failure

handling.

19

Agent Object Actor Described in the Actor field, but can also be

described as a secondary actor in the Steps of the

Activity.

Goal State Goal Goal State is described in the Goal field, but also

the Steps of the Activity describe the

formulation of the Goal.

Activity Activity, Steps,

Failure conditions and

handling

An Activity is straightforward, but also,

depending on the granularity, Activities can be

described in the Steps section and in Failure

handling

Event Trigger, Steps,

Failure conditions and

handling

Events are described in the Trigger field, but

also under description of actions (especially

Alternative Paths). Also, Failure conditions

happen due to some Events.

Stative Condition Trigger, Steps,

Failure conditions and

handling

The trigger of the Activity will appear under

certain conditions. Steps (especially Alternative

paths) will follow a path under certain

conditions. Failure takes place under certain

conditions and can be handled under certain

conditions.

Information System

Model

Goal, Steps, Failure

conditions and

handling

The Goal of an Activity can be to produce some

information and to perceive it. Information

needed to carry out the Activity can be found in

Steps of Activity, as they might be required. The

missing of information can result in a failure.

The information created during the Activity can

be part of the Goal or result of some Step or

Failure handling.

Every field of the Specification Template corresponds to the elements of the Domain Theory

of Requirements Engineering (see details in Chapter 2.1). As such, the template covers all

elements of the Domain Theory. Therefore, a template that has all its fields populated with

data, is a complete requirement specification. In the following sections, the elicitation of

information needed to fill in the template is described.

Step 1: Identify Relevancy

The first step is to determine whether the Activity is relevant, i.e. will the Activity require

some form of system support and as such, need to have its functional requirements specified.

An Activity that is not related to the SUC, is not further dealt with.

The following questions are to be asked in order to determine whether an Activity is relevant

or not:

20

 Is a computer based system used during the Activity?

o Is the SUC used or involved (in the background) by providing, executing or

receiving any data during the Activity?

o Are there external systems (e.g customers, a bank, other departments, etc)

involved and should the SUC communicate with them?

If the answer to one or both of the questions above is yes, the Activity is relevant, as the

Activity has or requires some form of support from an IS.

In a BPMN model, the relevancy of an Activity can be determined by:

 A Manual Task Marker: If a Manual Task Marker is attached to the Activity, the

Activity is performed manually and has no relation to/support of an IS. Therefore it

has no relevancy for the SUC and can be disregarded (provided it has no implicit

associations with databases).

For each relevant Activity a requirements specification is created and assigned a unique ID. In

addition, the name of the Activity and the process model it belongs to will be filled in.

Step 2: Elicit Goal

An Activity is always performed in order to meet some interest of the stakeholders (a person,

an organization or a system). In this step, the expected outcome that meets the interests of the

relevant stakeholders is elicited and described.

The following questions must be asked to elicit the goal:

 What changes after the Activity has been performed?

o What needs to be accomplished?

o What form and/or format do the results come in?

In a BPMN model the following elements indicate the result of the Activity:

 Outgoing Message Flow: If an outgoing Message Flow is attached to the Activity, it

indicates that during the Activity a message is created and sent to an external

stakeholder. Therefore, it forms at least a part of the Goal of an Activity.

 Data Object connected with an outgoing Arc: If a Data Object is attached to the

Activity with an outgoing Arc, it indicates that during the Activity a Data Object is

created or updated (e.g a document is printed or a report is created). Therefore, it

forms at least a part of the Goal of an Activity.

 Data Store connected with an outgoing Arc: If a Data Store is attached to the Activity

with an outgoing Arc, it indicates that data is changed (created, updated or deleted) in

some Data Store (e.g an invoice is saved to the database). Therefore it forms at least a

part of the Goal of an Activity.

21

All gathered information must be specified in the Goal section of the Specification Template.

Step 3: Elicit Actor

In this step, the actor performing the Activity is elicited. The actor can be human (a role, a

department or an organizational unit) or a resource (non-human, such as a machine or an

information system). If the actor is an organization, it is assumed that some person working in

that unit is performing the Activity. The actor elicited here, might not be the one doing all the

operational steps needed to finish the Activity. The actor might use a resource (e.g a computer

program) to achieve the Goal of the Activity. These are called secondary actors and will be

elicited in Step 5: Elicit Operational Steps of This Method.

The following question is asked in order to elicit the actor:

 Who are the actors that execute the Activity in order to achieve its Goal?

In a BPMN model the following elements indicate the actor of an Activity:

 Pool and Lane: If the Activity is inside a Pool box or in both the Pool and a Lane box,

the Pool and Lane name indicate who the performing actor of the Activity is. The

performing actor is a participant in the business process and can be a specific entity

(e.g a department) or a role (e.g an assistant manager, a doctor, a student, a vendor).

All gathered information must be specified in the Actor section of the specification.

Step 4: Elicit Trigger

It is important to understand how the actor performing the Activity knows that it is time to

start the Activity i.e the trigger of the Activity. There are three ways to trigger an Activity: 1.

The actor receives a message. 2. The Activity starts at a certain time. 3. The Activity starts

right after a preceding Activity is finished.

In the first case the message notifying the actor to start the Activity can be e.g a verbal

message, an email, a letter, a document received, a horn sound, etc. In the case of a scheduled

trigger, the Activity can start e.g every 5 seconds, at 10 o’clock, etc. An Activity starting right

after a preceding Activity is only an option if the actor of both Activities is the same. In this

case, the actor is aware of when the preceding Activity is finished and thus knows when it is

time to start the next Activity.

The following questions must be asked to elicit the trigger:

 How does the actor (human or resource) know when to start the Activity?

22

o Is the actor informed by a message? What form or format does the message

come in?

o Does it start depending on time? How is the actor aware of time?

o Is the actor also responsible for the preceding Activity in the process?

In a BPMN model, the following elements indicate the trigger of the Activity:

 A preceding Event element: If the element preceding the Activity is an Event, it

indicates the trigger of the Activity. The Event is a moment in time that happens, and

once the Event happens, the Activity is triggered. The type of the Event (the marker of

the element) and the description of the Event give further information about the

trigger. A marker can clearly say what type of a trigger it is (e.g message or

scheduled) and a description can add further detail (e.g email received or at 10

o’clock).

 A preceding Activity element: In the case the Activity is not preceded by an Event

element but by another Activity element instead, it is necessary to check if the

Activities both belong to the same Pool or Lane. If they do, the Activity is triggered

when the previous Activity ends. If they do not belong to the same Pool, the questions

presented must be applied, as it is not clear how the actor knows when to start the

Activity.

All gathered information must be specified in the Trigger section of the specification.

Step 5: Elicit Operational Steps

An Activity might consist of one or many operational steps that must be completed in order to

reach the Goal of the Activity. Although there might be different ways to reach the Goal, in

this step the standard set of operational steps performed to reach the Goal is described.

There are three types of operational steps: 1. Actor interaction - The performer of the step

interacts with some other actor (e.g another person, the SUC, an external system, a barcode

scanner). 2. Action verification – the SUC verifies that some conditions are met (e.g a

customer credit limit must not be exceeded). 3. Internal action – the SUC changes some data

internally (e.g enters to transaction log, creates a financial transaction, updates the

warehouse).

The following questions must be asked to elicit the operational steps:

 What actions are performed during the Activity?

o Who performs the operational steps?

o What actions does the performer do during the execution of the Activity?

o What tool does the performer use (e.g the SUC, another person, an external

system)?

23

o How is the tool used?

 Is verification of certain conditions needed at any point? Should the SUC verify the

conditions?

 Is the SUC additionally changing something internally? Should the SUC do something

automatically in the background (e.g create logs, create some transactions, send

notifications)?

In a BPMN model the following elements indicate the steps of the Activity:

 A Sub-Process Marker: If the Activity is marked with a Sub-Process Marker, the

actions of the Activity are described in a separate model. In such case it is the analyst

to decide whether the method is applied separately to the Sub-Process or whether the

actions of the Sub-Process are described in this specification.

 A Data Store connected with an outgoing Arc: If a Data Store is attached to the

Activity with an outgoing Arc, it indicates that data is changed (created, updated or

deleted) in some Data Store (e.g an invoice is saved to the database). Therefore, it can

be concluded that at least one of the operational steps is changing data in the Data

Store.

 A Data Store connected with an incoming Arc: If a Data Store is attached to the

Activity with an incoming Arc, it indicates that data is retrieved from a Data Store (e.g

customer data is fetched). Therefore, it can be concluded that at least one of the

operational steps is fetching data from the Data Store.

 A Data Object: If a Data Object is attached to the Activity, it indicates that one of the

operational steps is either the creating or reading of that Data Object. E.g a document

is printed or a document received is read.

 Message Flow: Associated Message Flows indicate a message exchange with external

stakeholders. Therefore, one of the operational steps of the Activity is either creating

and sending or reading a message.

All gathered information must be specified in the Operational Steps subsection of the Steps of

the Activity.

Step 6: Elicit Alternative Paths

In addition to the standard set of operational steps that achieve the Goal of an Activity

(described in Step 5: Elicit Operational Steps), there could be situations requiring other

operational steps (alternative paths) to be taken. For instance, entering an order when the

customer is not registered in the system, requires a deviation from the standard set of

operational steps. An alternative path needs to be taken to add the customer. This aspect is

elicited and described in this step of the method.

The following questions must be asked to elicit the alternative paths:

24

 Compared to the operational steps, are there situations where additional or alternative

steps must be taken to reach the Goal?

o What are the conditions?

o What steps must be taken additionally and what steps must be replaced?

In a BPMN model the following elements indicate alternative paths:

 A Non-Interrupting Boundary Event: If a Non-Interrupting Boundary Event is

attached to the Activity, it indicates that in case the Event happens, an alternative set

of operational steps will be executed. Therefore, the Event describes certain conditions

under which additional operational steps are required. The Activities following the

Event indicate the actions that must be taken in case of such Event.

 A Sub-Process Marker: In case the Activity is marked with a Sub-Process Marker, the

alternative paths of the Activity may be described in a separate model. In such case it

is the analyst to decide whether the method is applied separately to the Sub-Process or

the actions of the Sub-Process are described in this specification.

 An Event Sub-Process: If Event Sub-Processes are used, they indicate the conditions

under which an alternative path is executed. Event Sub-Processes are surrounded by

dotted-line frames and their Start Events represent the conditions when they are

triggered. Activities in the Sub-Process are the operational steps.

All gathered information must be specified in the Alternative Paths subsection of the Steps of

the Activity.

Step 7: Elicit Failure Conditions and Failure Management

Sometimes it is not possible to execute all the steps needed to finish an Activity successfully.

In such cases, the Activity is interrupted, the goal is not reached and interests of the

stakeholders are not met or are met partially. In this step, conditions that hinder an Activity

from being initiated or where an Activity is interrupted, are elicited. These are called failures

in the method.

Additionally, in case of a failure situation, some additional actions must be taken in order to

get the best out of the situation. It might be required to protect the stakeholders’ interests and

limit their losses. For example, a customer must be informed if it is not possible to deliver the

goods. Actions that must be taken in case of a failure, are also elicited in this step.

The following questions must be asked to elicit the failure conditions and how the conditions

should be managed:

 In what case the Activity should not be started? What are the preconditions that must

be fulfilled to carry out the Activity?

 In what case the Activity should not be continued? What might interrupt the Activity?

25

 Are preliminary actions needed to limit the losses of the failure (e.g auto save

functionality, condition detectors, etc)?

 What actions are necessary in case of a failure (e.g undo of actions, error log,

notification of stakeholders, etc)?

In a BPMN model the following elements indicate a failure condition and failure

management:

 Start failure (preconditions):

o A preceding Event: An Event element preceding the Activity indicates when

the Activity is triggered, but it also describes the preconditions that must be

fulfilled in order to start the Activity. For example, an email must be received,

otherwise it is not possible to proceed. Furthermore, if it is known that an

email must be received, it is possible to discuss the form and format the email

must come in, in order to start the Activity.

o An entering Arc: An Arc can enter an Activity from a preceding element, a

Data Object or Data Store, or be an incoming Message Flow. All of these

entrances can represent a potential failure situation if the attached element is

not available or comes in a wrong form or format. Therefore, they can be

possible causes of failure and must be examined.

 Interruption:

o Boundary Events: If a Boundary Event is attached to the Activity, it indicates

the condition when the Activity is interrupted. The type of the Event (a marker

attached) gives more detailed information about the condition. Activities

following the Boundary Event indicate the steps of failure handling.

All gathered information must be specified in the Failure Conditions and Management

section.

3.3 Method Summary

In Table 4 Method Summary, a compact template of the method is presented that can be used

during the meetings with domain experts. The first column of the table represents the field in

the Specification Template that is to be populated with information. The second column

shows the questions to be asked the domain experts. The third column lists all relevant BPMN

elements related to the field.

Table 4 Method Summary

Specificati

on field

Questions BPMN elements

Activity Is a computer based system used

during the Activity?

o Is the SUC used or involved

(in the background) by

 Manual Task Marker: If a Manual Task

Marker is attached to the Activity, the

Activity is performed manually and has no

relation to/support of an IS. Therefore, it has

26

providing, executing or

receiving any data during the

Activity?

o Are there any external

systems (e.g customers,

banks, other departments,

etc) involved, and should the

SUC communicate with

them?

no relevancy for the SUC and can be

disregarded (provided it has no implicit

associations with databases).

Goal What changes after the Activity

has been performed?

o What needs to be

accomplished?

o What form and/or format do

the results come in?

 Outgoing Message Flow: If an outgoing

Message Flow is attached to the Activity, it

indicates that during the Activity a message

is created and sent to an external

stakeholder. Therefore, it forms at least a

part of the Goal of an Activity.

 Data Object connected with an outgoing

Arc: If a Data Object is attached to the

Activity with an outgoing Arc, it indicates

that during the Activity a Data Object is

created or updated (e.g a document is

printed or a report is created). Therefore, it

forms at least a part of the Goal of an

Activity.

 Data Store connected with an outgoing Arc:

If a Data Store is attached to the Activity

with an outgoing Arc, it indicates that data is

changed (created, updated or deleted) in

some Data Store (e.g an invoice is saved to

the database). Therefore, it forms at least a

part of the Goal of an Activity.

Actor Who are the actors that execute

the Activity in order to achieve

its Goal?

 Pool and Lane: If the Activity is inside a

Pool box or in both the Pool and a Lane box,

the Pool and Lane name indicate who the

performing actor of the Activity is. The

performing actor is a participant in the

business process and can be a specific entity

(e.g a department) or a role (e.g an assistant

manager, a doctor, a student, a vendor).

Trigger How does the actor (human or

resource) know when to start the

Activity?

o Is the actor informed by a

message? What form or

format does the message

come in?

o Does it start depending on

time? How is the actor aware

of time?

o Is the actor also responsible

for the preceding Activity in

the process?

 A preceding Event element: If the element

preceding the Activity is an Event, it

indicates the trigger of the Activity. The

Event is a moment in time that happens, and

once the Event happens, the Activity is

triggered. The type of the Event (the marker

of the element) and the description of the

Event give further information about the

trigger. A marker can clearly say what type

of a trigger it is (e.g message or scheduled)

and a description can add further detail (e.g

email received or at 10 o’clock).

 A preceding Activity element: In the case

the Activity is not preceded by an Event

element but by another Activity element

instead, it is necessary to check if the

Activities both belong to the same Pool or

27

Lane. If they do, the Activity is triggered

when the previous Activity ends. If they do

not belong to the same Pool, the questions

presented must be applied, as it is not clear

how the actor knows when to start the

Activity.

Steps of

Activity -

Operational

Steps

 What actions are performed

during the Activity?

o Who performs the

operational steps?

o What actions does the

performer do during the

execution of the Activity?

o What tool does the performer

use (e.g the SUC, another

person, an external system)?

o How is the tool used?

 Is verification of certain

conditions needed at any point?

Should the SUC verify the

conditions?

 Is the SUC additionally

changing something internally?

Should the SUC do something

automatically in the background

(e.g create logs, create some

transactions, send notifications)?

o

 A Sub-Process Marker: If the Activity is

marked with a Sub-Process Marker, the

actions of the Activity are described in a

separate model. In such case it is the analyst

to decide whether the method is applied

separately to the Sub-Process or whether the

actions of the Sub-Process are described in

this specification.

 A Data Store connected with an outgoing

Arc: If a Data Store is attached to the

Activity with an outgoing Arc, it indicates

that data is changed (created, updated or

deleted) in some Data Store (e.g an invoice

is saved to the database). Therefore, it can

be concluded that at least one of the

operational steps is changing data in the

Data Store.

 A Data Store connected with an incoming

Arc: If a Data Store is attached to the

Activity with an incoming Arc, it indicates

that data is retrieved from a Data Store (e.g

customer data is fetched). Therefore, it can

be concluded that at least one of the

operational steps is fetching data from the

Data Store.

 A Data Object: If a Data Object is attached

to the Activity, it indicates that one of the

operational steps is either the creating or

reading of that Data Object. E.g a document

is printed or a document received is read.

 Message Flow: Associated Message Flows

indicate a message exchange with external

stakeholders. Therefore, one of the

operational steps of the Activity is either

creating and sending or reading a message.

Steps of

Activity -

Alternative

Paths

 Compared to the operational

steps, are there situations where

additional or alternative steps

must be taken to reach the Goal?

o What are the conditions?

o What steps must be taken

additionally and what steps

must be replaced?

 A Non-Interrupting Boundary Event: If a

Non-Interrupting Boundary Event is

attached to the Activity, it indicates that in

case the Event happens, an alternative set of

operational steps will be executed.

Therefore, the Event describes certain

conditions under which additional

operational steps are required. The

Activities following the Event indicate the

actions that must be taken in case of such

Event.

 A Sub-Process Marker: In case the Activity

28

is marked with a Sub-Process Marker, the

alternative paths of the Activity may be

described in a separate model. In such case

it is the analyst to decide whether the

method is applied separately to the Sub-

Process or the actions of the Sub-Process are

described in this specification.

 An Event Sub-Process: If Event Sub-

Processes are used, they indicate the

conditions under which an alternative path is

executed. Event Sub-Processes are

surrounded by dotted-line frames and their

Start Events represent the conditions when

they are triggered. Activities in the Sub-

Process are the operational steps.

Failure

conditions

and failure

managemen

t

 In what case the Activity should

not be started? What are the

preconditions that must be

fulfilled to carry out the

Activity?

 In what case the Activity should

not be continued? What might

interrupt the Activity?

 Are preliminary actions needed

to limit the losses of the failure

(e.g auto save functionality,

condition detectors, etc)?

 What actions are necessary in

case of a failure (e.g undo of

actions, error log, notification of

stakeholders, etc)?

 Start failure (preconditions):

o A preceding Event: An Event element

preceding the Activity indicates when the

Activity is triggered, but it also describes

the preconditions that must be fulfilled in

order to start the Activity. For example,

an email must be received, otherwise it is

not possible to proceed. Furthermore, if it

is known that an email must be received,

it is possible to discuss the form and

format the email must come in, in order

to start the Activity.

o An entering Arc: An Arc can enter an

Activity from a preceding element, a

Data Object or Data Store, or be an

incoming Message Flow. All of these

entrances can represent a potential failure

situation if the attached element is not

available or comes in a wrong form or

format. Therefore, they can be possible

causes of failure and must be examined.

 Interruption:

o Boundary Events: If a Boundary Event

is attached to the Activity, it indicates the

condition when the Activity is

interrupted. The type of the Event (a

marker attached) gives more detailed

information about the condition.

Activities following the Boundary Event

indicate the steps of failure handling.

29

4. Case Study

Requirements elicitation is a complex real life process that is heavily influenced by social

aspects such as human involvement and interactions with technology. It is a process that is

unique and variable, depending on the domain and stakeholders. To test, whether the method

presented in this thesis improves the quality or quantity of the requirement elicited, analytical

and controlled empirical studies are often not sufficient to make conclusions, because there

exists a trade-off between the level of control and the degree of realism [27]. Case studies, on

the other hand, provide a deeper understanding of the phenomena under study, exploring the

situation in a more realistic environment, and are therefore suited for this thesis.

4.1 Case Study Design

In this chapter, the objective, the research questions, the hypothesis, the selection strategy,

and the setting of the case study are summarized. A more detailed description of the case

study design can be found in Appendix 1 Case Study Design.

The objective of the case study is “to test whether the application of the method created in this

thesis improves the quality and/or quantity of the requirements”. The more precisely

formulated research questions are: RQ1: Did the application of REM elicit more requirements

than the previously used method? RQ2: Did the application of REM result in better quality

requirements than the previously used method?

In order to answer the research questions, three sets of requirements are compared during the

case study: 1. Requirements gathered using REM. 2. Requirements gathered using the original

method of the case company (ICM). The set elicited consists of requirements gathered during

the requirements analysis phase of the original project done by the case company. 3. The total

number of requirements at the end of the project (the Final Set). The Final Set consists of

requirements elicited initially and also during the development and support phase of the

project. The Final Set also contains requirements that are not implemented but are deferred or

rejected (e.g because of the budget constraints) as they are correct and relevant, just not

implemented. The Final Set represents a complete list of requirements at the moment of the

case study.

To answer RQ1, the total number of requirements elicited by both REM and ICM must be

counted and compared. Additionally, as the magnitude of improvement or decline in quantity

30

is relative to how many requirements there exist in the Final Set, the coverage percentage of

the elicited requirements compared to the Final Set will be calculated.

To answer RQ2, the IEEE Computer Society [28] defines that a good quality requirements

specification should be correct, unambiguous, complete, consistent, ranked for importance

and stability, verifiable, modifiable, traceable. The four latter attributes are not important in

the light of this thesis, as they come to importance in the later stages of requirements

engineering process. Although, in order to measure the quality of the elicitation process, it is

very important that the requirements elicited are correct, unambiguous, complete and

consistent. How correct and unambiguous the requirements were, can be assessed by

measuring how many of the requirements elicited were not superfluous but were clear,

understandable, unambiguous, and relevant. Additionally, the percentage of non-superfluous

(correct) requirements in the total number of requirements elicited will be calculated.

To measure whether the method resulted in a more complete and consistent set of

requirements, it must be found, how many of the requirements that were elicited during the

project in total (including the development and support phase) were missed by the method.

Additionally, it is interesting to see whether REM was able to elicit requirements earlier than

ICM, and for this purpose, how many of the requirements, that in the real project were found

only during the development and support phase, REM was able to find.

The hypothesis for the study is that “application of the method improves the quantity and

quality of the requirements elicited”.

In order to give answers to the research questions above and to test the hypothesis, the subject

case was to meet the following selection criteria: (1) the requirements elicitation for IS was

completed and possibly the IS system was already implemented, (2) the IS was process-

oriented, the process was nontrivial and a BPMN model of the process existed, (3) the

elicitation method used originally was well defined and used in various projects, and (4) the

requirements were documented so that it was possible to separate list of requirements

gathered by ICM and also the Final Set.

A company manufacturing branded electric motors was chosen as the subject case and their

quality assurance process was chosen for the case study. The process had been modeled in

BPMN beforehand by the analyst of the solution developer. The project under the inspection

of the case study had been completed 2 months before and the solution was up, running and

used daily by the customer. The analyst of the solution developer had documented all the

31

requirements gathered during the analytical phase of the project and also all additional

requirements that had evolved during the project development and post-project (support

phase).

The case study is divided into four parts. The first part introduces the method to the analyst,

and involves preparations for the next part. The second part is held in form of workshops

(interviews) with the analyst. During the workshops the method is applied and specifications

are updated with the gathered information. The third part is about converting and verifying

the specifications created. Also, summarization of the results and calculation of the measures

is done in this part of the case study. The forth part presents an interpretation of the results,

comments and discussions.

4.2 Case Study Execution

This section describes the execution of the case study. The section describes in detail the

stages of the case study, provides an example of how the requirements specification was filled

in and discusses the situations that appeared during the application of REM.

4.2.1 Introduction and Preparation

First, an introduction of the method was conducted, as it is important for the customer to

understand how the method is built up, prior to its application. In this way the customer can

contribute to the elicitation process more effectively. Second, a preliminary elicitation of

requirements from the process model of the case was conducted by the author of the thesis.

During the preliminary elicitation, the Activities were examined following the logical

sequence of the process model elements. For every Activity, a requirements specification was

created and filled with preliminary data gathered by following the method without applying

the questions, but examining the BPMN elements suggested by the method. In total, 32

requirement specifications were created. All Activities of the process models were included as

no manual tasks were identified. A number of questions and problems rose during the

preliminary elicitation. There were situations that did not comply with the rules of BPMN -

the elements (especially markers) were not used as intended, often it was unclear what

triggered the Activity, the Goal of an Activity was often uncertain, etc. All these questions

and problems were written down to be addressed during the next stage.

4.2.2 Application of the Questions

Workshops with the analyst (domain expert) were held next. During the workshops, the

logical sequence of the elements of the model was followed and discussed with the analyst.

32

The set of questions was applied, problems and questions recorded in the previous part were

discussed. The gathered information about requirements was documented by updating and

altering the specifications created. In the following Table 5 Example of a Filled Requirement

Specification an example of a requirement specification is presented.

Table 5 Example of a Filled Requirement Specification

Component Description

ID: 003

Business Process (optional): Supply chain security (purchase)

Activity: Check the order confirmation and update the order

Goal:
Updated order in SUC (suggested delivery date and order

status updated)

Primary Actor: Purchase department

Trigger: Order confirmation received by e-mail

Steps of Activity (positive

scenario)
Operational steps:

1. Open PDF format order confirmation received by email

2. Find the relevant purchase order in SUC

3. Check that ordered materials are the same as on the

order

4. Enter suggested delivery date and change the status to

"Confirmed"

5. Reply the email confirming the order confirmation

6. Save the order

Alternative paths:

1. If order confirmation differs from the order (e.g

quantity smaller than ordered), contact the person who

created the order and ask for advice; If changes OK follow

the normal flow.

2. If suggested delivery date is later than the needed

delivery date, take same actions as in alternative path 1.

Failure conditions and handling: 1. If order confirmation differs from the order and is not

acceptable, the order will be deleted and the process will

be interrupted.

The template was filled in following the steps of the method. The following paragraphs

describe how the example specification was filled in.

Step 1 Identify Relevant Activities – In this step an Activity (presented in Table 5) was

chosen and its relevancy to the SUC was evaluated. The Activity did not have a Manual Task

marker attached to it, and it updated order information in the SUC. The Activity was

considered to be relevant to the SUC. Since the specification was created before the meeting,

33

the ID, the Business Process Name and the Activity were filled in beforehand as they were

clearly identifiable from the model and no update of the specification was needed.

Step 2 Elicit Goal – The next step was to identify the Goal of this Activity. In preliminary

examination of the Activity it was discovered that the Activity had a Text Annotation

suggesting that the delivery date should be updated, which indicated that an updated order

with an appropriate delivery date was part of the Goal of the Activity. In addition, the Activity

had an outgoing Message Flow to the supplier. The domain expert was asked the suggested

questions. By asking the domain expert, “In what form and/or format does the message (the

result in the method) come in“, it turned out that the received e-mail was replied manually

using an e-mail client, and no automation was required. Therefore sending a message to the

supplier was not part of the Goal for the SUC. With follow-up questions to clarify the context,

the Goal of the Activity was determined to be “An updated order in the SUC (suggested

delivery date and order status updated)”.

Step 3 Elicit Actor – The next step was to elicit the actors carrying out the Activity. It was

clear that the actor was “the purchase department”. Any further specification of “the purchase

department” was not considered necessary, and as such, the specification was not updated as

it had been filled in during the preliminary examination.

Step 4 Elicit Trigger – Once the actor had been identified, the trigger was elicited. A message

Event preceded the Activity indicating an incoming message from the supplier. This was

already registered in the specification and was considered to be the trigger. Additionally the

question “In what form or format does the message come in”, was asked. It turned out to be

an email with a PDF file attachment. The file was read manually and there was no need for

automation, as the suppliers did not send the files in any other format. This was additionally

marked down in the specification.

Step 5 Elicit Operational Steps – Next the operational steps required to reach the Goal of the

Activity were elicited. Questions provided by the method were applied and 6 steps were

elicited (read email, find purchase order, check materials, enter data, reply email, save data).

The steps were performed by the same actor elicited in step 3. The following tools were

discovered: PDF reader, an e-mail client, purchase order search (in the SUC), save order (in

the SUC). No need for verification was elicited, and no internal automations were required.

Some of the steps had already been discussed under previous steps and they were recorded

now in more detail. Some steps like “Finding an order” led into broader discussions as to

34

what parameters were used to find the order and where this information was taken from. Still,

the search criteria were not registered in the template, as they were not that important and

were considered self-evident.

Step 6 Elicit Alternative Paths – Now that the standard operational steps were elicited, the

non-standard situations were discussed. As no alternative paths had been elicited beforehand,

now questions of the method were applied. It was discovered that alternative paths and failure

conditions were somewhat connected, as in the case the order confirmation received was

different from the original order (especially the delivery date and the quantities available), a

decision had to be made whether to interrupt the process or to accept the changes. In the case

of accepting, an alternative path was elicited that required contacting of the creator of the

order.

Step 7 Elicit Failure Conditions and Management – In this step, situations that prevented the

Activity from starting or interrupted the Activity were discussed. Additionally, the steps

needed to be taken in case of an interruption were discovered. As described in Step 6, one

failure condition was already discovered and discussed. In this step it was described. Also,

method questions were applied and other possible conditions in addition to the already

discovered failure situation were discussed, but none was discovered.

4.3 Results

This section describes how the gathered data was prepared and presents the results of the case

study.

4.3.1 Data Conversion, Verification and Summarization

The template used by REM to specify the requirements was not of the same form and format

as the one originally used by the company. In order to compare the specifications, it was

necessary to convert them to the same form and format. It was decided to convert all

specifications to the form and format used by the analyst. The converted specifications were

recorded on the Microsoft Team Foundation Server as this was the system used by the

developer. One specification created by REM in most cases resulted in multiple requirements

specifications in the form and format used by the developer. E.g the example provided in

Table 5 Example of a Filled Requirement Specification resulted in three specifications after

the conversion, as the ability to search for an order, update the order and send it by email in

PDF format are registered as separate specifications by the developers’ method.

35

After conversion, a verification of the specifications was done, and the requirements

specifications were assessed whether they were superfluous or not. The verification was

carried out together with the analyst of the developer during a workshop. In a lot of cases, the

specifications were considered superfluous by the analyst of the developer, as they were not

registered by the developer and were considered self-evident. This is a peculiarity of ERP

projects, as the platform has built-in functionality. This does not mean that these requirements

were not captured, but they were just not registered by the developer. Such requirements are

especially important if the development platform is unknown. Because of that it was decided

that obvious requirements that the analyst had not recorded but which still were requirements

of the customer, would be classified as not superfluous, but would be marked as obvious and

counted in the end and added to ICM and the Final Set. The most frequent example of such

requirements was the need to enter or search for/filter a customer or item while entering

records like invoices, orders, etc. On an ERP platform this is self-evident and not recorded.

Summarization and calculation of the results was conducted by the author of the thesis. First

the number of records in the requirements lists (gathered by REM, ICM and the Final Set)

was counted and the result was entered into a spreadsheet. Then the measures described

previously were calculated and preliminary conclusions were drawn. Additionally, all

comments and suggestions of the analyst were summarized into a short overview. Time spent

on the case study was summarized and also time spent on the initial requirements elicitation

by the developer was discussed with the analyst over the phone.

4.3.2 Quantity (RQ1)

During the application of REM, 128 requirement specifications were created. After the

assessment of the requirements, 7 of them were classified as superfluous (not relevant or

incorrect) and 121 as correct (relevant and correct) requirements. ICM elicited 115

requirements, 6 requirements on the list were classified as superfluous and the total number of

correct ones was 109. It can be concluded that REM elicited more requirements (121 against

109).

To find out how significant the improvement was, a ratio between the requirements elicited

and the total number of requirements in the Final Set (see 4.1 for the definition of the Final

Set) was found. The Final Set consisted of 128 requirement specifications. The ratio for REM

was 95% (121/128=0.95) against 85% (109/128=0.85) for ICM. The following Table 6

Quantity summarizes the gathered information about which method resulted in more

requirements.

36

Table 6 Quantity Measures

Measures REM ICM Final

Set

No of requirements after conversion 128 115 128

No of correct requirements 121 109 128

Ratio % 95% 85%

4.3.3 Quality (RQ2)

In order to find out how correct and unambiguous the elicited requirements were, the number

of requirements that were correct (not classified as superfluous) and the number of all elicited

requirements of the method was found. REM was able to elicit 121 correct requirements and

128 in total, which makes the proportion of correct requirements in the total pack for REM

95% (121/128=0.95). For ICM 109 correct requirements were elicited out of 115

requirements in total and the proportion is also 95% (109/115=0.95), meaning that the

correctness and unambiguousness of both methods was the same. The following Table 7

Correctness and Unambiguousness Measuring summarizes the measures and calculations.

Table 7 Correctness and Unambiguousness Measuring

Measures REM ICM

No of requirements after conversion 128 115

No of superfluous requirements 7 6

No of correct and unambiguous requirements 121 109

Proportion in total pack % 95% 95%

REM was not able to elicit 12 requirements that were registered in the Final Set, which makes

9.4% (12/128=0.094) out of the total number of requirements in the Final Set. In the case of

ICM, 19 requirements were not elicited and this makes 14.8% (19/128= 0.148) out of all

requirements in the Final Set. In this aspect, REM was more complete and consistent than

ICM. The following Table 8 Completeness and Consistency Measuring summarizes the

measures and calculations.

Table 8 Completeness and Consistency Measuring

Measures REM ICM Final Set

No of requirements not elicited (in the Final Set) 12 19 128

Proportion of not elicited requirements % 9.4% 14.8%

Additionally, REM elicited 2 new requirements that were not registered in the Final Set, but

were still considered to be correct requirements. These two requirements might be

37

implemented in the future and therefore the completeness and consistency of REM is even

higher. Another aspect that can be taken as a compliment to the quality measure is whether

REM was able to discover requirements that were originally discovered only in the

development and support phase of the project, and indeed, it was able to discover 4

requirements out of 6 that in real life were discovered only in the development and support

phase.

4.3.4 Effort

The last aspect that must be considered is the effort spent on the methods. Introduction of the

method in total took 4 man-hours (one 4 hour session). The preliminary elicitation of the

requirements from the model was conducted by the author of the thesis and it took in total 10

hours. Workshops with the analyst (domain expert) took in total 16 man-hours (in a series of

4 workshops, 4 hours each). After each session, the author refined the specifications as they

were written in a hurry during the sessions. The work done after the sessions took an

additional 16 hours. In case of REM, the time spent on the application of the method was 46

man-hours.

The time spent by the developer on elicitation of requirements was not straightforward,

because the elicitation of requirements in the initial project was done in parallel with the

understanding of the domain and modeling of the process. In order to find out what was the

time spent purely on elicitation, the share of time spent on other activities was assessed and

deducted from the total amount of time spent on the requirements engineering phase of the

project. For ICM, the effort was assessed to have been 60 hours.

4.3.5 Discussion

The results show that REM was able to elicit more requirements than ICM. The improvement

in quantity was noticeable, as coverage rose from 85% to 95% when REM was used. From

this, the answer to RQ1 “Did the application of REM elicit more requirements than the

previously used method?” is “Yes, it did elicit more requirements.” Also, the results show that

the quality of the elicited requirements was better despite the fact that the percentage of non-

superfluous requirements in the total amount of requirements was the same. The REM missed

less requirements and was able to elicit requirements earlier than the previously used method.

Therefore, answer to RQ2 “Did the application of REM result in better quality requirements

than those elicited by the previously used method?” is “Yes, REM resulted in better quality

requirements.” Additionally, the application of REM required 14 hours less and can therefore

be considered less time consuming and less costly to apply. The formulated hypothesis for the

38

study “application of the method improves the quantity and quality of the requirements

elicited” is correct.

The general impressions form the analyst of the developer used as the domain expert in the

case study were that the approach is more structured than the method used today. A more

structured approach gives better control over the elicitation process, it is easier to evaluate

how much effort is needed, it is better to plan and delegate the work, and there are less

chances for something to get overlooked. The method was good at evaluating the consistency

and completeness of the model. It was amazing how many mistakes were found in the original

model, although REM did not result in better correctness.

4.4 Threats to Validity

The case study method has validity issues that ought to be considered. These threats can be in

regard to construct validity and external validity [27].

Construct validity is concerned with to what extent the operational measures that are studied

really represent what the researcher has in mind. Styles of writing specifications can vary

drastically in different projects and the counting of the number of requirement specifications

can be considered as a threat to construct validity, as the measure is subjective. The problem

was addressed in this thesis by converting the specifications that were verified by the domain

expert to assure that they were created on the same level of detail and using the style used by

the company. In short, the domain expert verified the new set of requirement specifications.

External validity is concerned with to what extent it is possible to generalize the findings. The

method was applied on one case study, and therefore it has the inherent limitations of the case

study method in regards to how much the results can be generalized. The results are naturally

dependent on aspects such as the domain expert, the type and size of the project, and the

elicitation method used by the company. On the other hand, it was a real life application of

the method on a non-trivial project. As such, although the results cannot be generalized, they

are still valuable.

39

5. Related Work

The concept of using process descriptions or models during the requirements elicitation

process has been deployed before in the literature. This chapter gives an overview of state of

the art approaches to the subject of eliciting requirements from the process models and other

models.

5.1 Eliciting Requirements from Business Process Models

Luis et al. [26] work is probably the closest to the thesis. It describes a method to elicit

requirements in three stages, where first organizational modeling is done in BPMN, then the

model is validated by purpose analysis (which is the main contribution of the paper) and

finally functional requirements specifications are created from the refined BPMN models. It

creates use-case like specifications and suggests the elements of the model to be used in order

to fill in the specification. The purpose analysis stage of this method can be a strong addition

to REM as it can derive the goals and problems in a systematic way and completes the

business-process-to-be in a systematic way. Elicitation of requirements from the to-be model

and the filling in of the specification is still superficial and no systematic approach is

provided. Erfurth and Kirchner [29] propose an elicitation technique based on CUTA cards

and then generating BPMN and/or UML AD models from them. The approach is not eliciting

requirements from models but is generating the models. They map the attributes of the cards

to the elements of the notations. Their approach is interesting from the point of view of

mapping the components of requirements to the elements of models. Despite the name of the

paper written by Cox, Phalp, Bleistein and Verner [30] the derivation of the requirements

plays a secondary role and the main focus is on connecting Problem Frames2 to the derived

requirements. This is rather useful in terms of selecting the appropriate development method

for problem solving but not so much in terms of requirements elicitation. Although the paper

provides guidelines to assist with the mapping of business process diagram elements to

requirements, and to some extent can be used as an approach to elicit requirements from the

BPMN models, when it comes to the step where a more detailed elicitation takes place,

standard elicitation techniques like interviews, observation etc are suggested and no

guidelines are provided.

2 Problem Frames approach, developed by British software consultant Michael A. Jackson is an approach to

software requirements analysis.[51]

40

For all the above cited works the business process model is the central artifact in the

requirements elicitation, verification and specification process. They all deal with

requirements elicitation on some level. However, how to elicit requirements from these

models is patchy, not complete and focusing on only some aspects. The method provided in

this thesis addresses this aspect by using the Domain Theory of Requirements Engineering to

define the elements needed for a complete requirement and provides a systematic method for

deriving the needed information from a BPMN model.

5.2 Eliciting Requirements from Use Cases and Scenarios

Use-cases and scenarios can be considered to be close enough to business process models as

they describe how a business works. This is why the literature focusing on elicitation of

requirements from them is studied. Maidens, Minochas, Mannings and Ryans' [31] research is

aimed at improving the completeness of requirements by analyzing scenarios. This process

uses the existing use case model as a starting point and derives new scenarios, taking into

account situations, which have not yet been considered (alternative courses). It proposes a

technique to validate the completeness of models and concentrates more on the alternative

paths and failure conditions. Maiden and Robertson [32] apply RESCUE requirements

process to discover requirements for an air traffic management system. Various elicitation

techniques are used to discover the requirements of stakeholders (including the one described

in [31]). The paper suggests a process and analyzes the effectiveness of different techniques.

Berenbach’s [33] approach concentrates on generating a hierarchy of requirements rather than

on the requirements text itself and in the follow-up paper [34] more suggestions how to aid

the organization of text based requirements with graphical modeling approaches is given.

Firesmith [35] analyzes the pros and cons of user stories, scenarios and use cases and

proposes an improvement how to create a more complete set of requirements using textual

requirements. The approach concentrates more on quality attributes (e.g performance,

security). They can be added to triggers, preconditions, required actions and post conditions.

The method can be used as an addition to the method provided in this thesis and be used in

future work for eliciting non-functional requirements. Cabral and Sampaio [36] have an idea

how to automatically translate use cases written in a subset of English (CNL, Controlled

Natural Language) into a specification in CSP process algebra. It is an approach that gives

guidelines on requirements specification rather than on requirements elicitation. Daniels and

Bahill [37] state that the best way to specify the requirements is to complement use cases and

use case models with traditional shall-statement requirements. The paper is about

41

requirements specifications and very little about requirements elicitation. Probasco and

Leffingwell’s [38] work is also mainly about requirements specification and persistence.

The above cited works all use either use cases or scenarios as the central artifact in the

requirements engineering process and they either concentrate on the improvement of a

specific aspect of requirements specification (non-functional, alternative paths), classification

of requirements already gathered, or give guidelines for very specific formal methods.

However, no systematic method for eliciting requirements form a system level use-case or

scenario, which was the aim of the method created in this thesis, can be found.

5.3 Eliciting Requirements from UML Diagrams

Meziane, Athanasakis and Ananiadou [39] propose a system that generates natural language

specifications from UML class diagrams. The main focus is on automatically converting

models into natural language specifications using WordNet and linguistic ontology. Pavlovski

and Zou [24] propose a method how to formally verify informal UML Activity Diagrams, and

they also point out the concerns and problems associated with natural-language requirements

specifications.

While both of the works found use UML diagrams, they both concentrate on formal methods

that are considered to be difficult to use, as the sources of elicitation of requirements can be of

various levels of quality. The method provided in this thesis is able to elicit requirements also

from models that lack consistency and completeness, which the formal methods cannot

provide.

5.4 Eliciting Requirements from Goal Models

Maiden, Manning, Jones and Greenwood [40] propose an approach that indeed provides a

systematic way to create textual specifications of requirements from i* models, but the same

approach cannot be used efficiently on BPMN models as BPMN models do not describe the

goals of the actors in as much detail as required for the approach. Lamsweerde and Willemet

[41] propose a formal method how to create declarative specifications of goals, requirements

and assumptions from scenarios. Letier and Lamsweerde [42] describe a method how to build

operational software specifications out of higher-level goal formulations. The paper

concentrates on software design rather than on requirements elicitation. Alrajeh, Russo and

Uchitel [43] provide a method to semi-automatically infer operational requirements from goal

models. Landtsheer and Lamsweerde [44] propose an approach that derives event-based

specifications written in the SCR tabular language from operational specifications. Yu, Bois,

42

Dubois and Mylopoulos [45] propose a method for refining the requirements gathered with

the Albert Requirements Specification Language and i* goal-based modeling.

The above cited works all provide formal methods to elicit requirements from goal models

and are well structured and systematic approaches, however, the BPMs that are used as the

source of information in this thesis, often do not provide detailed enough descriptions of goals

and are hardly ever complemented with goal models required for these methods. The method

proposed in this thesis, on the other hand, also provides steps to elicit the goals of the process

under examination. Additionally Luis et al. [26] believe that goal-oriented approaches are not

the best approaches to requirements engineering, as they do not pay enough attention to

business concerns and business process reengineering.

5.5 Models as a Useful Artifact in the RE Process

There is a lot of research done about using the models or descriptions as a supporting tool to

other elicitation techniques. Models are used mainly as communication helpers or are used for

documenting and preserving knowledge during the elicitation process. The literature referred

to in this chapter is not providing any concrete techniques to elicit requirements from models

but is just confirming the importance of models in the elicitation process.

There are many papers about how process descriptions or models can be helpful and proven

tools in the process of requirements elicitation. For example Demorörs, Gencel and Tarhan

[46] say in their paper that BPM is a way to define business requirements and is useful for

creating visibility and consensus among different stakeholders. Abeti, Ciancarini and Moretti

[47] suggest to use SI*, UML and BPMN models to model organizational knowledge and use

the knowledge in the RE process. Decreus & Poels [48] suggest a goal-oriented way to model

the goals of the project and to generate BPMN models and use the models during the

elicitation process. Flynn & Jazi [49] suggest requirements models to be built by users

themselves and give direct guidelines how to approach the major problem of the user-

developer culture gap. Gorton & Reiff-Marganiec [22] propose a way to specify requirements

as a model. Zapata, Losada and González-Calderón [15] propose a method for using

procedure manuals as a source for requirements elicitation, but the focus of the paper is more

on converting natural language descriptions into formal language descriptions. Hickey and

Davis [50] conducted a survey among requirement engineering experts, asking whether

modeling as an elicitation technique is important and helpful. Most of the experts mentioned

the critical role played by models, but in summary they saw modeling as a means to facilitate

communication and organize the information gathered using other elicitation techniques.

43

6. Conclusions and Future Work

BPMN models are widely used to model the dynamic phenomena of organizations and are

good sources of knowledge for understanding the domain and behavior of an organization.

However, models are often too abstract, incomplete or inconsistent for requirements

elicitation purposes. As such, there is a need for a systematic approach to elicit requirements

from process models.

In this thesis, a structured method is presented that maps the components of a requirement to

the elements of a process model captured with BPMN language. Furthermore, the method

provides a set of questions that will ensure the elicitation of complete and consistent

requirements when using process models as the source of information. The main idea of the

method is to study each relevant Activity of a process model. The information found in the

model, together with certain questions as detailed by the method, ensures the elicitation of

complete and consistent requirements. For each Activity, a requirement specification template

is populated with the information discovered in dialogue with the domain experts.

The method was validated on a real-life case study. The case study findings showed that the

proposed method elicits more requirements as compared to the baseline method (used by the

company) and that the quality of the set of requirements is better in terms of fewer “faulty”

requirements. Furthermore, the method proposed in this thesis is more time efficient in terms

of man-hours it took to elicit the requirements as compared to the original baseline elicitation

method.

The method elicits functional requirements, and as such, one direction for future work is to

extend the method to also accommodate elicitation of non-functional requirements from

process models. Furthermore, as the number of requirements will rapidly grow with the

increase of project complexity, a semi-automated tool to support the documenting and

structuring of the requirement specifications is needed. The development of such tool is

another venue for future work.

44

References

[1] C. R. Coulin, “A Situational Approach and Intelligent Tool for Collaborative

Requirements Elicitation,” no. Toulouse III, 2007.

[2] J. A. Gougen and C. Linde, “Techniques for Requirements Elicitation.” 1992.

[3] A. M. Hickey and A. M. Davis, “A Unified Model of Requirements Elicitation,” vol.

20, no. 4, pp. 65–84, 2004.

[4] D. Zowghi and C. Coulin, “2 Requirements Elicitation : A Survey of Techniques ,

Approaches , and Tools,” 2005.

[5] S. Adam, N. Riegel, A. Gross, O. Uenalan, S. Darting, F. Iese, and F. Platz, “A

Conceptual Foundation of Requirements Engineering for Business Information

Systems,” pp. 91–106, 2012.

[6] Y. Wand and R. Weber, “Research Commentary: Information Systems and Conceptual

Modeling?A Research Agenda,” Inf. Syst. Res., vol. 13, no. 4, pp. 363–376, Dec. 2002.

[7] B. Nuseibeh and S. Easterbrook, “Requirements Engineering : A Roadmap,” ICSE ’00

Proc. Conf. Futur. Softw. Eng., vol. 1, no. ACM New York, NY, USA ©2000, pp. 35–

46, 2000.

[8] J. Li, R. Jeffery, K. H. Fung, L. Zhu, Q. Wang, H. Zhang, and X. Xu, “A Business

Process-Driven Approach for Requirements Dependency Analysis Juan,” pp. 200–215,

2012.

[9] T. Dufresne and J. Martin, “Process Modeling for E-Business,” pp. 1–28, 2003.

[10] D. Birkmeier and S. Overhage, “Is BPMN Really First Choice in Joint Architecture

Development ? An Empirical Study on the Usability of BPMN and UML Activity

Diagrams for Business Users,” pp. 119–134, 2010.

[11] B. H. C. Cheng and J. M. Atlee, “Research Directions in Requirements Engineering,”

2007.

[12] A. Wever and N. Maiden, “Requirements Analysis : The Next Generation,” pp. 0–1,

2011.

[13] M. Dumas, M. La Rosa, J. Mendling, and H. a. Reijers, Fundamentals of Business

Process Management. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[14] Object Management Group Inc., “Business Process Model and Notation (BPMN),”

2011.

[15] C. M. Zapata, M. B. Losada, and G. González-calderón, “An approach for using

procedure manuals as a source for requirements elicitation,” 2012.

45

[16] A. Sutcliffe and N. Maiden, “The Domain Theoryt for Requirements Engineering,” vol.

24, no. 3, pp. 174–196, 1998.

[17] A. Sutcliffe, G. Papamargaritis, and L. Zhao, “Comparing requirements analysis

methods for developing reusable component libraries,” J. Syst. Softw., vol. 79, no. 2,

pp. 273–289, Feb. 2006.

[18] J. Naish and L. Zhao, “Towards a generalised framework for classifying and retrieving

requirements patterns,” 2011 First Int. Work. Requir. Patterns, pp. 42–51, Aug. 2011.

[19] Wikimedia Foundation Inc., “Business process.” [Online]. Available:

http://en.wikipedia.org/wiki/Business_process. [Accessed: 10-Oct-2014].

[20] Wikimedia Foundation Inc., “Activity (UML).” [Online]. Available:

http://en.wikipedia.org/wiki/Activity_(UML). [Accessed: 12-Nov-2014].

[21] T. Dunstan, “BPMN Explained, a guide to the Business Process Modeling Notation,”

2014.

[22] S. Gorton and S. Reiff-marganiec, “Towards a Task-Oriented , Policy-Driven Business

Requirements Specification for Web Services.”

[23] I. Object Management Group, “Open Managment Group,” 2014. [Online]. Available:

http://omg.org/. [Accessed: 21-Aug-2014].

[24] C. J. Pavlovski and J. Zou, “Non-Functional Requirements in Business Process

Modeling,” vol. 79, 2008.

[25] A. Cockburn, “Writing Effective Use Cases,” 2000.

[26] J. Luis, D. Vara, J. Sánchez, and Ó. Pastor, “Business Process Modelling and Purpose

Analysis for Requirements Analysis of Information Systems 1,” pp. 213–227, 2008.

[27] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research

in software engineering,” Empir. Softw. Eng., vol. 14, no. 2, pp. 131–164, Dec. 2008.

[28] IEEE Computer Society, IEEE Recommended Practice for Software Requirements

SpeciÞcations IEEE Recommended Practice for Software Requirements Specifications,

vol. 1998, no. October. 1998.

[29] I. Erfurth and K. Kirchner, “Requirements Elicitation with adapted CUTA Cards: First

Experiences with Business Process Analysis,” 2010 15th IEEE Int. Conf. Eng.

Complex Comput. Syst., no. 4, pp. 117–126, Mar. 2010.

[30] K. Cox, K. T. Phalp, S. J. Bleistein, and J. M. Verner, “Deriving requirements from

process models via the problem frames approach,” Inf. Softw. Technol., vol. 47, no. 5,

pp. 319–337, Mar. 2005.

[31] N. A. M. Maiden, S. Minocha, K. Manning, and M. Ryan, “CREWS-SAVRE :

Systematic Scenario Generation and Use 1 2 : The CREWS-SAVRE Software Tool,”

pp. 1–9.

46

[32] N. Maiden and S. Robertson, “Developing use cases and scenarios in the requirements

process,” pp. 559–570, 2005.

[33] B. Berenbach, “The automated extraction of requirements from UML models,” J.

Light. Technol., p. 287, 2003.

[34] B. a. Berenbach, “Comparison of UML and text based requirements engineering,”

Companion to 19th Annu. ACM SIGPLAN Conf. Object-oriented Program. Syst. Lang.

Appl. - OOPSLA ’04, p. 247, 2004.

[35] D. Firesmith, “Generating Complete, Unambiguous, and Verifiable Requirements from

Stories, Scenarios, and Use Cases,” vol. 3, no. 10, pp. 27–39, 2004.

[36] G. da F. L. Cabral and A. C. A. Sampaio, “Formal Specification Generation from

Requirement Documents,” 2006.

[37] J. Daniels and T. Bahill, “The hybrid process that combines traditional requirements

and use cases,” Syst. Eng., vol. 7, no. 4, pp. 303–319, 2004.

[38] L. Probasco and D. Leffingwell, “Combining Software Requirements Specifications

with Use-Case Modeling,” Oct. 1996.

[39] F. Meziane, N. Athanasakis, and S. Ananiadou, “Generating Natural Language

specifications from UML class diagrams,” Requir. Eng., vol. 13, no. 1, pp. 1–18, Sep.

2007.

[40] N. a. M. Maiden, S. Manning, S. Jones, and J. Greenwood, “Generating requirements

from systems models using patterns: a case study,” Requir. Eng., vol. 10, no. 4, pp.

276–288, Oct. 2005.

[41] a. van Lamsweerde and L. Willemet, “Inferring declarative requirements specifications

from operational scenarios,” IEEE Trans. Softw. Eng., vol. 24, no. 12, pp. 1089–1114,

1998.

[42] E. Letier and A. van Lamsweerde, “Deriving operational software specifications from

system goals,” ACM SIGSOFT Softw. Eng. Notes, vol. 27, no. 6, p. 119, Nov. 2002.

[43] D. Alrajeh, A. Russo, and S. Uchitel, “Inferring operational requirements from

scenarios and goal models using inductive learning,” Proc. 2006 Int. Work. Scenar.

state Mach. Model. algorithms, tools - SCESM ’06, p. 29, 2006.

[44] R. De Landtsheer, E. Letier, and A. Van Lamsweerde, “Deriving tabular event-based

specifications from goal-oriented requirements models,” Requir. Eng., vol. 9, no. 2, pp.

104–120, May 2004.

[45] E. Yu, P. Du Bois, E. Dubois, and J. Mylopoulos, “From Organization Models to

System Requirements A ‘ Cooperating Agents ’ Approach 1 Introduction 2 Features of

A LBERT and i *.”

[46] O. Demirörs, Ç. Gencel, and A. Tarhan, “Utilizing Business Process Models for

Requirements Elicitation,” pp. 1–4, 2003.

47

[47] L. Abeti, P. Ciancarini, and R. Moretti, “Business Process Modeling for Organizational

Knowledge Management,” pp. 301–311, 2008.

[48] K. Decreus and G. Poels, “A Goal-Oriented Requirements Engineering Method for

Business Processes,” pp. 29–43, 2010.

[49] D. J. Flynn and M. D. Jazi, “Constructing user requirements: a social process for a

social context,” Inf. Syst. J., vol. 8, no. 1, pp. 53–83, Jan. 1998.

[50] A. M. Hickey and A. M. Davis, “Elicitation technique selection: how do experts do

it?,” J. Light. Technol., pp. 169–178, 2003.

48

Appendix 1 Case Study Design

Case study research is of flexible type, meaning that the design of the research might evolve

or change during the execution of the study, but it is still important to set the objectives and

methods of the case study beforehand to assure success of the research [27]. In this chapter

the objective, research questions, hypothesis, selection strategy, the case, and the methods are

introduced.

Objective, Research Questions, Hypothesis

First it is necessary to define the objective of the case study and to make a clear statement

what is planned to achieve. The objective is a more generally formulated statement and is

initially more like a focus point which evolves during the study [27]. In this thesis the

objective is “to test whether the application of the method created in this thesis improves the

quality and/or quantity of the requirements”.

In order to meet the objective stated above, more precisely formulated research questions

should be created [27].

RQ1: Did the application of REM elicit more requirements than the previously used method?

RQ2: Did the application of REM result in better quality requirements than the previously

used method?

To answer the research questions, the quantity and quality must first be clearly defined and

the measures set. Measuring the quantity and the quality of the requirements is not

straightforward, as the level of detail and the style of writing of specifications might differ

remarkably depending on the method used by the subject case (a specification in one method

might be 10 specifications in another). So the first step after the application of the method

must be the conversion of the specifications created using the method to the same form and

format as the specifications originally used in the subject case, or vice versa. The conversion

must result in specifications of the same level of granularity. The elicited requirements must

be relevant to the project (in scope).

Once the conversion of the specifications is done, it is possible to count the total number of

requirements elicited by REM and by ICM. In a way it is possible to answer RQ1, but just

measuring the total number of requirements elicited by both methods is not enough to make

any serious assumptions as the improvement or decline in quantity or quality is relative to the

total number of requirements existing in the project. E.g if 10 000 requirements exist in total,

49

an improvement by 10 is not significant. At the same time, if 100 requirements exist in total,

an improvement by 10 is much more significant.

To find out what is the total number of requirements existing in the project, it is preferred that

the project used for the case study is finished, the solution is implemented and has possibly

been in use for some time, so that additional requirements that often arise only during the

support phase are elicited. Also, not all requirements will necessarily be implemented as it

might be irrational due to limited resources, but they are still valid requirements and might be

captured during the elicitation process. So the Final Set of requirements in the project should,

in addition to the implemented requirements, also contain the rejected and deferred

requirements.

To answer RQ1, it is now possible to find out the total number of requirements elicited by

both methods. If the total number of correct requirements gathered with the method described

in the thesis is bigger than the total number of correct requirements gathered using the

original method, it can be concluded that REM is able to elicit more requirements.

In addition, the coverage percentage (the percentage of all requirements in the Final Set

covered by the requirements elicited by each method) must be found. The following tables

Table 9 Quantity Measure and Table 10 Coverage of the Method summarize the quantity and

coverage percentage measures needed to answer RQ1.

Table 9 Quantity Measure

Name Quantity Requirements of REM Requirements of ICM

Abbreviation

Q TOTTM TOTOM

Description Quantity coefficient Number of

requirements of REM

Number of

requirements of ICM

Entity List of requirements

elicited by REM

List of requirements

elicited by ICM

Attribute

TOTTM-TOTOM No of requirements No of requirements

Range [-∞, ∞] [0, ∞] [0, ∞]

Table 10 Coverage of the Method

Name Coverage percentage Requirements of the

method

Number of

requirements in the

50

Final Set

Abbreviation

COV NOREQ NOFIN

Description Coverage Number of

requirements of REM

or ICM

Number of

requirements in the

Final Set (including

rejected and referred)

Entity List of requirements

elicited by the

REM/ICM method

Final Set of

requirements.

Attribute

NOREQ/NOFIN No of requirements No of requirements

Range [0, 1] [0, ∞] [0, ∞]

In order to decide whether the method results in better quality requirements (RQ2), first it

must be specified what is meant by quality. IEEE Computer Society [28] defines that a good

quality requirements specification should be correct, unambiguous, complete, consistent,

ranked for importance and stability, verifiable, modifiable, traceable. The four latter attributes

are not important in the light of this thesis, as they come to importance in the later stages of

the requirements engineering process. However, in order to measure the quality of the

elicitation process, it is very important that the requirements elicited were correct,

unambiguous, complete and consistent.

How correct and unambiguous the requirements are, can be assessed by measuring how many

of the requirements elicited are not superfluous but are clear, understandable, unambiguous,

and relevant. To do that, the requirements gathered must be verified and grouped in at least

two groups (correct and superfluous) so that it was possible to count the number of

superfluous requirements and to calculate the percentage of correct requirements in the total

pack of elicited requirements. This must be done for both REM and ICM, which puts

additional demands on the subject case as there should exist a list of all requirements verified

as correct or superfluous (in case the list is missing, it is possible to compare the results with

industry averages found in literature). The calculation of how correct and unambiguous the

requirement are is summarized in the following Table 11 Correctness and Unambiguousness

Measures.

51

Table 11 Correctness and Unambiguousness Measures

Name Correctness and

unambiguousness

No of correct

requirements

Total no of

requirements

Abbreviation

C CR TOT

Description Correctness and

unambiguousness

coefficient

Number of

requirements

classified as correct

(non-superfluous)

Number of total

requirements

elicited by the

method.

Entity List of

requirements

List of

requirements

Attribute

CR/TOT No of correct Total no

Range [0, 1] [0, ∞] [0, ∞]

To measure whether the method resulted in a more complete and consistent set of

requirement, it must be found out, how many of the requirements elicited during the project in

total (including the development and support phase) did the method miss. More precisely,

what is the coverage percentage of requirements that were not elicited by the method? The

following Table 12 summarizes how the completeness and consistency is calculated.

Table 12 Completeness and Consistency Measures

Name Completeness and

consistency

No of missed

requirements

Total no of

requirements in the

Final Set

Abbreviation

C MR F

Description Completeness and

consistency

coefficient

Number of

requirements found

by the Final Set,

but missed by the

method

Number of

requirements in the

Final Set.

Entity List of

requirements

List of

requirements

Attribute

MR/F No of requirements No of requirements

52

Range [0, 1] [0, ∞] [0, ∞]

Additionally, the earlier the requirements are discovered in the project life-cycle, the more

likely it is that the project is finished successfully and also better architectural decisions can

be made. In order to measure this quality attribute, requirements elicited by the method should

be compared to the requirements elicited in the development phase and after the go-live (in

the support phase). If the new method was able to find requirements that in real life were

discovered only in the development or support phase, it is also possible to conclude that it is

of better quality. The last measure sets some demands to the subject case as it should be

possible to filter out requirements discovered in the development and support stages.

The hypothesis for the study is that “application of the method improves the quantity and

quality of the requirements elicited”.

In order to give answers to the research question above and to test the hypothesis, a subject

case was sought where the requirements elicitation for IS was completed and possibly the IS

system was already implemented. The IS to-be was process-oriented, the process was

nontrivial and a BPMN model of the process existed (possibly created by the customer or by

the analyst conducting the elicitation process). The elicitation method used originally was

well defined and used in various projects. Requirements were documented, so that it was

possible to compare the initial method to the Final Set of requirements.

Case and Subject Selection

The organizational setting of our case is a company that manufactures branded electric motors

and motor components for European customers. The subcontracting includes, for example,

machining of housings, shaft machining, coil manufacturing and final assembly. The

company is changing the entire enterprise resource planning software (ERP) that involves all

departments (sales, production, warehouse, quality assurance, payroll, finance, etc.). The

project is ongoing, but many parts of the solution are already implemented (as of November

2014).

The quality assurance sub-process was chosen as the subject for the case study. Quality

assurance is a very important process for the company as there are very strict rules on defects

and it is by no means a trivial process. Quality assurance is a supporting process to the

production process. The process is unique to the customer and therefore the supporting IS

solution is custom made for the customer. The system is built using the ERP platform (other

processes involved ready-made functionality of the ERP system).

53

The process had been modeled in BPMN beforehand by the analyst of the solution developer.

The solution developer is a company involved in the ERP solutions for over 9 years and is

well experienced in the field. They have their own methods for requirements elicitation that

have been evolved and used a number of times for many years and in a number of projects.

To model a system in BPMN, was relatively new to the developer and the analyst. The project

under the inspection of the case study had been completed 2 months before the case study and

the solution was up, running and used daily by the customer.

The developer had documented all the requirements gathered during the analytical phase of

the project and also all additional requirements that had evolved during the project

development and post-project (support phase). That gave a possibility to compare the results

of REM to ICM and to the Final Set.

In order to apply the method, the developer’s analyst was used as the domain expert on the

case. The analyst was the one that conducted the original requirements elicitation of the

project and was also involved in the elicitation, documentation and validation of additional

needs. The analyst is an experienced requirement engineer (more than 12 years in the field)

and was involved in the project from the beginning to the end. The analyst was chosen also to

give expert opinion and critique on the created method and to help to compare the results.

Case Study Data Collection Procedures

The case study is divided into four parts. The first part introduces the method to the analyst

and involves preparations for the next part. During the preparation, the model is examined by

the author of the thesis and preliminary requirements analysis is conducted without the

analyst and without the application of the questions of the method. The BPMN model is

examined and the suggestions of the method are followed. During the examination,

requirement specifications are created in the form of spreadsheets. Unclear or illogical things

are written down to be addressed in the next session.

The second part is held in the form of workshops (interviews) with the analyst. During the

workshops, the method is applied and specifications are updated with the gathered

information.

The third part is about converting the specifications created to the form and format used by

the developer. This is done using the help of the analyst, so that the new specifications would

be as close in style as possible to the specifications created in real life. After conversion,

verification of the requirements against the Final Set of requirements is done. For verification,

54

it is checked whether the requirement exists in the Final Set. If the requirement is missing

from the Final Set, the validity of the requirement is discussed with the analyst. If the

requirement is considered to be adequate, it will be classified as correct, if not, it will be

classified as superfluous. The classification will be marked in a separate field in the

specification. Also, a summary of the results and a calculation of the measures is done. The

summary has to be done for 3 lists of requirements: REM, ICM and the Final Set. All the

results will be saved in a separate spreadsheet.

The forth part is about interpretation of the results, comments and critique. To analyze the

results, an additional session with the analyst must be held in order to discuss the validity, and

threats to the validity, exchange opinions and discuss improvement suggestions. All opinions

and critique will be documented. The time spent on interviews, documentation and other

activities will be registered.

55

License

Non-exclusive license to reproduce thesis and make thesis public

I, Sander Valvas (date of birth: 07.04.1975),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright, of my thesis

Requirements elicitation from BPMN models, supervised by Fredrik P. Milani,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 26.02.2015

